
CoDeSe: Fast Deserialization via Code Generation

Milos Gligoric Darko Marinov Sam Kamin
Deptartment of Computer Science

University of Illinois, Urbana, IL 61801, USA
{gliga, marinov, kamin}@illinois.edu

ABSTRACT

Many tools for automated testing, model checking, and de-
bugging store and restore program states multiple times.
Storing/restoring a program state is commonly done with
serialization/deserialization. Traditionally, the format for
stored states is based on data: serialization generates the
data that encodes the state, and deserialization interprets
this data to restore the state. We propose a new approach,
called CoDeSe, where the format for stored states is based on
code: serialization generates code whose execution restores
the state, and deserialization simply executes the code. We
implemented CoDeSe in Java and performed a number of
experiments on deserialization of states. CoDeSe provides
on average more than 6X speedup over the highly optimized
deserialization from the standard Java library. Our new for-
mat also allows simple parallel deserialization that can pro-
vide additional speedup on top of the sequential CoDeSe but
only for larger states.

Categories and Subject Descriptors: D.3.4 [Program-
ming Languages]: Processors—Code generation

General Terms: Performance

Keywords: Deserialization, code generation

1. INTRODUCTION
Many tools for automated testing, model checking, and

debugging explore program behavior by storing and restor-
ing (parts of) program states multiple times [4,6,8,9,13,16,
19,20,25–28,31,39,41]. These tools exhibit two general pat-
terns of restoring states, even when restoring is not the most
expensive operation: (1) the same state (relatively small) is
restored multiple times in the same program run, or (2) one
state (relatively large) is restored only once during a run,
but there are multiple such runs. In both patterns a state is
stored once but restored potentially many times. The tools
usually store and restore the state using serialization [21]
(also known as marshalling) and deserialization (also known
as unmarshalling), respectively. Serialization translates (a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA ’11, July 17-21, 2011, Toronto, ON, Canada
Copyright 2011 ACM 978-1-4503-0562-4/11/05 ...$10.00.

part of) the program state to a format that can be later used
to restore the state with deserialization.

As an example in automated testing, consider OCAT [16].
OCAT improves the random generation of unit tests in Ran-
doop [32] by capturing objects from actual executions, po-
tentially mutating these objects, and using them to seed ran-
dom generation. Randoop outputs unit tests as sequences
of calls to the methods from the code under test, and OCAT
adds calls to special methods that deserialize the captured
objects. Hence, OCAT deserializes objects during both gen-
eration and execution of the unit tests. During generation,
OCAT can deserialize an object a large number of times
based on random selection. During execution, OCAT can
deserialize an object many times if it appears in different
tests (or several times in the same test).

As an example in program model checking, consider Java
PathFinder (JPF) [15,39]. JPF is a backtrackable Java Vir-
tual Machine (JVM) that can systematically explore a given
Java program by controlling non-deterministic choices due to
thread scheduling and explicit non-deterministic calls. Dur-
ing exploration, JPF restores a program state several times
to explore different executions that can lead from that state.
(The number of times a state is restored during model check-
ing varies greatly, with an average of 3, but the maximum
ranging from 4 up to 200 [33].) While a program state can
be restored by re-executing the program from the begin-
ning [10, 30] or by undoing state changes for the depth-first
search order [12], JPF for most search orders conceptually
serializes and deserializes the entire JVM states. Each JVM
state includes a stack (local per thread) and a heap.

As an example in debugging, consider efficient checkpoint-
ing by Xu et al. [41], which we will refer to as XRTQ. XRTQ
restores the state of a long-running Java program without
using a specialized JVM as in JPF (but XRTQ handles only
single-threaded programs). Because deserializing the stack
is hard without JVM support, XRTQ restores the state by
combining re-execution of a simplified version of the pro-
gram (to restore the stack) and deserialization of a part of
the state (to restore the heap). Using this combination,
XRTQ restores the state much faster than re-executing the
full program. Note that XRTQ deserializes the state only
once per a JVM run, but it is commonly a large state.

Serialization and deserialization are important not only
in these testing tools but also in general applications to
store and communicate parts of state. Traditionally, the
format for stored states is based on data: serialization gen-
erates the data that encodes the state, and deserialization
interprets this data to restore the state. The data encod-

ing can be either binary, which is more compact, or textual,
such as XML [23, 40], which is more readable and portable.
Since serialization and deserialization are frequently used,
the standard libraries for some languages, such as Java, pro-
vide highly optimized generic implementations of these op-
erations. Moreover, techniques were proposed for speeding
up these general operations, mostly serialization, by spe-
cializing through program generation [3, 24, 29, 38] or by in-
cremental computation [1, 2]. However, the proposed tech-
niques still use the same traditional format for stored states
based on data.
This paper makes the following contributions:
Approach: We propose a new approach, called CoDeSe

(COde-based DEserialization and SErialization), where the
format for stored states is based on code: serialization gen-
erates code whose execution restores the state, and deseri-
alization simply executes this code. Our goal for CoDeSe
is to make deserialization as fast as possible. Effectively,
we optimize for the scenarios where a state is restored po-
tentially many times, while the traditional serialization and
deserialization need to balance several requirements: effi-
cient serialization, compact size of stored state, and efficient
deserialization.
Implementation: We implemented CoDeSe as a Java li-

brary that provides an API similar to the standard Java se-
rialization/deserialization library. The standard library has
a number of features [21]: it provides default serialization of
all non-static and non-transient fields for objects of classes
marked with the Serializable interface and allows express-
ing specialized serialization in several ways, such as imple-
menting private writeObject/readObject methods or the Ex-

ternalizable interface. Our CoDeSe library fully supports
the default serialization/deserialization and commonly used
specialized features from the standard library but does not
support some features such as code evolution (Section 3.8).
Evaluation: We performed a number of experiments to

evaluate deserialization time for states captured during the
execution of real applications, including some states directly
taken from the OCAT experiments [16] and some scenarios
similar to the XRTQ study [41], and for synthetic states
from our running example. The experiments involve states
of various sizes and patterns when a state is restored once or
more times during one run. We compare the deserialization
time using the standard Java library (SJL) and the CoDeSe
library. CoDeSe is, on average, over 6X faster than SJL.
We also experimented with a simple parallel deserializa-

tion in CoDeSe. While the traditional deserialization inter-
prets the serialized data sequentially to restore the state,
our CoDeSe format allows multiple threads to execute dese-
rialization code in two phases: creating objects and setting
fields. The parallel CoDeSe can provide additional speedup
on top of the sequential CoDeSe but only for larger states.
The experimental dataset that is used in the evaluation is

publicly available at http://mir.cs.illinois.edu/codese.

2. EXAMPLE
To illustrate CoDeSe, we discuss serialization/deserializa-

tion of a state that consists of one red-black tree (RBT) data
structure. We use RBT as our running example because
it involves only two classes and simplifies the presentation.
However, we point out that our experiments, which are de-
scribed in Section 4, use states taken from real applications
with many more classes.

class RBT implements Serializable {
RBTNode root;
int size;
static boolean RED = true;
static boolean BLACK = false;
static class RBTNode implements Serializable {

int key;
boolean color;
RBTNode left, right, parent;

}
}

(a)

RBT

root

size = 2

RBTNode

key = 0

color = RED

left = null

right = null

parent

RBTNode

key = 8

color = BLACK

left

right = null

parent = null

rbt

(b)

Figure 1: (a) Part of the RBT class; (b) An example
RBT instance.

