
SMutant: A Tool for Type-Sensitive Mutation Testing in a
Dynamic Language

Milos Gligoric Sandro Badame Ralph Johnson
Department of Computer Science

University of Illinois, Urbana, IL 61801, USA
{gliga, badame1, rjohnson}@illinois.edu

ABSTRACT

A mutation testing tool takes as input a system under test
and a test suite and produces as output the mutation score
of the test suite. The tool systematically creates mutants by
making small syntactic changes to the system under test and
executes the test suite to determine which mutants give dif-
ferent results from the original system. Almost all mutation
testing tools have been developed for statically typed lan-
guages. The lack of tools for dynamically typed languages
may be rooted in additional challenges that are caused by
the lack of precise type information until the program is
executed. Existing tools for dynamically typed languages
mostly focus on mutation of literals because the type of lit-
erals are known statically.
This paper presents SMutant, the first mutation testing

tool for Smalltalk programs. In addition to literal replace-
ment, SMutant supports many mutation operators that are
commonly seen in tools for statically typed languages, such
as operator replacement. Instead of applying mutations
statically, SMutant postpones mutating until execution and
applies mutations dynamically, when the types are available.
Also, SMutant enables the user to define new mutation op-
erators by sending a single message. The tool automatically
generates code to support new mutation operators.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging—Testing tools

General Terms: Reliability

Keywords: Mutation testing, dynamic languages

1. INTRODUCTION
Mutation testing [1, 3, 4] is a method for measuring the

quality of a test suite. A mutation testing tool takes as input
a system under test (SUT) and a test suite, then proceeds in
two phases: (1) systematically creates mutants in the SUT
and (2) executes the test suite to check how many mutants
are killed ; a mutant is killed if the result of the mutated
code differs from the result that is obtained by running the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09 ...$10.00.

original SUT, otherwise the mutant is live. In the first phase,
mutants are created by applying mutation operators that
perform small syntactic changes in the SUT. For example,
a mutation operator can be defined to replace + with -. In
the second phase, a tool tracks killed mutants. The ratio of
the killed mutants to all mutants, known as mutation score,
is used to measure the effectiveness of a test suite.

Mutation testing for statically typed languages has been
actively researched since its introduction [3, 4]. The main
focus was on measuring the effectiveness of mutation opera-
tors. In particular, mutation operators have been proposed
and evaluated for a number of languages including Ada, C,
Cobol, C#, Fortran, Java, and SQL. A few of the mutation
testing tools that have been developed are Mothra (Fortran),
Javalanche (Java), and CREAM (C#). These tools perform
mutations statically, since type information is known before
a program is executed. The survey report by Jia and Har-
man [7] gives an overview of mutation testing.

In contrast, mutation testing for dynamically typed lan-
guages has been little explored. The key reason for this may
lay in the nature of these languages – type information is

not available until a program is executed. Therefore, exist-
ing tools for dynamically typed languages ignore mutation
operators that require type information and are commonly
used for statically typed languages. For instance, the same
operator + can be used for string concatenation and number
addition, but there is no - for strings; thus, an expression v1
+ v2 cannot be replaced with v1 - v2 until we know that v1
and v2 are numbers rather than strings. For example, a mu-
tation testing tool for Python, Pester [9], focuses on literal
replacement. Similarly, a tool for Ruby, Heckle [5], focuses
on literal replacement and expression replacement (e.g., re-
place “while” with “unless”). In both cases no type informa-
tion is used. Recently [2], there has been work on defining
mutation operators for JavaScript and proposal that muta-
tions should be applied dynamically, during the execution of
a program. However, no tool was developed.

This paper presents our tool, SMutant, for mutation test-
ing of Smalltalk programs. In addition to replacement of
literals, the tool supports many mutation operators com-
monly used for statically typed languages [7], such as arith-
metic operator replacement. Instead of applying mutations
statically, SMutant waits until the type information is avail-
able (at runtime) and dynamically applies mutations [2]. To
the best of our knowledge, SMutant is the first tool that per-
forms this kind of mutation testing. Another novelty that
comes with SMutant is a support for defining new mutation

operators by sending a single message1 to SMutant. The tool
automatically generates the code that is needed to support
new mutation operators as described in detail in Section 3.3.
The design goals for SMutant were: (1) support for muta-

tion operators for dynamic languages that are common for
statically typed languages; (2) support for extending the set
of predefined mutation operators without knowing details
of the tool; (3) no modifications are required to the base
Smalltalk image; and (4) making the tool practical by im-
plementing known techniques from other tools (e.g. running
mutation in a separate thread to avoid infinite looping).
SMutant is publicly available at the most popular site for

Smalltalk: http://www.squeaksource.com/smutant/.

