
Build System with Lazy Retrieval for Java Projects

Ahmet Celik1, Alex Knaust1, Aleksandar Milicevic2, and Milos Gligoric1

The University of Texas at Austin1 (USA), Microsoft2 (USA)
{ahmetcelik,awknaust}@utexas.edu, almili@microsoft.com, gligoric@utexas.edu

ABSTRACT

In the modern-day development, projects use Continuous
Integration Services (CISs) to execute the build for every
change in the source code. To ensure that the project re-
mains correct and deployable, a CIS performs a clean build
each time. In a clean environment, a build system needs
to retrieve the project’s dependencies (e.g., guava.jar). The
retrieval, however, can be costly due to dependency bloat:
despite a project using only a few files from each library, the
existing build systems still eagerly retrieve all the libraries
at the beginning of the build.

This paper presents a novel build system, Molly, which
lazily retrieves parts of libraries (i.e., files) that are needed
during the execution of a build target. For example, the
compilation target needs only public interfaces of classes
within the libraries and the test target needs only implemen-
tation of the classes that are being invoked by the tests. Ad-
ditionally, Molly generates a transfer script that retrieves
parts of libraries based on prior builds. Molly’s design
requires that we ignore the boundaries set by the library
developers and look at the files within the libraries. We
implemented Molly for Java and evaluated it on 17 pop-
ular open-source projects. We show that test targets (on
average) depend on only 9.97% of files in libraries. A vari-
ant of Molly speeds up retrieval by 44.28%. Furthermore,
the scripts generated by Molly retrieve dependencies, on
average, 93.81% faster than the Maven build system.

CCS Concepts: Software and its engineering → Software
notations and tools

Keywords: Build system; continuous integration service

1. INTRODUCTION
Continuous Integration (CI) [19], i.e., integrating all de-

veloper working copies into a shared mainline of source code
as often as multiple times a day, has been widely adopted as
part of agile software development [14] in general, and in ex-
treme programming [13] in particular. In the environment of

0

1

2

3

4

C
o

d
e

c

IO

M
a

th

N
e

t

P
o

o
l

L
a

n
g

C
lo

s
u

re
C

J
X

P
a

th

C
o

n
fi
g

J
G

it

R
e

tr
o

fi
t

G
u

a
va

O
k
H

tt
p

O
ri

e
n

tD
B

E
m

p
ir
e

D
B

D
P

a
tt

e
rn

s

C
X

F

Project

R
e
tr

ie
va

l
R

a
ti
o
 (

M
o
lly

/M
a
ve

n
)

Thread Count 2 4 8 16 32 64 128

Figure 1: Comparison of a baseline dependency re-
trieval (the transitive closure is computed and li-
braries are retrieved in parallel, as implemented by
Maven [9]) vs. the ideal case (all necessary files are
known upfront and these files are retrieved in par-
allel). Values on the “Retrieval Ratio” axis are pro-
portional to the baseline value (which is 1).

rapid code changes, CI was designed to prevent scenarios in
which a developer working copy significantly diverges from
the mainline, to the point where integration becomes diffi-
cult and time consuming. In the modern-day development,
CI is typically performed by a dedicated service (Continu-
ous Integration Service, CIS) after every push to the source
repository. One such public service, Travis CI [60], for exam-
ple, is used by more than 300K projects today, and performs
approximately 130K builds daily [36].

To ensure that the project being developed remains de-
ployable after every push, a CIS has to perform a clean build
every time: starting from a clean state on disk, the latest
copy of the source code is fetched from the repository, de-
pendencies to other projects or libraries are retrieved, the
project is compiled, and finally all tests are run.

In this paper, we focus on improving the dependency re-
trieval step. The common inefficiency of this particular step
has been widely recognized [1,3,5,56,61,62]. (As an exam-
ple, it can take up to an hour to retrieve all 1,701 libraries
on which the Apache Camel project [6] depends.)

To motivate the problem further, consider Figure 1, where
we take 17 popular open-source Java projects, all using the
Maven [9] build system, and show how much faster, at least
in the ideal scenario, the dependency retrieval step can be.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

FSE’16, November 13–18, 2016, Seattle, WA, USA
c© 2016 ACM. 978-1-4503-4218-6/16/11...

http://dx.doi.org/10.1145/2950290.2950358

643

The baseline (denoted as value 1 on the y axis) is the default
dependency retrieval implemented by Maven: the transitive
closure of libraries is computed first, then, the resolved li-
braries are retrieved in their entirety. (We tried configur-
ing the size of the thread pool used by Maven for retriev-
ing dependencies—by using the -Dmaven.artifact.threads
option—but this change had no impact on the retrieval time.)
In contrast, imagine if the full list of used libraries (e.g.,
.jar files) was known upfront—there would be no need for
any additional computation, and the files could be retrieved
massively in parallel. Further, imagine if not only the neces-
sary libraries are known, but the exact individual files within
those libraries (e.g., .class files)—only those files could be
retrieved (still massively in parallel), saving both disk space
and total retrieval time. For the 17 projects listed in Fig-
ure 1, we statically computed the minimal set of necessary
files and measured the time it took to retrieve them in paral-
lel (later in the paper we show how this can be achieved fully
automatically by a general-purpose build system); when us-
ing 64 threads on a 4-core machine, the total retrieval time
is reduced by 93.81% on average.
Problem: The key contributor to slow dependency retrieval
is what we call dependency bloat. The dependency footprint
of a project includes all libraries the project may possibly
use. Build systems (e.g., [8, 9, 12, 32]) typically retrieve the
entire footprint eagerly, prior to executing concrete build
targets. In practice, however, often times not every library
(or part thereof) gets used during a concrete build. Reasons
are various: (1) a project may not use some of the transitive
libraries (e.g., very few projects that depend on JUnit use
JUnit’s dependency Hamcrest), (2) the compilation phase
needs only the APIs of classes rather than their implemen-
tation, (3) the compilation phase may fail, so there is no need
to retrieve libraries used by any later phases (e.g., testing),
and (4) even if all tests are successfully executed they may
use only a small fraction of files from the libraries.
Solution: To mitigate the dependency bloat problem in a
generic and application-agnostic way, we propose lazy de-
pendency retrieval . Provided that the host language com-
piler/runtime allows for dynamic library loading, the build
system ought to retrieve physical dependency artifacts (e.g.,
by retrieving them from a central repository) only when re-
quested by the compiler/runtime, that is, only when trig-
gered by execution of concrete build targets.

We also propose a variant of lazy dependency retrieval,
where boundaries set by library providers are ignored by
the build system, and instead, library content is retrieved
on individual file basis. We dub this technique elastic de-
pendencies. In our experiments, we observed that elastic
dependencies reduce the total size of retrieved content by
89.80% on average.

Finally, to further reduce the cost of dependency retrieval
for subsequent builds, we use our infrastructure to main-
tain a flattened list of resolved dependencies, called transfer
script, which helps us get closer to the ideal retrieval time
(Figure 1). Note that our infrastructure for lazy retrieval
is still needed during the subsequent builds to retrieve new
dependencies and update the flattened list for future builds.
Implementation: We implemented a prototype of the pro-
posed technique in a novel build system for Java projects,
called Molly. We implemented lazy dependency retrieval
and elastic dependencies by modifying both the Java com-
piler and the Java runtime.

Theory

RunBefore

Runner

ExternalResource

URLConverter

MethodUtils

ArrayConverter ObjenesisHelper

AndroidInstantiator

ObjectInstantiator

39/137

commons-beanutils-1.9.2

0/314

junit-4.12

IndexClass

hsql-1.8.0.10

95/286

12/35

objenesis-1.3

TestAutoSaveListener

TestINIConfiguration

Unused

Used by both tests

Figure 2: Dependencies for two tests in Config [7].

Evaluation: We evaluated Molly on 17 popular open-
source Java projects. We report both empirical findings and
concrete improvements observed when using Molly:

• (empirical) average time spent on dependency retrieval:
59.46% of the total clean build time;

• (improvement) average reduction in dependency re-
trieval time: 44.28% (due to lazy dependency retrieval);

• (improvement) average reduction in size of retrieved
dependencies: 89.80% (due to both lazy dependency
retrieval and elastic dependencies).

Molly achieves significant savings in both build time and
disk space, which, we believe, can have a profound impact
on reducing the cost of running and maintaining any CIS.