Figure 1(a) shows the relevant parts of the Java code that
declares a RBT. The RBT class represents a tree. It has two
instance fields: root is a reference to the root node, and
size is the number of nodes in the tree. The RBTNode class
represents a node. It has five instance fields: key stores the
node value, color is RED or BLACK, left and right point to
the children, and parent points to the parent.

Figure 1(b) shows an example instance of a RBT. The
variable rbt points to the tree. Each box represents an ob-
ject, showing the type and values of instance fields. There
are three objects in the object graph reachable from rbt:
one instance of RBT and two instances of RBTNode. We next
describe serialization/deserialization of this RBT instance
using the standard Java library and our CoDeSe library.

2.1 Background: Standard Java Library
We first show the API interface for serializing and deseri-

alizing the rbt object graph using the standard Java library
(SJL). We then show the format for the stored object graph
produced by the standard serialization. We finally discuss
the algorithm used in the standard deserialization.

API: SJL supports serialization/deserialization through
classes provided in the java.io package. It requires that
the classes to be serialized and deserialized, such as RBT

and RBTNode, be marked with the java.io.Serializable inter-
face. (CoDeSe and some non-standard Java libraries, such
as XStream [40] or JSX [23], do not require this interface;
however, we do not compare CoDeSe performance with these
other libraries because they are not tightly integrated with
JVM and are thus often not as efficient as the SJL.) Se-
rialization/deserialization is performed by writing/reading
through the ObjectOutputStream/ObjectInputStream to/from
the underlying stream (which can be, for example, a file on
disk with FileOutputStream/FileInputStream).

ObjectOutputStream oos = new ObjectOutputStream(...);
oos.writeObject(rbt);
...
ObjectInputStream ois = new ObjectInputStream(...);
RBT o = (RBT) ois.readObject();

(a)

OBJECT FLAG // (new object) rbt (mapped to handle 0)
RBT // rbt: class name
OBJECT FLAG // (new object) rbt.root (mapped to handle 1)
RBTNode // rbt.root: class name
8 // rbt.root.key = 8
false // rbt.root.color = BLACK
OBJECT FLAG // (new object) rbt.root.left (mapped to handle 2)
0 // rbt.root.left.key = 0
true // rbt.root.left.color = RED
NULL FLAG // rbt.root.left.left = null
NULL FLAG // rbt.root.left.right = null
REFERENCE FLAG // (handle)
1 // rbt.root.left.parent = rbt.root
NULL FLAG // rbt.root.right = null
NULL FLAG // rbt.root.parent = null
2 // rbt.size = 2

(b)

1 // mapping: unique object handle to instance
2 Map<int, Object> handleToInstance;
3 Object readObject() {
4 switch (currentByte()) {
5 case OBJECT FLAG:
6 ClassDescriptor desc = readClassDescriptor();
7 Object obj = desc.newInstance(); // create an object
8 int handle = nextHandle();
9 handleToInstance = handleToInstance ∪ {handle → obj};

10 // read fields
11 List<FieldDescriptor> fields = readFieldDescriptors(obj);
12 foreach (field in fields) {
13 if (field.isPrimitive())
14 switch(field.type()) {
15 case int: setIntField(obj, readInt());
16 case // ... other primitive types
17 }
18 else

19 setObjField(obj, readObject());
20 }
21 return obj;
22 case REFERENCE FLAG:
23 int handle = readInt();
24 if (handle 6∈ handleToInstance)
25 ... // complex code for deserializing cycles in graphs not shown
26 else return handleToInstance(handle);
27 case NULL FLAG:
28 return null;
29 case // special cases, e.g., Class
30 }
31 }

(c)

Figure 2: (a) Example user code for serializing and
deserializing in Java; (b) Serialization output for
Java library; (c) Pseudo-code of deserialization from
the readObject method in java.io.ObjectInputStream.

Figure 2(a) shows the user code to serialize the object
graph reachable from rbt and deserialize it into another ob-
ject graph o. For serialization, the code creates an instance
of ObjectOutputStream and invokes on it the method writeOb-

ject, passing the reference to the root of the object graph to
be serialized (rbt). For deserialization, the code creates an
ObjectInputStream and invokes readObject on it that returns
the reference to the root of the deserialized object graph.
Serialization Format: The writeObject method tra-

verses the objects reachable from its given argument and
outputs a sequence of bytes that encode values of (non-
transient) instance fields of those objects. If a field is a

CodeseOutputStream cos = new CodeseOutputStream(...);
cos.writeObject(rbt);
...
CodeseInputStream cis = new CodeseInputStream(...);
RBT o = (RBT) cis.readObject();

(a)

static Class clz0 = Class.forName(”RBT”);
static Class clz1 = Class.forName(”RBT$RBTNode”);
Object readObject() {

Object[] objs = new Object[3];
createObjects(objs);
setFields(objs);
return objs[0];

}
void createObjects(Object objs[]) {

obj[0] = unsafe.allocateInstance(clz0); // rbt
obj[1] = unsafe.allocateInstance(clz1); // rbt.root
obj[2] = unsafe.allocateInstance(clz1); // rbt.root.left

}
void setFields(Object objs[]) {

unsafe.putInt(obj[0], 8l, 2); // rbt.size
unsafe.putObject(obj[0], 12l, obj[1]); // rbt.root
unsafe.putInt(obj[1], 8l, 8); // rbt.root.key
// unsafe.putBoolean(obj[1], 12l, false); // rbt.root.color
// unsafe.putObject(obj[1], 16l, null); // rbt.root.parent
unsafe.putObject(obj[1], 20l, obj[2]); // rbt.root.left
// unsafe.putObject(obj[1], 24l, null); // rbt.root.right
// unsafe.putInt(obj[2], 8l, 0); // rbt.root.left.key
unsafe.putBoolean(obj[2], 12l, true); // rbt.root.left.color
unsafe.putObject(obj[2], 16l, obj[1]); // rbt.root.left.parent
// unsafe.putObject(obj[2], 20l, null); // rbt.root.left.left
// unsafe.putObject(obj[2], 24l, null); // rbt.root.left.right

}

(b)

Figure 3: (a) Example API for serializing and de-
serializing in CoDeSe; (b) Serialization output for
CoDeSe library.

reference, an object handle (a unique instance id) is written
to the stream. Serialization needs to support aliasing of ref-
erences and cycles in object graphs. Figure 2(b) shows the
complete output of serialization for our example instance
but shows abstract values rather than concrete bytes.

Deserialization: Figure 2(c) shows a simplified pseudo-
code of the readObject method from the SJL. To restore the
object graph, deserialization effectively interprets the data
written by serialization. The key parts of deserialization are:
(1) line 7 that creates objects for the new graph, (2) lines 12-
20 that restore field values (including a recursive call to read-

Object for reference fields), and (3) lines 22-26 that provide
appropriate reference values and support the complex case
of cycles in the graphs, where some assignments need to be
postponed until the objects are created.

2.2 CoDeSe Library
We first show how the API interface for serializing and

deserializing the rbt object graph with CoDeSe is similar to
SJL. We then show our novel format for the stored object
graph produced by the CoDeSe library. The format is based
on code and substantially differs from the traditional serial-
ization format based on data, which is used by the SJL. Our
format allows deserialization to simply execute the code.

API: Figure 3(a) shows the user code to serialize the ob-
ject graph reachable from rbt and deserialize it into another
object graph reachable from o. Compared to Figure 2(a),
the only difference is using the two new classes CodeseOut-

putStream/CodeseInputStream that CoDeSe provides as sub-
classes of ObjectOutputStream/ObjectInputStream.

