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Regression testing – running available tests after each project change –

is widely practiced in industry to check that a project change does not break

working functionalities. Despite its widespread use and importance, regres-

sion testing is a costly activity, and the cost is steadily increasing with the

increase in the number of tests and the number of changes. Regression test

selection (RTS) attempts to optimize regression testing activity by deselect-

ing tests not affected by project changes and executing remaining tests. RTS

has been extensively studied and several tools have been deployed in industry.

However, work on RTS over the last decade has mostly focused on managed

languages (e.g., Java). Meanwhile development practices (e.g., frequency of

commits, testing framework, compilers, etc.) in C++ projects have dramat-

ically changed, and the way we should design and implement RTS tools and

the benefits of those tools is unknown.
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This thesis presents a design and implementation of an RTS technique,

named Ekstazi++, that targets projects written in C++, which use the LLVM

compiler and the Google Test testing framework. Ekstazi++ implements an

RTS technique based on the call graph analysis. Ekstazi++ integrates with

many existing build systems, including AutoMake, CMake, and Make. We

evaluated Ekstazi++ on 11 large open-source projects, totaling 3,811,916 lines

of code. We measured the benefits of Ekstazi++ compared to running all

available tests (i.e., retest-all) in terms of the number of executed tests, as

well as end-to-end testing time. Our results show that Ekstazi++ reduces

the number of executed tests and end-to-end testing time up to 97.20% and

88.09%, respectively.
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Chapter 1

Introduction

Regression testing – running available tests at each project revision

to check correctness of recent project changes – is widely practiced in indus-

try. Widespread availability of continuous integration systems simplified build

configurations to enable regression testing, and continuous integration services,

e.g., TravisCI [29], provide necessary resources even to open-source projects.

Although regression testing is extremely important, it is rather a costly activ-

ity, and this cost tends to increase with the increase in the number of tests and

the frequency of project changes [27, 28]. Many large software organizations,

including Apache, Google, Microsoft, Salesforce, and Uber have reported high

costs of regression testing and have been adopting various techniques to reduce

this cost [3, 5, 7, 12, 26].

Regression test selection (RTS) attempts to optimize the regression

testing activity by deselecting tests that are not anticipated to be affected by

recent project changes and running only the remaining subset of tests [1,6,25,

33]. Traditionally, coverage based RTS techniques keep a mapping from each

test to all code elements (e.g., statements, basic blocks, functions, etc.) that

the test might be using and deselect those tests (at a new project revision)
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that do not depend on any modified code elements. The mapping from each

test to code elements can be obtained either statically (without running the

test) or dynamically (during test execution). The code elements on which

dependencies are kept determines the granularity of an RTS technique (e.g.,

statement-level, function-level).

RTS techniques have been studied for over four decades, and several

(not-so-recent) surveys summarize RTS status and progress [1, 6, 33]. Re-

searchers (and practitioners) have studied RTS techniques for various pro-

gramming languages, including C/C++ (e.g., [4]), C# (e.g., [30]), and Java

(e.g., [8, 15, 21, 22, 35]), kept dependencies on various code elements, such as

basic blocks (e.g., [26]), functions (e.g., [4]), and classes (e.g., [8]), and used

both static (e.g., [15]) and dynamic (e.g., [8, 34, 35]) analyses.

Motivation. Most of the initial work on RTS techniques was (not surpris-

ingly) focused on languages that compile to unmanaged code, e.g., C, but,

interestingly, work in the last decade has mostly focused on RTS for man-

aged languages, such as Java and C#. Thus, the impact of the revolution

of C++ compilers (e.g., increasing popularity of LLVM), testing frameworks

(e.g., widespread use of Google Test), and development processes (popularity

of GitHub and continuous integration services) on RTS design, implementa-

tion, and provided benefits is unknown. Additionally, recent practices to eval-

uate RTS implementations based on end-to-end execution or test time have

not been used to evaluate RTS tools that target C++ projects.

Technique. We designed, developed, and evaluated a novel RTS technique
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named Ekstazi++ that supports projects that compile to LLVM IR [16], use

Google Test, and follow modern development practices. Ekstazi++ imple-

ments an RTS technique based on call graph analysis, i.e., it keeps a mapping

from each test to (transitively reachable) functions that are potentially used

by the test. At a new project revision, Ekstazi++ analyzes code changes and

runs those tests that depend on one of the modified/deleted/added functions.

Ekstazi++ ensures selection of the appropriate set of tests even in the pres-

ence of a dynamic dispatch by analyzing the call graphs for both old and new

project revisions. Ekstazi++ can be seen as a revival of RTS techniques that

analyze control-flow graphs and dangerous edges [13,21,22,25].

Implementation. We implemented Ekstazi++ as an LLVM compiler pass [17].

The benefit of this approach is that Ekstazi++ can be extended in the future

to support other languages that compile to LLVM bitcode. Ekstazi++ blends

nicely with Google Test and supports all test types (e.g., Typed Tests, Type-

Parameterized Tests, Value-Parameterized Tests, etc.). However, Ekstazi++

is in no way dependent on Google Test and could easily be integrated with

other testing frameworks, such as the Boost Test Library [2]. Ekstazi++ cur-

rently works with the AutoMake, Make, and CMake build systems.

Evaluation. We performed an extensive evaluation of Ekstazi++ on 11 open-

source projects available on GitHub, totaling 3,811,916 lines of code and 1,709

test cases. We used (up to) the 50 latest revisions of each project. To as-

sess the benefits of Ekstazi++, we measured savings compared to retest-all

(i.e., running all tests at each project revision) in terms of the number of ex-
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ecuted tests and end-to-end testing time. Our results show that Ekstazi++

can provide substantial savings. In terms of the number of tests, Ekstazi++

led to a reduction of up to 97.20% compared to retest-all. In terms of end-to-

end testing time, Ekstazi++ led to a reduction of up to 88.09% compared to

retest-all.
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Chapter 2

Example and Background

This section introduces Ekstazi++ through an example and introduces

basic terminology related to RTS.

2.1 Illustrative Example

To best walk through an example using Ekstazi++, we first show the

source code for an example unit test in C++. Then, we show how to retrieve

the metadata needed for test selection, which consists of the set of function

hashes and the dependency graph for the test code. Finally, we show how

to utilize the metadata to select specific tests to run using the popular C++

testing framework, Google Test [10].

After walking through the initial example, we make a small modification

to the source code and then repeat the steps above for the modified version of

the example.

2.1.1 Source Code

To best explain the design and process of Ekstazi++, we walk through

a simple example shown in Listing 2.1. In this example, we have three classes:
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A, B, and C, and three test cases: UnitTest.TestA, UnitTest.TestB, and

UnitTest.TestC. Classes B and C both inherit from class A, and B overrides the

method foo() while C does not. The test UnitTest.TestA tests the method

A::foo(), the test UnitTest.TestB tests the method B::foo(), and the test

UnitTest.TestC tests the method C::foo().

Listing 2.1: Example test code.

1

2 // unittest.cc
3 class A {
4 public:
5 virtual int foo() {
6 return 5;
7 }
8 };
9

10 class B : public A {
11 public:
12 virtual int foo() {
13 return 20;
14 }
15 };
16

17 class C: public A {
18

19 };
20

21 TEST(UnitTest, TestA) {
22 A a;
23 EXPECT EQ(5, a.foo());
24 }
25

26 TEST(UnitTest, TestB) {
27 B b;
28 EXPECT EQ(20, b.foo());
29 }
30

31 TEST(UnitTest, TestC) {
32 C c;

6



33 EXPECT EQ(5, c.foo());
34 }

The TEST() macro simply defines a Google Test test function, and the

parameters to the macro are the test case name and the test name respec-

tively1. Thus, in this example, we have one test case, UnitTest, with three

tests: TestA, TestB, and TestC.

2.1.2 Function Hashes

We calculate a unique hash value for each function in the code so that

we will know in the future if the function is modified or not. The process

of calculating a hash value for each function is similar to existing RTS ap-

proaches such as Ekstazi, which calculates a hash value for each class [8]. In

this case, we compute the hash values for the functions A::foo(), B::foo(),

UnitTest TestA Test::TestBody(), UnitTest TestB Test::TestBody(),

and UnitTest TestC Test::TestBody(). Note that we do not calculate the

hash value for C::foo() since the class C did not override the foo() function.

To calculate the hash value for a function, we walk through the function’s

statements and hash the instructions, operands, and constant values. We

store the name of each function and its hash value in a metadata file with

the name suffix functions.txt. The exact algorithm we use to compute the

unique hash value of a function is described later in detail. For our illustrative

example, the function hashes metadata file is shown in Listing 2.2.

1Note that a test case corresponds to a test class and a test corresponds to a test method.
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Listing 2.2: Function hashes for the illustrative example.

// unittest.functions.txt

A::foo();6293160677188140734
B::foo();6651799985476877791
UnitTest TestA Test::TestBody();15250928343042435800
UnitTest TestB Test::TestBody();16493337799901246779
UnitTest TestC Test::TestBody();2227623096648085615

2.1.3 Dependency Graph

Another piece of metadata that we collect is the dependency graph for

the test executable; multiple test cases (and tests) can be in a single executable.

The dependency graph is constructed by observing the function calls that

occur throughout the code, i.e., call graph analysis. It is represented as a

directed graph in which the nodes represent functions and the edges represent

a depended-on-by relationship. A visual representation of the dependency

graph for our illustrative example is shown in Figure 2.1.

Figure 2.1: Dependency graph for the illustrative example.

To store this graph into a metadata file, we save the graph as an adja-

cency list representation in a file with the suffix depgraph.txt. The format

8



of the metadata file is shown in Listing 2.3.

Listing 2.3: Dependency graph output for the illustrative example.

A::foo();UnitTest TestA Test::TestBody();UnitTest TestC Test::TestBody()
B::foo();UnitTest TestB Test::TestBody()

The function A::foo() is depended on by both UnitTest.TestA and

UnitTest.TestC because it is called by both tests. Likewise, the function

B::foo() is depended on by UnitTest.TestB.

2.1.4 Analysis and Execution

Before discussing the process of test selection, it is important to un-

derstand how the source code is compiled to an executable. In this case, we

assume the source file unittest.cc is compiled to a single executable named

unittest. Running the executable ./unittest would run all tests.