2. OVERVIEW
This section illustrates Molly through an example. First,

we introduce a project to build. Next, we walk through the
build process as carried out by both Maven (a widely used
build system from Apache [9]) and Molly. We compare and
contrast compilation and execution models of the two, and
discuss the benefits brought by Molly. Finally, we describe
the way Molly obtains a transfer script.
Example Project: Config [7] is an Apache project for
parsing configurations from a variety of file formats. The
Config project includes a Maven build script (pom.xml) list-
ing all its dependencies. Each such dependency is a Maven
project too, containing its own build script specifying its
own dependencies. The most recent version of Config tran-
sitively depends on 269 libraries. Figure 2 depicts some of
them as boxes containing a few representative classfiles (de-
noted as circles) and illustrates which of those classfiles are
used by two randomly chosen unit tests.

Assume that a developer of Config pushes a change to the
repository and a build is triggered by a CIS. We consider
the following three scenarios: (1) compilation of test sources
fails, (2) only one test is run, and (3) build succeeds. We
next describe Maven andMolly and show how they manage
dependencies for these three scenarios.

644

Maven Central

x.jar

X1.class

X2.class

Molly Repository

x.jar

Xt
1.class

Xt
2.class

x−X1.jar

X1.class

x−X2.jar

X2.class

Build System

Runtime Environment

X1.class

Maven Local

x.jar

X1.class

X2.class

Molly Local

x.jar

X1.class

Xt
2.class

compile||test

trim

split

test merge

compile

merge

save

save

Figure 3: Molly’s architecture (solid lines) and a conventional build system (Maven) (dashed lines). Maven
eagerly retrieves x.jar prior to the compilation and test execution, whereas Molly lazily retrieves trimmed

x.jar at compile time and lazily retrieves necessary executable code at runtime, merging when convenient.

Maven: Maven automatically manages a project’s depen-
dencies based on the user’s specification in the build script.
Specifically, Maven maintains the Maven Central Repos-
itory of publicly available libraries [10]. (We mined the
Maven Central Repository and discovered that it currently
includes 1,125,281 libraries, totaling 1,043GB.) Maven Cen-
tral Repository allows library developers to autonomously
deploy their libraries to the repository. Consequently, the
library developers determine the size and content of the li-
brary, and consumers of the library have no way of specify-
ing which parts of the library they need; they must use the
entire library, or none of it.

When a build is executed, Maven automatically retrieves
the necessary libraries for the executed target (based on
pom.xml). The retrieved libraries are saved in the local
repository on disk for later reuse. Note that if a project
uses CIS, the libraries are removed from the local reposi-
tory when the build finishes1. Figure 3 (dashed lines) il-
lustrates the Maven build model. When a user invokes a
target, Maven retrieves the dependencies eagerly, before the
execution of the target begins.

For our example scenarios, importantly, Maven retrieves
the same set of libraries regardless of which test is executed.
The retrieved libraries include both the user specified depen-
dencies and transitive dependencies with their entire con-
tents. However, the failing compilation does not need the
executable code of the compiled files, but only their public
interfaces. The executed test TestINIConfiguration does
not need dependencies (e.g., ObjenesisHelper) used by non-
executed tests, and even a successful build does not need files
that are never used (e.g., IndexClass).

Other popular build systems, including Ant + Ivy [8],
Bazel [12] (limited), Gradle [32], and sbt [53] follow a simi-
lar approach with respect to dependency retrieval from the
Maven Central Repository.
Molly: Molly introduces a novel execution model, shown
in Figure 3 (solid lines), which tightly couples the build sys-
tem, the compiler, and the runtime environment. Unlike the
existing build systems, Molly retrieves parts of libraries
lazily during the execution of the targets. Like other build

1Recently, several CISs, including Travis CI, introduced
simple caching support that packages dependencies into an
archive and uploads it to a remote storage service. However,
retrieving a large cache can be costlier than retrieving the
original dependencies [56]. Note that our work is comple-
mentary to caching and can reduce the cache size.

systems, Molly maintains its own central repository (the
two boxes that shown in Figure 3). The library developers
deploy the same libraries as they would to Maven Central
Repository. When a library is uploaded, Molly runs its
preexecution phase, which splits the library into files and
trims the library to reduce it to its public API. Specifically,
Molly creates one library for each classfile in the original
library (bottom second box from the left in Figure 3) and
then trims classfiles from the original library, so that the
trimmed library consists only of the public interfaces of the
original classfiles (top second box from the left in Figure 3).
For our running example, Config, Molly’s splitting step
will create 19,629 new libraries, and the trimming step will
reduce the size of the libraries by 46.63%.

When a user invokes a target, Molly, in its execution
phase, lazily retrieves only the classfiles that are needed for
the execution and loads them into the main memory (third
bottom box from the left in Figure 3). Then, either in par-
allel with the execution or offline (between two build runs),
Molly merges retrieved classfiles into libraries in the local
repository. (Note that merging is unnecessary for the execu-
tion of the build, but it is used to keep Molly transparent
to the user). An additional advantage of Molly is that it
makes the Molly Central Repository transparent to both the
library developers (as they do not have to think how the best
to split their libraries) and users of the libraries (as they do
not have to worry about unnecessarily files being retrieved).

In our three scenarios for Config, Molly retrieves only
the interfaces of classfiles needed to compile tests. If the
user executes only TestINIConfiguration, Molly retrieves
39 of 137 files (the numbers are shown below the boxes in
Figure 2) from commons-beanutils, and no files from either
Objenesis or hsql. If the user instead executes TestAu-

toSaveListener, Molly retrieves 12 of 35 classfiles from
Objenesis, but none from commons-beanutils, and also
none from hsql. Even when the build succeeds, and all
tests are executed, Config only uses 2,830/19,629 (14.42%)
of classfiles. We present other results in Section 5.

During the build, Molly obtains a transfer script for the
subsequent build; we discuss the details of the generated
scripts in Section 3.3. As described earlier, transfer script
contains the flattened list of files retrieved during the build.
If the script exists, it is executed at the beginning of the
build, and newly needed files are retrieved by Molly lazily
during the build execution.

645

3. MOLLY PHASES
This section describes Molly’s preexecution phase (per-

formed when a library is deployed to Molly Central Reposi-
tory, Section 3.1), execution phase (performed when a build
target is executed, Section 3.2), and generation of the trans-
fer script (Section 3.3). We assume the standard seman-
tics for the Java classfiles [59] and the Java runtime [37].
Throughout this section we provide the intuition for why
Molly preserves the behavior of the original build.

3.1 Preexecution: Trimming and Splitting
In the preexecution phase, a library, L, is decomposed

into a compile-time component (Lt) and the runtime com-

ponents (L{r}). For each Java classfile in the library, z ∈ L,
the compile time component of the classfile zt (s.t., zt ∈ Lt

and zt = trim(z)) should contain only the class’s public in-
terfaces (which we define later in more detail). Each runtime
component Lr contains exactly one of the classfiles from the
original library (i.e., ∀z ∈ L. ∃Lr such that z ∈ Lr and 6 ∃Lr′

such that z ∈ Lr ′).

3.1.1 Trimming Step

The objective of the trimming step is to decompose an ex-
isting library L, a container of compiled Java classfiles, into
a new trimmed library, Lt, that can be substituted for L
during the compilation phase of any dependent. Addition-
ally, the trim function should extract a dependent-agnostic
interface of L that is smaller, delaying decisions about which
classes are really needed until runtime. The requirements of
Lt are stated below:

1. For any project P that depends on L, Lt may be sub-
stituted for L at compile time.

2. The product of the compilation with Lt, will be iden-
tical to the product of the compilation with L.

3. Lt should be the smallest possible library (in terms
of code fragment) that satisfies the above two require-
ments and each classfile passes the Java verification.

Requirement 1 ensures that Lt is independent of a project
P , so that trim(L) = Lt, which may be expensive, is per-
formed only once per library. This requirement also guar-
antees that from the compiler’s perspective, Lt is identical
to L, so that the developers of P can substitute Lt for L in
compilation. The second requirement guarantees that will
be possible to build P using Lt and later replace Lt with
L at runtime. The third requirement sets the optimization
goal for the trimming step: it should remove as much com-
piled code as possible, while still satisfying the first two re-
quirements. If Lt satisfies these requirements, it will be a
physically smaller version of L, that can be transparently
substituted for L at compile-time.