Serialization Format: CoDeSe introduces a new format
for the serialized object graph such that deserialization need
not interpret data but can directly execute code. More pre-
cisely, the output of CoDeSe serialization is the code whose
execution restores the object graph. The process of serializa-
tion in CoDeSe is similar to the one from SJL: the writeOb-

ject method traverses the objects reachable from its given
argument but outputs code rather than a sequence of bytes.
CoDeSe serialization properly supports aliasing of references
and cycles in object graphs.
Figure 3(b) shows the complete output of serialization

for our example instance. The generated code uses the
sun.misc.Unsafe class to create instances and set the fields.
Note that SJL and some research projects, e.g. XRTQ [41],
also use Unsafe during serialization/deserialization. The al-

locateInstance method allocates memory for an instance of
a given type without running any of the constructors. The
various put methods store a given value into the field at a
given offset. For example, the offset for RBT.size was 8 on
the JVM that we used. While the offset for a given field may
differ between JVMs, it is constant for a fixed JVM (and of-
ten between JVMs). Our serialization uses the Unsafe class
to obtain the offset and then hard codes this offset in the
generated code.
The readObject method from Figure 3(b) can restore only

the specific RBT object graph; in effect, this method is a
specialized version of the generic readObject method from
Figure 2(c) for Java. The specialized readObject method
contains the key parts of deserialization: (1) it first creates
all the objects for the new graph, (2) it then sets their field
values including references that link the objects, and (3) it
easily supports cycles in the graphs by executing createOb-

jects and setFields in order. The example RBT instance
has a cycle as root.left.parent == root.
Note that some lines in setFields are commented out.

Those lines would set the fields to the default values for
their types, e.g., 0 for integers, false for booleans, and null

for references. CoDeSe format allows omitting those lines
because creating objects in Java already sets all the fields
to their default values. However, the standard serialization
format includes even the default values because it cannot
easily mark which object fields have such values.
While our running example has only three objects, the

experiments in Section 4 consider objects graphs of various
sizes and types, as well as various number of deserializations
of the same graph in one JVM run. For example, for RBTs
with 10 nodes CoDeSe deserialization is 2-4X faster than
the standard Java deserialization, and for RBTs with 1000
nodes CoDeSe is 6-11X faster.

3. IMPLEMENTATION
While the high-level idea of CoDeSe is appealing—enable

faster deserialization by generating code rather than data—
providing an implementation that both offers efficient dese-
rialization and handles states from real applications poses
a number of technical challenges. We next describe our
CoDeSe implementation.

3.1 Creating Objects and Setting Fields
Figure 3(b) shows the code that CoDeSe produces for the

example instance. The code uses the Unsafe class that of-
fers a low-level, efficient API for memory manipulation. An
alternative would be to create objects using new and set val-

ues using the standard field derefencing, e.g., rbt.size = 2.
However, such code may not compile because (1) the classes
RBT and RBTNode may not have public default constructors
(and even if there are constructors, they may have side ben-
efits besides allocating objects), and (2) fields may not be
publicly accessible (even if the code properly downcasted
the objects from the objs array). Another, more expensive
alternative would be to use Java reflection.

3.2 Multiple Methods and Classes
Figure 3(b) shows an output of CoDeSe serialization that

has one method to create objects and one method to set
field values. In general, each phase has to be split—object
creation and field setting—into multiple methods because a
method in Java is limited to 65536 bytes. There are other
limits for Java classfiles [17], so CoDeSe may generate mul-
tiple classes for the code that deserializes one (large) object
graph. CoDeSe appropriately adds hierarchical calls to all
the methods from all the classes that it generates. While
splitting each phase into multiple methods (or classes) is
necessary for larger object graphs, such splitting could be
beneficial even when not required by size, because it allows
parallel execution of deserialization.

3.3 Parallel Deserialization
During deserialization, the object-creation phase has to

finish before the field-setting phase starts to ensure that all
objects are created before reference fields are set. While the
phases have to follow sequentially, the work within a phase
can be parallelized. Indeed, having code as the result of the
CoDeSe serialization, and especially having multiple meth-
ods for each phase, allows the opportunity to deploy multiple
threads to perform deserialization.1 The maximum num-
ber of threads to be used in deserialization can be given as
the argument to CoDeSe serialization such that it splits the
work into enough methods even when not required by the
limits on method size. Our implementation of CoDeSe seri-
alization splits the work such that each method creates/sets
approximately the same number of objects/fields.

Our implementation of CoDeSe deserialization uses the
standard java.util.Thread objects for parallel execution and
uses a java.util.concurrent.CyclicBarrier object for delin-
eating the two phases. During each phase, each thread ex-
ecutes approximately the same number of methods, which
provides good load balancing.

3.4 Default and Literal Values
Having code as the result of serialization offers other op-

portunities for optimizations. Recall from Section 2 that
CoDeSe does not generate code to explicitly set the default
field values. In contrast, the standard Java deserialization
does unnecessarily set these values because it does not se-
lectively avoid fields for some objects (although the private
writeObject/readObject methods can avoid fields for all ob-
jects of some type).

CoDeSe creates boxed primitive values and String objects
using literals and publicly available constructors (e.g., new

Integer(5) or new String("foo")). We experimented with

1Note that parallelizing the traditional deserialization from
one sequence of bytes would be much harder, although one
can envision a new binary data format that encodes multiple
sequences of bytes, and for XML-based serialization formats
one can consider parallel parsing [37].

objects of these types and noticed significant performance
improvement when treating these types as a special case
instead of using the general sun.misc.Unsafe to create the
objects and set their fields. CoDeSe still preserves the alias-
ing such that all the references that point to the same ob-
ject in the original object graph point to the same (newly
created) object in the restored object graph. Hence, it gen-
erates new String("foo") rather than just "foo". In other
words, CoDeSe restores an object graph isomorphic [14] to
the original object graph.

3.5 Non-default writeObject/readObject
The writeObject/readObject methods provided on streams

(as shown in figures 2(a) and 3(a)) by default serialize/de-
serialize all non-static, non-transient fields. SJL allows
classes to implement their private writeObject/readObject
methods that can select the fields to be written/read to/from
the stream. For example, the class java.util.TreeSet has
such private methods. This class implements a set using
red-black trees. While for illustrative purposes our running
example showed how to serialize an entire RBT object graph,
note that serializing a set does not require storing the entire
graph. Instead, one can only store and restore the elements
in the set (and not the nodes that contain elements), which
results in smaller stored data and restores the object at the
abstract level (the set with the same elements) but not nec-
essarily at the concrete level (the same RBT structure).
Our current CoDeSe implementation supports the private

writeObject/readObject methods. If an object, say objs[i],
has such methods, CoDeSe serialization first collects the val-
ues written by objs[i].writeObject(...), and then in the
generated code, adds calls to objs[i].readObject(...) rather
than setting the field values for objs[i]. The parameter
that is given to the readObject call returns the values col-
lected from the writeObject call, respecting the order in
which the values were written. Our initial CoDeSe prototype
did not support the private writeObject/readObject methods
and thus incorrectly restored some objects that depend on
hash values, which is an issue also discussed by XRTQ [41].

