
VeDebug: Regression Debugging Tool for Java

Ben Buhse1, Thomas Wei1, Zhiqiang Zang1, Aleksandar Milicevic2, and Milos Gligoric1
1The University of Texas at Austin, 2Microsoft

bwbuhse@utexas.edu, thomas.wei@utexas.edu, zhiqiang.zang@utexas.edu, almili@microsoft.com, gligoric@utexas.edu

Abstract—Developers spend substantial time debugging their
programs, yet debugging is still one of the most tedious activities.
Interactive debuggers have been around for as long as computing,
but the way they are used—set a breakpoint, reason about the
state, step into/over—has not substantially changed. The last
big discoveries, which happened decades ago, include visual
debugging (e.g., DDD) and time-travel debugging. Although
existing interactive debugging tools provide useful and powerful
features, they are limited to a single program execution, e.g., a
developer can only see data values and navigate the control flow
of a single program execution at a time.

We present VEDEBUG, the first video-based time-travel re-
gression debugging tool to advance users’ debugging experience.
VEDEBUG introduces two unique features: (1) regression debug-
ging, i.e., setting a “divergence breakpoint” (which “breaks” the
execution whenever the control flow of the current execution
diverges from the flow of a previously captured execution), and
(2) video debugging, which provides features similar to those of
a video player (e.g., speed up/slow down the replay). The demo
video for VEDEBUG can be found at: https://www.youtube.com/
watch?v=lOiGrE sc10.

I. INTRODUCTION

Debugging is a tedious and time consuming activity [12].
Various companies have reported that debugging can take more
than 50% of development time [8]. Researchers and practi-
tioners have developed various tools to cope with challenging
debugging tasks.

Traditional interactive debuggers, such as GDB and JDB,
provide numerous features, including setting a breakpoint,
defining watches, exploring stack frames, dumping memory,
etc. More exotic debugging tools may provide support for
interrogative debugging (e.g., Whyline [7], which can answer
“why did” and “why didn’t” questions about the program
state), or interactive graphical data display (e.g., DDD [3]).

Although existing debugging tools provide useful and pow-
erful features, they are limited to a single program execution,
e.g., a developer can only see data values and navigate the
control flow of a single program execution. This approach
does not closely match a common debugging workflow when a
developer is trying to understand why a program that “worked”
in the past doesn’t “work” now. To successfully complete
this task, the developer must understand the impact of code
changes on their data and control flow [12].

To enable more effective debugging and help developers
understand the impact of their code changes, we present
VEDEBUG—the first tool for interactive regression debugging.
VEDEBUG maintains a database of historical execution traces
and provides features for comparing (any two) traces and data

P0 CAPTURE COMPLETE

Pn CAPTURE COMPLETE

.

.

.
.
.
.

.

.

.

T
R
A
C
E

D
A
T
A
B
A
S
E

C
O
M
P
A
R
E

SHOW

Execution Phase Analysis Phase

Fig. 1: Overview of VEDEBUG workflow

values from those traces. Specifically, VEDEBUG enables a
user to step through divergence and reconvergence points.
Additionally, VEDEBUG is the first to offer an interface that
resembles video players with features such as playing the
execution forward and backward, adjusting the speed, pausing
the execution, etc., while still being able to inspect the stack
frame and execution trace at any point during the video.

We implemented VEDEBUG for Java by dynamically instru-
menting code to capture execution traces and method argument
values. This paper describes the details of our prototype and
the design of planned studies. Our prototype is available at
https://github.com/EngineeringSoftware/VeDebug.

II. VEDEBUG TOOL

VEDEBUG combines elements of interactive and time-travel
debugging with a video-like interface. As with most modern
profilers, VEDEBUG captures a trace of the entire program ex-
ecution before processing the trace for playback and analysis.
This post mortem technique for debugging was what allowed
us to create the video-like interface, as well as what created
the opportunity for regression debugging. By comparing the
traces of two different executions and locating divergences
and reconvergences in their behavior, VEDEBUG provides the
user with unique insight into the effects of changes between
the two versions and how these effects propagate throughout
the execution; the traces that are compared can be obtained for
any two versions, which are potentially many commits apart.

Figure 1 shows the workflow of VEDEBUG, which consists
of two phases: execution and analysis. The execution phase
takes as input a program under debugging and a command
to execute (e.g., run a test case). During the execution of the
command, VEDEBUG captures an execution trace. To optimize
the trace capturing, VEDEBUG captures a short trace, which
can be used to infer all executed statements; we run an extra
step to complete the trace. The completed trace is stored in
a trace database. A user can go through the execution phase
any number of times before deciding to compare and visualize
traces and values. The analysis phase takes as the input any

https://www.youtube.com/watch?v=lOiGrE_sc10
https://www.youtube.com/watch?v=lOiGrE_sc10
https://github.com/EngineeringSoftware/VeDebug


two traces (“old” and “new”) from the trace database, which
are selected by a user, compares the two traces, and visualizes
the new trace while enabling regression debugging features
with respect to the old trace.

