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ABSTRACT

Dataflow and task graph descriptions are widely used for
mapping and scheduling of real-time streaming applications
onto heterogeneous processing platforms. Such applications
are often characterized by the need to process large-volume
data streams with not only high throughput, but also low la-
tency. Mapping such application descriptions into tightly con-
strained implementations requires optimization of pipelined
scheduling of tasks on different processing elements. This
poses the problem of finding an optimal solution across a
latency-throughput objective space. In this paper, we present
a novel list-scheduling based heuristic called MASES for
pipelined dataflow scheduling to minimize latency under
throughput and heterogeneous resource constraints. MASES
explores the flexibility provided by mobility and slack of
actors in a partial schedule. It can find a valid schedule if one
exists even under tight throughput and resource constraints.
Furthermore, MASES can improve runtime by up to 4x while
achieving similar results as other latency-oriented heuristics
for problems they can solve.

CCS CONCEPTS

• Computer systems organization → Embedded sys-
tems; Embedded software;

1 INTRODUCTION

Many real-time streaming applications are characterized by
a need to process large-volume data streams with both high
throughput and low latency [1–3]. Such applications are na-
tively non-terminating and can be modeled as synchronous
dataflow (SDF) or task graphs (equivalent to homogeneous
SDFs). The design process for implementing these applica-
tions requires processing elements (PEs) and time resources
to be allocated to actors by a scheduler. Scheduling results de-
termine the throughput and latency of executing a graph and
are crucial for satisfying optimal performance requirements.
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In order to achieve optimal performance, the schedule of
a dataflow or task graph should have a highly optimized
execution order that maximizes throughput while minimiz-
ing latency. Pipelining can thereby fully utilize processing
resources and thus effectively increase the throughput while
maintaining a minimal latency. Pipelined scheduling under
multiple objectives has been studied extensively in the past.
Most existing approaches, however, have been focused on
throughput as the primary optimization goal [3].

To target latency minimization of a single iteration of
a graph, variants of list scheduling heuristics, either stan-
dalone or in combination with other (meta-)heuristics for
task partitioning, are predominantly used [4]. Pure list sched-
ulers, however, do not consider throughput goals, and their
challenge stems from dealing with resource conflicts when
overlapping iterations of the same schedule under tight pe-
riod, precedence and mapping constraints. Such conflicts can
be resolved by pushing actor instances into later iterations,
which removes dependencies and increases scheduling flex-
ibility, but also increases pipeline length and thus latency.
Instead, approaches such as modulo scheduling for software
pipelining used in the compiler domain [5] employ repeated
rollback with partial rescheduling to resolve conflicts while
minimizing latency impact, but this is expensive and does
not guarantee to find a solution.

In this paper, a novel constructive heuristic for pipelined
list scheduling is proposed. Our mobility and slack enhanced
scheduling (MASES) improves on existing list scheduling
heuristics to address the problem of minimizing latency under
given throughput, resource and heterogeneous task mapping
constraints. In every iteration of the list scheduler, it runs a
comprehensive analysis to determine flexibility in the existing
partial schedule and minimally shift actors to create a large
enough space for the next target actor to place. Overall,
MASES provides a constructive list scheduling approach that
supports pipelining under tight throughput and resource
constraints. MASES is able give out a latency-minimized
result using a decidable amount of time, rather than dealing
with often unpredictable limits and lack of guarantees of
existing iterative re-scheduling approaches.

2 RELATED WORK

In pipelined scheduling, there is a tradeoff among throughput,
latency and area requirements. Approaches that focus exclu-
sively on throughput have been researched extensively [1, 3].
For the problem of optimizing a latency-minimized pipelined
schedule, there are two popular approaches: solving an inte-
ger linear program (ILP) or using latency-aware scheduling
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Figure 1: Example task graph.

heuristics, such as list schedulers. ILP approaches [6, 7] are
optimal but exponential in complexity. By contrast, heuris-
tics derive a result in shorter runtime, but do not guarantee
optimality. Nevertheless, list schedulers specifically can often
achieve close to optimal results, are flexible and can be easily
combined with other objectives or algorithms to increase
scope while maintaining fast execution time [3].