3.6 JNI
The default code generator in the CoDeSe library gener-

ates Java code that can be executed directly on any JVM
(which supports sun.misc.Unsafe or a similar class). We also
developed another code generator that generates native/C
code that can be executed through the Java Native Interface
(JNI). JNI [18] is an API that allows Java code to call to and
be called from native code, for example written in C. Our
JNI code generator produces the same set of Java classes as
the default code generator, and these classes have the same
set of methods, with one key difference: the methods have
no Java body, but their declarations include the native mod-
ifier. For each Java class, our JNI code generator produces
the corresponding native code that implements the methods
from the class. These methods create objects and set field
values through the standard JNI functions, such as NewOb-

ject and SetObjectField. While the Java code generated by
the default code generator can easily be moved from one en-
vironment to another (e.g., an object graph is serialized on
one computer and restored on another computer with the
same JVM), the native code generated by the JNI code gen-
erator is not as portable because it is platform dependent.

3.7 Serialization
Our goal for CoDeSe is to make deserialization as fast as

possible. For that reason, we use a simple, unoptimized seri-
alization in our current CoDeSe implementation. Our serial-
ization traverses the object graph reachable from a given ref-
erence much like the standard Java serialization. However,
we implemented our own graph traversal rather than reusing
the existing, highly optimized traversal from java.io, be-
cause having our traversal made it easier to develop and
debug CoDeSe code generators. Our current CoDeSe serial-
ization is usually a few times slower that the standard Java
serialization, but we surprisingly noticed several examples
when CoDeSe performs equally well or even much better
than Java due to the optimized treatment of default and
literal values in CoDeSe. Note that the direct goal of this
optimized treatment is to obtain faster deserialization, and
obtaining faster serialization is just a side benefit.

Our current CoDeSe serialization does not directly gener-
ate Java bytecode (or native code for the JNI code genera-
tor) but instead generates Java source code (or C code for
the JNI code generator). Generating source code allows eas-
ier debugging and is readable by the user (similarly to seri-
alizing to XML rather than to a binary data format [23,40]),
but it requires compilation. To estimate the benefit of di-
rectly generating Java bytecode, we wrote a code generator
specialized for RBT that generates bytecode and found that
it takes about the same time as generating source code but
removes the compilation time.

We leave it as the future work to implement a general code
generator that generates bytecode and to optimize CoDeSe
serialization further. Note, however, that there are numer-
ous cases where a system with a slower serialization but a
faster deserialization is still better than system with a faster
serialization but a slower deserialization. First, consider the
scenario where an object graph is serialized (once) and de-
serialized (once or multiple times) in the same JVM run.
The overall running time can be smaller even if serialization
takes more time, as long as deserialization takes less time.

Second, serialization is not on the critical path for some
scenarios, e.g., when an object graph is serialized in one
JVM run but deserialized (much) later in different JVM
run(s). As one example, consider the XRTQ checkpointing
for debugging [41]. The most valuable asset in debugging is
programmer’s time, which is wasted when the programmer
idles waiting for the program. XRTQ reduces the idle time
by faster restoring the state of long-running Java programs.
XRTQ uses serialization to capture (a part of) the Java heap
at program points where the programmer expects to restore
the state. While the state is captured in one JVM run, the
programmer can interactively restore the state in many runs.
The delay from when the state is captured to when it is first
restored can be large, e.g., overnight. In such a scenario, a
system can use the fastest possible serialization to on-line
capture the state (potentially generating data rather than
code as the serialization format), and then off-line trans-
form the captured state to the format that allows the fastest
possible deserialization. In fact, CoDeSe implementation al-
ready supports off-line transformation from stored data to
stored code: one can use the standard Java ObjectInput-

Stream to restore an object graph from a serialized file and
then serialize this graph using CodeseOutputStream.

As another example of non-critical serialization, consider
OCAT [16], which uses captured objects in test generation

and execution. There is a big delay between generating a
unit test (once) and re-executing it for regression testing
(many times). During that delay, one can transform the
XML files generated by OCAT into code whose execution
can restore the captured objects much faster than XML
parsing. In fact, our experiments in Section 4 use some
XML files directly taken from the OCAT experiments and
transform these files into the code generated by CoDeSe.

3.8 Limitations
While CoDeSe supports a large number of features of-

fered by the standard Java serialization—including object
streams, default serialization with the Serializable inter-
face, and specialized serialization with private writeObject

methods—CoDeSe currently does not support two features:
specialized serialization with replaceObject/putFields and
class evolution. The ObjectOutputStream class offers methods
replaceObject (to allow trusted subclasses to replace some of
the objects encountered during serialization) and putFields

(to operate on the object that buffers fields to be written to
the stream), but these methods are rarely used.
The standard library supports class evolution with a spe-

cial field serialVersionUID that can be added to classes that
implement Serializable to encode their version. The field
is used to check the version of the class before loading it.
If a class is evolved by adding/removing some fields, ob-
jects serialized with an old version of the class may still be
deserialized with the new version of the class. CoDeSe can-
not easily support full class evolution, although it supports
one special case (if a class is evolved by only adding new
fields at the end of the list of instance fields, and deserial-
ization should set those new fields to their default values).
To support full class evolution would require rewriting the
code that CoDeSe generated, e.g., to change/remove/add
some field assignments/offsets in the setFields methods as
in Figure 3(b). In our intended uses of CoDeSe for testing,
model checking, and debugging, evolution is not a big issue
as (largely) the same code is run multiple times, with no
(big) changes in class declarations. For other uses of seri-
alization, where classes can have bigger changes, e.g., per-
sisting objects in databases and using them much later, one
would use serialization based on stored data and not stored
code.
The current CoDeSe implementation increases memory

consumption in a JVM, because all the classes used for de-
serialization remain in the JVM until it terminates. A JVM
can unload a class only if its ClassLoader becomes unreach-
able [11]. To reduce memory consumption for CoDeSe would
thus require writing a special class loader that would allow
unloading the classes that are not needed in the future dese-
rializations. We leave writing a class loader as future work.

4. EVALUATION
We performed a number of experiments to compare deseri-

alization time when using the standard Java library and our
CoDeSe implementation in several modes. The comparison
also includes CoDeSe that generates JNI code (Section 4.5).
First, we describe our experimental setup, including the ob-
ject graphs on which we performed the experiments. Then,
we discuss the timing results. All experiments were per-
formed on a machine with a 4-core Intel Xeon 2.13GHz
processor and 4GB of main memory, running Linux ver-
sion 2.6.18, and Java HotSpot 64-Bit Server VM, version

graph #objects #refs. #prims.

M
a
th

ArrayRVector 2 1 216
CommathDir 118371 22134 244510
CurveFitter 418 219 3478
LOFunction 1 0 1
LMOptimizer 418 219 2448

C
o
ll
ec
ti
o
n BinHeap 109 115 4

BinHeapDir 1229045 1340273 47932
DOrdMap 3774 6136 1886
DOrdMapDir 2841720 5277480 1622238
FastTreeMap 29 5 1

A
sp

ec
tJ

BcelCode 622 623 1242
BcelCodeDir 111652 165065 218639
BranchHandle 368 635 538
BcelMethod 628 637 937
InstFactory 302 1230 459

X
1
0
K

FRASDist 934 1566 1
KMeans 217 348 1
NQueensPar 371 632 1
StructSpheres 278 446 1
Runtime 60769 101096 242

Figure 4: Statistics for non-RBT object graphs.

