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Abstract—Dynamic precision scaling is a promising technique
to reduce power consumption in Digital Signal Processing (DSP)
systems. Power savings are achieved by dynamically adapting
word lengths to a time-varying environment. Typical applica-
tions are wireless communication systems that operate under
different wireless channel conditions. One of the obstacles of
such techniques is that they require an optimization of word
lengths for all intermediate values at all possible operation points.
This makes traditional simulation-based fixed-point optimization
infeasible. In this paper, we study efficient heuristics to find
optimal sets of word lengths for all variables in a system under
a range of operating conditions. We exploit statistical analysis
of quantization noise coupled with Additive White Gaussian
Noise (AWGN) models of the channel environment. Applied to
an example of a Fast Fourier Transform (FFT) block in an
Orthogonal Frequency Division Multiplexing (OFDM) system,
a more than 5,000x improvement in optimization time compared
to an efficient simulation-based word length optimization method
can be achieved.

Index Terms—Power reduction, word length optimization, FFT

I. INTRODUCTION

Power consumption continues to be a critical aspect of
Digital Signal Processing (DSP) systems. Among various
power reduction techniques, dynamic precision scaling is a
technique aimed at reducing internal system precision and
hence dynamic power consumption in reaction to changing
operating conditions [1], [2], [3] and [4]. In traditional design
of DSP systems, fixed-point word lengths are determined to
support the worst case. However, the system is not always in
this situation and hence a power reduction opportunity exists.
The key idea is to control precision of a system adaptively
according to current signal quality.

In [1], the authors introduce the concept of dynamic word
length scaling by forcing lower significant bits to zero if the
current signal quality is better than a predetermined minimum
requirement. There are two drawbacks in their work: the
authors use the same word length across the whole design and
their method requires dedicated training symbols to find the
best word lengths at run time in a self-adjusting scheme. How-
ever, a self-adjusting process introduces additional overhead
that negates some of the power savings. Morover, since fine-
tuning of word lengths would result in even more overhead
in a run-time approach, their method is limited to a single
word length over all variables in the system. In [2], the
authors use both precision and voltage scaling to maximize

power reduction. They first optimize word lengths according
to the channel environment and then use these word lengths
to find the optimal voltage that still satisfies a required error
rate. Their method is robust to process variation, but it also
incurs run time overhead. In [3] and [4], word lengths are
optimized at design time to avoid the run time overhead.
In [3], the authors target software-defined implementations of
wireless systems, and use simulations to support fine-grain
optimization of all variables but only consider powers of 2 as
word lengths. In [4], optimal word lengths are also determined
by simulation, where precision is instead allowed to decrease
when it can be absorbed in increasing base noise under varying
bit error requirements. In both cases, given the large number of
variables and operating conditions to optimize for, simulation-
based design methods are time-consuming, which is a main
reason why dynamic precision scaling is not widely used.

In this paper, we investigate novel analytical techniques
that resolve some of the drawbacks of previous works. Our
method calculates the optimal set of word lengths at design
time using statistical analysis. Compared to the methods that
require long simulations, our approach can dramatically reduce
the design time. Moreover, fine tuning of word lengths reduces
overhead and improves power consumption compared to run-
time methods in [1], [2].

The paper is organized as follows: after a brief summary of
related work and the system model, our optimization process
is described in Section II. Result are shown in Section III.
Finally, Section IV concludes and discusses future work.

A. Related Work

Fixed-point conversion and word length optimization has a
long history of research [5], [10]. In a fixed-point representa-
tion, integer bits are related to the dynamic range of a signal
and fractional bits are related to precision. For determining the
optimal number of both integer and fractional bits, analytical
or simulation-based methods have been introduced.

Simulation-based methods are widely used to estimate
fixed-point performance. For example, Sung et al. [5] add a
Signal to Quantization Noise Ratio (SQNR) block to quantify
the finite word-length effects when the word-length for the
implementation of the system changes. In [6], various word
length search methods are summarized and compared. The ef-
ficiency of simulation-based methods is analyzed to determine
the number of simulations needed to reach optimum word
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Fig. 1: OFDM receiver.

lengths. The complexity of a full search is O(Ns), where N
is number possible word lengths for each decision variable,
and s is number of variables. It is shown that the complexity
can be dramatically reduced to O(s) by using efficient search
methods that rely on sensitivity information but may run into
local minima.