Since this is the initial run of Ekstazi++, there is only one version of

the metadata that has been generated. All tests are treated as modified since

they are newly added and did not exist before. Thus, we initially select all of

the tests to run.

To run a subset of tests in the test executable, we run the executable

with the flag --gtest filter set to the tests we would like to select. Since this

is the initial run, we will select all three tests, UnitTest.TestA, UnitTest-

.TestB and UnitTest.TestC. The --gtest filter flag accepts strings sepa-

rated with “:” to select tests where the strings are the full names of the tests

(TestCaseName.TestName). Thus, the full command to select and run all of
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the tests is ./unittest --gtest filter=UnitTest.TestB:UnitTest.TestC.

The output of this command is shown in Listing 2.4.

Listing 2.4: Test output when running the command ./unittest

--gtest filter=UnitTest.TestB:UnitTest.TestC.

Running main() from gtest main.cc
Note: Google Test filter = UnitTest.TestB:UnitTest.TestC:UnitTest.TestA:
[==========] Running 3 tests from 1 test case.
[−−−−−−−−−−] Global test environment set−up.
[−−−−−−−−−−] 3 tests from UnitTest
[ RUN ] UnitTest.TestA
[ OK ] UnitTest.TestA (0 ms)
[ RUN ] UnitTest.TestB
[ OK ] UnitTest.TestB (0 ms)
[ RUN ] UnitTest.TestC
[ OK ] UnitTest.TestC (0 ms)
[−−−−−−−−−−] 3 tests from UnitTest (0 ms total)

[−−−−−−−−−−] Global test environment tear−down
[==========] 3 tests from 1 test case ran. (0 ms total)
[ PASSED ] 3 tests.

As expected, all of the tests are executed since all three tests were

passed to the Google Test filter. In the following section, we make a simple

modification to the source code and walk through the process of selecting the

tests that should be run.

Note that listing all of the tests after the --gtest filter flag is the

same as simply running the test executable with no flag. However, for the pur-

poses of consistency, Ekstazi++ always uses the --gtest filter flag whether

or not all of the tests are selected.
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2.2 Modified Version of the Illustrative Example

In the previous section we showed the process of collecting metadata

from the test program. Now, the code will be modified with two changes: the

function B::foo() will return 10 instead of 20, and we will add a new function

C::foo(), which returns the value 30 (and overrides A::foo()). Logically, this

should cause the tests UnitTest.TestB and UnitTest.TestC to be run again,

and both tests should fail since the expected values from the tests are no

longer valid. UnitTest.TestA should not be rerun since it is not affected by

the changes, i.e., behavior remains the same.

2.2.1 Source Code

The source code for the modified version is shown in Listing 2.5.

Listing 2.5: Same test code but with B::foo() modified and C::foo() added.
The changes are marked in green.

1 // unittest.cc
2

3 class A {
4 public:
5 virtual int foo() {
6 return 5;
7 }
8 };
9

10 class B : public A {
11 public:
12 virtual int foo() {
13 return 10;
14 }
15 };
16

17 class C: public A {
18 public:

11



19 virtual int foo() {
20 return 30;
21 }
22 };
23

24 TEST(UnitTest, TestA) {
25 A a;
26 EXPECT EQ(5, a.foo());
27 }
28

29 TEST(UnitTest, TestB) {
30 B b;
31 EXPECT EQ(20, b.foo());
32 }
33

34 TEST(UnitTest, TestC) {
35 C c;
36 EXPECT EQ(5, c.foo());
37 }

2.2.2 Function Hashes

Since the function B::foo() was modified, the new calculated hash for

the function is different. Additionally, the new function C::foo() is intro-

duced and its hash value is calculated. The new function hash metadata file

is shown in Listing 2.6.

Listing 2.6: Function hashes for modified example.

// unittest.functions.txt

A::foo();6293160677188140734
B::foo();9228047671960258583
C::foo();5563320140227721397
UnitTest TestA Test::TestBody();15250928343042435800
UnitTest TestB Test::TestBody();16493337799901246779
UnitTest TestC Test::TestBody();2227623096648085615

Comparing this set of function hashes to those of the original example,
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we see that the hash value for B::foo() is different and there is an additional

function, C::foo(). None of the other functions were modified, so their hash

values did not change.

2.2.3 Dependency Graph

The dependency graph is now modified because UnitTest.C no longer

depends on the function A::foo() but rather the new function C::foo(). The

dependency graph for the modified example is illustrated in Figure 2.2.

Figure 2.2: Dependency graph for modified example.

As with before, we save the adjacency list representation of this de-

pendency graph to a metadata file with the suffix depgraph.txt. The file’s

contents are shown in Listing 2.7.

Listing 2.7: Dependency graph file for modified example.

// unittest.depgraph.txt

A::foo();UnitTest TestA Test::TestBody()
B::foo();UnitTest TestB Test::TestBody()
C::foo();UnitTest TestC Test::TestBody()

13



2.2.4 Analysis and Execution

To select the tests that should be run after changing the source code,

we use the information we know from the saved metadata. We now know that

the function B::foo() has been modified since it has a different hash value

than before, and we also know that UnitTest.TestB depends on B::foo()

from the (old) dependency graph. Additionally, we know that the function

C::foo() is new, and UnitTest.TestC now depends on C::foo(). A::foo()

has not been modified since it has the same hash value as before.

We first look at the modified function B::foo(). To find all tests that

are affected by the change to B::foo(), we perform a search in the original de-

pendency graph starting from B::foo(). We find that UnitTest TestB Test-

::TestBody() is encountered during traversal, so we know that the test Unit-

Test.TestB must be rerun. No other test function was encountered, so no

other tests were affected by the change. Now, we observe the new function

C::foo(). We first look in the old dependency graph for C::foo() but it does

not exist. Thus, we look in the new dependency graph and find that C::foo()

does exist. Now, we perform a graph traversal from C::foo() and find that

the test function UnitTest TestC Test::TestBody() is encountered, so the

test UnitTest.TestC should be rerun. The visualization of this process is

shown in Figure 2.3.

Now that we know that UnitTest.TestB and UnitTest.TestC need to

be rerun, we know the filter string to pass to the Google Test filter flag. As

with before, we run the executable with the --gtest filter flag set, but now
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(a) Dependency graph traversal for original example from B::foo() with the traver-
sal path in green.

(b) Dependency graph traversal for modified example from C::foo() with the
traversal path in green.

Figure 2.3: Traversing the dependency graphs after modifying B::foo() and
adding C::foo().

we set the flag to UnitTest.TestB:UnitTest.TestC since we only want to

run those tests. Thus, the complete command to run the test is ./unittest

--gtest filter=UnitTest.TestB:UnitTest.TestC. The output for selecting

and running these tests is shown in Listing 2.8.

Listing 2.8: Test output when running ./unittest --gtest filter

=UnitTest.TestB:UnitTest.TestC.

Running main() from gtest main.cc
Note: Google Test filter = UnitTest.TestB:UnitTest.TestC:
[==========] Running 2 tests from 1 test case.

15



[−−−−−−−−−−] Global test environment set−up.
[−−−−−−−−−−] 2 tests from UnitTest
[ RUN ] UnitTest.TestB
ekstazipp/examples/tests/method−inh−add−modify/v2−gtest.cpp:32: Failure
Expected equality of these values:

20
b.foo()

Which is: 10
[ FAILED ] UnitTest.TestB (0 ms)
[ RUN ] UnitTest.TestC
ekstazipp/examples/tests/method−inh−add−modify/v2−gtest.cpp:37: Failure
Expected equality of these values:

5
c.foo()

Which is: 30
[ FAILED ] UnitTest.TestC (0 ms)
[−−−−−−−−−−] 2 tests from UnitTest (0 ms total)

[−−−−−−−−−−] Global test environment tear−down
[==========] 2 tests from 1 test case ran. (0 ms total)
[ PASSED ] 0 tests.
[ FAILED ] 2 tests, listed below:
[ FAILED ] UnitTest.TestB
[ FAILED ] UnitTest.TestC

2 FAILED TESTS

We can see that both UnitTest.TestB and UnitTest.TestC were run,

and both tests failed since the expected results are now different from the

actual results. This section gave a quick overview of the process of Ekstazi++

by walking through an example. In the next section, we describe the design

and implementation of Ekstazi++ as well as go over the process introduced in

this section in more detail.

16



Chapter 3

Design and Implementation

3.1 Architecture

The basic system architecture consists of the Ekstazi++ LLVM Pass

and the Ekstazi++ Test Runner. We first compile the source code using

one of the supported build systems into LLVM Intermediate Representation

(IR) and test executables. For each test executable in the project, we first

run the Ekstazi++ LLVM Pass on the executable’s LLVM IR. The Pass will

collect metadata information including the unique hash of each function, the

dependency graph corresponding to the test executable, and the set of modified

tests. Then, we run the test executables and pass the corresponding flags to

select a subset of the tests using the Ekstazi++ Test Runner. The illustration

of this process can be found in Figure 3.1.

3.1.1 Collected Metadata

In order to perform the test selection, we need to know which tests were

modified between two project revisions due to changes in the source code. To

compute the modified tests, we store two types of metadata when running

the Ekstazi++ LLVM Pass: the unique function hash of each function in

the executable and the dependency graph for the test executable. From this
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Figure 3.1: Block diagram that illustrates the integration of Ekstazi++ into
the workflow.
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metadata, we can compute the list of modified functions and subsequently the

list of modified tests.

3.1.1.1 Detecting Modified Functions

To determine which functions have changed in the code, we compute

a unique hash value for each function based on its bitcode structure. When

the function’s source code is modified, its hash value will also change. Thus,

we can retrieve all the functions that have been modified by comparing the

hash value of the function in an old revision of the code to that of the newer

revision of the code. A function is defined as modified if it is added in the new

revision of the code, if it is removed in the new revision of the code, or if it

exists in both revisions of the code but has a different hash value in the new

revision.

3.1.1.2 Dependency Graph

After detecting which functions have changed, we need to compute all

the transitive dependencies for the modified functions. To accomplish this,

we build a dependency graph unique to each test executable. That is, two

different test executables will have different dependency graphs, even though

they may both link to the same static library. The dependency graph nodes

represent functions in the code, and the edges represent dependencies, i.e., call

relation. To compute all the transitive dependencies, we start at the nodes

corresponding to each modified function and then traverse the graph until we
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reach all the leaf nodes. An example of the dependency graph metadata can

be found in Listing 2.3.