1.6.0 10. (We have obtained similar results, although some-
what smaller speedup, using IBM J9 VM, version 1.6.0.)
Our basic experiments disable bytecode verification because
CoDeSe is intended to be used in scenarios where its code
is trusted. Next, we discuss the result if the bytecode veri-
fication is enabled. Finally, we present the size of serialized
object graphs.

4.1 Experimental Setup
We use three kinds of object graphs in our evaluation,

one kind based on our running example and two kinds with
states captured during the execution of real applications.
First, we use RBT object graphs similar to the example from
Section 2 but with trees of different sizes, denoted RBT N

for N nodes. We create each tree by repeatedly calling a put

method to insert N random values into the tree. Second,
we use 15 object graphs from the OCAT experiments [16],
provided to us by the OCAT authors. OCAT is a testing
tool that captures graphs from actual executions, and we
use five graphs each from executions of Apache Commons
Collection, Apache Commons Math, and AspectJ. Third,
we use five graphs from the same scenario as in the XRTQ
study [41] that showed how deserializing the state of a com-
piler can be faster than re-executing the compiler from the
beginning (with loading sources, parsing, etc.). Since the
XRTQ infrastructure was not available to us, we used the
X10K compiler, developed in our group, which translates
X10 programs [36] to the K notation [35]. We ran X10K
on several sample programs from the X10 distribution and
on the X10 runtime, and captured the abstract syntax trees
from X10K as object graphs.

Each object graph was serialized into two files, one using
the Java format and one using the CoDeSe format. Fig-
ure 4 shows for each graph the number of objects, reference
field assignments, and primitive field assignments generated
by CoDeSe. (Note that some graphs seemingly have fewer
references than objects, which would imply that they are
disconnected, but in fact they use the private writeObject

method for connecting these objects.) To be able to seri-
alize and deserialize certain objects with the standard Java
library, we first had to change the classfiles for those ob-

graph
#deserializations=1 #deserializations=2 #deserializations=10

SJL CoDeSe
ratio

#t=2 ratio #t=3 ratio SJL CoDeSe
ratio

SJL CoDeSe
ratio

[ms] [ms] [ms] t2/t1 [ms] t3/t1 [ms] [ms] [ms] [ms]

RBT 10 20 7 2.86 10 0.70 10 0.70 21 7 3.00 29 7 4.14
RBT 100 25 8 3.13 10 0.80 10 0.80 31 8 3.88 74 9 8.22
RBT 1000 67 10 6.70 10 1.00 12 0.83 126 11 11.45 209 21 9.95
RBT 10000 228 31 7.35 28 1.11 23 1.35 301 41 7.34 452 116 3.90
RBT 100000 572 223 2.57 135 1.65 94 2.37 1094 329 3.33 2246 1020 2.20
RBT 1000000 5220 3252 1.61 2157 1.51 1949 1.67 8979 5227 1.72 33385 17676 1.89
RBT 2000000 13819 9489 1.46 5881 1.61 5537 1.71 23043 13758 1.67 71116 43947 1.62
RBT 4000000 35068 19768 1.77 14628 1.35 13515 1.46 57832 30922 1.87 158546 92159 1.72
ArrayRVector 18 2 9.00 4 0.50 4 0.50 18 2 9.00 20 3 6.67
CommathDir 663 230 2.88 181 1.27 175 1.31 840 301 2.79 1577 705 2.24
CurveFitter 68 7 9.71 9 0.78 8 0.88 77 8 9.63 147 13 11.31
LOFunction 47 34 1.38 36 0.94 37 0.92 47 34 1.38 50 35 1.43
LMOptimizer 70 6 11.67 8 0.75 7 0.86 79 6 13.17 148 10 14.80
BinHeap 48 2 24.00 5 0.40 5 0.40 51 2 25.50 73 3 24.33
BinHeapDir 1474 1065 1.38 856 1.24 708 1.50 2253 1751 1.29 8239 5043 1.63
DOrdMap 130 7 18.57 7 1.00 8 0.88 186 9 20.67 353 24 14.71
DOrdMapDir 4987 4487 1.11 3439 1.63 2685 2.21 8157 7111 1.15 35185 24489 1.44
FastTreeMap 51 4 12.75 6 0.67 7 0.57 52 4 13.00 62 5 12.40
BcelCode 93 10 9.30 7 1.43 8 1.25 108 10 10.80 210 14 15.00
BcelCodeDir 556 189 2.94 116 1.63 70 2.70 661 274 2.41 1348 930 1.45
BranchHandle 199 26 7.65 29 0.90 29 0.90 222 29 7.66 390 51 7.65
BcelMethod 122 10 12.20 20 0.50 11 0.91 139 10 13.90 250 14 17.86
InstFactory 137 10 13.70 22 0.45 14 0.71 149 11 13.55 243 21 11.57
FRASDist 301 24 12.54 29 0.83 25 0.96 340 25 13.60 472 33 14.30
KMeans 250 19 13.16 23 0.83 21 0.90 262 19 13.79 374 21 17.81
NQueensPar 264 21 12.57 23 0.91 23 0.91 283 21 13.48 406 25 16.24
StructSpheres 244 19 12.84 22 0.86 22 0.86 260 20 13.00 380 23 16.52
Runtime 607 108 5.62 97 1.11 97 1.11 708 146 4.85 1298 443 2.93

geometric mean 6.48 6.75 6.70

Figure 5: Comparison of SJL and CoDeSe for a number of deserializations, and comparison of CoDeSe for a
number of threads. Speedup is ratio of times in milliseconds.

jects to implement java.io.Serializable. CoDeSe, like some
Java-to-XML serialization libraries [23,40], does not require
that classes implement Serializable.
We wrote a small driver program that invokes deserializa-

tion from a given stream one or more times, and measures
the execution time. Recall from the introduction that there
are two general patterns for deserialization: (1) the same
state is deserialized multiple times in one JVM run (typi-
cally for testing, e.g., in OCAT), or (2) one state is dese-
rialized only once in a JVM run (typically for debugging,
e.g., in XRTQ). The first deserialization for both Java and
CoDeSe loads the stored information (data in case of Java,
and code in case of CoDeSe) from a file, i.e., the underly-
ing stream is a (buffered) FileInputStream. For CoDeSe, the
driver need not do anything special for multiple deserializa-
tions; it only calls the same readObject to execute multiple
times. For Java, however, we can improve the performance
when we expect multiple deserializations. Indeed, our driver
does not load the file multiple times but instead loads the
file content only once and puts it into a ByteArrayInput-

Stream such that all deserializations call readObject on this
underlying stream (calling the reset method between deseri-
alizations). Finally, the driver measures the execution time
of the appropriate readObject calls.
We point out that although each of our experiments ex-

plicitly deserializes only one object graph per execution,
some of these graphs consist of many classes and their exper-
iments effectively deserialize a number of different, smaller
graphs in one execution. In particular, CommathDir, Bin-

HeapDir, and BcelCodeDir include a number of graphs that

represent different objects, many of them of different types.
To increase confidence in the correctness of our implemen-

tation, we checked it as follows. Each graph was serialized
using (1) SJL and (2) CoDeSe. Then, we deserialized the
graph (2) using CoDeSe and serialized it again using (3) SJL.
Finally, we compared files (1) and (3).

4.2 SJL vs. CoDeSe
Figure 5 shows a comparison of deserialization times using

the Java library and the CoDeSe library. For each graph, we
tabulate the time to deserialize it once (columns 2-3), twice
(9-10), and ten times (12-13). The time is given in millisec-
onds. The columns 4, 11, and 14 show the speedup that
CoDeSe achieves over SJL, computed as the ratio of deseri-
alization times. CoDeSe sped up deserialization in all cases,
although the graph characteristics differ (sizes ranging from
small to large, and the type of fields as shown in Figure 4),
and the number of deserializations ranges from one to ten.
Section 4.4 discusses even larger number of deserializations
for some graphs.