Among throughput- and latency-aware pipelining approaches,
the authors in [8] discuss heuristics for latency-minimized
scheduling of SDF graphs under throughput goals, but they
do not consider resource constraints. The work in [9, 10]
applies iterative task replication and clustering to meet both
throughput and resource constraints while minimizing la-
tency, but they only target homogeneous mapping problems.
Several approaches combine list scheduler variants with dif-
ferent heterogeneous partitioning heuristics [11–15]. None of
these approaches aggressively optimize latency under strict
throughput constraints, however. In all cases, these algo-
rithms resort to trying either a larger period or a larger
number of periods, i.e. significantly increased latency if they
fail to find a valid schedule. In [5], a pipelined list scheduler
is combined with a backtracking heuristic to improve the
rate of successfully finding a valid and latency-optimized so-
lution even under tight throughput and resource constraints.
However, its performance relies on the search depth limit,
which in turn significantly affects execution time. Further-
more, backtracking does not provide any guarantee of finding
a valid schedule. By contrast, MASES works with a fixed
period and never unschedules any previous placed actors,
therefore resolving potentially endless backtracking loops in
which actors keep displacing each other. This significantly
improves success and reduces runtime in finding a valid and
optimized schedule (if one exists).

3 MOBILITY AND SLACK
ENHANCED SCHEDULING

In pipelined scheduling, multiple iterations of the graph are
allowed to overlap within one period. In the description of
pipelined scheduling, the concept of a Modulo Reservation Ta-
ble (MRT) is commonly used [5]. A MRT is a two-dimensional
table for the modeling of resource constraints. In this table,
the rows represent the PEs and the number of columns is
equal to the number of time slots in the period for execution of
the graph. MASES makes use of MRTs and adjusts a partial
schedule when the list scheduler cannot find a solution.

In MASES, we use mobility and slack concepts to describe
the flexibility in a partial schedule. Note that we adopt these
terms from other domains, but our use case differs, e.g.,
compared to high-level synthesis in which mobility is defined
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Figure 2: Using mobility of actor 𝐶 to allocate 𝐺.

as the difference in operation start times between resource-
unconstrained ASAP and ALAP schedules. By contrast, we
define an actor to have mobility or slack if it can be moved
in the MRT without violating resource constraints in an
already existing partial schedule, thus creating a larger space
for other actors. When there is not enough space for an
actor, a comprehensive mobility and slack analysis of every
actor on the partial schedule is performed. In the following
discussions, we use the term gap to refer to a number of
consecutive available time slots on the MRT.

For the example in Fig. 1 and Fig 2, actor G is supposed
to be scheduled on PE0, and is requiring 3 consecutive time
slots to execute. A list scheduler will return failure when it
attempts to schedule G. Due to its greedy strategy, available
time slots are divided and cannot be utilized. Such gaps can
be avoided and actors freely scheduled by assigning dependent
actors on different PEs to different periods/iterations. E.g.,
postponing C by one period will allow it to be scheduled
right after A, which will avoid fragmentation. However, this
increases schedule length by one period. Instead, actor C has
mobility and can be moved without affecting the rest of the
schedule. MASES will move C forward for 1 time slot and
create enough space for actor G. Compared to conservative
(re-)scheduling approaches, no additional period overhead will
be incurred. Comparing to backtracking, MASES exploits
such actor mobility to adjust the MRT and find a valid
scheduling pattern without unscheduling any actor.

3.1 Mobility Analysis

The mobility of an actor is defined as the number of time
slots that this actor can be moved forward without affecting
the overall latency of the schedule. Actors that do not have
any scheduled successor have no mobility.

While computing the mobility of actor a, its successors’
mobilities are taken into account. It is obvious that if all of
actor a’s successors have mobility, actor a can be moved as
well. According to the definition, actor a’s mobility 𝑀(𝑎) can
be computed as the minimum sum of a’s successor’s mobility
plus the distance between a and its successor:

𝑀(𝑎) = min
𝑠∈𝑆𝑢𝑐𝑐(𝑎)

(𝑑𝑖𝑠𝑡(𝑎, 𝑠) +𝑀(𝑠)),

where dist(a,s) denotes the number of time slots from the
end of actor a to the start of actor s:

𝑑𝑖𝑠𝑡(𝑎, 𝑠) = (𝑆(𝑠)%𝑃 − 𝐸(𝑎)%𝑃 + 𝑃 )%𝑃.