With the exception of the first run, each run of the Ekstazi++ LLVM

Pass has access to two dependency graphs: the dependency graph belonging to

the previous revision of the code and the dependency graph belonging to the

current revision. After computing which functions have been modified from

the previous revision by comparing their new hash values with their old hash

values, we traverse both the old dependency graph and the new dependency

graph starting from the modified functions in order to find which test functions

have been modified. At first, it appears that traversing the old dependency

graph alone is enough to compute the modified functions because intuitively,

a function’s dependencies cannot change if the function body itself does not

change. This is true for most cases. However, in the case of inheritance, it is

possible for a function’s dependencies to change without a change in the code

if a new derived function is added (refer back to the example in the previous

chapter). Similarly, it is not enough to simply traverse the new dependency

graph alone because if an inherited method is removed, we still need the old

dependency graph to detect the dependencies of the removed function which

could potentially be a test. Therefore, the solution to find all possible depen-

dencies affected by a change is to traverse both the old dependency graph and

the new dependency graph.
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3.2 Test Selection

To perform test selection, we use the metadata presented in the pre-

vious section to first compute which test functions were affected by changes

to the source code. Then, we pass these modified test functions to the test

framework that will select and run the tests. Currently, Ekstazi++ supports

the Google Test framework. To select tests in Google Test, we need to run the

test executable with the flag --gtest filter and pass the names of the tests

we would like to run.

3.3 Algorithm

An algorithmic representation of the test selection process can be found

in Listing 3.1. In the algorithm, test module refers to the LLVM IR that

corresponds to the test executable being analyzed.

Listing 3.1: Algorithm for test selection.

1 function select and run(test module, old function hashes, old depgraph):
2 type hierarchy = graph()
3 vtables = map(type, vtable)
4 depgraph = graph()
5 function hashes = map(function name, hash value)
6

7 for each type in test module.type metadata:
8 add (type, supertype) relationships to type hierarchy
9

10 for each vtable in test module.vtables:
11 add (type, vtable) to vtables
12

13 for each call site in test module.call graph:
14 if call site is direct:
15 compute hashes for caller and callee
16 add caller and callee to function hashes
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17 add (caller, callee) to depgraph
18

19 else: // call site is virtual
20 get pointer type from call site
21 get vtable offset from call site
22 get derived types for pointer type from type hierarchy
23 for each type in derived types:
24 get vtable for type from the vtables
25 get callee from vtable using vtable offset
26 compute hashes for caller and callee
27 add caller and callee to function hashes
28 add (caller, callee) to depgraph
29

30 get modified functions by computing set union of old function set and
function set

31 for each function in modified functions:
32 traverse old depgraph and new depgraph to find all dependent functions
33 if dependent function is a test:
34 add function to set of modified tests
35

36 for each test in set of modified tests:
37 compute test filter for test
38 add test filter to test filters
39

40 for each test in all tests:
41 if test matches a a test filter from test filters:
42 run test

3.4 Ekstazi++ LLVM Pass

The Ekstazi++ dependency analysis is written as a LLVM Pass to be

integrated with the LLVM compiler infrastructure. Currently, the pass can run

on compiled LLVM Intermediate Representation files (.bc and .ll). The pass

implements LLVM’s CallGraphSCCPass, which allows us to traverse the call

graph of the program. The main pass function, runOnSCC(), runs on every call

graph node in the program being compiled. Each call graph node represents
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a function, and each call graph edge represents a function call.

3.4.1 Inputs

The only input to the Ekstazi++ LLVM Pass is the name of the test

executable. The test executable is necessary to probe all of the tests. For exam-

ple, for Google Test, running the executable with the flag --gtest list tests

will not actually run the tests but instead list all of the tests that would be run

when running the executable. Most of the time, the test executable will have

the same name of the actual bitcode file (e.g., test1 will have a bitcode file

named test1.bc). However, not all bitcode files exist right next to their corre-

sponding executable. It is common in modern projects to copy the executable

to a different folder at the end of the build process. Thus, there is no way

of knowing where the test executable exists from the LLVM Pass itself, so we

pass in an argument that is the full path to the executable that corresponds

to the bitcode file.

3.4.2 Key Steps

We describe the key steps in more detail.

3.4.2.1 Initialization

Before the main Pass function runs, the Ekstazi++ LLVM Pass first

loads the information, i.e., metadata, from the previous run into memory. If

this is the first run of Ekstazi++, then the function hashes, dependency graph,
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and tests will all be empty. The Pass then collects all of the test information.

In the case of Google Test, Ekstazi++ runs the test executable with the flag

--gtest list tests and then parses the output of the command to gather

all of the test cases and test names.

Type Hierarchy During Pass initialization, we build the type hierarchy for

the module to store all types and inheritance relationships in the module. To

build the type hierarchy, we parse the type metadata found in the module. The

LLVM IR for the module contains the type metadata for each defined class or

struct in the code as well as its polymorphic relationships. For example, for the

code in Listing 3.2, the corresponding type metadata is shown in Listing 3.3.

Listing 3.2: Example code showing simple inheritance relationships. In this
example, A is a declared classes that does not derive from any other class.
Class B and C both derive from class A.

1 class A {
2 virtual void foo();
3 };
4

5 class B : A {
6 virtual void foo();
7 };
8

9 class C : A {
10 virtual void foo();
11 virtual void bar();
12 };

Listing 3.3: Type metadata in LLVM IR for the example in Listing 3.2.

1 @ ZTV1A = constant [...], !type !0
2 @ ZTV1B = constant [...], !type !0, !type !1
3 @ ZTV1C = constant [...], !type !0, !type !2
4
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5 !0 = !{i64 16, !” ZTS1A”}
6 !1 = !{i64 16, !” ZTS1B”}
7 !2 = !{i64 16, !” ZTS1C”}

The mangled string ZTV1 indicates that the global constant is a virtual

function table for the corresponding class (e.g., ZTV1A corresponds to the

virtual function table for the class A).

Virtual Function Tables To identify virtual function tables, we observe

the global constants defined in the LLVM IR that corresponds to the module.

Since both Clang and GCC follow the standard CXX ABI for name mangling,

we can identify which constants are virtual function tables by looking at the

names of the constants. The following listing shows an example of what the

virtual function table is for the example we described in Section 2.

Listing 3.4: Virtual function table constants in LLVM IR.

1 @ ZTV3A = internal dso local unnamed addr constant { [3 x i8∗] } { [3 x i8∗] [i8
∗ null, i8∗ bitcast ({ i8∗, i8∗ }∗ @ ZTI3A to i8∗), i8∗ bitcast (i32 (%class.A∗)
∗ @ ZN3A4fooEv to i8∗)] }, align 8, !type !6

2 @ ZTV3B = internal dso local unnamed addr constant { [3 x i8∗] } { [3 x i8∗] [i8
∗ null, i8∗ bitcast ({ i8∗, i8∗ }∗ @ ZTI3B to i8∗), i8∗ bitcast (i32 (%class.B∗)
∗ @ ZN3A4fooEv to i8∗)] }, align 8, !type !6

3 @ ZTV3C = internal dso local unnamed addr constant { [3 x i8∗] } { [3 x i8∗] [i8
∗ null, i8∗ bitcast ({ i8∗, i8∗ }∗ @ ZTI3C to i8∗), i8∗ bitcast (i32 (%class.C∗)
∗ @ ZN3A4fooEv to i8∗)] }, align 8, !type !6

The CXX ABI defines the format and elements of the virtual function

table. The first element is the offset, which is used for multiple inheritance.

The second element is the run-time type information, or RTTI, which is used

to expose the type information of an object at runtime. The third element is

the first virtual function pointer, and the subsequent elements correspond to
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the next virtual function pointers. In our illustrative example, we have only

one virtual function, which is the function foo(). In the new revision of the

example, both classes B and C override A::foo(). Thus, the third element

of class A’s virtual function table is the virtual function pointer that points

to A::foo(). Similarly, the third element of B’s virtual function table is the

pointer to B::foo(), and the third element of C’s virtual function table is the

pointer to C::foo().

3.4.2.2 Function Hashing

As we traverse the call graph of the program, we obtain a unique hash

for each encountered function by taking into account the structure of its basic

blocks. To hash the value of the function, we walk through each of its basic

blocks and analyze its instructions.

Parameters that we include in the hashing algorithm include the order

of instructions, type of instructions, and compile-time value of the operands

of the instructions. The function hash algorithm is derived from the LLVM

Function Hash algorithm defined in the FunctionComparator class, which

computes a hash value for a function based on the types of instructions, order

of instructions, and number of operands for each instruction. We extended

this algorithm by also hashing the known compile-time values of the operands

of instructions such as global variables.
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Basic Block Traversal A basic block is defined as a section of code with

a single entry and a single exit. Each function has one or more basic blocks,

and each basic block is made up of instructions. For every basic block in a

function, we iterate over its instructions. Each instruction has an opcode and

operands. To compute a unique hash for the instruction, we hash the type

of instruction (the opcode), the order of the operands, and the values of the

operands if retrievable.

Value Hashing Constant values such as globals can be hashed by retrieving

their initial values that are available at the time of compilation. To hash values,

we first test if a specific value is a constant value. If it is a constant, then we

hash its value.

3.4.2.3 Dependency Graph Building

For each call graph node, we query every other node that it is connected

to. The edges to those nodes represent function calls from the current node.

Thus, we can build a dependency graph for each test module by traversing the

LLVM Call Graph in the CallGraphSCCPass.

LLVM defines two types of function calls: direct and indirect. In direct

calls, both the caller and callee are clearly defined functions. That is, there is

no ambiguity regarding which function is called. In this case, we can simply

add the call to our dependency graph since we know the exact names of the

functions (and classes) for both the caller and the callee. Indirect calls are
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challenging because although the caller is clearly defined, the callee is not. In

the C++ language, function pointers and virtual function calls both fall into

the category of indirect calls. In these cases, there are multiple candidates

for callees. We currently support virtual function calls in Ekstazi++ but not

function pointer calls.