It is also interesting to point out that, for both SJL and
CoDeSe, the deserialization time often scales super-linearly
with respect to both the graph size and the number of deseri-
alizations. For example, consider the cases of RBT 1000 and
RBT 10000 for #deserializations=1. Although the graph is
ten times larger, the deserialization time went up only about
three times (for both SJL and CoDeSe). As another exam-
ple, consider RBT 1000 for #deserializations=1 and #de-
serializations=10. Although the number of deserializations
went up ten times, the deserializations time went up only

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60 70 80 90 100

ti
m

e
 (

m
s
)

number of deserializations

RBT 100

SJL
CoDeSe

JNI

(a)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

0K 10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

ti
m

e
 (

m
s
)

number of deserializations

RBT 100

SJL
CoDeSe

JNI

(b)

Figure 6: Deserialization time (cumulative value) for RBT with 100 nodes with respect to the number of
deserializations when the number ranges (a) from 1 to 100, and (b) from 1 to 100000.

about two times (for both SJL and CoDeSe). These results
are the consequence of startup costs (loading data or class
files, initializing classes, etc.) but also of JIT compilation as
discussed in Section 4.4.

4.3 Parallel Deserialization
Recall from Section 3.3 that the CoDeSe serialization for-

mat based on code allows a simple parallelization of dese-
rialization. Figure 5 (columns 5-8) shows how the deserial-
ization time changes with the increasing number of threads
used for deserialization. While there is some speedup, es-
pecially for larger graphs, the speedup is not nearly linear,
and in fact going even from two to three threads sometimes
results in a slowdown. (The machine on which we performed
experiments has four cores.)
Our inspection shows that one reason for slowdown (or

sub-linear speedup) is the overhead of creating threads and
synchronizing on barriers, as expected. However, an even
bigger reason is the CoDeSe phase for setting field values.
While the field-setting phase is data-parallel, the threads
read various parts of the same array that stores the objects
(objs) and write to fields of various objects. This affects
cache behavior because setting a large number of fields can
effectively sweep the cache, and setting values from different
threads can result in cache collisions. We leave it as future
work to further improve scalability of parallel deserializa-
tion, and to consider parallel serialization.

4.4 Large Number of Deserializations
In a typical usage scenario of CoDeSe, we expect that

an object graph be deserialized once or a relatively small
number of times (say, up to ten or at most a few dozen times)
in one JVM run. For that reason, Figure 5 shows up to ten
deserializations. Nevertheless, we considered what happens
if an object graph is deserialized a much larger number of
times, and we found some interesting results that apply even
for a small number of deserializations.
Figure 6 shows how deserialization time increases with the

number of deserializations. We show plots for RBT with 100
nodes; the results are similar for other graphs. As expected,
the time grows mostly linearly. However, both plots have a
visible“knee”points where the linear rate of growth switches

to a smaller value: Figure 6(a) has such a point for SJL and
about 20 deserializations, and Figure 6(b) has such a point
for CoDeSe and about 12000 deserializations. These are the
points where just-in-time (JIT) compilation has happened,
and the JVM optimized the code to run faster.

Typically a JVM optimizes a code unit, such as a method,
after the unit is executed some number of times. During SJL
deserialization, certain methods are repeatedly executed for
each object being created. Hence, these methods can reach
the threshold for JIT compilation with a relatively small
number of deserializations. In contrast, during CoDeSe de-
serialization, each method is executed only once. Hence,
these methods require a large number of deserializations to
reach the threshold for JIT compilation.

Note, however, that CoDeSe deserialization remains faster
than SJL deserialization for all numbers of deserializations,
although the SJL deserialization code is JIT compiled much
earlier than the CoDeSe deserialization code. In fact, the
relative speedup that CoDeSe provides over SJL typically
grows with the number of deserializations. It means that JIT
compilers can produce more efficient code from the CoDeSe
deserialization code than from the SJL deserialization code.
This is understandable because the CoDeSe deserialization
code is effectively a specialized version of the general SJL
deserialization code. The specialization is performed by
the CoDeSe code generator with respect to the given ob-
ject graph; such an extensive specialization is unlikely to be
performed by a JIT compiler.

The implication for the realistic usage scenario with a
small number of deserializations is as follows. CoDeSe would
be even faster than SJL if JVMs supported saving and load-
ing JIT-compiled code between runs. While most widely
used JVMs do not have any such support, IBM’s J9 does
have some support for loading ahead-of-time compiled code.

4.5 JNI
Recall from Section 4.5 that we developed a CoDeSe code

generator to output C code that uses the JNI interface to
create objects and set their fields. Figure 7(a) shows the de-
serialization time for JNI. For each graph, we tabulate the
time to deserialize it once, twice, and ten times. In all cases,
JNI was somewhat faster than SJL but much slower than

graph
JNI [ms]

Bytecode Verification Disk Space
CoDeSe #d=1 [ms] CoDeSe #d=10 [ms] SJL CoDeSe JNI

#d=1 #d=2 #d=10 BV speedup BV speedup size [KB] size [KB] size [KB]

RBT 10 25 25 26 17 2.43 18 2.57 0.6 48.0 14.0
RBT 100 17 17 20 17 2.13 18 2.00 3.0 60.0 51.0
RBT 1000 38 41 59 32 3.20 45 2.14 27.0 188.0 418.0
RBT 10000 50 74 225 159 5.13 242 2.09 265.0 1536.0 4096.0
RBT 100000 310 506 2072 1685 7.56 3147 3.09 2662.0 17408.0 40960.0
RBT 1000000 - - - 15758 4.85 31414 1.78 26624.0 168960.0 -
RBT 2000000 - - - 29939 3.16 62454 1.42 53248.0 337920.0 -
RBT 4000000 - - - 70050 3.54 145551 1.58 105472.0 675840.0 -

(a) (b) (c)

Figure 7: (a) Deserialization time using JNI; (b) Deserialization time with bytecode verification; (c) Disk
space for serialized object graphs.

the default CoDeSe that generates Java code (see Figure 5
for comparison). We find that JNI is slower than CoDeSe
because our C code properly uses the JNI function calls to
communicate with the JVM, and these calls are reported
to have a large overhead [18]. These JNI function calls pre-
clude many compiler optimizations on the generated C code.
Moreover, JNI code is compiled statically and not further
JIT optimized by the JVM. In fact, looking back at Fig-
ure 6, we see that while JNI is faster than SJL for a smaller
number of deserializations, JNI becomes slower for a larger
number because the SJL code gets JIT compiled.
We performed a small limit study to see how fast the C

code could get if it did not use the JNI abstraction but
rather directly accessed the internals of JVM. For example,
instead of using the JNI function SetObjectField to set some
field value, our manually optimized C code directly manip-
ulates the C pointers that point to the JVM representation
of Java objects. Effectively, we inlined SetObjectField calls,
breaking the abstraction but allowing many compiler opti-
mizations on the C code. Our highly optimized code indeed
became much faster than JNI but still not as fast as the JIT
compiled Java bytecode from CoDeSe. This result attests
to the very high quality of JIT compilers in modern JVMs.