The trimming algorithm works by removing sections of
the compiled classfiles that are not visible to its dependents.
These can be broken up into two categories: executable code
and non-visible members.
Rewrite rules: We define the trim function with a set of
rewrite rules. Each rule has the following form:

C [before → after] condition

where C is the context, before/after are Java statements
or class members (e.g., fields or methods) or the empty string
(denoted by ⊥), and condition defines the applicability of

static {· · · } → ⊥ (1)

< mod > Type f · · · → ⊥, if private ∈ mod (2)

< mod > Type f = ExprType →

< mod > Type f = zero(Type)

if private 6∈ mod and (Type 6= Pr or (Type = Pr and

(¬const(Expr) or {static, final} 6∈ mod))) (3)

< mod > Type m(· · ·) {· · · } → ⊥, if private ∈ mod (4)

< mod > Type m(· · ·) {· · · } →

< mod > Type m(· · ·) {return zero(Type)}

if private 6∈ mod (5)

< mod > c(· · ·) {· · · } → ⊥, if private ∈ mod (6)

< mod > c(· · ·) {· · · } →< mod > c(· · ·) {}

if private 6∈ mod (7)

< mod > class M{· · · } → ⊥, if private ∈ mod (8)

Figure 4: Rewrite rules for the trimming phase.

< mod > Type m(· · ·) {· · · } →

< mod ∪ native > Type m(· · ·); , if private 6∈ mod (9)

Figure 5: Alternative rewrite rule for 5 in Figure 4.

the rule. Interestingly, our rules apply in any context, so
we always omit C. Additionally, we omit the condition
if a rule always applies. mod denotes a set of Java modi-
fies, ExprType denotes any expression of the specified type,
Type denotes any type, and Pr denotes primitive and String
types. We use f to refer to a field, m to refer to a method,
and c to refer to a constructor. · · · are positional param-
eters and their use on the right side follow the order on
the left side. Function zero(Type) returns default value for
the given Type (e.g., null for a reference type, 0 for int,
etc.). We define a predicate const(Expr) that holds iff the
given expression is a constant expression (e.g., “string” for
String type). The rewrite rules are shown in Figure 4. The
class members and statements that are never explicitly used
on the left side of the rules remain unchanged. Although
our implementation of Molly trims Java classfiles, we de-
fine the rewrite rules on Java source level for the simplicity
of exposition. (Note that some rules cannot apply to Java
source code directly, and are mentioned below.) Most of the
rules are straightforward, so we explain the intuition behind
the rules on a high level and emphasize the rules that are
potentially less obvious.

Private access members (fields, methods, constructors, and
inner and nested classes) of L cannot be referenced by P at
compile time due to access modifiers. Following the standard
Java specification, the trim function may safely remove all
private fields, methods, constructors, and classes of L, since
these may only be referenced in the classes in which they are
defined. This is described by rules 2, 4, and 6. (Note that
private members can be accessed through the Java reflection
mechanism, but that belongs to the execution phase and we
describe it in Section 3.2.)

646

Package-private access members (fields, methods, construc-
tors, and classes) are only accessible within the same package
in which they are defined. Unfortunately, it is not possible
to remove signatures of such members from L as a class C1

of project P can be in the same package as C2 of L, in which
case at compile-time, methods in C2 should be able to refer-
ence package-private members of C1. Since protected visibil-
ity implies package-private visibility, the trimmer also keeps
the signatures of protected (and obviously, public members).

Bytecode instructions for any method and constructor can
be replaced by a return statement with the appropriate de-
fault value (and no statement for the constructors and void
methods). This is specified with rules 5 and 7. Note that
performing the change on source code level would not be
compilable in cases when a super class defines a constructor
with non empty list of arguments. This is not an issue on
the bytecode level, as exception would not be thrown until
the class is instantiated. Figure 5 shows an alternative ap-
proach for trimming non-private methods: each method can
be made native, indicating that its implementation is pro-
vided via a non-Java binary using the Java Native Interface
(JNI), which can save several extra bytes per method.

There is a special treatment for non-private static final
fields (rule 3). If a field has both static (not bound to
object instances) and final (cannot be altered after initial-
ization) modifiers and const(Expr) holds for the expression
assigned to the field, we do not rewrite the value of that
field. For these fields, Java bytecode compilers may inline
the values of “constant”fields during compilation. The prob-
lem could happen either in compilation phase (e.g., if those
fields are used in a switch statement) or at runtime. Trim-
ming static blocks (rule 1) is straightforward on bytecode
level as the constant expressions have been assigned to the
final static fields during the compilation.

Nested classes defined inside the scope of another class are
no exception to the visibility rules described above. Anony-
mous classes, defined within the body of a method, are only
accessible within the scope they are defined, and can be
treated as private classes and safely removed from L.

3.1.2 Splitting Step

Function split(L) creates one Lr per classfile in L. Cur-
rently, we do not consider the cases when a class C1 depends
on another class C2 for every possible execution, and C2 is
used exclusively by C1, (e.g., a private inner class can al-
ways be in the same Lr as the enclosing class). It is possi-
ble to perform static analysis to conservatively find further
cases when one class always depends on another. Optimiz-
ing for these cases would complicate the lookup of retriev-
able classes at runtime and require additional consideration
in the merge step; this optimization is left for future work.

It must be possible to determine the corresponding Lr

from zt at runtime so that it can be lazily resolved and
correctly retrieved. Our solution to this is to concatenate
the fully qualified class name with the unique identifier of
the library, creating a name unique in both Maven Cen-
tral Repository and in the Molly Central Repository. Ad-
ditionally, libraries frequently contain other artifacts (e.g.,
images); we make these artifacts available in Lt.

3.2 Execution: Retrieving and Merging
Although P may be compiled with the trimmed library

Lt, in order to execute P it is necessary to obtain the orig-

Input: z the class attempting to be loaded
Input: RepoLocal set of local dependencies
Input: RepoRemote set of remote split dependencies
Input: Mergeset class, dep. pairs to merge, initially ∅
1 function DynamicLoad(z, RepoLocal, RepoRemote,

Mergeset)
2 L ← InitAndGetLibrary(RepoLocal, z.name)
3 if z.name 6∈ L.replaced then

4 z′ ← Retrieve(RepoRemote,L.id, z.name)
5 Mergeset← Mergeset ∪ (L, z′)
6 return z′.src
7 end if

8 return z.src
9 end function

10 procedure AsyncMerge(Mergeset, RepoLocal)
11 for all (z,L) ∈Mergeset do

12 L′ ← L \ {zt} ∪ {z}
13 L′.replaced← L′.replaced ∪ z.name
14 RepoLocal ← RepoLocal \ {L} ∪ {L

′}
15 Mergeset← Mergeset \ {(z,L)}
16 end for
17 end procedure

Figure 6: DynamicLoad algorithm retrieves imple-
mentation of classes at runtime. AsyncMerge inte-
grates the retrieved classes into the libraries on local
disk concurrently, or at program end.

inal executable code of L. Requirement 2 of the trimming
ensures that the compiled output of P using Lt is identical
to the output of compilation with L, so one option would
be to fully replace Lt with L at run-time when any of the
classes is needed. It may be the case that L is specified as
a dependency, but never used (dangling, or only necessary
for certain build targets). In this case this simple technique
– replacement of Lt with L – would still be beneficial.

However, as shown in the motivating example, P will
likely not require all classes of L to execute. Each execu-
tion on an input of P requires some subset of the classes of
L. Let Li ⊆ L be the classes required during execution of
P on input i. Then we can represent the complete partial
dependency of P on D as LP =

⋃
i
Li. Ideally P could be

made to depend on LP instead of L. But due to dynamic
dispatch, reflection, and other features of Java and other
languages, it is challenging to compute LP statically [17].
Instead we build LP dynamically and incrementally, retriev-
ing Li’s lazily during execution. This is the point where the
build system, the compiler, and the runtime environment
cross cut. In the first execution, the program is started
with the trimmed libraries retrieved during the compilation.
On subsequent executions, each library may be a mix of
trimmed and executable classes loaded in prior executions.