Virtual Function Calls A virtual call is represented in LLVM IR as a

series of instructions that first loads the virtual function table from the class,

retrieves the virtual function pointer located at the specified virtual table

offset, and then makes an indirect function call using the virtual function

pointer. This series of instructions that corresponds to the example in section

2 can be found in Listings 3.5 and 3.6.

Listing 3.5: The virtual function call in source code from the example in Listing
2.1.

1 A∗ b = new B();
2 EXPECT EQ(20, b−>foo());

Listing 3.6: Sequence of instructions in LLVM IR that correspond to the
virtual function call in Listing 3.5.

1 %15 = bitcast %class.B∗ %13 to %class.A∗
2 %16 = load %class.A∗, %class.A∗∗ %3, align 8
3 %17 = bitcast %class.A∗ %16 to i32 (%class.A∗)∗∗∗
4 %18 = load i32 (%class.A∗)∗∗, i32 (%class.A∗)∗∗∗ %17, align 8
5 %19 = getelementptr inbounds i32 (%class.A∗)∗, i32 (%class.A∗)∗∗ %18, i64 0
6 %20 = load i32 (%class.A∗)∗, i32 (%class.A∗)∗∗ %19, align 8
7 %21 = call i32 %20(%class.A∗ %16)

In the Ekstazi++ LLVM Pass, we know whether a function call is

direct or indirect. To retrieve the actual function being called, we backtrack
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from the call instruction until we are at the getelementptr instruction. The

operands to this instruction are the type of the object’s pointer as well as the

index to retrieve the object from. In this case, the type of the pointer is class

A, specifically the virtual function table of A, and the index into the virtual

function table is 0. It is important to note that this index is not the actual

index into the virtual table but rather the index into the virtual table starting

from the beginning of the virtual functions. Recall that the first element of

the virtual table is always the offset from the top of the class, and the second

element of the virtual table is the runtime type information (RTTI). The first

virtual function is actually located at the third index of the virtual table.

Thus, there is always a difference of 2 between the real index into the virtual

table and the index that is from the getlementptr instruction. In our case,

the index 0 means that the real index we want to retrieve from the vtable is 2.

The algorithm for retrieving the virtual function call can be found in Listing

3.7.

Listing 3.7: Algorithm for retrieving the actual function data from a virtual
function call.

1 function add dependencies from vfcall(call site):
2 find getelementptr instruction before call site
3 get class type from first operand to getelementptr instruction
4 get index from last operand to the getelementptr instruction
5

6 get virtual function table for class type
7 add 2 to index to get real index into virtual table
8 get virtual function from virtual table using index
9 add dependency (call site.caller, virtual function) to depgraph

10

11 // Now repeat for all derived types
12 for each type in class type.derived types:
13 get virtual function table for type
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14 add 2 to index to get real index into virtual table
15 get virtual function from virtual table using index
16 add dependency (call site.caller, virtual function) to depgraph

Note that it is not enough to simply retrieve the virtual function for

the class itself. We also need to retrieve all derived implementations of the

virtual function because they are also candidates that could be called. Thus,

we repeat the process of retrieving the virtual functions for all derived classes

and place dependencies on all of them.

3.4.2.4 Test Registration

To be able to run only a subset of tests, we must have the knowledge

of the exact names of all tests in the module, including the test case name,

the test name, and any prefixes or suffixes generated by Google Test. By

default, the LLVM Pass only knows of the test functions that exist as C/C++

functions. The Google Test TEST(TestCase, TestName) macros map tests to

functions that are named <TestCase> <TestName> Test::TestBody() (see

Listing 2.2). Thus, we have enough knowledge to reconstruct the test case

name and test name. However, there are special types of tests in Google

Test called parameterized tests that cause Google Test to generate a prefix

or a suffix to the test name when running the test. We do not have enough

information from within the LLVM Pass to retrieve these prefixes or suffixes.

The solution we implement to solve this dilemma and retrieve all tests

that are in the test module is to first run the test executable with the flag

--gtest list tests during the initialization phase of the pass. This will give
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us the output of all tests that exist in the module including their exact names.

We parse this output and save the test case name, test name, prefix, and suffix

of each test. We call this process registering the tests in the Pass. Then, as

we encounter functions in the Pass that contain the substring TestBody(),

we can compare the names of the encountered functions to the names of the

tests we initially registered. If they have the same test case name and test

name, then we know which test that the function refers to, and from the saved

information for the test we also know what the prefix and suffix of the test is.

Now, we have enough information to reconstruct the exact name of the test

that will work with the Google Test filter flag.

3.4.2.5 Finalization

Once all function calls have been analyzed, the LLVM Pass computes

the modified functions for the function hashes by comparing the function

hashes for the current revision to that of the previous revision. Recall that

modified refers to functions that either did not exist before and are new or

did exist but have a different hash value. After finding all modified functions,

the Pass then computes all transitive dependencies by traversing the old de-

pendency graph and new dependency graph. This is equivalent to performing

a breadth-first-search (BFS) from every node that corresponds to a modified

function. We add all of the functions encountered during the graph traversal

to the set of modified functions. Once we have finished traversing the depen-

dency graphs, we filter the modified functions by whether or not it is a test
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function. This step is specific to the test framework being used (in our case

we are using Google Test). At the end of the finalization, we now have the set

of modified tests.

In this chapter, we described the design and implementation of Ek-

stazi++. In the following chapter, we detail the process of integrating Ek-

stazi++ with Google Test.
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Chapter 4

Google Test Integration

Google Test [10] is one of the most widely used unit testing frameworks

for C/C++. Ekstazi++ supports the latest version (at the time of the writing)

of Google Test, which is 1.8.0. To integrate a project with Google Test, it is

recommended to use the provided build system files distributed with Google

Test. In this section, we detail the process of selecting tests with Google Test

and how to integrate Ekstazi++ with the Google Test framework.

Google Test tests are defined using TEST() macros. The test result is

based on assertions defined inside the test, which are also macros and take the

form ASSERT *() and EXPECT *(). The tests are described using a test case

and a test name. An example is shown in Listing 4.1.

Listing 4.1: Google Test test macro.

1 TEST(TestCaseName, TestName) {
2 EXPECT EQ(1, 1);
3 }

The full test name of the example test is TestCaseName TestName, and it

defines a non-fatal assertion that 1 should equal 1. In the following sections,

we describe the different types of tests that Google Test supports as well as

describe how those tests appear in bitcode and how they can be selected.
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4.1 Test Filtering

To retrieve all tests that are defined in an executable, we run the ex-

ecutable with the flag --gtest list tests. This will print all test cases

and tests to the standard output. Then, to select the tests, we run the ex-

ecutable using another flag, --gtest filter. This flag accepts inputs that

are in the same format as the output of running the executable with the

--gtest list tests flag. For example, given the test suite in Listing 4.2, the

result of running the executable with the --gtest list tests flag would be

as shown in Listing 4.3.

Listing 4.2: Google Test example test suite.

1 TEST(TestCase1, Test1) {
2 EXPECT EQ(1, 1);
3 }
4

5 TEST(TestCase1, Test2) {
6 EXPECT EQ(1, 1);
7 }
8

9 TEST(TestCase2, Test1) {
10 EXPECT EQ(1, 1);
11 }

Listing 4.3: Output of running ./test --gtest list tests.

1 Running main() from gtest main.cc
2 TestCase1.
3 Test1
4 Test2
5 TestCase2.
6 Test1

All of the test cases and test names are listed. From now on, we will

refer to the representation of a test when output from the --gtest list tests
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flag as the filter representation, since this representation is used during test

selection with the --gtest filter flag. The flag accepts a list of patterns

that are separated with “:”. An example is given in Listing 4.4.

Listing 4.4: Google Test filter flag format.

1 ./test −−gtest filter=<PATTERN1>:<PATTERN2>:...

The format of these patterns are TestCaseName.TestName. An exam-

ple is given in Listing 4.5.

Listing 4.5: Example Google Test filter that only runs TestCase1.Test1.

1 ./test −−gtest filter=TestCase1.Test1

In this example, we would select the single test with the test case name

TestCase1 and the test name Test1. The patterns are allowed to contain a

“*” character that matches any string. Thus, to select all tests from the test

case TestCase1, we would use the pattern shown in Listing 4.6.

Listing 4.6: Google Test filter that runs all tests in the test case TestCase1.

1 ./test −−gtest filter=TestCase1.∗

This glob character is useful for selecting parameterized tests, which are de-

scribed in the following sections.

The algorithm for test selection can be summarized as:

1. Run the executable with the flag --gtest list tests and parse the

output to retrieve all tests and their filter representations.

2. During finalization of the Ekstazi++ LLVM Pass, find which of the mod-

ified functions are tests.
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3. Match the tests’ LLVM IR representations to their previously retrieved

filter representations.

4. Run the executable with the flag:

--gtest filter=ModifiedTest1:ModifiedTest2:....

4.2 Test Types

The test types for Google Test include: (1) normal tests, (2) Typed

Tests, (3) Value-Parameterized Tests, and (4) Type-Parameterized Tests. Each

of these tests appear differently in both the filter format and in bitcode. In

the following sections, we describe the different types of tests as well as the

way we match the LLVM IR to the filter representation.

4.2.1 Normal Tests and Fixture Tests

Normal tests and Fixture Tests both appear identical in LLVM IR.

Normal tests are tests that simply use the TEST() macro. An example of a

normal test is in Listing 4.7.

Listing 4.7: Normal test source code.

1 TEST(TestCase, TestName) {
2 EXPECT EQ(1, 1);
3 }

Fixture Tests are tests that reuse the same data. First, we define a

fixture class that extends the Google Test ::testing::Test class, and then

we write tests using the TEST F macro. Fixture classes can define a SetUp()

and TearDown() method. An example of a Fixture Test is in Listing 4.8.
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Listing 4.8: Fixture Test source code.

1 class FixtureTest : public ::testing::Test {
2 protected:
3 int data;
4

5 virtual void SetUp() {
6 data = 5;
7 }
8

9 virtual void TearDown() {}
10 };
11

12 TEST F(FixtureTest, TestName) {
13 EXPECT EQ(5, data); // we have access to ’data’ here
14 }

Note that the first argument to TEST F is the name of the class, which

is FixtureTest.