4.6 Bytecode Verification
While the C code we generated in our limit study broke

the JNI abstraction, the Java code that CoDeSe generates
is always valid Java code. CoDeSe does not require any
changes to JVM and works on top of any JVM that pro-
vides sun.misc.Unsafe or a similar class. However, when a
JVM loads the code generated by CoDeSe, the JVM would
still perform the regular bytecode verification that JVM per-
forms to check validity of loaded code [11]. Because we as-
sume that CoDeSe is used in a testing or debugging scenario
where the CoDeSe code is trusted, we disabled bytecode
verification by loading CoDeSe generated code through the
bootclasspath rather than the usual classpath. Figure 7(b)
shows the deserialization times that would be obtained with
bytecode verification enabled, and the speedup provided by
disabling bytecode verification. (The speedup is computed
as the ratio of appropriate times from figures 7 (b) and
5.) While CoDeSe with bytecode verification is slower than
without verification, it is still sometimes faster than SJL.

4.7 Space for Serialized Representation
The key metric for fast deserialization is the time needed

to recreate object graphs from the serialized representation,
but we also discuss the space needed to store the serial-

graph
SJL CoDeSe

ratio
size [KB] size [KB]

M
a
th

ArrayRVector 1.8 60.0 0.03
CommathDir 3482.0 9523.0 0.37
CurveFitter 33.0 160.0 0.21
LOFunction 1.9 60.0 0.03
LMOptimizer 25.0 132.0 0.19

C
o
ll
ec
ti
o
n BinHeap 1.5 52.0 0.03

BinHeapDir 12288.0 63488.0 0.19
DOrdMap 45.0 264.0 0.17
DOrdMapDir 37888.0 215040.0 0.18
FastTreeMap 0.7 52.0 0.01

A
sp

ec
tJ

BcelCode 11.0 112.0 0.10
BcelCodeDir 1536.0 11264.0 0.14
BranchHandle 14.0 100.0 0.14
BcelMethod 12.0 104.0 0.12
InstFactory 10.0 76.0 0.13

X
1
0
K

FRASDist 16.0 96.0 0.17
KMeans 5.7 52.0 0.11
NQueensPar 8.2 60.0 0.14
StructSpheres 6.7 56.0 0.12
Runtime 692.0 4301.0 0.16
geometric mean 0.11

Figure 8: Disk space for serialized object graphs.

ized representation. Figures 7 (c) and 8 show how much
disk space is required to store (1) data for SJL serialization,
(2) bytecode for the default CoDeSe code generator that
produces Java, and (3) (only for RBT) native code for the
CoDeSe code generator that produces C. We can see that
CoDeSe requires several times more space than Java, and
JNI requires even more than the default CoDeSe. While
the increased space requirement of CoDeSe over SJL could
be an important issue for storing many states or for send-
ing the states over the network, it is not a significant issue
for our intended scenarios of testing and debugging. Note
that, although CoDeSe requires more disk space and thus
has a higher loading time for the first deserialization than
SJL, CoDeSe still has smaller overall time than SJL even
for the first deserialization (and even more so for multiple
deserializations in one JVM run).

5. RELATED WORK
Work related to CoDeSe can be split in three groups: opti-

mizing serialization/deserialization, defining format to rep-
resent serialized object graphs, and using serialization/dese-
rialization in testing techniques and tools.

Kamin et al. [3,24] were the first to deploy run-time code
generation to optimize serialization. Their approach gener-

ates a specialized version of the serialization method for a
class C when the serialization is first performed on an object
of type C, and later uses this specialized version when an-
other object of type C is serialized. Mesquita [29] follows the
same approach for Java, while Tansey and Tilevich [38] pro-
pose compile-time specialization for C++ version of MPI.
The specialized code in all these approaches still produces
data as the traditional serialization, whereas CoDeSe pro-
duces code. Effectively, all these approaches specialize the
serialization code with respect to the types of the objects be-
ing serialized such that serialization generates stored data
faster. In contrast, CoDeSe specializes the deserialization
code with respect to the values in the objects being serial-
ized such that deserialization restores the state faster.
Abu-Ghazaleh et al. introduced concepts of differential

serialization [2] and deserialization [1] to optimize SOAP
performance. The basic idea behind these techniques is to
avoid full serialization/deserialization of each message and
instead to serialize/deserialize just the parts of the message
that differ from the previous message that has been sent/re-
ceived. These techniques showed significant speedup when
consecutive messages are similar but unfortunately had a
large overhead when messages are dissimilar. CoDeSe does
not consider any similarity among consecutive states and
speeds up deserialization over the standard Java library both
when states are similar and dissimilar.
Increase in the amount of data being transfered over the

networks has led to the development of several protocols
that target performance improvement of the data transfer.
Two widely used protocols are Google Protocol Buffers [34]
and Apache Avro [5]. Both protocols are based on the same
principles—statically generate code that serializes/deserial-
izes data to/from different type of streams and remove the
meta information from the serialized representation. The
user is responsible to specify the format of serialized object
graph in a domain specific language (DSL). These proto-
cols are able to generate code in different programming lan-
guages from the same DSL. Removing the meta information
reduces the size of the serialized object graphs. In addition,
Protocol Buffers does not include null values, but CoDeSe
also does not include default value even for primitive fields.
In contrast to CoDeSe, these protocols require the user to
provide a DSL description of the format used for serialized
graphs, which can be a non-trivial task. While these proto-
cols focus on the message size for transfer over the network,
our primary focus is fast deserialization for applications that
deserialize the state once or multiple times.
XStream [40] is a Java library similar to the standard

java.io serialization/deserialization, but XStream stores the
state of the program in the XML format rather than binary.
Also, it offers a more flexible API and does not require the
classes to be serialized to implement the Serializable inter-
face. Similar to XStream, JSX [23] is another library for
Java that serializes the object states to the XML format. In
contrast to these libraries, CoDeSe specifies a new format
for serialized object graphs based on executable code. Also,
the default CoDeSe code generator that outputs Java source
code is as readable as XML file.
JSON [22] is a text-based approach, subset of JavaScript

syntax, for data interchange that can be seen as an alter-
native to XML. As opposed to XML that has to be parsed,
JSON file can be directly loaded (without parsing, using
eval) into JavaScript code. The key issue is that JSON

standard does not support object references. An available
extension [7] that does support references performs parsing
of the file, similar to XStream approach for XML. CoDeSe
supports references and does not require parsing.

As mentioned in the introduction, many testing techniques
use serialization and deserialization. Throughout the pa-
per we already described parts of several techniques such as
OCAT [16], XRQT [41], and JPF [39]. We next describe
several other techniques.

Elbaum et al. [8,9,19], Kumar and Baar [25], and Orso et
al. [20,31] propose techniques that use serialization and de-
serialization for building unit tests from system tests. Their
techniques capture interaction between modules during the
execution of system tests to later replay for unit tests. Their
capture/replay phases use serialization/deserialization for
selected parts of the program state. Some techniques use
XStream [40] extended to serialize/deserialize static fields.
CoDeSe, as SJL and XStream, currently does not serial-
ize/deserialize static fields. However, adding this extension
to CoDeSe would be easy.