Here, P denotes the period, and S(i) and E(i) indicate the
beginning and end of execution of actor i relative to the
beginning of execution of the first actor in the same iteration.
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Figure 3: Actual mobility of actor 𝐶.

There is, however, one additional consideration when at-
tempting to move actor a: the MRT may be blocked by other
actors scheduled on the same PE. For example, since it is
blocked by actor E, the mobility of actor C in Fig. 2 is 1
even though the distance to its immediate successor F is 2.

Let Next(a) refer to the actor that is scheduled right behind
actor a on the same PE, if any. If Next(a) is not a successor of
actor a, the computation of actor a’s mobility should include
the mobility of Next(a). Hence, for actor a, Next(a) affects
its mobility in the same way as actor a’s successors do:

𝑀(𝑎) =

{︃
0 𝑆𝑢𝑐𝑐(𝑎) ∈ ∅

min𝑛(𝑀(𝑛) + 𝑑𝑖𝑠𝑡(𝑎, 𝑛)) otherwise,

where 𝑛 ∈ 𝑆𝑢𝑐𝑐(𝑎) ∪𝑁𝑒𝑥𝑡(𝑎).
At this point, the mobility of actor a denotes the possi-

bility of moving actor a forward on the MRT. However, the
motivation of exploring actor a’s mobility is to expand the
gap in front of it. If moving actor a requires moving the
previous actor on the same PE, the gap will be shifted in-
stead of be expanded. Consider the partial schedule in Fig. 3
for the example graph from Fig. 1. The mobility of actor
C is 1. According to mobility definition, actor C should be
able to move forward for 1 time slot without affecting the
overall latency. However, in this case, moving actor C is not
a reasonable choice, since it will move actor G as well, and
hence fails to create a larger gap. This phenomenon does not
affect the recursive computation of mobility. It only needs to
be considered when an actor is selected to be the one that is
going to be moved to create a larger gap before itself.

To resolve this problem, we define the concept of actual
mobility. Let Prev(a) refer to the actor that is scheduled
right before actor a on the same PE, if any. The actual
mobility 𝑀𝑎(𝑛) refers to the number of time slots that actor
a can be moved forward without moving actor Prev(a). If
Prev(a) is scheduled later than actor a, i.e. 𝑆(𝑃𝑟𝑒𝑣(𝑎)) >
𝑆(𝑎), then moving a might affect Prev(a). In this case, the
actual mobility of actor a can be computed conservatively
by excluding the effect of actor a’s successors’ and Next(a)’s
mobilities:

𝑀𝑎(𝑎) =

⎧⎪⎨⎪⎩
0 𝑆𝑢𝑐𝑐(𝑎) ∈ ∅

min𝑛(𝑑𝑖𝑠𝑡(𝑎, 𝑛)) 𝑆(𝑃𝑟𝑒𝑣(𝑎)) > 𝑆(𝑎)

𝑀(𝑎) otherwise,

where 𝑛 ∈ 𝑆𝑢𝑐𝑐(𝑎) ∪𝑁𝑒𝑥𝑡(𝑎).
Algorithm 1 shows the mobility computation of every actor

on the MRT. The mobility of all actors is first initialized to
0. Since the computation of mobility for actor a requires
the mobility of Next(a), to avoid a circular dependency that

Algorithm 1 Mobility Computation

1: procedure Mobility(a)
2: if a.visited then return

3: a.visited = true

4: a.mob = ∞
5: a.actualMob = ∞
6: if 𝑆𝑢𝑐𝑐(𝑎) ∈ ∅ then

7: a.mob = 0
8: a.actualMob = 0

9: for all 𝑠 ∈ 𝑆𝑢𝑐𝑐(𝑎) do
10: Mobility(s)

11: 𝑎.𝑚𝑜𝑏 = min(𝑎.𝑚𝑜𝑏, (𝑑𝑖𝑠𝑡(𝑎, 𝑠) + 𝑠.𝑚𝑜𝑏))

12: 𝑎.𝑎𝑐𝑡𝑢𝑎𝑙𝑀𝑜𝑏 = min(𝑎.𝑎𝑐𝑡𝑢𝑎𝑙𝑀𝑜𝑏, 𝑑𝑖𝑠𝑡(𝑎, 𝑠))