A. Trace Capturing

VEDEBUG traces contain all of the necessary information
to completely reconstruct a program’s execution from start to
finish. This information consists of when methods are called
and when they are returned from, as well as when basic
blocks are entered and, by extension, when they are exited.
By capturing these points, we can reconstruct a sequence of
executed statements.

We used java.lang.instrument to intercept the loaded
but unmodified byte arrays of each class file. Next, we altered
the bytecode belonging to each class by using the ASM
framework for bytecode manipulation. This allowed us to
insert statements at strategic points in the bytecode for the
dynamic collection of the necessary data; during this process
we also do preprocessing of bytecode to save metadata for
each class that will help us to obtain the complete trace.

Recording traces for every single class loaded into the JVM
would be suboptimal in several respects: a large amount of
irrelevant information would be captured (such as traces from
the JDK classes) and the overhead would be more significant.
Instead, VEDEBUG utilizes a whitelist/blacklist system: certain
packages are ignored by default, but the user has the ability to
refine both lists and precisely specify which packages should
be instrumented.

During the bytecode transformation, VEDEBUG uses ASM’s
Visitor API to perform both preprocessing and dynamic analy-
sis. The preprocessing includes analysis of method signatures,
beginning and end line numbers of methods, line numbers
of potential method invocation sites, and the line numbers
of basic blocks. At the same time, there are instructions
being inserted at strategic points in the bytecode to be used
for dynamic collection of data. During the dynamic analysis,
VEDEBUG gathers values of method arguments and return val-
ues, line numbers of actual method invocation sites (using the
aforementioned potential invocation sites), and locations where
the execution changes basic blocks. In order to minimize
overhead, string and int literals are saved with the ASM library
during static analysis and are collected when that portion of the
code is executed. This means that VEDEBUG simply needs to
load the specific literal rather than recalculating various line
numbers and method names every time a method is called.
Meanwhile, the method signature is parsed and each argument
is loaded and then sent to the correct method for saving that
type. For return values, the top value on the JVM stack (or top
two values in the cases of longs and doubles) is duplicated and
the correct saving method is called just like for arguments.

VEDEBUG is able to avoid any major slowdowns which
would cause unreasonable overhead by giving each method a
unique ID during transformation. When each method is called
or returned from, that ID along with any arguments the method
may have, are the only things that are stored, as opposed to

the entire method signature every time. The IDs are all kept in
a separate file which is later parsed by an intermediate script
during trace completion to replace each ID with its proper
signature, including the method’s line numbers.

B. Trace File Formats

As mentioned above, VEDEBUG creates a number of dif-
ferent files while capturing the execution trace of a pro-
gram. These are MethodIDs, MethodCalls, and individual files
named classNameBB that contain the list of line numbers of
basic blocks for all methods in a single class.

1) MethodIDs: For MethodIDs, only a numbered list of
every instrumented method in the program is stored; one line
per method. Each line is formatted as a unique ID, followed
by the starting and ending line numbers of the method, then
the source file which the method is in, and then the class
name, and method name. Finally, at the end of each line
are the methods parameters and lastly its return type. Below
is an example line from MethodIDs obtained while running
ValueGraphTest from Google Guava [4]:

2 37 51 com/google/common/graph/ValueGraphTest.java
com/· · ·/ValueGraphTest edgeValue missing − V

The MethodIDs file is used to (more) efficiently store each
method call in the MethodCalls file by only saving a method
ID that can be referenced later rather than saving the entirety
of every method’s information any time a method is called.

2) MethodCalls: The MethodCalls file contains informa-
tion about the calls and returns from every instrumented
method as well as information about every time a new basic
block is entered within a method. Lines that are reporting
a call to a method start with the invocation line number of
a method (or -1 if the method was called implicitly at the
start of execution, such as main or static initializer blocks),
along with the method’s unique ID from MethodIDs. If the
method has parameters, the line will also include the values
for those parameters. For method returns, the line starts with
a dash followed by the method ID and, for non-void methods,
a return value. Lastly, the line numbers for indicating basic
block changes are started with an @ followed by the ID of
the method which the basic block is in, and then a colon
and the line number where the basic block starts. Below are
several lines from the MethodCalls file obtained while running
ValueGraphTest from Guava:

39 46 ”default” \n @46:132 \n @46:131 \n − 46 ”default”

3) classNameBBs files: The last format of file created by
the Java side of the program is the classNameBBs format
where basic blocks are saved. This format is the simplest, only
consisting of a list of every line number where a basic block
starts in each class. The ending line numbers of basic blocks
are not needed because every basic block ends either when a
new basic block starts or at the end of the method. This is
why the MethodCalls file only contains the line numbers of
methods which are being entered instead of the line numbers
for both the entrance and exit of basic blocks.