Artzi et al. [4] and Leitner et al. [26,27] propose techniques
that generate tests that reproduce system failures after the
system crashes. ReCrash [4] proceeds in two phases: mon-
itoring and test generation. In the monitoring phase, the
techniques keep information about methods being called and
arguments that were passed to these methods. If the system
crashes, it uses these “stacks” of method calls to generate
test methods for each test in the “stack”. To reinvoke the
method, it restores the state of the arguments and the re-
ceiver. Rather than capturing the pre-state at the method
entry, similar results can be obtained by capturing the state
at the point of the crash but then restoring this state as the
pre-state at the method entry [27]. Luo et al. [28] extend
ReCrash for multithreaded code. All these techniques in-
volve deserializing Java states and could benefit from faster
deserialization provided by CoDeSe.

Barnat et al. [6] describe efficient model checking of the
applications that require large amount of states which can-
not be stored in the main memory. In these cases, the states
are written to external memories and restored when they are
needed. CoDeSe could be used to speed up deserialization
of the states.

Hruba et al. [13] explore the use of bounded-model check-
ing to enable self healing. The exploration is performed after
the suspicious state is detected. The recorded state has to
be reconstructed in the model checking tool to enable the ex-
ploration. Although they use re-execution to reconstruct the
state, storing/restoring through serialization/deserialization
is an alternative, and CoDeSe could speed up deserialization.

6. CONCLUSION
We proposed CoDeSe as a novel format for represent-

ing serialized object graphs that can substantially improve
the performance of deserialization. Unlike the existing ap-
proaches, which use a format based on data to represent se-
rialized object graph, CoDeSe uses a format based on code.
During serialization, CoDeSe generates code whose execu-
tion restores the state, and deserialization is simply the ex-
ecution of this code. We implemented CoDeSe in Java and
performed a number of experiments, including with states
generated by real applications. CoDeSe provides on average
more than 6X speedup over the highly optimized deserial-
ization from the standard Java library. Our new format also

allows a simple parallel deserialization that provides addi-
tional speedup over the sequential CoDeSe for larger states.
In the future we plan to explore more efficient parallel dese-
rialization and serialization.

Acknowledgements

We thank Hojun Jaygarl, Sunghun Kim, Tao Xie, and Carl
K. Chang for providing the data from their OCAT study,
Matt Kirn for sharing his code that automatically adds the
Serializable interface to classes (necessary for serialization
in SJL), and Dmytro Suvorov and Vilas Jagannath for ini-
tial discussions about this work. This material is based upon
work partially supported by the US National Science Foun-
dation under Grant Nos. CCF-0746856 and CNS-0958199,
and by IBM under an X10 Innovation Grant.

7. REFERENCES
[1] N. Abu-Ghazaleh and M. J. Lewis. Differential

deserialization for optimized SOAP performance. In
SC, 2005.

[2] N. Abu-Ghazaleh, M. J. Lewis, and M. Govindaraju.
Differential serialization for optimized SOAP
performance. In HPDC, 2004.

[3] B. Aktemur, J. Jones, S. N. Kamin, and L. Clausen.
Optimizing marshalling by run-time program
generation. In GPCE, 2005.

[4] S. Artzi, S. Kim, and M. D. Ernst. ReCrash: Making
software failures reproducible by preserving object
states. In ECOOP, 2008.

[5] Apache Avro home page. http://avro.apache.org/.

[6] J. Barnat, L. Brim, and P. Simecek. Cluster-based
I/O-efficient LTL model checking. 2009.

[7] Dojo home page. http://dojotoolkit.org/.

[8] S. G. Elbaum, H. N. Chin, M. B. Dwyer, and
J. Dokulil. Carving differential unit test cases from
system test cases. In FSE, 2006.

[9] S. G. Elbaum, H. N. Chin, M. B. Dwyer, and
M. Jorde. Carving and replaying differential unit test
cases from system test cases. TSE, 2009.

[10] P. Godefroid. Model checking for programming
languages using VeriSoft. In POPL, 1997.

[11] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java
Language Specification. Sun Microsystems, Inc., 2005.

[12] T. Gvero, M. Gligoric, S. Lauterburg, M. d’Amorim,
D. Marinov, and S. Khurshid. State extensions for
Java PathFinder. In ICSE Demo, 2008.

[13] V. Hrubá, B. Krena, and T. Vojnar. Self-healing
assurance based on bounded model checking. In
EUROCAST, 2009.

[14] R. Iosif. Exploiting heap symmetries in explicit-state
model checking of software. In ASE, 2001.

[15] Java PathFinder (JPF) home page.
http://babelfish.arc.nasa.gov/trac/jpf/.

[16] H. Jaygarl, S. Kim, T. Xie, and C. K. Chang. OCAT:
Object capture-based automated testing. In ISSTA,
2010.

[17] Java class file format.
http://java.sun.com/docs/books/jvms/second_

edition/html/ClassFile.doc.html.

[18] Java Native Interface programmer’s guide and
specification. http://java.sun.com/docs/books/jni/

html/fldmeth.html.

[19] M. Jorde, S. G. Elbaum, and M. B. Dwyer. Increasing
test granularity by aggregating unit tests. In ASE,
2008.

[20] S. Joshi and A. Orso. SCARPE: A technique and tool
for selective capture and replay of program executions.
In ICSM, 2007.

[21] Java object serialization specification.
http://download.oracle.com/javase/6/docs/

platform/serialization/spec/serialTOC.html.

[22] JSON home page. http://www.json.org/.

[23] JSX home page. http://jsx.org/.

[24] S. Kamin, L. Clausen, and A. Jarvis. Jumbo:
Run-time code generation for Java and its
applications. In CGO, 2003.

[25] P. Kumar and T. Baar. Using AOP for discovering
and defining executable test cases. In Ershov
Memorial Conference, 2009.

[26] A. Leitner, I. Ciupa, M. Oriol, B. Meyer, and A. Fiva.
Contract driven development = test driven
development - writing test cases. In ESEC/FSE, 2007.

[27] A. Leitner, A. Pretschner, S. Mori, B. Meyer, and
M. Oriol. On the effectiveness of test extraction
without overhead. In ICST, 2009.

[28] Q. Luo, S. Zhang, J. Zhao, and M. Hu. A lightweight
and portable approach to making concurrent failures
reproducible. In FASE, 2010.

[29] L. B. Mesquita. Faster Java serialization.
http://jserial.sourceforge.net/index.html.

[30] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A.
Nainar, and I. Neamtiu. Finding and reproducing
Heisenbugs in concurrent programs. In OSDI, 2008.

[31] A. Orso, S. Joshi, M. Burger, and A. Zeller. Isolating
relevant component interactions with JINSI. In
WODA, 2006.

[32] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.
Feedback-directed random test generation. In ICSE,
2007.

[33] R. Pelanek. Typical structural properties of state
spaces. In SPIN Workshop, 2004.

[34] Protocol Buffers home page.
http://code.google.com/apis/protocolbuffers/.

[35] G. Roşu and T. F. Şerbănuţă. An overview of the K
semantic framework. Journal of Logic and Algebraic
Programming, 2010.

[36] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and
D. Grove. Report on the programming language X10,
2010.

[37] B. Shah, P. R. Rao, B. Moon, and M. Rajagopalan. A
data parallel algorithm for XML DOM parsing. In
International XML Database Symposium, 2009.

[38] W. Tansey and E. Tilevich. Efficient automated
marshaling of C++ data structures for MPI
applications. In IPDPS, 2008.

[39] W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. J-ASE, 2003.

[40] XStream home page.
http://xstream.codehaus.org/index.html.

[41] G. Xu, A. Rountev, Y. Tang, and F. Qin. Efficient
checkpointing of Java software using context-sensitive
capture and replay. In ESEC/FSE, 2007.