Among the various analytical techniques, in [9] the authors
adopt Affine Arithmetic (AA) to model the min/max error
propagation of quantization noise. However, static min/max
approaches are not appropriate for dynamic precision scaling.
They are known to be overly conservative. Furthermore, in
applications such as communication systems, Additive White
Gaussian Noise (AWGN) sources from the outer channel
environment are hard to characterize in a min/max form. The
research done by Shi and Brodersen [10] analyzes quantization
noise with perturbation theory instead. They measure the
sensitivities of input word lengths to output noise by simu-
lations and use this information in their constraint function.
Constantinides et al. find optimal word lengths by evaluating
the variance of quantization noise through the system transfer
function [7]. Finally, in [11] a variance propagation method is
applied to quantization noise analysis in a FFT block. Menard
et al. [8] propose a similar method for generalized Data Flow
Graphs (DFGs). Because their method can be used both for
linear and nonlinear systems and is suitable for general DSP
systems, we use it for statistical word-length analysis and
optimization in this paper.

B. System Model

We use a basic OFDM receiver to verify our idea (Figure 1).
The receiver consists of a synchronization block, a 256 point
FFT, an equalizer and a symbol de-mapper. An AWGN chan-
nel model is assumed to exist between transmitter and receiver.
The FFT is used as an example to be designed in dynamically
scaled fixed point form. Without loss in generality, among
many implementation schemes, we assume that a pipelined
radix-4 FFT is used. The 256-point FFT has four radix-4
stages and each stage contains a radix-4 butterfly and a twiddle
multiplication. Since we change the SNR of the system by
adding quantization noise, the targeted SNR of the FFT is
defined as a desired SNR at its output, which is affected both
by a given input SNR and internal quantization noise sources.
At design time, statistical analysis determines multiple sets
of word lengths for all internal variables in FFT and at all
input SNRs defined through floating point simulations. At run

time, a SNR block measures the FFT’s input SNR and a word
length controller selects the best set of word lengths that is
suitable for the current input SNR to maintain a pre-defined
output SNR. We assume that perfect SNR measurement is
possible. We only use fixed point numbers with a round-to-
nearest rounding method.

The final performance metric for a wireless communication
system is usually the coded Frame Error Rate (FER). In this
paper, however, we use uncoded Bit Error Rate (BER) instead.
Every FER has a corresponding BER, which is not affected by
frame length and coding scheme. Our goal is to find FFT word
lengths that satisfy a desired BER for any given input SNR.
BER is closely related to SNR. However, BER is decision error
and the relationship between SNR and BER is not linear but
a function of the noise’s Probability Density Function (PDF).
It is hard to find the exact PDF of noise for a general DSP
system that has quantization noises. In this paper, we assume
that propagated noise at the output of an FFT stage is Gaussian
distributed. From the central limit theorem, it follows that the
noise of the output of a radix-4 butterfly can be approximated
as Gaussian. Our simulation results also show that the output
noise from twiddle multiplications, since additive, can be
approximated to be Gaussian. Furthermore, the input signal
is assumed to be Gaussian. This is true considering the time
domain signal of an OFDM system. Hence, although we use
an SNR metric in our analysis, under the above assumptions
we can estimate BER from SNR.

Our approach is heuristic because 1) we use a Pseudo Quan-
tization Noise (PQN) model instead of exact distribution func-
tions of noise, and 2) we consider the quantization of system
coefficients, such as the twiddle factors or filter coefficients as
additive noise injection, which ignores associated changes of
the transfer function. In contrast to other approaches [11], this
allows us to consider coefficient quantization noise. However,
the impact on the transfer function and hence corresponding
inaccuracies in our method are specific to a given application.

II. STATISTICAL ANALYSIS

Our approach only applies to fractional bits. As such, we
assume that the number of integer bits has already been
determined by range analysis. Our word length optimization
procedure for fractional bits is shown in Figure 2.