Normal tests and Fixture Tests differ in their representation in source

code, but look identical in the filter representation and in LLVM IR.

Running the test executable with --gtest list tests yields the out-

put that is shown in Listings 4.9 and 4.10 for the normal test and Fixture

Test, respectively.

Listing 4.9: Normal test filter representation.

1 TestCase.
2 TestName

And for the Fixture Test:

Listing 4.10: Fixture Test filter representation.

1 FixtureTest.
2 TestName

37



When compiled to LLVM IR, the relevant bitcode function names for

the test bodies are shown in Listings 4.11 and 4.12 for the normal test and

Fixture Test, respectively.

Listing 4.11: Normal test LLVM IR representation.

1 TestCase TestName Test::TestBody()

And for the Fixture Test:

Listing 4.12: Fixture Test LLVM IR representation.

1 FixtureTest TestName Test::TestBody()

The normal test and Fixture Test both follow the same LLVM IR rep-

resentation, which is the test case name followed by the test name. It is

important to note that the actual TEST() macro produces much more bitcode

than just the above function, but the actual function that contains the body

of the test always contains the string TestBody(). In this case, it is easy to

parse the IR representation to retrieve the test case name and the test name.

Once we know the test case name and test name, we know the test’s filter

representation as well.

4.2.2 Typed Tests

Typed Tests allow clients to test multiple implementations of a common

interface. The test logic is repeated over a set of types, which makes Typed

Tests useful for testing polymorphic classes. A simple example of a Typed

Test can be found below in Listing 4.13.

Listing 4.13: Typed Test source code.
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1 class A {
2 protected:
3 int f;
4

5 public:
6 A(int f) {
7 this−>f = f;
8 }
9

10 virtual int getF() {
11 return f;
12 }
13 };
14

15 class B : public A {
16 public:
17 B(int f) : A(f) {}
18

19 virtual int getF() {
20 return f + 1;
21 }
22 };
23

24 template <typename T>
25 class TypedTest : public ::testing::Test {
26 protected:
27 T∗ val;
28 };
29

30 typedef ::testing::Types<A, B> MyTypes;
31 TYPED TEST CASE(TypedTest, MyTypes);
32

33 TYPED TEST(TypedTest, Test1) {
34 this−>val = new TypeParam(3);
35 EXPECT EQ(3, this−>val−>getF());
36 }

It is important to note that Typed Tests use the TYPED TEST macro

and require a definition of types before defining the actual tests (lines 30-31)

in 4.13. The test bodies have access to the type TypeParam, which will be one
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of the types defined by the user. Since this example defines two types, A and

B, the Typed Test TypedTest.Test1 will be run twice, once where TypeParam

is A and once where TypeParam is B.

Assuming the source code is compiled to a single executable named

unittest, running ./unittest --gtest list tests will produce the output

shown in Listing 4.14.

Listing 4.14: Typed Test filter representation.

1 TypedTest/0. # TypeParam = A
2 Test1
3 TypedTest/1. # TypeParam = B
4 Test1

As expected, there are actually two versions of the test case TypedTest,

which Google Test names TypedTest/0 and TypedTest/1. By analyzing the

output, we can see that the parameter index 0 corresponds to the parameter

type A and the parameter index 1 corresponds to the parameter type B. The

LLVM IR output of the Typed Test can be found in Listing 4.15.

Listing 4.15: Typed Test in LLVM IR.

1 TypedTest Test1 Test<A>::TestBody()
2 TypedTest Test1 Test<B>::TestBody()

There are two test body functions, which are parameterized by one of

the user-defined types. To match the LLVM IR back to the filter representa-

tion, we look for the presence of the angled brackets, <>, immediately before

the TestBody() string. Since we already found that A is the parameter index

0 from the filter representation, we know that TypedTest Test1 Test<A>-

::TestBody() maps to the test TypedTest/0.Test1. The same applies for
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TypedTest/1.Test1.

4.2.3 Type-Parameterized Tests

Type-Parameterized Tests are similar to Typed Tests in that clients

define a list of types and common test logic, but they give more flexibility by

allowing clients to first define the test logic and then instantiate the test with a

set of types in another place in the code. An example of a Type-Parameterized

Test can be found in Listing 4.16.

Listing 4.16: Type-Parameterized Test source code.

1 class A {
2 protected:
3 int f;
4

5 public:
6 A(int f) {
7 this−> f = f;
8 }
9

10 virtual int getF() {
11 return f;
12 }
13 };
14

15 class B : public A {
16 public:
17 B(int f) : A(f) {}
18

19 virtual int getF() {
20 return f + 1;
21 }
22 };
23

24 template <typename T>
25 class TypeParamTest : public ::testing::Test {
26 public:
27
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28 protected:
29 T∗ val;
30 };
31

32 TYPED TEST CASE P(TypeParamTest);
33

34 TYPED TEST P(TypeParamTest, Test1) {
35 this−>val = new TypeParam(3);
36 EXPECT EQ(3, this−>val−>getF());
37 }
38

39 REGISTER TYPED TEST CASE P(TypeParamTest, Test1);
40

41 // elsewhere in the code
42 typedef ::testing::Types<A, B> MyTypes;
43 INSTANTIATE TYPED TEST CASE P(Prefix, TypeParamTest, MyTypes);

The logic is mostly the same as that of the Typed Test example except

that in this case, we define the types and instantiate the Typed Test case after

defining the test logic. The first parameter to the macro INSTANTIATE TYPED-

TEST CASE P is a user-defined name given to the instance of the test case.

After compiling the source code to the executable unittest, the output

for running ./unittest --gtest list tests is shown in Listing 4.17.

Listing 4.17: Type-Parameterized Test filter representation.

1 Prefix/TypeParamTest/0. # TypeParam = A
2 Test1
3 Prefix/TypeParamTest/1. # TypeParam = B
4 Test1

The output is almost identical to that of the Typed Test with the

exception of the prefix. If we define another set of types and instantiate the

test case again, the prefix allows us to differentiate which instance of the test

case is run. Similar to the Typed Tests, we also can map the type parameter
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index, which is the suffix of the test case name, to the type parameter. In

this case, the parameter index 0 corresponds to the type parameter A, and the

index 1 corresponds to the type parameter B.

The LLVM IR that corresponds to the function bodies is shown below

in Listing 4.18.

Listing 4.18: Type-Parameterized Test LLVM IR.

1 gtest case TypeParamTest ::Test1<A>::TestBody()
2 gtest case TypeParamTest ::Test1<B>::TestBody()

Luckily, the Type-Parameterized Tests have a different signature from

the typed tests and follow the pattern gtest case <TestCase> ::<TestName>-

<Type>::TestBody(), which allows us to differentiate between them. We

simply need to look for functions in the bitcode that start with gtest case

and end with TestBody(). Then, we know that the function is a Type-

Parameterized Test and can extract the test case name and the test name

from the function name. To map the function back to the correct test fil-

ter representation, we use the type parameter and the saved type parameter

indices from the output of --gtest list tests.

4.2.4 Value-Parameterized Tests

Value-Parameterized Tests allow us to define common test logic and

then instantiate the tests with different values. They are similar to Type-

Parameterized Tests except that we parameterize values, not types. The code

for a Value-Parameterized Test is shown below in Listing 4.19.
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Listing 4.19: Value-Parameterized Test source code.

1 class A {
2 public:
3 A() {}
4

5 int getNumChars(const char∗ param) {
6 return strlen(param);
7 }
8 };
9

10 class ValueParamTest : public ::testing::TestWithParam<const char∗> {
11

12 };
13

14 TEST P(ValueParamTest, Test1) {
15 A a();
16

17 const char∗ param = GetParam();
18

19 EXPECT GE(5, a.getNumChars(param));
20 EXPECT LE(3, a.getNumChars(param));
21 }
22

23 INSTANTIATE TEST CASE P(Prefix, ValueParamTest, ::testing::Values(”meeny”,
”miny”, ”moe”));

We first define the test case ValueParamTest and then instantiate it

with values "meeny", "miny", and "moe". To retrieve the current value from

within the test body, we use the GetParam() function. As with the Type-

Parameterized Tests, we can define a custom prefix name to the instantiation

of the test case with the defined set of values.

Assuming that the source code is again compiled to an executable

unittest, we can retrieve the filter representation of the tests by running

the command ./unittest --gtest list tests, and the output is shown in

Listing 4.20.
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Listing 4.20: Value-Parameterized Test filter representation.

1 Prefix/ValueParamTest.
2 Test1/0 # GetParam() = ”meeny”
3 Test1/1 # GetParam() = ”miny”
4 Test1/2 # GetParam() = ”moe”

From this output, we can retrieve the test case name and test names

of all tests and the value parameter that they are instantiated with.

The LLVM IR of the Value-Parameterized Test is shown below in List-

ing 4.21.

Listing 4.21: Value-Parameterized Test LLVM IR.

1 ValueParamTest Test1 Test::TestBody()

Unfortunately, Value-Parameterized Tests have the exact same appear-

ance as normal tests and Fixture Tests. This makes it hard to differenti-

ate between them. To solve this ambiguity, we must first register all Value-

Parameterized Tests. Then, as we encounter functions in LLVM IR, we first

eagerly look to see if a test with the pattern <TestCase> <TestName> Test-

::TestBody() matches a Value-Parameterized Test. If not, then we know it

is either a normal test or a Fixture Test.

4.3 Google Test Prefixes and Suffixes

The filter string that is passed to --gtest filter= must match a test

case and test name exactly. This is easy in the case of normal tests and

fixture tests, but when we want to select a Typed Test or a parameterized

test, we must know what prefix and suffix to pass to the Google Test filter.

45



For example, for the Typed Test TypedTest.Test1 shown in Listing 4.14, the

actual name of the test is TypedTest/0.Test1 and TypedTest/1.Test1, so we

must pass those exact strings to the filter flag to select both tests. Similarly,

for the parameterized test shown in 4.20, to select all instances of the test

ValueParamTest.Test1, we need to pass the correct prefix and suffix to the

filter, which is Prefix/ValueParamTest.Test1/0, Prefix/ValueParamTest-

.Test1/1, and Prefix/ValueParamTest.Test1/2.