3.2.1 Retrieving Step

In order to dynamically load the executable classes, all
class loads must be intercepted. In Java this is possible by
providing a system classloader, a JVM agent (which trans-
forms all classes as they are loaded), or modifying the run-
time environment. The DynamicLoad algorithm depicted
in Figure 6 is called when the JVM attempts to load a class
z. The algorithm first (line 2) obtains a local library that
should contain z. The library may already be in the lo-
cal repository if it was needed during the compilation (or
a prior run). If the library is not available locally, a new
library is created based on the build script; we assume that

647

Input: RepoLocal set of local dependencies after build
Output: S executable script that retrieves dependencies
1 procedure GenScript(RepoLocal)
2 for all L ∈ RepoLocal do

3 S
+
← $fetch(‘Lt.id)$

4 S
+
← {$fetch(‘L.id, ‘z.name)$|z.name ∈ L.replaced}

5 end for
6 end procedure

Figure 7: GenScript algorithm generates the trans-
fer script. The algorithm should be run after a clean
build, but it can be extended to incrementally up-
date the script.

the build script includes a mapping from a classfile to its
library. Note that the algorithm ensures that the class is re-
trieved even if it was not used in compilation (e.g., accessed
through reflection). Second (line 3), the algorithm checks
if z has already been replaced with the executable class in
a previous execution, and therefore does not need to be re-
trieved. Otherwise, if only the trimmed version of the class
is present in the library or the class was not accessed previ-
ously, the underlying dependency resolution system is called
to retrieve the Lrdependency for z (line 4). This retrieved
classfile is then marked to be merged into its library and
returned to the JVM (lines 5 and 6).

3.2.2 Merging Step

After the executable version of a classfile is resolved and
retrieved by DynamicLoad, it is desirable to cache the
classfile for future executions. We perform the merge step
to keep Molly transparent to the user. (If CIS performs
clean builds, the merge step provides no value and it can be
skipped.) AsyncMerge, described in Figure 6, performs
this merging. For each (class, library) pair marked to
be merged, AsyncMerge removes the trimmed classfile (if
one exists) and includes the new classfile. Additionally, in
order to distinguish between trimmed and original classes, a
file inside of the library is updated to persist that the class
has been replaced. These new libraries will then be loaded
as RepoLocal and used as input to DynamicLoad for the
next execution of the program.

Performing AsyncMerge is expensive to execute, as the
library file must be completely rewritten to add a new class-
file. However, since the merged library is only relevant to
the subsequent executions, the merging may be done in the
background or postponed until JVM shutdown (which we
implement). In Maven [9] and other build systems, the re-
trieved libraries may be shared between different programs,
however synchronization is required to make this work with
AsyncMerge. Finally, considering that class loading is in-
voked before any use of the class, under the assumption that
the network connection is always available, Molly has no
impact of the project’s behavior.

3.3 Obtaining the Transfer Script
Prior sections described the core Molly features that are

sufficient to build any Java project. Retrieving a single class-
file at a time during the build execution, however, can slow
down the build (Figure 1). The full power of Molly can be
unleashed by generating a script that prefetches dependen-
cies used in prior builds. Figure 7 shows the algorithm to
generate the script. Note that the algorithm assumes that
a clean build has finished previously. For each library that

is in the local repository (after build execution), we insert
fetch statement for the trimmed version of the library, and
one fetch statement for each non-trimmed classfile. (We
use standard notation from code generation community to
represent code fragments and holes [39].)

On local machines or on CISs, which do not use depen-
dency information to trigger builds and tests, the generated
script S can simply be used prior to each execution and it can
be updated as frequently as developers specify. Note that a
stale script does not affect the correctness of the build, be-
cause Molly will retrieve newly added dependencies lazily
and unused dependencies have no impact on the build.

More generally, S can be used as the complete list of
dependencies of the project, which can be used to trigger
build/tests [12, 21, 24, 30]. In this case, the script needs to
be updated after each build to ensure consistency.

4. IMPLEMENTATION
This section briefly describes the implementation of our

Molly prototype. (We only describe the implementation of
the steps that are relevant for our evaluation.)
Trimming Step: Trimming is performed on the bytecode
of classes within jar files using the ASM bytecode manipu-
lation framework [11]. The trimmer walks the class file tree,
applying the rewrite rules in Figure 4 to generate the class’s
trimmed bytecode, which is then added to a new trimmed
jar. Non-classfiles in the jar are passed through untouched,
and an additional file JarSplitter.MOLLY_META is added,
containing the unique identifier of the artifact. The exis-
tence of this file is used during the retrieving step to deter-
mine whether the jar has been altered by Molly.
Splitting Step: Molly provides the splitter tool to split
an existing jar into individual class dependencies. The tool
creates a separate jar for each class, adding the JarSplit-

ter.MOLLY_META file as before. Packaging each class into a
separate jar allows for simpler integration with Maven, but
these could simply be stored as separate classfiles or in a
database. This step is transparently run when a library de-
veloper deploys their libraries to the Molly repository.

Retrieving Step: We modified OpenJDK’s compiler and
runtime (jdk8u74-b02) to implement this step. We currently
implement two variants of Molly: (2) Molly

j , which re-
trieves trimmed jars lazily during compilation and retrieves
the original jars during execution (a modification of the orig-
inal technique described in Section 3.2), and (2) Molly

f ,
which retrieves trimmed files lazily during compilation and
retrieves the individual files during execution (a modification
of the original technique that uses the algorithm similar to
Figure 6 both in the compilation and runtime).

We implemented our code in the exception handling blocks
of the compiler, i.e., if a compiler cannot find a class, we in-
tercept the exception and retrieve the appropriate library/file
(if the library/file is available). For the runtime environ-
ment, we do a simple lookup to check if the local class is
trimmed, and if so, the original class is retrieved. Molly

j

and Molly
f currently retrieve jars and files sequentially.

5. EVALUATION
To assess the usability of Molly in the real world, we

answer the following research questions:

RQ1: What is the average size difference between a Java li-
brary (jar file) and its public API (trimmed jar)?

648

Table 1: Details of evaluated open source projects.

Project URL SHA KLOC Jar # File # Jar Size [MB] Classfile Size [KB]
[https://github.com/] Total Mean Max Mean Max

Codec apache/commons-codec e9da3d16 17.3 198 12896 24.93 0.13 1.93 2.14 31.83
IO apache/commons-io e8c1f057 27.2 211 13663 26.15 0.12 2.02 2.14 31.83
Math apache/commons-math 471e6b07 174.8 266 19175 34.67 0.13 1.93 2.07 31.83
Net apache/commons-net 4450add7 26.9 212 13678 26.20 0.12 2.02 2.15 31.83
Pool apache/commons-pool 14eb6188 13.4 181 11484 21.97 0.12 1.93 2.09 28.03
Lang apache/commons-lang 4777c3a5 66.0 218 14367 27.17 0.12 2.02 2.13 31.83
ClosureC google/closure-compiler 831be0a9 254.8 152 11141 19.57 0.13 2.26 2.04 28.03
JXPath apache/commons-jxpath f1dde173 24.5 175 12244 22.50 0.13 1.93 2.19 31.16
Config apache/commons-configuration 8dddebf1 64.3 269 19629 35.60 0.13 2.02 2.09 31.83
JGit eclipse/jgit 070bf8d1 154.9 163 15793 25.84 0.16 2.90 2.02 24.36
Retrofit square/retrofit d26484c7 8.1 157 16060 34.88 0.22 12.95 1.95 24.36
Guava google/guava 76e7d7a8 243.5 249 38991 90.08 0.36 41.82 2.30 72.39
OkHttp square/okhttp 0cd6b186 47.0 177 17957 37.30 0.21 12.95 2.46 24.36
OrientDB orientechnologies/orientdb 27e798b4 290.0 248 35132 59.93 0.25 7.28 2.21 24.90
EmpireDB apache/empire-db 83c8fb2f 47.4 268 29989 55.00 0.21 3.20 2.21 62.66
DPatterns iluwatar/java-design-patterns 4f56f7b0 16.5 334 54167 91.67 0.27 5.53 1.89 52.49
CXF apache/cxf f3185100 589.2 1003 205730 430.12 0.41 38.28 4.99 14202.00

Average N/A N/A 121.52 263.59 31888.00 62.56 0.19 8.41 2.30 868.57
Σ N/A N/A 2065 4481 542096 1063 3 142 39 14765

RQ2: What portion of the dependency retrieval time can be
saved by lazy retrieval?

RQ3: What portion of the dependency retrieval time can be
saved by using transfer script?

RQ4: What is the space reduction that can be achieved by
lazy retrieval and elastic dependencies?

We use two machines for our experiments: (1) a 4-core
1.8GHz i7-4500U CPU with 8GB of RAM, running Ubuntu
Linux 14.04LTS (which we will refer to as boxc1), and (2) a
4-core 2.7GHz i7 CPU with 4GB of RAM, running Ubuntu
Linux 14.04LTS (which we will refer to as boxc2).