13: 𝑛 = 𝑁𝑒𝑥𝑡(𝑎)

14: if 𝑛 ∧ 𝑛 /∈ 𝑆𝑢𝑐𝑐(𝑎) then
15: 𝑎.𝑚𝑜𝑏 = min(𝑎.𝑚𝑜𝑏, (𝑑𝑖𝑠𝑡(𝑎, 𝑛) + 𝑛.𝑚𝑜𝑏))

16: 𝑎.𝑎𝑐𝑡𝑢𝑎𝑙𝑀𝑜𝑏 = min(𝑎.𝑎𝑐𝑡𝑢𝑎𝑙𝑀𝑜𝑏, 𝑑𝑖𝑠𝑡(𝑎, 𝑛))

17: if ¬𝑃𝑟𝑒𝑣(𝑎) ∨ 𝑆(𝑃𝑟𝑒𝑣(𝑎)) < 𝑆(𝑎) then

18: 𝑎.𝑎𝑐𝑡𝑢𝑎𝑙𝑀𝑜𝑏 = 𝑎.𝑀𝑜𝑏

1: procedure MobilityComputation

2: for all 𝑎 ∈ actorList do a.mob = 0

3: for all 𝑎 ∈ actorList do a.prevMob = None

4: do
5: loopFlag = false

6: for all 𝑎 ∈ actorList do a.visited = false

7: for all 𝑎 ∈ actorList do

8: Mobility(a)

9: if a.mob != a.prevMob then
10: a.prevMob = a.mob

11: loopFlag = true

12: while !loopFlag

may cause endless recursion, we compute the mobility itera-
tively. Each time iterating over all the actors, the previously
computed or initialized mobility of Next(a) is used. After
each such iteration, the computed mobility information is
compared with the one collected in the previous iteration.
Mobility computation finishes when the mobility information
no longer changes between two iterations.

3.2 Slack analysis

The slack of an actor is defined as the number of time slots
that this actor can be moved forward along with successors
that have already been scheduled on the MRT. Moving actors
using slack will move whole blocks of actors including ones
that have no scheduled successors on the MRT. This can be
used to redistribute and consolidate gaps. Exploiting slack,
however, will affect possible start times of future actors and
increase the overall latency of the partial schedule.

According to the definition, actor a’s slack 𝐿(𝑎) can be
computed as the minimum over a’s successors’ slacks:

𝐿(𝑎) = min
𝑠∈𝑆𝑢𝑐𝑐(𝑎)

(𝐿(𝑎))

Similar to mobility, slack is computed recursively. Every actor
on the MRT that does not have any scheduled successor has
a maximum slack of one whole period.

However, a blocking actor Next(a) also needs to be consid-
ered. If Next(a) starts later than actor a, they will be moved
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Figure 4: Slack of actor 𝐶.
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Figure 5: Actual slack of actor 𝐶.

together and the slack of Next(a) will be taken into account.
Otherwise, if Next(a) is not going to move along with a,
dist(a, Next(a)) will be considered. Slack is thus computed
as the minimum of successor and next actor slack:

𝐿(𝑎) = min(𝐿𝑠(𝑎), 𝐿𝑛(𝑎)),

where

𝐿𝑠(𝑎) =

{︃
𝑝𝑒𝑟𝑖𝑜𝑑 𝑆𝑢𝑐𝑐(𝑎) ∈ ∅

min𝑠∈𝑆𝑢𝑐𝑐(𝑎)(𝐿(𝑠)) otherwise

and

𝐿𝑛(𝑎) =

⎧⎪⎨⎪⎩
𝑝𝑒𝑟𝑖𝑜𝑑 𝑁𝑒𝑥𝑡(𝑎) ∈ ∅

𝐿(𝑁𝑒𝑥𝑡(𝑎)) 𝑆(𝑎) < 𝑆(𝑁𝑒𝑥𝑡(𝑎))

𝑑𝑖𝑠𝑡(𝑎,𝑁𝑒𝑥𝑡(𝑎)) otherwise.

Consider the example schedule for the graph from Fig. 1
shown in Fig. 4. Here, the slack of actor C is 1 while its
mobility is 0. Moving actor C using slack would move actor
F and increase overall latency. Limited by its next blocking
actor D on the same PE, the slack of F is 2. However, C is
further limited by actor A blocking its way.