4.3.1 Handling Type Suffixes

For Typed Tests and Type-Parameterized Tests, we can match the

suffix, which is the type parameter index, to the type. For example, the Typed

Test TypedTest/0.Test1 has the parameter index 0, which corresponds to

the type A (shown in Listing 4.14). The corresponding LLVM IR function

is TypedTest Test1.Test<A>::TestBody(), and we can see that the type

parameter of the function is also A. Thus, from both the filter representation

and the LLVM IR, we can retrieve the type parameter to the test. This gives

us enough information to pass the exact suffix necessary (e.g., /0, /1, /2 etc.)

to the filter string when selecting Typed Tests and Type-Parameterized Tests.

Because Typed Tests have no prefix, we know the exact filter string to pass

to the filter flag. However, since Type-Parameterized Tests not only have

a suffix but also a prefix (e.g., Prefix/TypeParamTest/0.Test1), we need

some method to select the test because the LLVM IR does not provide any

information on the prefix of the test. The solution to selecting test cases with
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prefixes is discussed below.

4.3.2 Handling Instance Prefixes

Type-Parameterized Tests and Value-Parameterized Tests both require

users to specify a prefix name for the specific instantiation of the test case.

In addition, the LLVM IR does not have the prefix in the name of the func-

tions that represent the test bodies. Thus, if we detect that a test function

has been modified, we will use a Google Test filter with the * character be-

fore the test case name to select all instances of the test case. For exam-

ple, using the Value-Parameterized Test, if we want to run all test instances

of ValueParamTest.Test1, we can use the filter --gtest filter=*Value-

ParamTest.Test1/0. This will select all instances of ValueParamTest.Test1

regardless of the prefix. Similarly, for the Type-Parameterized Test TypeParam-

Test.Test1, we pass the filter string --gtest filter=*TypeParamTest/0.T-

est1 to run all instances of TypeParamTest/0.Test1.

The following chapter describes the details of generating LLVM IR

alongside test executables.
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Chapter 5

Build System Integration

Ekstazi++ requires the generation of whole-program LLVM IR for each

test executable. Generating the LLVM IR can be achieved by passing the

necessary flags to the frontend Clang compiler, and we can then integrate this

process to a build system. Currently, Ekstazi++ supports three popular build

systems: AutoMake, CMake, and Make. This chapter discusses the process

of generating LLVM IR using the supported build systems and the process of

running the Ekstazi++ LLVM Pass using the Ekstazi++ Test Runner.

5.1 Generating Bitcode

The Ekstazi++ Pass requires LLVM bitcode files (.bc) or assembly

language files (.ll). These files represent the source code that has been compiled

into the LLVM intermediate representation format (IR).

5.1.1 Manual Compilation and Linking

One way to integrate Ekstazi++ into a project is to write a custom

target that compiles the whole program into LLVM IR files and then links

them into a single IR file. This can easily be achieved by using the commands:

1 clang++ −S −emit−llvm src.cc −o src.ll
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2 clang++ −S −emit−llvm test.cc −o test.ll
3 llvm−link src.ll test.ll ... −o main.ll
4 llc main.ll −o unittest

The intermediate LLVM IR files in this case will have the .ll exten-

sion, which is human-readable bitcode. This method is best for integrating

Ekstazi++ with a new project, as these commands can be included in custom

build steps for any build system.

5.1.2 Link Time Optimization

The steps described in the section above are recommended for inte-

grating Ekstazi++ into a new project. However, for projects with existing

build system scripts, Ekstazi++ can be easily integrated without changing the

scripts by using the GNU Gold Linker [9], which is distributed with the newer

versions of the GNU Bintools, and link time optimization (LTO). To enable

link time optimization, the flag -flto should be passed to both the compiler

and the linker. Additionally, the option save-temps should be passed to the

linker to emit the bitcode for the executable.

The following steps outline this process:

1 clang++ −flto −c src.cc −o src.o
2 clang++ −flto −c test.cc −o test.o
3 clang++ −flto −fuse−ld=ld.gold −Wl,−plugin−opt=save−temps src.o test.o −o

test exec

5.2 Make

The following template can be used for most Makefile projects:
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1 CC=clang
2 CXX=clang++
3 CFLAGS=−flto
4 CXXFLAGS=−flto
5 LDFLAGS=”−flto −fuse−ld=ld.gold −Wl,−plugin−opt=save−temps”
6

7 make TARGET

5.3 AutoMake

For AutoMake projects, we pass the same flags to the configure tool

when configuring the project.

1 CC=clang \
2 CXX=clang++ \
3 CFLAGS = −flto \
4 CXXFLAGS = −flto \
5 LDFLAGS = −flto −fuse−ld=ld.gold −Wl,−plugin−opt=save−temps \
6 ./configure

5.4 CMake

CMake is a cross-platform build system that generates build files for

specific platforms such as GNU Make and MSVC. To forward the compiler

flags, we set the CMakeFiles variables as follows:

1

2 set(CMAKE C COMPILER clang CACHE STRING ”” FORCE)
3 set(CMAKE CXX COMPILER clang++ CACHE STRING ”” FORCE)
4

5 set(CMAKE AR llvm−ar CACHE STRING ”” FORCE)
6 set(CMAKE RANLIB llvm−ranlib CACHE STRING ”” FORCE)
7

8 set(CMAKE C FLAGS ”−flto” CACHE STRING ”” FORCE)
9 set(CMAKE CXX FLAGS ”−flto” CACHE STRING ”” FORCE)

10
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11 set(CMAKE EXE LINKER FLAGS ”−flto −fuse−ld=gold −Wl,−plugin−opt=
save−temps” CACHE STRING ”” FORCE)

12 set(CMAKE SHARED LINKER FLAGS ”−flto −fuse−ld=gold −Wl,−plugin−opt
=save−temps” CACHE STRING ”” FORCE)

13 set(CMAKE MODULE LINKER FLAGS ”−flto −fuse−ld=gold −Wl,−plugin−opt
=save−temps” CACHE STRING ”” FORCE)

14 set(BUILD SHARED LIBS OFF CACHE BOOL ”” FORCE)
15

16 set(GTEST ROOT /usr/src/gtest/cmake CACHE FILEPATH ”” FORCE)

The CMake code above may be included in the project when developing;

however, it can also be used to set the CMakeCache of an existing project.

5.5 Running the Ekstazi++ LLVM Pass

After generating the LLVM IR for each test executable, running the

Ekstazi++ LLVM Pass can be achieved by running the command opt -load

libekstazi-pass.so -ekstazi <BC FILE>. This will generate the metadata

for the current revision of the code and produce a list of test filters to use for

test selection.

To simplify the process of running the Ekstazi++ LLVM Pass and

selecting the tests to run, we developed a Python script to automate this

process. We call this script the Ekstazi++ Test Runner. The primary steps

of Ekstazi++ Test Runner are:

1. Compile the source code using the specified build system (Make, CMake,

or AutoMake) into test executables and LLVM IR files.

2. Run the Ekstazi++ LLVM Pass for each LLVM IR file.
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3. Parse the test filters from the modified test list produced by the Ek-

stazi++ LLVM Pass.

4. Run the test executables with the test filters.

In the next chapter, we describe the results of evaluating Ekstazi++

with several projects.
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Chapter 6

Evaluation

To evaluate Ekstazi++, we collected 11 open-source projects from GitHub.

We selected these projects by filtering GitHub projects to those that were

written in C/C++ and used one of the supported build systems (CMake, Au-

toMake, Make). The resulting projects are diverse in size and number of tests.

6.1 Subjects

This section describes subjects used in our study. Table 6.1 shows, for

each subject, its name, URL, number of buildable revisions (out of latest 50),

latest available SHA at the time of our study, number of lines of code (LOC)

measured using the cloc tool, build system used by the project, and number

of tests.

Abseil is a collection of C++ code that extends the C++ standard

library. Abseil provides useful code not in the C++ standard library and also

provides alternatives to existing C++ standard library code. It is important

to note that Abseil migrated to CMake recently, so only a limited number of

revisions were available.

Boringssl is Google’s fork of OpenSSL. Boringssl is not intended to be
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Table 6.1: Projects used in evaluation.

Project URL # Revisions SHA LOC BuildSys # Tests

Abseil https://github.com/abseil/abseil-cpp 14 99477fa 53,468 CMake 1,084
Boringssl https://github.com/google/boringssl.git 50 9b2c6a9 193,262 CMake 839
gRPC https://github.com/grpc/grpc.git 50 17f682d 1,406,407 CMake 1,682
Kokkos https://github.com/kokkos/kokkos.git 50 d3a9419 128,452 Make 227
Libcouchbase https://github.com/couchbase/libcouchbase.git 50 b028b9e 98,931 CMake 303
Libtins https://github.com/mfontanini/libtins.git 50 b18c2ce 92,707 CMake 797
OpenCV https://github.com/opencv/opencv.git 33 9a8a964 1,018,274 CMake 21,106
Protobuf https://github.com/google/protobuf.git 50 264e615 317,477 AutoMake 2,086
Rapidjson https://github.com/Tencent/rapidjson.git 34 af223d4 82,536 CMake 425
Rocksdb https://github.com/facebook/rocksdb.git 31 2c2f388 238,995 Make 2,571
Tiny-dnn https://github.com/tiny-dnn/tiny-dnn.git 45 1c52594 181,407 CMake 294
Total N/A 407 N/A 3,811,916 N/A 31,414
Average N/A 37 N/A 346,538 N/A 2,856

for general purpose use and its development arose from the gradual changes

that Google maintained when using OpenSSL. Boringssl uses the CMake build

system.

gRPC is a modern open-source remote procedure call (RPC) frame-

work developed by Google that is scalable and highly performant. gRPC uses

HTTP/2 and Protocol Buffers to for communication between the client and

server. It serves as an alternative to the popular REST+JSON combination

that is used ubiquitously today. gRPC uses the CMake build system.

Kokkos is a programming model in C++ that provides abstractions

for code to run efficiently on different hardware such as multi-core CPUs and

GPUs. Kokkos aims to provide a common programming model for parallel

computation and data management. Kokkos uses the standard GNU Make

tool and provides custom bash scripts to generate the appropriate Makefile.