5.1 Projects Under Study
Table 1 shows the list of the projects used in our study,

all open source, widely used, written in Java, and built with
Maven. We selected these projects based on their popularity
on GitHub, build system, and build outcome. Note that our
experiments require projects that build successfully, in order
to obtain all their dependencies. (Due to some test failures,
which were mostly caused by flaky tests [27,44], we exclude
test execution for: Guava, OkHttp, OrientDB, and CXF.)

For each project, we show a short identifier2, the project
URL, the git commit SHA used in the experiment, and the
number of lines of code (obtained using the cloc tool). Note
that the different versions of the same library are treated as
unique dependencies by Maven and are counted accordingly
in the table. Additionally, we include statistics about the
project’s unique dependencies: the number of libraries on
which the project depends (including transitive libraries),
the number of files in these libraries, and the total, mean,
and maximum size of each library. The set of dependencies
also include all libraries that are used by Maven process
during the build (e.g., plugins and their dependencies). The
final two columns examine the Java bytecode files within
the libraries, their mean and maximum size. Analysis of
the libraries shows that the mean size of the libraries, and

2Projects are sorted based on the number of test dependen-
cies, which is not included in the table.

the sizes of classfiles within the libraries is independent of
the project size. To confirm that sizes of libraries used by
the selected projects are not unusual, we mined the Maven
Central Repository, which includes 122,175 libraries (only
the latest versions of libraries), totaling 110GB. Although,
the selected projects use libraries whose size is somewhat
higher than the median of libraries in the Maven Central
Repository, the selected projects include no outliers.

5.2 Trimming Step

Table 3: Average size
of trimmed jars.

Project Size [%]

Codec 55.26
IO 54.65
Math 53.86
Net 55.22
Pool 53.81
Lang 54.40
ClosureC 55.15
JXPath 54.45
Config 53.37
JGit 54.28
Retrofit 55.30
Guava 55.25
OkHttp 54.91
OrientDB 53.25
EmpireDB 54.61
DPatterns 57.02
CXF 53.42

Average 54.60

Table 3 shows the average size
of trimmed libraries by apply-
ing the trimming algorithm (Sec-
tion 3.1.1) to each project. We
first compute the size of each
original library (size(L)) and its
corresponding trimmed library
(size(Lt)). Next, we compute
the portion of Lt that is in L, i.e.,
Size[%] = size(Lt)/size(L) ∗
100. We then average Size[%]
values across all libraries for
each project and show these
values in the table. The fi-
nal row computes the average
across projects. We can observe
that the size of trimmed libraries
differs by only few percentage
points among the projects. In-
terestingly, we can see that the
reduction in size is the smallest
for DPatterns, which depends on classfiles with smallest size
(Table 1, next to last column). In larger classfiles, bytecode
instructions take more space than the constant pool, so the
larger the classfile the more reduction may be obtained by
trimming. We observed, by manually inspecting trimmed
libraries, that a significant portion of the compiled bytecode
is dedicated to the constant pool, which we do not alter.

A1: Trimmed libraries are, on average, 45.40% smaller
than the original libraries.

649

https://github.com/

Table 2: Comparison of Maven and Mollyj retrieval times. I2—build time, including compilation and test
execution, w/o dependency retrieval; ∆I [s]—dependency retrieval time; ∆I [%]—percent of time spent on
dependency retrieval.

Project
boxc1 boxc2

Maven Mollyj Maven Mollyj

I2 [s] ∆I [s] ∆I [%] ∆I [s] ∆I [%] I2 [s] ∆I [s] ∆I [%] ∆I [s] ∆I [%]

Codec 10.85 48.61 81.76 14.36 56.98 13.19 64.52 83.03 17.86 57.53
IO 101.10 50.30 33.22 13.58 11.84 105.89 65.19 38.10 14.83 12.28
Math 129.19 66.30 33.92 15.78 10.88 142.41 99.71 41.18 22.75 13.77
Net 62.20 51.90 45.48 15.95 20.41 65.10 76.61 54.06 14.00 17.70
Pool 300.19 47.24 13.60 6.67 2.17 297.81 59.60 16.68 13.71 4.40
Lang 26.95 53.21 66.38 16.76 38.35 33.13 67.02 66.91 16.15 32.77
ClosureC 60.68 34.65 36.35 13.53 18.23 63.16 53.16 45.70 10.71 14.50
JXPath 8.28 45.10 84.49 9.64 53.79 10.47 56.55 84.38 10.99 51.22
Config 35.91 65.24 64.50 21.67 37.63 40.60 79.86 66.29 19.23 32.14
JGit 141.20 50.27 26.25 13.11 8.49 156.05 56.05 26.43 16.69 9.66
Retrofit 13.89 45.41 76.58 10.46 42.95 16.93 57.56 77.27 13.37 44.12
Guava 30.90 77.73 71.56 24.00 43.72 36.39 102.40 73.78 30.65 45.72
OkHttp 8.19 49.37 85.77 11.40 58.19 9.83 65.17 86.89 14.81 60.09
OrientDB 49.57 60.26 54.87 17.73 26.34 57.22 81.49 58.75 25.04 30.44
EmpireDB 16.63 70.73 80.96 23.77 58.83 18.89 94.50 83.34 24.68 56.65
DPatterns 97.51 87.93 47.42 31.46 24.39 108.40 117.38 51.99 38.13 26.02
CXF 215.09 266.21 55.31 119.26 35.67 249.80 318.09 56.01 156.75 38.56

Average 76.96 68.85 56.38 22.30 32.29 83.84 89.11 59.46 27.08 32.21
Σ 1308 1170 N/A 379 N/A 1425 1514 N/A 460 N/A

5.3 Retrieval Time
Setup: Instead of using the existing Maven Central Repos-
itory, we installed empty Maven and Molly repositories on
a dedicated server exclusively available to us (denoted as
boxs), to provide for fairness and stable measurements. We
used the two machines described earlier as clients, which
resulted in two configurations: boxc1 ↔ boxs and boxc2 ↔
boxs. In both configurations, the bandwidth between the
client and the server was 3.90 Mbits/sec (averaged over 10
repeated measurements using iperf).

To initialize the repositories on boxs, for each project
we executed mvn install once without any changes to the
project’s build script. This command retrieved all libraries
from the original Maven repositories, which we copied over
to our private Maven repository. Additionally, we executed
trim and split on each original library and added the result-
ing artifacts to our Molly repository.

First, we measure the time it takes to retrieve dependen-
cies from boxs. (All retrievals from this point on are from
boxs.) To do so, we measure Maven execution times of two
separate runs: (I1), where we delete the local Maven repos-
itory and execute mvn install, and (I2), where we execute
mvn install -offline without cleaning the local reposi-
tory. I2, thus, is the time spent building and executing tests,
while ∆I = I1−I2, is the time spent retrieving dependencies.

Second, we measure the time it takes to retrieve dependen-
cies using Molly

j . Recall (Section 4) that Molly
j lazily

retrieves trimmed libraries during compilation and lazily re-
trieves the original libraries during the execution. (In the-
ory, running build with lazy retrieval could increase the build
time if most of the libraries are retrieved, because Molly re-
trieves both the trimmed and original libraries. However, we
did not observed a slowdown for any project, because many
libraries are usually unused.) Exactly as we do for Maven,
we run Molly twice (without and with a local repository
present) to measure I1 and I2, and then compute ∆I as the
difference of the two. Note that I2 is expected to be the same

for both Maven and Molly (because they both perform ex-
actly the same build), which our experiment confirmed.
Results: Table 2 shows the I2 and ∆I values for Maven
and Molly

j when running on both of our client machines.
The final two rows show the average and sum. We see
that on both machines, Molly

j spends less time retriev-
ing dependencies: 32.29% vs. 56.38% on boxc1, and 32.21%
vs. 59.46% on boxc2. Based on these values, we compute
the average saving of retrieval time: 1 − (32.29/56.38 +
32.21/59.46)/2.

A2: Molly
j saves, on average, 44.28% of retrieval time

compared to Maven.

5.4 Transfer Script Savings
In the introduction, we already described the ideal depen-

dency retrieval time (Figure 1): 93.81% of retrieval time can
be reduced on average by using transfer script (on boxc2; the
results on boxc1 are almost identical), which can be obtained
from Molly

f . Note that the same figure shows that the ini-
tial retrieval time for Molly

f can be several times that of
Maven due to the large number of HTTP requests, but that
disadvantage would be gone by the end of the second build.

A3: Transfer script can save 93.81% of retrieval time.