2. SMALLTALK BACKGROUND
Before we discuss SMutant in more detail, we provide a

brief, high-level overview of the characteristics of Smalltalk
that are relevant for the following sections.
Smalltalk is an object-oriented, dynamically typed, reflec-

tive programming language. As opposed to most program-
ming systems, Smalltalk does not separate application data
(objects) and code (classes). Smalltalk systems store objects
and classes in an image, that can be loaded by the virtual
machine to restore an earlier state. Therefore, Smalltalk can
be seen as a “living” system, which can be extended at run
time, saved, and loaded at later point.
Being a “pure” object-oriented language, everything – in-

cluding code – is an object in Smalltalk. Querying or modi-
fying a state of an object is performed by sending messages
that can be seen as being equivalent to a method invoca-
tion in Java. Unlike many other languages, Smalltalk does
not have primitive types or predefined messages; for exam-
ple, + is only the name of a message and it can be defined
for any object in the system. Any message can be sent to
any object. When a message is sent, the system checks if
a message is defined in the receiving object; if the message
is not defined, the doesNotUnderstand message is invoked by
the system, which throws an exception by default.
Commonly, code is written as a body of a message. How-

ever, the Smalltalk image provides a Workspace that can be
used for evaluating snippets of code. A Workspace is simi-
lar to a “Read-eval-print loop” available for many languages
(e.g., Python). Note that code evaluated in Workspace can
affect the state of the system.
A typical Smalltalk image comes with many frameworks

and tools. One of the available frameworks is SUnit, a unit
testing framework. SUnit allows for writing tests and asser-
tions in Smalltalk. It has served as a basis for all xUnit tools,
including JUnit. As in JUnit (version 3), SUnit requires (1)
a class, which extends TestCase, that defines test cases; and
(2) each test case in a separate method, whose name starts
with “test”. Optionally, the user can define setUp and tear-

Down methods that are executed before and after each test
case, respectively. Just as with many other frameworks,
SUnit is accompanied with a GUI, called TestRunner, that
enables the user to easily select and execute test cases. The
following sections describe similarities (Section 3.2) and the
dependency between SMutant (MutationTestRunner) and
SUnit (TestRunner) (Section 3.7).

1Sending a message in Smalltalk can be seen as equivalent
to a method invocation in Java (see Section 2).

MatrixMutationScenario>>classesToMutate

ˆ { Matrix }
MatrixMutationScenario>>c la s se sWithTest s

ˆ { MatrixTest }
MatrixMutationScenario>>mutat ionFactor i e s

ˆ {RetroReplacementOperatorFactory s i n g l e t on

o r i g i n a l : #+ replacement : #−}
MatrixMutationScenario>>isCopy

ˆ f a l s e

Figure 1: Mutation scenario for MatrixTest class.

3. SMUTANT DETAILS
We next describe some features, design decisions, and im-

plementation of SMutant in more detail.

3.1 Mutation Scenario
A mutation scenario is used to specify (1) which classes

belong to the SUT (classes to be mutated) and (2) which
classes belong to the test suite (classes for which mutation
score is measured). To define a mutation scenario, the user
has to extend the MutationScenario class and to override two
methods to specify (1) and (2). As an example, suppose that
the goal is to measure the mutation score of MatrixTest,
which is a test suite for the Matrix class. (Both classes are
available in the Pharo Smalltalk image [10].) The Matrix-

MutationScenario class, which is shown in Figure 1, specifies
classes that belong to a SUT by overriding classesToMutate

and classes that belong to a test suite by overriding class-

esWithTests. The user can also specify which mutation op-
erators should be used by overriding mutationFactories (de-
fault implementation includes all implemented operators).
The method isCopy is described in Section 3.6.

Note that SMutant has requirements similar to those of
SUnit, which are described in Section 2. However, defining a
mutation scenario is much simpler, since the user only has to
select proper classes to mutate and the mutation operators
from the appropriate/available sets.

3.2 GUI Design Inspired by TestRunner
As mentioned, SUnit includes TestRunner, a GUI that can

be used to select test suites to run and obtain details about
the results. Similarly, SMutant includes MutationTestRun-
ner, a GUI that can be used to select mutation scenarios
to run and obtain details about the results. Figure 2 shows
MutationTestRunner. The left-most pane lists all the cate-
gories that include mutation scenarios. When a particular
category is selected, appropriate mutation scenarios appear
in the middle pane (e.g., MatrixMutationScenario). The sta-
tus bar (top-right pane) shows number of all mutants, num-
ber of killed mutants, number of live mutants, and mutation
score. These numbers are updated dynamically as mutation
testing is in progress (similar to TestRunner). The red color
of the status bar indicates that there are live mutants, which
is analogous to the red color in TestRunner when some tests
do not pass. A green color is used when all mutants are
killed. If some mutants are alive, the middle right-most pane
lists the live mutants with the location where the mutant
was created (including class and method name). The right-
most pane at the bottom can be used to specify mutation
factories for the selected mutation scenarios (Section 3.8).
Finally, the button at the bottom can be used to execute
the selected mutation scenarios.