Libcouchbase is the C client library for Couchbase. The Couchbase

Server is an open-source NoSQL database that is optimized to provide low-
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latency data management for a variety of use cases such as web, mobile, and

IOT applications. Libcouchbase uses the CMake build system.

Libtins is a high-level C++ library for sending, receiving, and manip-

ulating network packets. Libtins was designed with efficiency and portability

in mind. Libtins uses the CMake build system.

OpenCV stands for Open Source Computer Vision Library and is a

machine learning software library that specializes in computer vision applica-

tions. OpenCV has many language interfaces such as C++, Python, Java,

and MATLAB. OpenCV uses the CMake build system.

Protobuf is a language and platform agnostic method for serializing

data developed by Google. Protobuf is designed for both simplicity and per-

formance and is used for remote procedural call (RPC) systems such as gRPC.

Protobuf uses the GNU AutoMake build system.

Rapidjson is a C++ library for parsing and generating Javascript Ob-

ject Notation (JSON). Much of Rapidjson’s design was inspired by RapidXML,

a library for XML parsing. Rapidjson uses the CMake build system.

Rocksdb is an embedded database for key-value storage developed by

Facebook. Rocksdb is optimized for speed and low-latency applications and is

based on the log-structured merge-tree (LSM tree) data structure. Rocksdb

uses the GNU Make build system.

Tiny-dnn is a header-only deep learning library written in C++. Tiny-

dnn is well suited for use on computational systems with limited resources such
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as embedded systems and IoT devices. Tiny-dnn uses the CMake build system.

6.2 Experiment Setup

The experiments were run on an 8-core 3.9 GHz AMD 1800X CPU

with 16GB of RAM running Ubuntu Linux 16.04 LTS. We used clang++ and

LLVM 6 as well as Google Test 1.8. Some projects bundled their own version

of Google Test, which was either 1.7 or 1.8.

For each project, we attempted to examine the 50 most recent consecu-

tive revisions. For each revision, we built the project using the supported build

system and then ran Ekstazi++ to select and run the tests. The experimental

procedure can be found in Listing 6.1. Our experiment setup closely follows

recent evaluations of RTS techniques (for Java) [8, 15,31,34].

Listing 6.1: Experimental procedure.

1 function run project(project, revisions):
2 clone project.url
3 for revision in revisions:
4 checkout revision
5 configure project
6 build project
7 select and run tests

6.3 Results

For each project, we compared the results of using Ekstazi++ to those

of not using Ekstazi++ (i.e., retest-all). The data we collected includes the

build time, number of tests selected, and amount of time spent running tests.
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Time for Ekstazi++ includes all steps: analysis, execution, and collection [8].

Table 6.2 shows the total number of tests and the time to run tests for retest-

all and Ekstazi++ as well as the ratio of both number of tests and time spent

running tests for Ekstazi++ to those of retest-all.

Additionally, for each project we plotted the number of tests run, time

to run tests, and the cumulative time; the results for each project are shown

graphically below in Figures 6.1-6.11.

Table 6.2: Test selection results using Ekstazi++.

Tests retest-all- total number of tests across all revisions executed, Tests Ekstazi++-
total number of tests executed with Ekstazi++ across all revisions, Time retest-all-
total time to execute all tests, Time Ekstazi++- total time to execute tests with
Ekstazi++, Ratio test - ratio of executed tests retest-all/ Ekstazi++ * 100, Ratio
time - ratio of execution time retest-all/ Ekstazi++ * 100.

Project Tests Time (s) Ratio
retest-all Ekstazi++ retest-all Ekstazi++ test time

Abseil 15,176 1,312 2,583 617 8.65 23.90
Boringssl 41,523 6,756 1,606 478 16.27 29.76
gRPC 84,085 4,797 31,637 17,511 5.70 55.35
Kokkos 5,609 1,251 13,540 3,614 22.30 26.69
Libcouchbase 14,668 1,403 1,494 178 9.57 11.91
Libtins 38,922 1,607 43 1,334 4.13 3083.39
OpenCV 695,505 206,804 11,621 4,364 29.73 37.55
Protobuf 104,300 2,918 796 2,357 2.80 296.13
Rapidjson 14,349 1,546 929 805 10.77 86.66
Rocksdb 78,390 6,715 39,517 25,487 8.57 64.50
Tiny-dnn 13,034 525 48,977 5,849 4.03 11.94

Total 1,105,561 235,634 152,743 62,594 N/A N/A
Average 100,505 21,421 13,885 5,690 11.14 38.70*

*The average ratio for time excludes the projects Libtins and Protobuf.

In general, most projects saw a favorable reduction in both number

of tests run for each revision and the time spent running tests. The average
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Figure 6.1: Results for Abseil.

reduction in the number of tests (if we exclude two projects with the shortest

testing time) was 88.86% and the average reduction in the time taken to run

tests was 61.30% with the largest reduction being 97.20% and 88.09% for the

number of tests and the time to run tests, respectively. The two projects that

did not exhibit a reduction in the time to run tests were Libtins and Protobuf,

both of which had a much shorter amount of time (less than 10 seconds) to run

tests relative to the other projects. For these projects, the time to statically

analyze the bitcode and compute the new test filters took longer than the

actual time to run the tests.

As mentioned earlier, Abseil migrated to the CMake build system re-

cently, so we could only retrieve results for 14 revisions. For those 14 revisions,

the results were similar to those of most of the other projects.

Kokkos exhibits a small drop in the number of tests run at the 5th
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Figure 6.2: Results for Boringssl.

revision due to a failure to build one of the test executables, so fewer tests

were run.

OpenCV shows a large increase in the time to run tests after the 16th

commit and then a similarly large decrease in the time to run tests after the

28th commit. Manual inspection showed that the increase in the time to run

tests was due to the addition of 11 costly tests that included video data, and

the decrease in the time to run tests was due to the refactoring of one of

the test source files that included the removal of 10 tests related to testing

convolutional neural network layers.

Interestingly, the amount of time for running the tests for Tiny-dnn

increases between the revisions 20-25 to over 2,500 seconds but drops back to

about 1,000 seconds immediately after, while the number of tests run increased

by a small amount and then stayed the same. Investigating the changes into the
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Figure 6.3: Results for gRPC.

project, we found that the modification made at revision number 19 introduced

new code and tests to support recurrent neural networks. These added tests

caused a large increase in the time to run tests. Revision number 24 then

decreased the size of the neural network being tested, causing the time for

testing to drop back to what it was before.

6.3.1 Build Time

We also compared the time it took to build each project to the time it

took to run all tests for the project. The results are shown in Figure 6.12.

6.3.2 Type Hierarchy Analysis

To observe the characteristics of the type hierarchy and its potential

impact on the speed of the static analysis, we recorded the number of classes,
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Figure 6.4: Results for Kokkos.

the maximum depth of the type hierarchy, and the average depth of the type

hierarchy for each project. The results are shown in Table 6.3.

Visually, there is not an evident correlation between the depth of the

type hierarchy and the time to run tests. Furthermore, it is hard to define a

metric for measuring the time spent in static analysis that is caused directly

by a change to the type hierarchy and not by some other characteristic of the

code. For future work, we would like to further explore the effects of the type

hierarchy on the Ekstazi++ LLVM Pass.

61



Figure 6.5: Results for Libcouchbase.

Figure 6.6: Results for Libtins.
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Figure 6.7: Results for OpenCV.

Figure 6.8: Results for Protobuf.
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Figure 6.9: Results for Rapidjson.

Figure 6.10: Results for Rocksdb.
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Figure 6.11: Results for Tiny-dnn.

Figure 6.12: Times for build and test phases for each project.
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Table 6.3: Type hierarchy information for projects.

The number of classes is the total number of classes summed over all test executables
for the project. The number of derived classes is the number of classes that are
derived from at least one other class. Max depth refers to the maximum depth of
the class hierarchy, and average depth refers to the average depth from the roots of
the hierarchy to each of their leaves.

Project # Classes # Derived Classes Max Depth Average Depth

Abseil 2,823 1,523 2 1.16
Boringssl 714 337 2 1.07
gRPC 12,621 5,485 3 1.20
Kokkos 1,386 658 2 1.09
Libcouchbase 399 39 2 1.00
Libtins 5,151 2,178 3 1.59
OpenCV 7,982 3,939 3 1.49
Protobuf 5,312 2,554 4 1.66
Rapidjson 950 465 1 1.00
Rocksdb 24,459 12,524 3 1.10
Tiny-dnn 1,236 893 2 1.56
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Chapter 7

Discussion

This chapter discusses several design decisions related to Ekstazi++,

current limitations, and future directions.

7.1 Safety

We manually inspected the projects while running Ekstazi++ to ensure

that modifications to the code would result in tests being selected and run.

However, it is cumbersome to ensure that exactly the correct tests are selected

at each iteration without manually walking through the dependency graph,

which is impractical for the size of the projects we used. We developed a suite

of tests to ensure that Ekstazi++ works as intended for different types of code

modifications, but it is almost impossible to test every different scenario with

a language that has many complex features such as C++. Thus, Ekstazi++

is not guaranteed to be safe outside of the projects we inspected and the test

cases we ran.

67



7.2 Limitations

We describe several limitations of Ekstazi++, which are also interesting

topics to be explored in future work.

7.2.1 Dependence on Front End Compiler

Ekstazi++ currently supports static analysis of LLVM IR with Clang

as the front end compiler. For C/C++ specific features such as the layout of

virtual tables and mangling function names, Ekstazi++ depends on the C++

ABI specification that Clang uses, which is the Itanium C++ ABI. Both GCC

and Clang implement the Itanium C++ ABI, but some other compilers may

not. When we wish to extend Ekstazi++ to support other languages that use

different front end compilers, we will need to define a way to support those

language-specific features.

7.2.2 LLVM Pass Integration

Currently, the Ekstazi++ LLVM Pass is built as a shared library that

is loaded into the LLVM opt tool. This is cumbersome because users need

to call opt -load <PATH TO EKSTAZI LIB> libekstazi-pass.so -ekstazi

<BC FILE> for every bitcode file that is generated. We currently have a Python

script that automates this process, but in the future we hope that the Ek-

stazi++ LLVM Pass can be integrated into the LLVM build tree so that users

can run the Pass without specifying the location of the built library (e.g. opt

-load -ekstazi <BC FILE>), or even more simply by specifying an optimiza-
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tion level while compiling (e.g. clang++ -O3 ...).