5.5 Lazy Retrieval Disk Savings
Table 4 shows the savings in terms of the size of retrieved

dependencies (and, therefore, disk space). The results are
split into two main columns: Molly

j and Molly
f . For

Molly
j , we show the total number of libraries retrieved

by Molly
j (Jar #), and compare it with the total num-

ber of libraries retrieved by Maven (Jar [%]). (The num-
bers for Maven were reported in Table 1.) For Molly

f ,
we show the total number of retrieved files (File #), com-
pare it with the total number of files in libraries retrieved
by Maven (File [%]), and compute the reduction of the to-
tal size of retrieved artifacts when compared with Maven
(Size [%]). Both Molly

j and Molly
f achieve consistent

savings across all the projects. This particular metric is es-

650

Table 4: Stats for Jars and Files retrieved by Mollyj

and Mollyf , respectively.

Project
Mollyj Mollyf

Jar # Jar [%] File # File [%] Size [%]

Codec 81 40.91 1198 9.29 9.75
IO 86 40.76 1299 9.51 10.09
Math 100 37.59 1545 8.06 8.74
Net 87 41.04 1272 9.30 9.92
Pool 67 37.02 1146 9.98 10.45
Lang 91 41.74 1350 9.40 9.97
ClosureC 52 34.21 1794 16.10 15.37
JXPath 71 40.57 1348 11.01 12.34
Config 120 44.61 2830 14.42 15.36
JGit 78 47.85 2060 13.04 14.24
Retrofit 51 32.48 1764 10.98 8.59
Guava 82 32.93 1176 3.02 2.52
OkHttp 50 28.25 434 2.42 1.56
OrientDB 95 38.31 1348 3.84 2.43
EmpireDB 185 69.03 3267 10.89 11.07
DPatterns 145 43.41 11161 20.60 20.25
CXF 425 42.37 15545 7.56 10.76

Average 109.76 40.77 2972.76 9.97 10.20
Σ 1866 N/A 50537 N/A N/A

pecially important for distributed build systems [4,20], as it
improves dependency caching [25, 28, 60]; we discuss this in
more detail in the next section.

A4: Molly
f uses only 9.97% of files used by Maven, and

Molly
j uses 40.77% of jars used by Maven; the reduction

in space with Molly
f is 89.80%, on average.

6. DISCUSSION AND FUTURE WORK
Amortization: Although Molly provides the most bene-
fits in CIS environments with clean builds without caching,
Molly can bring benefits even when dependencies are (re-
motely) cached [2, 56]. Not only is Molly orthogonal to
caching, but Molly may improve the performance of caches
(particularly in a distributed environment), due to disk us-
age reduction. Additionally, if dependencies are cached,
there is no need to cache them eagerly, but they can be
cached when classfiles are lazily retrieved. This amortizes
the retrieval time across several builds (of multiple projects).

It is important to mention that local caching (i.e., storing
the cache on the machine that executed the latest build of
the project) is non-existent in CISs. The reason may be ob-
vious: CISs use the same machines to run builds of hundreds
of thousands of projects (e.g., Travis CI is used by more than
300K projects [35,36]), and caching all dependencies for all
projects on all machines is simply infeasible.
Transparency: Molly is transparent to both library de-
velopers and library users. Specifically, as only the neces-
sary classes are retrieved, Molly incentivizes library users
to make decisions about libraries based on the quality of
each library instead of its packaged size. At the same time,
library developers need not think about the sizes of their
libraries. Additionally, library developers need not manu-
ally separate public APIs and its implementation, which is
a non-trivial task.
Tracking: Maven Central Repository provides some statis-
tics about libraries that it hosts. Molly could provide ad-
ditional valuable information to the library developers, e.g.,
the list of classfiles that are most frequently used. The abil-
ity to track dependencies could be further used to optimize

testing and verification [23, 29, 31, 33, 41, 42, 66] by tracking
for each test/property what classes are being used.
Compression: We combined the pack200 jar compression
tool [48], included with most JRE distributions, with the
Molly’s trimming algorithm. Combining both techniques
reduces most projects’ dependencies to 5-15% of their origi-
nal size. Although combiningMolly and pack200 may seem
attractive, we did not proceed with this combination due to
unpacking cost when the dependencies are retrieved, which
would be done in the execution phase. Unlike unpacking,
the packing could be done in the trimming step of the pre-
execution phase. This step is performed either offline for
each dependency as it is built or as it is uploaded to the
repository, and hence is not a runtime overhead.
Future Work: We see several different ways to extend
Molly, as well as a few opportunities for applying Molly’s
core lazy retrieval techniques in other domains. As for ex-
tending Molly, to save more space, Molly could track de-
pendencies at a granularity finer than classfiles (e.g., meth-
ods); to improve the running time, Molly could specula-
tively prefetch classes and retrieve them in parallel (e.g., if
class A is heavily used in methods of class B, Molly could
start retrieving A as soon as B is requested). Beyond build
systems, OS package managers could implement a similar
approach to ours to retrieve parts of packages only upon re-
quest; the standard latex distribution on Linux systems is a
good example, since it contains a large number of packages
that most people never use.

7. THREATS TO VALIDITY
External: The reported results may not generalize beyond
the projects used in our evaluation. To mitigate this threat,
we chose active projects that differ in the application do-
main, the number of developers, the number of lines of code,
the number of dependencies, and the number of authors.
Additionally, several projects used in our experiments have
been used in recent studies on regression testing and build
systems [15,16,29,55].

The results for parallel retrieval time (Section 5.4) may
differ based on the machine (e.g., HD instead of SSD) and
network configurations. To mitigate this threat, we obtained
results on two machine, which consistently showed improve-
ment of the transfer script for retrieving dependencies over
Maven’s mechanism for retrieving dependencies.
Internal: Implementation of Molly and our scripts may
contain bugs that may impact our conclusions. Molly’s
code base includes a number of tests that check the cor-
rectness of all phases of the proposed technique. We also
manually inspected the outputs of Molly for several small
and large examples.
Construct: For parallel retrievals, we used several values
to initialize the thread pool, such that each value is a power
of two. Our goal was to show the substantial speedup that
can be obtained with our approach rather than to find the
optimal value of threads in the thread pool.

In our evaluation, we used the default Maven configura-
tion. As reported in Section 1, we also evaluated Maven
retrieval time for different sizes of the thread pool, but we
observed no savings; we used the same set of values for the
thread pool size as for the evaluation of the transfer scripts.

Although a number of different build systems are avail-
able, we compared Molly only with Maven. Maven is still
one of the most popular build systems for Java used by many

651

open-source projects. In the future, we plan to further com-
pare Molly with other build systems. Note however that
every build system can benefit from lazy dependency re-
trieval and elastic dependencies.

8. RELATED WORK
This section describes prior work related to Molly.

Software Remodularization and Target Decomposi-
tion: Software remodularization is a closely related area of
research attempting to cluster existing programs or depen-
dencies into more meaningful modules. The Bunch [46] tool
introduces using subsystem decomposition by graph parti-
tioning of static inter-project file dependencies. Bunch pro-
vides different search metrics to allow for different tradeoffs
between remodularization quality and performance. The
Decomposer and Refiner tools [63] build upon this approach
by forming the strongly connected components of an enor-
mous file dependency graph [52], using expected dependent
test triggers as a metric to partition the graph. Decomposer
splits dependencies into only two subdependencies, and the
chosen decomposition is tied to which dependents are avail-
able when the tool is run. Closely related work uses the
strongly connected components of the file dependency graph
to statically remove unused file dependencies from the build
file within a project [67]. PoDoJA [18] seeks to minimize the
download cost of code using dynamic information to stat-
ically repackage the downloadable jars. PoDoJA monitors
the classes used in several execution scenarios, and optimizes
the average download size across scenarios using a genetic-
algorithm search for a partitioning of the classes within a jar.
In comparison, Molly performs lazy dependency retrieval
and elastic dependencies, which automatically reduce the
dependencies between the projects: project depends only
on the files from libraries that are used in one phase of the
build execution. Our approach does not require any changes
to libraries, and thus could help decoupling projects and re-
ducing regression testing cost, without requiring substantial
effort from developers.
Dependency Compression: Java packages code into jar
files which use the zip format for easy distribution. In addi-
tion to standard compression algorithm such as gzip or bz2,
specialized tools exist to shrink the size of jars. pack200 [48]
performs a lossy compression on a jar file by joining the
classes’s constant pools, removing debug information, and
applying the gzip algorithm. As discussed earlier, we ex-
perimented with combining pack200 and Molly, finding
that while pack200 achieves on average a reduction to 30%,
combining both approaches reduces to 5%-15%. Another
tool, ProGuard [49] strips unused code from jars and obfus-
cates the rest, achieving between 10% and 88% reduction
in jar size. Molly operates orthogonally to these compres-
sion tools, and combining the approaches achieves greater
trimmed library compression at the cost of uncompressing
overhead, which can be high for runtime deployment.
Build Systems: There are at least as many build systems
as programming languages [9, 24, 26, 32, 53, 54]. Further-
more, studies show build system maintenance accounts for
significant overhead of project development [4, 5, 45, 47, 65].
Over time, build systems have evolved to be integrated with
a package manager that can resolve, retrieve, and install
library dependencies automatically, similar to traditional
package management software [58]. Although, resolution of
dependencies with fixed versions is used by Maven, there