Our optimization problem is to minimize power consump-
tion subject to output SNR constraints under given input and
quantization noises. We start by building a floating point model
of our system, which is simulated to obtain a targeted output
SNR and a set of possible input SNRs. These are the inputs
to our optimization problem. From the floating-point model,
we also extract the DFG of the system. With the DFG and
targeted output SNR we build cost and constraint functions,
which are functions of input SNR and word lengths. Then, we
apply our optimization problem to each input SNR in order
to determine an optimal set of word lengths that minimizes
power consumption while satisfying the targeted output SNR.
This process is repeated for all possible input SNRs.
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A. Quantization Noise Model

We assume that quantization noise sources as well as
AWGN are independent. It is well known that we can get
the variance σ2 after addition and multiplication of two
independent random variables as follows:

Addition: σ2 = σ2
1 + σ2

2

Multiplication: σ2 = µ2
1σ

2
2 + µ2

2σ
2
1 + σ2

1σ
2
2 ,

where µi is the expectation and σ2
i is the variance of input

random variable i. The output variances after subtraction or
division are also available in a similar way.

Quantization noise is modeled as additive noise. If we add
quantizers to two independent inputs of an adder, s1 and
s2 with signal variances σ2

s1 and σ2
s2, respectively, we add

noise sources σ2
n1 to σ2

s1 and σ2
n2 to σ2

s2. At the output of
the addition, the noise and signal variances therefore become
σ2
n = σ2

n1 +σ2
n2 and σ2

s = σ2
s1 +σ2

s2, respectively. Hence, the
total variance is σ2 = σ2

s + σ2
n = σ2

s1 + σ2
s2 + σ2

n1 + σ2
n2.
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Fig. 4: DFG for one radix-4 stage of the FFT.

B. Variance Propagation for one Decision Variable

The DFG for one stage of the FFT is shown in Figure 4.
The first two additions are for the butterfly and the following
multiplication and addition represent the complex twiddle
multiplication. Only calculation of the real phase is shown.
The same computation is performed for the imaginary phase.
There can be two quantization points in each stage of the FFT
that affect the number of fractional bits: quantization of the
input and of the twiddle factor. For simplification, we use a
single word length for those two quantization points.

The input to the FFT can be modeled as a sum of the
error-free input with variance σ2

sin and additive input noise
with variance σ2

nin
. Furthermore, the variance of quantiza-

tion noise with F fractional bits and uniform distribution
under a round-to-nearest rounding is σ2

nquan
= 1

32
−2F−2.

The variance at the output of the butterfly is then also a
sum σ2

butterfly = σ2
sbutterfly

+ σ2
nbutterfly

of the error-free
output variance σ2

sbutterfly
= 4σ2

sin and the noise variance
σ2
nbutterfly

= 4(σ2
nin

+ σ2
nquan

) = 4σ2
nin

+ 1
32

−2F , including
input quantization noise.

The butterfly output becomes the input to twiddle multi-
plication. The other input, the twiddle factor is a sum of the
ideal, sinusoidal twiddle factor with variance σ2

stwiddle
= 1/8

(for a 4-stage, 256-point FFT) and additive quantization noise
σ2
nquan

. We assume that all signals and variables have zero
mean (µ = 0) and that σ2

sin is gain-controlled to 1. Therefore,
the output variance after one FFT stage is

σ2
out = 2(σ2

sbutterfly
+ σ2

nbutterfly
)(σ2

stwiddle
+ σ2

nquan
)

≈ 1 + σ2
nin

+ (
2

3
+

2

3
σ2
nin

+
1

12
)2−2F

= 1 + σ2
nout

With this, we can use the allowed performance loss in the
floating to fixed-point conversion process for our optimization.
For example, if the allowed performance loss in SNR is 0.2dB
for fixed point conversion, given an input SNR of 11.6dB and
the signal power of 1 (σ2

nin
= 0.069), the minimum word

length to get a 11.4dB output SNR (σ2
nout

= 0.072) becomes
F = 5. We can find the same value through simulation. By
contrast, min/max propagation using affine arithmetic [9] with
a ±3σ min/max of the input AWGN would result in F = 9.
This reflects that static analysis with min/max propagation is
conservative.



C. Extension to Multiple Stages

We extend the above analysis to an FFT with multiple
stages and hence decision variables. The output noise from
the first stage becomes the input noise to the second stage and
propagates through the whole FFT. At the end of the FFT, a
noise constraint function can be represented as a function of
the variance of the input AWGN (σ2

AWGN ) and a set of word
lengths Fi for each stage i. For our four-stage FFT example,
the output noise variance from the first stage is a function of
σ2
AWGN and F1 as shown in the previous subsection:

σ2
out,1 = f(σ2

AWGN , F1),

where f() is defined as

f(σ, F ) = σ + (
2

3
+

2

3
σ +

1

12
)2−2F .