Similar to actual mobility, there is actual slack. As men-
tioned before, if moving actor a ends up moving actor Prev(a),
it will not lead to gap expansion. This is very likely to be
the case if S(Prev(a)) is greater than S(a). A conservative
approach is therefore to set the actual slack of actor a to 0
in this case:

𝐿𝑎(𝑎) =

{︃
0 𝑆(𝑃𝑟𝑒𝑣(𝑎)) > 𝑆(𝑎)

𝐿(𝑎) otherwise.

For the example in Fig. 5, the slack of actor C remains 1. In
comparison, its actual slack is 0, since 𝑆(𝐺) > 𝑆(𝐶).

Overall slack computation is performed similar to Mobil-
ityComputation() described earlier. A SlackComputation()
function calls Slack() for every actor, which recursively com-
putes slack. Actors on the MRT are first initialized with
fixed slack values. For actors that do not have successors, the
initial slack is equal to the number of available time slots
after them up to a whole period. The slack of other actors is
initialized to 0.
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Figure 6: Gap selection and squeezing.D(2)
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Figure 7: Alternative gap selection result.

3.3 Gap Selection

After mobility and slack computation has finished, we put all
available gaps on the target PE under consideration into a gap
list, and then decide which gap to expand for placing the new
actor. However, mobility and slack are not always sufficient
for expanding and finding a gap. If we cannot use mobility
nor slack to make a large enough gap, we have to borrow
space and expand a gap by squeezing other gaps. This will
require moving actors while violating dependencies, which
are resolved by pushing successors into later periods and thus
significantly increasing latency. However, resources on the
MRT are utilized more effectively, leaving less unused time
slots. Because of the latency cost, gap squeezing should only
happen when other mobility and slack options are exhausted.
In this case, latency is traded off for throughput.

Consider the example shown in Fig. 6. Numbers in paren-
theses indicate actor start times 𝑆(𝑎). There is no mobility or
slack for any actor on the MRT. Hence, we have two choices
for placing actor 𝐻: expanding the (𝐴,𝐶) gap by squeezing
the gap between 𝐶 and 𝐺, or expanding (𝐶,𝐺) by squeezing
(𝐴,𝐶). Choosing gap (𝐴,𝐶) requires moving actor 𝐶 without
moving its successors, which results in a dependency violation
pushing 𝐹 , 𝐺 and 𝐻 out by one period. The resulting latency
is 15. Alternatively (Fig. 7), placing 𝐻 in gap (𝐶,𝐺) would
require moving 𝐺 and 𝐴 by one slot, violating the 𝐴 ↦→ 𝐵
dependency and thus pushing all successors of 𝐴 into a later
period (with a total latency of 17).

Squeezing gaps is able to provide more space when needed.
However, some gaps can be non-eligible for squeezing due to
backward edges. A backward edge is an edge that forms a
cycle and contains initial tokens. The sink actor of a backward
edge is thereby scheduled before the source actor. If there
are not enough initial tokens to support two consecutive
firings of the sink actor before the source actor finishes,
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Algorithm 2 Gap Selection

1: procedure GapSelection(𝑎,𝑡𝑠𝑡𝑎𝑟𝑡)
2: d = a.len

3: for all 𝑔 ∈ 𝑔𝑎𝑝𝐿𝑖𝑠𝑡 do

4: if g.len + g.actualMob + g.actualSlack ≥ d then
5: slack = max(𝑑− 𝑔.𝑙𝑒𝑛− 𝑔.𝑎𝑐𝑡𝑢𝑎𝑙𝑀𝑜𝑏, 0)

6: g.cost = dist(𝑡𝑠𝑡𝑎𝑟𝑡 + slack, S(g)) + slack

7: continue
8: l = g.len

9: bias = 0
10: for all ℎ ∈ gaps after 𝑔 do

11: if squeezable(ℎ) then

12: l = l + h.len
13: n = number of precedence violations

14: if h.start == 𝐸(first actor) then

15: bias = bias + h.len

16: if 𝑙 + ℎ.𝑎𝑐𝑡𝑢𝑎𝑙𝑀𝑜𝑏+ ℎ.𝑎𝑐𝑡𝑢𝑎𝑙𝑆𝑙𝑎𝑐𝑘 ≥ 𝑑 then
17: s = max(𝑑− 𝑙 − ℎ.𝑎𝑐𝑡𝑢𝑎𝑙𝑀𝑜𝑏, 0)