Fig. 2: VEDEBUG debugging environment: current statement and context (top-left), argument values and video status (bottom-
left), current stack trace (top-right), and execution trace and the current position in the trace (bottom-right)

C. Trace Completion

Once the trace has been captured, we use an intermediate
script to integrate all the information acquired by the instru-
mentation into a single processed trace. This completed trace is
what is used for trace comparison and eventually loaded by the
visualizer. During the process of trace completion, all of the
method call and change of basic block information collected
during the execution is compiled into line number intervals
and call stack operations that can be mapped to the proper
source code file by VEDEBUG during visualization.

To track the propagation of exceptions in post-analysis, we
use the basic block transition information gathered in the trace.
Whenever an inconsistency in the transitions is found, we pop
frames of the call stack until the inconsistency is resolved
or the execution ends because of the exception. This is done
in trace completion rather than trace capturing because Java
exceptions use many different bytecode instructions, making
it extremely difficult to design a catch-all system for logging
exception throws and returns.

D. Trace Comparison

To facilitate regression debugging, VEDEBUG has the ca-
pability to take two traces from any point in the evolution of
a program and extract key differences in the behavior of the
given versions. The first trace given is the faulty trace or, in
general, the trace under inspection and what will be referred
to as the main trace. The other trace is the reference trace, the
trace for the main trace’s behavior to be compared against.
The trace comparison process yields a modified version of
the main trace with annotations of the points of divergence
and reconvergence with the behavior of the reference trace

and, optionally, changes between method arguments and return
values during the intervals where the two executions are in
sync as well.

Trace comparison algorithm is designed as follows. Starting
from the beginning of both traces, move in lockstep through
the traces as long as they are in sync. The first encountered
difference constitutes a divergence point. From that point
on, the two traces are considered out of sync. A list of
possible indices within the reference trace where the two traces
can reconverge should be obtained by advancing through the
reference trace until the point where the function in which the
initial divergence took place is removed from the stack. Then
step through the main trace, checking if the trace element is
a match to any of the potential match candidates. A match
constitutes a reconvergence point, meaning that the two traces
can be resynced with an appropriate offset and the process can
continue with finding the next point of divergence.

E. User Interface

Figure 2 shows a screenshot of the VEDEBUG GUI while
running ValueGraphTest from Guava. Note that the entire
interaction with the debugger is via a keyboard; several
keybindings are available (with Emacs-like being the default).

As VEDEBUG displays the execution of the program as
a video, controls analogous to those of other video players
were developed. These include options to vary the rate of
playback, play the program’s execution in reverse, and skip
to significant points in the execution. Since VEDEBUG retains
information about the state of the stack and control flow in
the completed trace used to play back the execution, standard
interactive debugger features such as step over, step out, and



TABLE I: Tracing Overhead Introduced by VEDEBUG

Project Test Case Execution [ms]
Default VEDEBUG

Lang

NoClassNameToStringStyleTest 14 168
ConstructorUtilsTest 18 155

ConstantInitializerTest 4 27
ShortPrefixToStringStyleTest 12 176

SimpleToStringStyleTest 12 164

JFreeChart

LayeredBarRendererTest 1578 1601
CategoryTickTest 102 108

DateTickTest 30 90
MonthDateFormatTest 161 200

CategoryTextAnnotationTest 120 169

la4j

BasicVectorTest 81 642
GaussJordanInverterTest 5324 5431

SeidelSolverTest 68 165
GaussianSolverTest 55 131

JacobiSolverTest 59 161

alike are still available to the user. The user is also able to
search for the next time the control flow reaches a specific
function. Due to VEDEBUG’s time-travel nature, all of these
functions are available in the reverse direction as well. In
addition to the visual trace through the source code, the user
interface also displays information relevant to the program’s
execution. The stack trace is shown on the right-most window
and the parameters to and return value of the current function
are displayed in the window below that of the main video.
These give the user information about the immediate state
of the program as most interactive debuggers do. However,
unlike traditional debuggers, VEDEBUG also provides the user
with a sequential list of past and future events of interest
that give context to the immediate state of the program
within the execution as a whole. The list of events of interest
include function calls, returns, exceptions, and divergence and
reconvergence points (for the case of regression debugging).