Similarly, the output noise variance from the i-th stage (i > 1)
is a function of σ2

out,i−1 and Fi:

σ2
out,i = f(σ2

out,i−1, Fi).

Combining the above output noise formulations, the output
noise variance from the last FFT stage is a function of σ2

AWGN

and F1 through F4, and the constraint function becomes:

f(f(f(f(σ2
AWGN , F1), F2), F3), F4) ≤ σ2

nout
.

Under different input SNRs, the targeted output noise variance
should remain constant. For an example of QPSK modulation
with BER = 0.01%, the SNR of the wireless channel can be
any value larger than 11.4dB, but the output noise SNR should
always be close to (but not below) 11.4dB.

Our cost function is the same for all input SNRs. We assume
that all the bits in our design have the same transition rate
of 0.5. With this assumption, dynamic power consumption is
linearly proportional to the area of the circuit that is toggling.
Hence, our power cost function can be represented as the
number of unit hardware blocks. For combinational logic such
as adders and multipliers, the cost for each stage is the same
and can be represented as the number of 1-bit full adder
equivalents. For one stage of the FFT, Ia is the number of
integer bits at the input to the FFT and Ib is the number
of integer bits for the twiddle factor. Then, the cost for one
butterfly is

c
′
= 2× (Ia + F ) + (Ia + 1 + F )

and the cost for one twiddle multiplication is

c
′′
= 2× (Ia + 2 + F )× (Ib + F ) + (Ia + Ib + 2 + 2F ).

Ia = 3 including the sign bit is enough not to affect decoding
performance. Also, Ib is 1 since the range of twiddle factor is
within ±0.5.

For sequential logic, the power consumption of a 1-bit D
Flip-Flop (DFF) is compared to that of a 1-bit full adder using
a TSMC 0.18um library, which is our target technology for
validation. In each FFT stage, two intermediate values are
stored: (Ia + F ) bits of data after input quantization and

(Ia+F +2) bits of data after the butterfly. Hence, the number
of DFFs used in one FFT stage becomes (2F +8). According
to synthesis results, the ratio in power consumption between
a 1-bit DFF and a 1-bit full adder is 8.4, and this is used as
a weight of the normalized sequential logic cost:

c
′′′

= 8.4(2F + 8).

With this, the total cost of one FFT stage becomes:

C(F ) = c
′
+ c

′′
+ c

′′′
= 2F 2 + 33.4F + 32.

Note that for large FFTs, intermediate data is usually stored in
SRAMs. However, since scaling is only performed for DFFs
and combinational logic, the power consumption of SRAMs
is not included in our analysis.

Since our optimization problem is not linear nor convex,
we apply Adaptive Simulated Annealing (ASA) [12] as in
[9]. ASA adapts to changing sensitivities and has faster
convergence compared to traditional simulated annealing.

D. Overhead Analysis

Dynamic precision scaling requires an input SNR measure-
ment block and a mapping table between measured input
SNRs and word lengths for all decision variables. Also,
combinational gates are added in front of the FFs to control
clock gating. Most wireless communication systems already
include SNR measurement capabilities for various uses such
as channel state information feedback. Hence, it is assumed
that our approach uses the existing SNR measurement block
and we do not include it in overhead analysis. By contrast,
with binary on/off decisions stored in the mapping table, its
size becomes Ns × Nd, where Ns is the number of SNR
steps and Nd is the number of DFFs to control. For example,
Ns = 11 if there are 11 input SNR steps from 6dB to 16dB,
and Nd = 24 if there are 4 stages, and each stage has 6 DFFs
to be controlled. The overhead in power consumption of the
mapping table and additional clock gating logic is included in
our power analysis shown in the results.

III. RESULTS

In the following, we validate our optimization model and
demonstrate the achievable gains in word length optimization
times. We apply our approach to a 256-point FFT example
in a QPSK OFDM receiver with a cyclic prefix length of 64
assuming perfect synchronization. We perform power estima-
tion of the generated gate-level netlists using Synopsys Power
Compiler with a TSMC 0.18um library at a 40MHz clock. We
include both dynamic and leakage power consumption in all
reported results. Our optimization is only targeted at dynamic
power, and leakage is less than 1 uW for our FFT example in
0.18um. For more advanced technology nodes with a larger
fraction of leakage power, design techniques such as power
gating can be combined with dynamic word length scaling.