7.2.3 Shared Libraries

Ekstazi++ currently supports test executables that link to the pro-

gram code using static libraries. Because the code contained in static libraries

is included with the executable, the full dependency graph for each test exe-

cutable module is guaranteed to contain all the information such as function

definitions and type metadata. However, in the case of shared libraries, the

compiled bitcode for each test executable does not contain the function defi-

nitions of the shared libraries, so there is not enough information to generate

the dependency graph.

One possible solution for this is to incorporate an additional input to

Ekstazi++ that specifies the shared libraries that the current test executable

depends on. Then, we can merge the dependency graph of the shared libraries

with the graph of the test executable.

7.2.4 Difficulties with Google Test Integration

Google Test provides no programmer API, so the test selection has to

be done by first listing all tests using --gtest list tests and saving the exact

names of the tests including the test case name, test name, prefix, and suffix.

We then must match functions that we encounter during the Ekstazi++ LLVM

Pass to the saved test names in order to generate the correct test filters to select

the tests. This process is cumbersome as it adds an unnecessary dependency
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on the test executable itself. It could be more effective to integrate Ekstazi++

with a test framework that defines a programmatic API that we can use to

get the exact names of the tests and then select the modified tests without

needing to run the test executable during the Ekstazi++ LLVM Pass.

7.3 Future Work

We document several directions that would be interesting to explore in

the future.

7.3.1 Optimizing Virtual Call Dependencies

The current implementation of Ekstazi++ places dependencies on a

class’s virtual function as well as all derived implementations of the virtual

function. However, it is common that a test in reality depends only on a

specific derived class’s implementation of a virtual function. For example,

consider the code in Listing 7.1.

Listing 7.1: Example code for a test that depends only on a derived imple-
mentation of a virtual function.

1 class A {
2 virtual int foo() { return 10; }
3 };
4

5 class B : A {
6 virtual int foo() { return 20; }
7 };
8

9 class C : A {
10 virtual int foo() { return 30; }
11 };
12
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13 A∗ create instance {
14 A∗ b = new B();
15 return b;
16 }
17

18 TEST(Test, B) {
19 A∗ a = create instance();
20 EXPECT EQ(20, a−>foo());
21 }

In the current version of Ekstazi++, we would add a dependency to

A::foo(), B::foo(), and C::foo() from Test.B because the type of a is A*,

and both B and C are derived types of A. However, we really only want to place

the dependencies on A::foo() and B::foo() since the class C is never used

by the test.

One possible solution to reduce the number of dependencies on virtual

functions is to keep track of constructor calls in the code and to only place

a dependency on a virtual function if the test actually instantiates the class

that the virtual function belongs to directly or indirectly. In the example

above, we can visualize that in the dependency graph, the test Test.B calls

the function create instance(), and the function create instance() calls

the constructor B::B(). Thus, Test.B indirectly constructs the class B, so we

know to only place the dependency on A::foo() and B::foo().

7.3.2 Supporting Other Languages and Test Frameworks

Since Ekstazi++ integrates with the LLVM backend, it can be extended

to support other languages that support compilation to LLVM IR. Language-
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specific features would have to be added to Ekstazi++, such as support for

inheritance or other forms of indirect calls. However, the majority of the test

selection logic is already built into Ekstazi++ and allows for simple integration

with other languages.

Similarly, Ekstazi++ can be extended to support other test frame-

works. The current implementation supports Google Test, which is one of the

most popular test frameworks for C/C++. The code in Ekstazi++ defines

an interface for test adapters, so integrating a different test framework is as

simple as implementing the test adapter interface.

7.3.3 Class-Level Dependencies

Ekstazi++ currently supports function-level dependencies. We find

functions that are modified in the code and traverse the dependency graph to

see which test functions are affected by the changes. In several of the open

source projects we tested, the bulk of the time spent during the Ekstazi++

LLVM Pass is computing the checksum for each function and traversing the

dependency graph on a function-level granularity. One solution to reducing

the time spent on analysis is to instead use a class-level granularity, similar

to the approach used by Ekstazi [8]. However, since C++ does not require

functions to be defined inside classes as Java does, it would be interesting to

observe how many of the open source projects utilize classes sufficiently to

benefit from this optimization.
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7.3.4 Dynamic Function Call Tracing

The bulk of the difficulty in the static analysis that Ekstazi++ uses

lies in supporting language-specific features such as virtual calls and function

pointers, which are simply indirect calls in LLVM IR. At compile time, it is

difficult to know which function is actually being called during an indirect

call because LLVM does not officially support retrieving the callee from an

indirect call site. Currently, we rely on the Itanium C++ ABI specification to

statically compute the callee.

A possible solution is to combine the static analysis with a dynamic

analysis tool such as the LLVM XRay instrumentation tool [32]. XRay al-

lows for dynamic tracing of function calls, which would eliminate the need to

statically compute the callee from an indirect call site. We can instead build

the dependency graph at runtime using XRay and use a combination of the

statically-computed function hashes with the dynamically-computed graph to

select tests [4].

7.3.5 Flaky Tests

Flaky tests are tests that may pass or fail for the same input if run

multiple times [11, 18–20]. These tests give nondeterministic results and are

usually due to a dependence on concurrency, an unstable environment, or

other potentially undefined behavior. Ekstazi++, similar to incremental build

systems, does not specially treat flaky tests.
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Chapter 8

Prior Work

Regression test selection (RTS) has been studied for decades; several

(not-so-recent) surveys nicely summarize prior work on RTS [1, 6, 33]. In this

section we briefly present most closely related work and contrast the prior

work with the work presented in this thesis.

Early techniques supported projects written in C/C++ [4, 14, 23, 25].

Rothermel and Harrold [23] presented a technique (for C) that builds control

dependency graphs to detect affected tests; this work was evaluated in later

years [24]. In their work, dependencies for tests were collected dynamically.

Chen et al. [4] developed a technique that combines static and dynamic analysis

for C; the dynamic part was used to capture function invocations via pointers.

Kung et al. [14] introduced a class firewall approach to detect affected tests by

tracking dependencies among classes. Rothermel et al. [25] were among the

first to study RTS for C++ (and object-oriented languages in general). Their

work uses interprocedural control flow graph to select tests, analyzes source

code of two project revisions, and uses dynamic coverage. Our work targets

C++ and uses call graph analysis to detect affected tests. Ekstazi++, unlike

prior work, supports projects that compile to LLVM bitcode and use Google
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Test. Moreover, we evaluated our technique on actual revisions from publicly

available open-source projects.

Ren et al. [22] developed Chianti, a tool that selects affected tests by

detecting the impact of various atomic changes on a call graph. Chianti was

developed for Java, analyzes source code to detect atomic changes, uses dy-

namic call graphs, and is evaluated only on a single project. Jang et al. [13]

developed an approach similar to Chianti for C++; their tool was evaluated

on a single small program (26 classes) and revisions were manually created

by the authors. Orso et al. [21] presented a hierarchical RTS technique. In

the first phase – partitioning – their technique finds what classes and inter-

faces are changed (and those that depend on the changed classes). In the

second phase, the technique analyzes only classes that belong to the partition

and detects dangerous edges [24]. Their approach requires traversal of two

– old and new – Java interclass graphs (JIG) simultaneously. Additionally,

their approach assumes that dynamic coverage information is readily avail-

able. Arguably, Ekstazi++ is most closely related to Chianti and the work

on dangerous edges. Unlike prior work, Ekstazi++ targets C++, does not

analyze source code but binaries, and does not assume availability of any dy-

namically computed coverage (but computes coverage statically). Ekstazi++

is also evaluated on much larger set of projects.

Gligoric et al. [8] presented Ekstazi, an RTS technique based on dy-

namic class-dependencies for Java projects. This initial work on Ekstazi was

among the first to evaluate an RTS implementation on many large open-source
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projects using commits that are available in public repositories. Ekstazi has

been adopted by both open-source projects and industry. Ekstazi# [30] im-

plements the Ekstazi technique for .NET platform. Legunsen et al. [15] devel-

oped and evaluated STARTS, an RTS technique based on the class firewall.

STARTS was extensively evaluated, and the results showed that STARTS com-

pares favorably with Ekstazi. Zhang [34] presented a hybrid technique that

dynamically tracks dependencies on both methods and classes. Recently, Wang

et al. [31] introduced the first refactoring-aware RTS, i.e., an RTS technique

that does not run tests that are affected only by behavior-preserving trans-

formations. Like these recent RTS projects, Ekstazi++ is also extensively

evaluated using open-source projects and large number of revisions available

in public repositories of those projects. Unlikely recent work, Ekstazi++ tar-

gets C/C++ projects that compile to LLVM bitcode and use Google Test.

Additionally, Ekstazi++ tracks dependencies on a fine-grained level (i.e., func-

tions); interestingly, recent work on Java showed that using fine-grained depen-

dencies (i.e., methods) may lead to high overhead [8,15,34], and our findings in

this thesis show that function-level granularity can provide substantial reduc-

tion in test execution time for C++ projects. An interesting future direction is

to develop a coarse-grained RTS technique for C++ by extending Ekstazi++

and compare its performance with the technique presented in this thesis.
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Chapter 9

Conclusion

This document presented a novel RTS technique named Ekstazi++,

which targets projects written in C++ that use the LLVM compiler and the

Google Test testing framework. Ekstazi++ implements an RTS technique

based on call graph analysis; to ensure correctness in the presence of inheri-

tance, Ekstazi++ analyzes differences in call graphs obtained from two revi-

sions. Ekstazi++ integrates with many existing build systems, including Au-

toMake, CMake, and Make. Ekstazi++ was evaluated on 11 large open-source

projects, totaling 3,811,916 lines of code and 1,709 test cases. We measured

the benefits of Ekstazi++ compared to running all available tests (i.g., retest-

all) in terms of the number of executed tests, as well as end-to-end testing

time. Our results show that Ekstazi++ reduces the number of executed tests

and end-to-end testing time by up to 97.20% and 88.09%, respectively. Based

on the results presented in this thesis, Ekstazi++ can be a valuable addition

to any large project that uses continuous integration system (i.e., runs tests

frequently) and has tests that run for long time.
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