is interest in taking advantage of a complex version resolu-
tion model [26,63]. The Spack [26] build system leverages a
constraint solver to determine the appropriate dependency
version for large HPC software projects. Molly enhances
these efforts by allowing the project to determine if changes
in the dependency version are relevant. Other work has sped
up Maven builds by delaying execution of the tests until all
modules are built [16]. Our work is orthogonal, as we look
how to optimize retrieval of dependencies regardless of the
target being executed. Bazel [12] can create a library that
includes only class APIs, however, the obtained classfiles
cannot be loaded by the Java runtime environment as they
do not pass the Java verification. This could be a limitation
if Molly is implemented via the Java agent mechanism to
avoid modifying the Java runtime environment.
Dynamic Patching: Molly builds on work on dynamic
patching to insert executable code at runtime [50, 51, 57].
Java is designed to provide extensible dynamic loading [43].
Research in dynamic patching has shown that executable bi-
nary code may be patched at runtime with low overhead [34].
In a CORBA system [64], DLS implements a system and
repository for loading code dynamically from the web at
runtime [40]. DLS supports loading the appropriate imple-
mentation for the system, with fallback implementations.
Other Related Work: Java Web Start [38] is a tool for de-
ploying code from the web that is included in Oracle’s JRE.
The newest versions of Web Start allow for lazy downloading
of code at runtime, but only at the packaged jar level; these
jars are downloaded when the application is started. Molly

goes a step further by allowing lazy retrieval of individual
files within the dependency, and integrating automatically
into the project’s build system. Static analysis of a partial
program [22] requires inference of missing types to enable
build of the partial program. Unlike work on analysis of a
partial program, Molly lazily retrieves the full implemen-
tation of types used during the build.

9. CONCLUSIONS
We presented Molly, a new build system, which tackles

the dependency bloat problem. Molly retrieves dependen-
cies partially and lazily, i.e., only the necessary files, ex-
actly before they are needed (while remaining fully auto-
matic and completely transparent to the users). This is the
key advancement over the existing build systems which en-
ables Molly to: (1) reduce the retrieval time by 44.28%,
(2) reduce disk space requirements by 89.80%, and (3) re-
duce retrieval time in typical cases by up to 93.81%. Molly

excels in scenarios typical for builds on continuous integra-
tion services: the fast builds (due to transfer script) increase
the overall throughput, and the small dependency footprint
(due to lazy dependency retrieval and elastic dependencies)
enables more efficient caching. We believe the cumulative ef-
fect of the savings achieved by Molly can make a significant
difference for any continuous integration service, especially
in the long run.

10. ACKNOWLEDGEMENTS
We thank the fellow students of EE 382V (Software Evolu-

tion) at The University of Texas at Austin for discussions on
the material presented in this paper. We also thank Rajeev
Alur, Nima Dini, Alex Gyori, Darko Marinov, John Micco,
and Marko Vasic for their feedback on this work.

652

11. REFERENCES

[1] How not to download the Internet. http://blog.
sonatype.com/2011/04/
how-not-to-download-the-internet.

[2] WAD home page. https://github.com/Fingertips/
WAD/.

[3] Your Maven build is slow. Speed it up! http://
zeroturnaround.com/rebellabs/
your-maven-build-is-slow-speed-it-up/.

[4] B. Adams, K. De Schutter, H. Tromp, and
W. De Meuter. The evolution of the Linux build
system. Electronic Communications of the ECEASST,
8:1–16, 2008.

[5] E. Aftandilian, R. Sauciuc, S. Priya, and S. Krishnan.
Building useful program analysis tools using an
extensible Java compiler. In International Working
Conference on Source Code Analysis and
Manipulation, pages 14–23, 2012.

[6] Apache Camel. https://github.com/apache/camel.

[7] Apache Commons Configuration. https://github.com/
apache/commons-configuration.

[8] Apache Ivy. http://ant.apache.org/ivy.

[9] Apache Maven. https://maven.apache.org.

[10] Apache Maven Central Repository. http://search.
maven.org.

[11] ASM home page. http://asm.ow2.org/.

[12] Bazel home page. http://bazel.io.

[13] K. Beck. Extreme programming explained: embrace
change. Addison-Wesley Professional, 2000.

[14] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn,
W. Cunningham, M. Fowler, J. Grenning,
J. Highsmith, A. Hunt, R. Jeffries, et al. Manifesto for
agile software development. 2001.

[15] J. Bell and G. E. Kaiser. Unit test virtualization with
VMVM. In International Conference on Software
Engineering, pages 550–561, 2014.

[16] J. Bell, E. Melski, G. Kaiser, and M. Dattatreya.
Accelerating Maven by delaying test dependencies. In
International Workshop on Release Engineering, pages
28–28, 2015.

[17] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and
M. Mezini. Taming reflection: Aiding static analysis in
the presence of reflection and custom class loaders. In
International Conference on Software Engineering,
pages 241–250, 2011.

[18] T. Bodhuin, M. Di Penta, and L. Troiano. A
search-based approach for dynamically re-packaging
downloadable applications. In Conference of the
Center for Advanced Studies on Collaborative
Research, pages 27–41, 2007.

[19] G. Booch. Object Oriented Design: With Applications.
Benjamin/Cummings Pub., 1991.

[20] Build in the Cloud: How the build system works.
http://google-engtools.blogspot.com/2011/08/
build-in-cloud-how-build-system-works.html.

[21] M. Christakis, K. R. M. Leino, and W. Schulte.
Formalizing and verifying a modern build language. In
International Symposium on Formal Methods, pages
643–657, 2014.

[22] B. Dagenais and L. Hendren. Enabling static analysis
for partial Java programs. In Conference on

Object-Oriented Programming, Systems, Languages,
and Applications, pages 313–328, 2008.

[23] S. Elbaum, G. Rothermel, and J. Penix. Techniques
for improving regression testing in continuous
integration development environments. In
International Symposium on Foundations of Software
Engineering, pages 235–245, 2014.

[24] S. Erdweg, M. Lichter, and W. Manuel. A sound and
optimal incremental build system with dynamic
dependencies. In Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
pages 89–106, 2015.

[25] H. Esfahani, J. Fietz, Q. Ke, A. Kolomiets, E. Lan,
E. Mavrinac, W. Schulte, N. Sanches, and S. Kandula.
CloudBuild: Microsoft’s distributed and caching build
service. pages 11–20, 2016.

[26] T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee,
A. Moody, B. R. de Supinski, and S. Futral. The
Spack package manager: Bringing order to HPC
software chaos. In International Conference for High
Performance Computing, Networking, Storage and
Analysis, pages 40:1–40:12, 2015.

[27] Z. Gao, Y. Liang, M. B. Cohen, A. M. Memon, and
Z. Wang. Making system user interactive tests
repeatable: When and what should we control? In
International Conference on Software Engineering,
pages 55–65, 2015.

[28] GitLab continuous integration. https://about.gitlab.
com/gitlab-ci/.

[29] M. Gligoric, L. Eloussi, and D. Marinov. Practical
regression test selection with dynamic file
dependencies. In International Symposium on
Software Testing and Analysis, pages 211–222, 2015.

[30] M. Gligoric, W. Schulte, C. Prasad, D. van Velzen,
I. Narasamdya, and B. Livshits. Automated migration
of build scripts using dynamic analysis and
search-based refactoring. In Conference on
Object-Oriented Programming, Systems, Languages,
and Applications, pages 599–616, 2014.

[31] B. Godlin and O. Strichman. Regression verification:
proving the equivalence of similar programs. Journal
of Software Testing, Verification and Reliability,
23(3):241–258, 2013.