The method presented in this paper, which we call dynamic
scaling by variance propagation (DS-VP), is compared against
four conventional methods: 1) non-scaling by full simulation
(NS-FS), which only finds one set of word lengths for the



TABLE I: Optimized word lengths for various target SNRs (BERs).
Channel NS-FS CS-FS DS-FS DS-ES DS-VP

SNR {Fi} Power {Fi} Power [mW] {Fi} Power [mW] {Fi} Power [mW] {Fi} Power [mW]
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}
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W

{4} 2.53 (0.4%) {4,4,4,3} 2.57 (2.0%) {4,4,4,3} 2.57 (2.0%) {4,4,4,3} 2.57 (2.0%)
8dB {3} 2.27 (-9.9%) {3,3,3,2} 2.20 (-12.7%) {3,3,3,2} 2.20 (-12.7%) {3,3,3,2} 2.20 (-12.7%)
9dB {3} 2.27 (-9.9%) {3,3,3,1} 2.13 (-15.5%) {3,3,3,1} 2.13 (-15.5%) {3,2,3,2} 2.16 (-14.3%)
10dB {3} 2.27 (-9.9%) {3,3,2,1} 2.05 (-18.7%) {3,2,3,1} 2.06 (-18.3%) {3,2,2,1} 1.97 (-21.8%)
11dB {2} 1.94 (-23.0%) {3,2,2,1} 1.97 (-21.8%) {3,2,2,1} 1.97 (-21.8%) {2,2,3,1} 1.99 (-21.0%)
12dB {2} 1.94 (-23.0%) {2,2,2,1} 1.90 (-24.6%) {2,2,2,1} 1.90 (-24.6%) {2,2,2,1} 1.90 (-24.6%)
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{5} 2.94 (11.8%) {4,5,4,4} 2.66 (1.1%) {4,5,4,4} 2.66 (1.1%) {4,5,4,4} 2.66 (1.1%)
10dB {4} 2.53 (-3.8%) {5,5,4,3} 2.60 (-1.1%) {5,5,4,3} 2.60 (-1.1%) {4,4,4,4} 2.57 (-2.3%)
11dB {3} 2.27 (-13.7%) {3,3,3,2} 2.20 (-16.3%) {3,3,3,2} 2.20 (-16.3%) {3,3,3,2} 2.20 (-16.3%)
12dB {3} 2.27 (-13.7%) {3,3,3,2} 2.20 (-16.3%) {3,3,3,2} 2.20 (-16.3%) {3,3,3,1} 2.13 (-19.0%)
13dB {3} 2.27 (-13.7%) {3,3,2,2} 2.16 (-17.9%) {3,3,2,2} 2.16 (-17.9%) {3,2,3,2} 2.16 (-17.9%)
14dB {3} 2.27 (-13.7%) {3,3,2,2} 2.16 (-17.9%) {3,3,2,2} 2.16 (-17.9%) {3,2,2,2} 2.06 (-21.7%)
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12dB {4} 2.53 (-8.0%) {4,5,3,3} 2.49 (-9.5%) {4,5,3,3} 2.49 (-9.5%) {4,4,4,3} 2.57 (-6.5%)
13dB {3} 2.27 (-17.5%) {4,3,3,2} 2.29 (-16.7%) {4,3,3,2} 2.29 (-16.7%) {4,3,3,2} 2.29 (-16.7%)
14dB {3} 2.27 (-17.5%) {3,3,3,2} 2.20 (-20.0%) {3,3,3,2} 2.20 (-20.0%) {3,3,3,2} 2.20 (-20.0%)
15dB {3} 2.27 (-17.5%) {3,3,3,2} 2.20 (-20.0%) {3,3,3,2} 2.20 (-20.0%) {3,3,2,3} 2.22 (-19.3%)
16dB {3} 2.27 (-17.5%) {3,3,3,2} 2.20 (-20.0%) {3,3,3,2} 2.20 (-20.0%) {3,3,2,2} 2.16 (-21.5%)

Optim. time 3.6 hours 6 min. 21.6 hours 1-2 min. 1.2-1.8 msec.
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worst-case operation point, 2) coarse dynamic scaling by full
simulation search (CS-FS), which finds multiple sets of word
lengths by full simulation, but using a single word length for
all variables in a set, 2) dynamic scaling by full simulation
search (DS-FS), which finds optimal sets of word lengths using
full simulation, and 4) dynamic scaling by efficient simulation
search (DS-ES), which finds multiple sets of word lengths
using the efficient simulation approach from [6].