18: g.cost = dist(𝑡𝑠𝑡𝑎𝑟𝑡 + 𝑠, S(g))

19: g.cost = g.cost + 𝑠 + n·P - bias
20: break

21: return gap with smallest cost

there will be a precedence violation. In light of this, the
sink actor cannot be moved into a subsequent period. Doing
so would add one period to every actor that follows the
sink actor, including the source actor. Similarly, buffer space
constraints can make a gap non-squeezable. Essentially, buffer
space constraints impose an implicit backward edge between
the involved actors, where larger buffer space constraints
correspond to more initial tokens.

The gap selection process is shown in Algorithm 2. The
input is a target actor 𝑎, the earliest starting time of 𝑎 known
as 𝑡𝑠𝑡𝑎𝑟𝑡, and a list of gaps. In this algorithm, g.start refers to
the first slot of a gap 𝑔, g.len denotes the length of the gap,
and g.actualMob and g.actualSlack are defined as the actual
mobility and actual slack of the actor at the right boundary
of 𝑔. The goal is to choose and expand a gap in order to
create a large enough space for the target actor’s execution
delay 𝑑. During this process, the cost of choosing each gap
is precisely evaluated. Different gaps will result in different
schedules. The objective is to find the best gap minimizing
overall latency. For each gap 𝑔, we first try to use mobility
and slack for expansion. If using mobility and slack achieve
the goal, the gap is not further evaluated and the latency
cost is measured as the distance between 𝑡𝑠𝑡𝑎𝑟𝑡 and g.start
adjusted by the used 𝑠𝑙𝑎𝑐𝑘, if any. Note that using any slack
will shift all successor actors and hence increase both latency
and 𝑡𝑠𝑡𝑎𝑟𝑡 accordingly. Finally, when using both mobility
and slack does not succeed, gaps to the right of 𝑔 will be
evaluated for squeezing one by one until the accumulated
length 𝑙 meets the delay requirement 𝑑. For every actor that is
moved during the squeezing process, at least one extra period
will be imposed on the start time of all of its successors that
otherwise result in a precedence violation. Since squeezing
gaps might change the start time of the overall schedule,
i.e. move the first actor of the schedule, this bias has to be
compensated for in the evaluation of cost.

Algorithm 3 MASES Algorithm

1: procedure MASES

2: Compute heights for all actors
3: t = 0

4: while !all actors scheduled do
5: for all 𝑎 ∈ 𝑅𝑒𝑎𝑑𝑦𝐴𝑐𝑡𝑜𝑟𝑠(𝑡) do

6: slot = FindSlot(a,MRT,t)

7: if ¬𝑠𝑙𝑜𝑡 then
8: MobilityComputation()

9: SlackComputation()

10: gap = GapSelection(𝑎,𝑡)
11: if ¬𝑔𝑎𝑝 then return Infeasible

12: slot = S(gap)

13: actor.start = slot

14: t++

15: latency = t - startTime

After going through the gap list, a list of gaps sorted by
cost is created. The cost is defined as the distance from 𝑡𝑠𝑡𝑎𝑟𝑡
to the start of the gap, plus the number of periods added.
The algorithm then selects the gap with the minimal cost.
After putting the new actor in the selected gap, the absolute
starting time of every actor will be updated and broken
precedence relationships are rebuilt.

The complete MASES algorithm (Algorithm 3) extends a
basic list scheduler with mobility computation, slack compu-
tation and gap selection. When the list scheduler cannot move
forward, mobility and slack of every actor will be computed
and gap selection will be performed as described previously.