F. Implementation

We implemented VEDEBUG in Java 8, Python, and C. We
use Java to manipulate the Java bytecode, capture dynamic
trace data, and store the trace to disk. We use Python to
perform trace completion and trace diffing. Finally, we use C
and the ncurses library [10] to implement the GUI. Basically,
the entire GUI runs in a terminal and is independent on
any existing IDE. Moreover, our design, which sets a clear
boundary between tracing and visualization, will enable easy
development of interactive regression debuggers for any other
programming language (e.g., C or Scala), as long as traces are
stored in the format defined by VEDEBUG.

III. CASE STUDIES

We performed an initial evaluation of VEDEBUG by running
several tests from three open-source projects. Our goal was to
measure the overhead of capturing execution traces. Table I
shows the names of the projects and tests (which we randomly
selected), execution time of the tests without using VEDEBUG,
and execution time with trace capturing; we did not capture
arguments with non-primitive types. We can observe that

VEDEBUG introduces non-negligible overhead, but we believe
that this cost is acceptable during debugging [2]. In our
future work we plan to further optimize trace capturing and
perform a user study to evaluate our GUI design and regression
debugging features. Our plan for the study is to ask users to
debug several bugs available in an existing bug databases, e.g.,
Defect4J; we plan to report similar metrics as prior work on
interactive debugging [7].

IV. RELATED WORK

There has been a large amount of work on understanding
user interactions with IDEs (e.g., [6]), interactive debugging
(e.g., [1], [3], [7]), and automated debugging (e.g., [9], [11],
[12]). For example, Afzal and Le Goues [1] studied impact
of debugging features on debugging time and effort; Gu et
al. [5] introduced a DSL for searching for prior bugs based on
execution traces; Ko and Myers [7] introduced interrogative
debugging. We are the first to propose interactive regression
debugging and implement a prototype tool with this feature.

V. CONCLUSION AND FUTURE WORK

We presented VEDEBUG, a video-based time-travel regres-
sion debugging tool to advance users’ debugging experience.
VEDEBUG brings two unique features: (1) regression debug-
ging, i.e., setting a breakpoint based on prior run so that the
debugger automatically breaks as soon as a divergence from
a previous trace is detected, and (2) video debugging, which
provides functions similar to a video player.

In the future we plan to visualize two traces side-by-side,
visualize object graphs in a better way than using a flat list of
values, and capture values of local variables.
Acknowledgments. We thank Ahmet Celik, Pengyu Nie, Karl
Palmskog, Marinela Parovic, and Chenguang Zhu for their
feedback on this work. This work was partially supported by
the US National Science Foundation under Grant Nos. CCF-
1566363 and CCF-1652517.

REFERENCES

[1] Afsoon Afzal and Claire Le Goues. A study on the use of IDE features
for debugging. In MSR, pages 114–117, 2018.

[2] Sanjay Bhansali, Wen-Ke Chen, Stuart de Jong, Andrew Edwards, Ron
Murray, Milenko Drinić, Darek Mihočka, and Joe Chau. Framework for
instruction-level tracing and analysis of program executions. In VEE,
pages 154–163, 2006.

[3] DDD - DataDisplay Debugger. https://www.gnu.org/software/ddd.
[4] Google core libraries for Java. https://github.com/google/guava.
[5] Zhongxian Gu, Earl T. Barr, Drew Schleck, and Zhendong Su. Reusing

debugging knowledge via trace-based bug search. pages 927–942, 2012.
[6] Zhongxian Gu, Drew Schleck, Earl T. Barr, and Zhendong Su. Capturing

and exploiting IDE interactions. In Onward!, pages 83–94, 2014.
[7] Andrew Jensen Ko and Brad A. Myers. Designing the Whyline: a

debugging interface for asking questions about program behavior. In
CHI, pages 151–158, 2004.

[8] L. Layman, M. Diep, M. Nagappan, J. Singer, R. Deline, and G. Venolia.
Debugging revisited: Toward understanding the debugging needs of
contemporary software developers. In ESEM, pages 383–392, 2013.

[9] Kivanc Muslu, Yuriy Brun, and Alexandra Meliou. Data debugging with
continuous testing. In FSE, pages 631–634, 2013.

[10] ncurses. https://www.gnu.org/software/ncurses.
[11] Chris Parnin and Alessandro Orso. Are automated debugging techniques

actually helping programmers? In ISSTA, pages 199–209, 2011.
[12] Andreas Zeller. Yesterday, my program worked. Today, it does not.

Why? In FSE, pages 253–267, 1999.

https://www.gnu.org/software/ddd
https://github.com/google/guava
https://www.gnu.org/software/ncurses

	Introduction
	VeDebug Tool
	Trace Capturing
	Trace File Formats
	MethodIDs
	MethodCalls
	classNameBBs files

	Trace Completion
	Trace Comparison
	User Interface
	Implementation

	Case Studies
	Related Work
	Conclusion and Future Work
	References