[32] Gradle build tool. https://gradle.org.

[33] T. A. Henzinger, R. Jhala, R. Majumdar, and
M. A. A. Sanvido. Extreme model checking. In
Verification: Theory and Practice, pages 332–358,
2003.

[34] M. Hicks, J. T. Moore, and S. Nettles. Dynamic
software updating. In Conference on Programming
Language Design and Implementation, pages 13–23,
2001.

[35] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and
D. Dig. Usage, costs, and benefits of continuous
integration in open-source projects. In Automated
Software Engineering, 2016. To appear.

[36] It’s Travis CI’s 5th birthday, let’s celebrate with
numbers! https://blog.travis-ci.com/
2016-02-05-happy-fifth-birthday-travis-ci.

[37] Java language and virtual machine specifications.
https://docs.oracle.com/javase/specs.

653

http://blog.sonatype.com/2011/04/how-not-to-download-the-internet
http://blog.sonatype.com/2011/04/how-not-to-download-the-internet
http://blog.sonatype.com/2011/04/how-not-to-download-the-internet
https://github.com/Fingertips/WAD/
https://github.com/Fingertips/WAD/
http://zeroturnaround.com/rebellabs/your-maven-build-is-slow-speed-it-up/
http://zeroturnaround.com/rebellabs/your-maven-build-is-slow-speed-it-up/
http://zeroturnaround.com/rebellabs/your-maven-build-is-slow-speed-it-up/
https://github.com/apache/camel
https://github.com/apache/commons-configuration
https://github.com/apache/commons-configuration
http://ant.apache.org/ivy
https://maven.apache.org
http://search.maven.org
http://search.maven.org
http://asm.ow2.org/
http://bazel.io
http://google-engtools.blogspot.com/2011/08/build-in-cloud-how-build-system-works.html
http://google-engtools.blogspot.com/2011/08/build-in-cloud-how-build-system-works.html
https://about.gitlab.com/gitlab-ci/
https://about.gitlab.com/gitlab-ci/
https://gradle.org
https://blog.travis-ci.com/2016-02-05-happy-fifth-birthday-travis-ci
https://blog.travis-ci.com/2016-02-05-happy-fifth-birthday-travis-ci
https://docs.oracle.com/javase/specs

[38] Java Web Start. http://www.oracle.com/technetwork/
java/javase/javawebstart/index.html.

[39] S. Kamin, L. Clausen, and A. Jarvis. Jumbo:
Run-time code generation for Java and its
applications. In International Symposium on Code
Generation and Optimization: Feedback-directed and
Runtime Optimization, pages 48–56, 2003.

[40] R. Kapitza and F. J. Hauck. DLS: a CORBA service
for dynamic loading of code. In On The Move to
Meaningful Internet Systems: CoopIS, DOA, and
ODBASE, pages 1333–1350. 2003.

[41] D. C. Kung, J. Gao, P. Hsia, J. Lin, and
Y. Toyoshima. Class firewall, test order, and
regression testing of object-oriented programs. Journal
of Object-Oriented Programming, 8(2):51–65, 1995.

[42] H. Kurshan, R. H. Hardin, R. P. Kurshan, K. L.
Mcmillan, J. A. Reeds, and N. J. A. Sloane. Efficient
regression verification. In International Workshop on
Discrete Event Systems, pages 147–150, 1996.

[43] S. Liang and G. Bracha. Dynamic class loading in the
Java virtual machine. SIGPLAN Notices,
33(10):36–44, 1998.

[44] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. An
empirical analysis of flaky tests. In International
Symposium on Foundations of Software Engineering,
pages 643–653, 2014.

[45] S. McIntosh, B. Adams, and A. E. Hassan. The
evolution of Java build systems. Empirical Software
Engineering, 17:578–608, 2012.

[46] B. Mitchell and S. Mancoridis. On the automatic
modularization of software systems using the Bunch
tool. Transactions on Software Engineering,
32(3):193–208, 2006.

[47] A. Neitsch, K. Wong, and M. Godfrey. Build system
issues in multilanguage software. In International
Conference on Software Maintenance, pages 140–149,
2012.

[48] Oracle. pack200 specification. http://docs.oracle.com/
javase/7/docs/technotes/guides/pack200/pack-spec.
html.

[49] ProGuard. http://proguard.sourceforge.net.

[50] M. Pukall, A. Grebhahn, R. Schröter, C. Kästner,
W. Cazzola, and S. Götz. JavAdaptor: Unrestricted
dynamic software updates for Java. In International
Conference on Software Engineering, pages 989–991,
2011.

[51] T. Ritzau and J. Andersson. Dynamic deployment of
Java applications. In Java for Embedded Systems
Workshop, 2000.

[52] C. Sadowski, J. van Gogh, C. Jaspan, E. Söderberg,
and C. Winter. Tricorder: Building a program analysis
ecosystem. In International Conference on Software
Engineering, pages 598–608, 2015.

[53] sbt - the interactive build tool. http://www.scala-sbt.
org.

[54] SCons: A software construction tool. http://www.
scons.org.

[55] A. Shi, T. Yung, A. Gyori, and D. Marinov.
Comparing and combining test-suite reduction and
regression test selection. In International Symposium
on Foundations of Software Engineering, pages

237–247, 2015.

[56] Speeding up the build. http://docs.travis-ci.com/user/
speeding-up-the-build.

[57] S. Subramanian, M. Hicks, and K. S. McKinley.
Dynamic software updates: A VM-centric approach.
In Conference on Programming Language Design and
Implementation, pages 1–12, 2009.

[58] The Apt package manager. https://wiki.debian.org/
Apt.

[59] The class file format. https://docs.oracle.com/javase/
specs/jvms/se7/html/jvms-4.html.

[60] Travis CI - test and deploy with confidence. https://
travis-ci.com/.

[61] Travis CI - issue 1441. https://github.com/travis-ci/
travis-ci/issues/1441.

[62] Travis CI - issue 189. https://github.com/yegor256/
thindeck/issues/189.

[63] M. Vakilian, R. Sauciuc, J. D. Morgenthaler, and
V. Mirrokni. Automated decomposition of build
targets. In International Conference on Software
Engineering, pages 123–133, 2015.

[64] S. Vinoski. CORBA: integrating diverse applications
within distributed heterogeneous environments.
Communications Magazine, 35(2):46–55, 1997.

[65] X. Xia, X. Zhou, D. Lo, and X. Zhao. An empirical
study of bugs in software build systems. In
International Conference on Quality Software, pages
200–203, 2013.

[66] S. Yoo and M. Harman. Regression testing
minimization, selection and prioritization: A survey.
Journal of Software Testing, Verification and
Reliability, 22(2):67–120, 2012.

[67] Y. Yu, H. Dayani-Fard, and J. Mylopoulos. Removing
false code dependencies to speedup software build
processes. In Conference of the Centre for Advanced
Studies on Collaborative Research, pages 343–352,
2003.

654

http://www.oracle.com/technetwork/java/javase/javawebstart/index.html
http://www.oracle.com/technetwork/java/javase/javawebstart/index.html
http://docs.oracle.com/javase/7/docs/technotes/guides/pack200/pack-spec.html
http://docs.oracle.com/javase/7/docs/technotes/guides/pack200/pack-spec.html
http://docs.oracle.com/javase/7/docs/technotes/guides/pack200/pack-spec.html
http://proguard.sourceforge.net
http://www.scala-sbt.org
http://www.scala-sbt.org
http://www.scons.org
http://www.scons.org
http://docs.travis-ci.com/user/speeding-up-the-build
http://docs.travis-ci.com/user/speeding-up-the-build
https://wiki.debian.org/Apt
https://wiki.debian.org/Apt
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-4.html
https://travis-ci.com/
https://travis-ci.com/
https://github.com/travis-ci/travis-ci/issues/1441
https://github.com/travis-ci/travis-ci/issues/1441
https://github.com/yegor256/thindeck/issues/189
https://github.com/yegor256/thindeck/issues/189

	Introduction
	Overview
	Molly Phases
	Preexecution: Trimming and Splitting
	Trimming Step
	Splitting Step

	Execution: Retrieving and Merging
	Retrieving Step
	Merging Step

	Obtaining the Transfer Script

	Implementation
	Evaluation
	Projects Under Study
	Trimming Step
	Retrieval Time
	Transfer Script Savings
	Lazy Retrieval Disk Savings

	Discussion and Future Work
	Threats to Validity
	Related Work
	Conclusions
	Acknowledgements
	References