4 EXPERIMENTS AND RESULTS

We evaluated and compared MASES against the backtracking-
based list scheduler from [5] that also targets pipelining under
latency goals and throughput constraints. Both schedulers
were implemented in C++, and all experiments were per-
formed on a 3.5GHz Intel i7-4771 quad core workstation.
Using SDF3 [16], we generated 1000 random acylic SDF
graphs of different sizes, i.e. number of actor instances, rang-
ing from 10 to 100 at steps of 10, with 100 random graphs
of each size. Graphs were constrained to have half as many
nodes as instances. The number of PEs is set to 3. Other
attributes, such as repetition vectors, execution time and
unique PE assignment were randomly generated. Period con-
straints were varied in a range 𝑃 = 𝑟𝑃𝑚𝑖𝑛, 1.0 ≤ 𝑟 ≤ 1.06,
where 𝑃𝑚𝑖𝑛 is the theoretical minimum period defined by the
sum of execution times of actors mapped to the most critical,
i.e. most highly utilized PE on which every available time
slot is used. Buffer space is assumed to be unlimited.

For the backtracking heuristic, a search depth limit is
required to avoid endless re-scheduling loops. The depth
limit is usually proportional to the size of the input graph [5].
This is because larger graphs are more likely to fail and thus
require more attempts. Increasing the depth limit improves
the success rate of finding a solution. However, even an
infinite search limit does not eliminate failed cases, and doing
so would make execution times unaffordable. Based on [5],
the depth limit for a SDF graph that has 𝑁 instances can
vary from 𝑁 to 6𝑁 , and the authors of [5] suggest a limit
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Figure 8: Backtracking (BT) versus MASES runtime and latency.

Table 1: Tests succeeded for backtracking.

Graph Size
𝑟 10 20 30 40 50 60 70 80 90 100

1.0 86% 63% 48% 48% 44% 41% 38% 34% 32% 38%

1.02 91% 83% 74% 75% 81% 84% 79% 78% 77% 83%

1.06 96% 95% 91% 95% 99% 99% 95% 97% 96% 99%

of 2𝑁 , which balances execution time and success rate of
finding a solution. In the following experiments, we set the
default backtracking depth limit to 2𝑁 .

One of the main advantages of MASES is that it does not
rely on any iterative search. Whenever there is no cycle in
the graph, MASES can guarantee the existence of a solution.
This makes MASES advantageous when the period constraint
is small. Table 1 shows the number of failed tests using a
backtracking heuristic versus the size of the SDF graph. As
the size of graph increases, the possibility of the backtracking
algorithm finding a valid schedule quickly decreases. When
the size of SDF graphs is 10, there are 86 out of 100 test cases
that pass the backtracking heuristic. This number shrinks to
38 when the size of SDF graphs is 100. In comparison, the
MASES algorithm never fails to find a solution.

In Figs. 8(a) and 8(b), the execution times of backtracking
and MASES are compared. In this experiment, we run both
algorithms on all test cases and only on the ones for which
backtracking succeeds. Results show that MASES has signifi-
cantly better execution time cost compared to backtracking.
Since backtracking has to spend a lot of time on searching a
schedule before reaching the depth limit, the time expense is
particularly notable when for small periods when backtrack-
ing often fails. Even when only considering test cases that
passed both MASES and backtracking, MASES still runs
faster than backtracking for most of the test cases.

The quality of scheduling results in terms of achieved
latency is also evaluated (Fig. 8(c)). Only test cases that are
guaranteed to pass both schedulers are selected. Results show
that for the cases where it succeeds, back-tracking performs
slightly better in terms of minimizing latency. Backtracking
repeatedly un- and re-schedules actors, which is a form of
exhaustive search. By contrast, MASES relies heavily on gap
squeezing, which is one of the most important features that
guarantee a 100% success rate. However, squeezing gaps is a
greedy process that can be suboptimal.

5 SUMMARY AND CONCLUSIONS

This paper contributed a new approach for latency-aware,
pipelined scheduling of dataflow graphs. We propose mobility
and slack enhanced scheduling (MASES), a heuristic that im-
proves on existing latency-oriented pipelined list-scheduling
heuristics when the period constraint is extremely strict. Mo-
bility and slack analysis utilizes the flexibility in the existing
schedule to minimize latency under a throughput goal. These
features allow us to make adjustment on the scheduled actors
instead of rolling back and redoing the scheduling process.
The main benefit of MASES over existing work is that it is
able to find a schedule if it exists even under tight throughput
and resource constraints. Furthermore, it can have better
complexity at similar quality of results compared to other
heuristics for problems they can solve.
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