Table I shows the sets of word lengths found by the different
methods across different target BERs and corresponding input
SNRs. The sets of word lengths in Table I are the word
lengths for Stage 1 to Stage 4 of the FFT, i.e. {F1, F2, F3, F4}.
The table also includes estimated power consumption and
optimization runtime for each approach. All experiments were
performed on an Intel Core i7 workstation running at 2.7ĠHz.
The sets of word lengths from DS-FS are optimal and used as
word length and power reference.

Our method shows a significant gain in design time com-
pared to simulation based methods, which makes dynamic
scaling feasible even for large systems with many variables and
operation points. For one operation point in our FFT example,
the number of simulations using a full search is 64 (4 decision
variables and with a range from 1 to 6 bits each). For each
simulation trial, we run 10,000 OFDM symbols corresponding
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to 5 million bits in order to achieve enough simulation
accuracy. Each such simulation takes about 10 seconds. To find
the optimal word lengths using an exhaustive search requires
3.6 hours. With the preplanned simulation method from [6],
the number of trials can be significantly reduced. For example,
if the search starts from {2,2,2,2}, and the optimal word length
set is {4,3,3,2}, optimal word lengths can be obtained with
only 4 simulations. However, for dynamic scaling, a search is
required for each operating condition and total optimization
time increases linearly with the number of operating points.
Thus, even efficient simulation-based methods may still not
be suitable for design-time optimization in the presence of
dynamic scaling.

By contrast, our analysis method requires only about 2ms
to find a set of word lengths for one operating point, which
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Fig. 7: QPSK BER performance.

is 5,000 times faster than the time for one simulation trial.
Considering that word length optimizations can take up to 50%
of design time with conventional simulation-based approaches
[6], this represents a significant improvement in productivity.

To validate the optimality and accuracy of our approach,
achievable power figures using various methods are compared
to those of the reference DS-FS approach. Figure 5 shows
that our cost function used for optimization correlates well
with the final gate-level power numbers. Nevertheless, the
DS-VP method results in up to a 5% difference in power
consumption, which is a downside of achieving large gains
in design time. The DS-ES method also exhibits a small
0.5% difference in some isolated cases where it is not able
to guarantee the optimal solution. We also compared fine-
grain DS-based methods against dynamic scaling with coarse
optimizations, i.e. using a single word length for all variables
(CS-FS). Power numbers using fine-grain scaling are always
the same or smaller with a reduction of up to 13.6% even
considering additional overhead for control at finer granularity.

In terms of overhead, compared to a method with no scaling
(NS-FS), the extra power consumption for dynamic scaling is
less than 3% according to our synthesis results. This overhead
is small compared to the average 17% power reduction that
can be achieved by dynamic scaling across varying input SNR
levels. At SNR levels that are lower than the required SNR,
the power numbers are larger than those for NS-FS due to
the overhead of finely tuned dynamic scaling. The system,
however, is not usually in such a poor environment. Hence,
on average, large power savings can be expected.

Finally, Figure 6 and Figure 7 plot the results of perfor-
mance simulations. Using DS-type methods, the system is able
to maintain the targeted output BER over the full input SNR
range leading to a large power reduction at higher SNR values.
In Figure 7, the BER of floating point model (FP) is also
plotted as a reference. The measured BER for a targeted BER
of 0.01% ranges from 0.004% to 0.014% using our DS-VP
method. Note that while in some cases the power consumption
can be lower than in other DS-based methods, this comes at
the cost of violating the BER constraint for those operation
points. This mismatch is caused by the heuristic nature of our
optimization approach.

IV. SUMMARY AND CONCLUSIONS

In this paper, we introduce a statistical analysis scheme
using variance propagation for word length optimization. A
fine-grain optimization of word lengths for dynamic scaling
is possible and results in significant power savings. A static
design-time approach avoids run-time overhead and the need
for time-consuming exhaustive simulations. In the future, we
plan to generalize our method to other types of operations
and blocks in DSP systems, including optimization for other
metrics, such as coded BER. Furthermore, we plan to automate
the approach, including generation of optimized HDL code and
clock-gating logic within our flow.
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