Figure 2: MutationTestRunner can be used to select

mutation scenarios to run and show details about

the results. The design closely mimics the design of

TestRunner.

3.3 Applying Mutations Dynamically
When a mutation scenario is run, by either using Muta-

tionTestRunner or invoking the appropriate method from
SMutant, the tool proceeds with the three steps.
Analysis. The tool analyzes the code under test (i.e., list of
classes that are returned by the classesToMutate method) to
find potential places to create mutants (e.g., + symbols, if
the mutation operator “arithmetic replacement operator: +
to - if arguments are Numbers” is selected). It is important
to note that a set of mutants is created statically. Namely,
this phase is performed before any code is executed. In other
words, a set of mutants does not depend on the test suite

and the types that are used in test cases. Unlike mutants
in statically typed languages, each mutant is surrounded
with proper type checks. This approach ensures consistent
calculation of mutation score to those reported by the tools
for statically typed languages. As in existing tools, the test
suite does not have to be executed for the mutants that
would be created at the locations that are not executed when
running the test suite with the original SUT.
Insert type checks. SMutant integrates additional checks
at the places of potential mutants to ensure that the argu-
ments of messages are of appropriate type. In this phase,
rather than copying the class that is mutated, we use pow-
erful Smalltalk reflection mechanism and replace only mu-
tated method. The changes are automatically reverted when
the mutation testing is done, so the user neither has to
worry about implementation details nor about saving/copy-
ing/restoring the code.
Execution. For each potential mutant, identified in the
first phase, the test suite is executed and mutation is applied
only if one of the inserted checks is satisfied (e.g., invokes -
instead of + if both arguments are Numbers). Note that the
same message (e.g., +) at the same place in code can be sent
with arguments of different types during the same execution.
The tool applies mutation only (and always) when types are
appropriate. This approach closely mimics mutation testing
for statically typed languages; the mutant is created at a

specific location in the code and is applied whenever the
mutated code is executed.

An alternative to dynamic mutation testing would be mu-
tation testing with support of a type inferencer. The first
step would include type inference of the SUT. In the second
step, mutants would be created in the same fashion as for
statically typed languages wherever the type of arguments
is unique (e.g., it is always Number).

3.4 Is Type Checking Necessary?
Do we need to surround mutants with type checks as de-

scribed in the previous section? In some cases, we do not.
Recall from Section 2 that any message can be sent to any
object. When the message is inappropriate for the receiver
object, the system sends doesNotUnderstand message to the
same object, which throws an exception by default. If a
mutant leads to doesNotUnderstand, it can be killed either
because of the exception or likely incorrect result if doesNo-

tUnderstand is overridden. However, this approach is not ap-
plicable in general. First, granularity of mutation operators
is lost. Namely, it would be impossible to define: “arithmetic
replacement operator: + to - if arguments are Numbers”.
Therefore, the analogy with mutation testing tools for stat-
ically typed languages would be lost. Which granularity is
actually necessary remains to be seen, and SMutant enables
performing the experiment. Second, although type checking
may not be needed for some mutation operators, for others
it is mandatory. For example, “logical negation of boolean
variable” [2] requires type information.

3.5 User-Defined Mutation Operators
SMutant supports many mutation operators that are com-

monly implemented in the tools for statically typed lan-
guages, such as literal replacement, arithmetic operator re-
placement, or relational operator replacement. While imple-
menting SMutant, the following became obvious: (1) some
traditional mutation operators can be merged into a single
mutation operator in Smalltalk and (2) defining replacement
operators follows a pattern that is easy to automate.

Some traditional mutation operators can be merged in
one mutation operator in Smalltalk because operators such
as + or -, which have a special treatment in most program-
ming languages, are treated the same as other messages. In
other words, + or - are just names of the messages and can
be defined for any type. This fact makes “arithmetic re-
placement operators” and “method replacement” the same
mutation operators in Smalltalk. We implemented only one
(generic) mutation operator for this case. Additional anal-
ysis of traditional mutation operators is needed to detect
other similar cases that may hold in Smalltalk.

Implementation of replacement mutation operators, such
as arithmetic and logical mutation operators, follows the
same pattern. Since the number of operators (e.g., arith-
metic) is limited in most statically typed languages, the re-
placement mutation operators are commonly written manu-
ally. Defining replacement mutation operators in Smalltalk
is somewhat different, because one message (including what
other languages commonly consider to be operators) can be
replaced with any other message (provided that they have
the same number of arguments). Therefore, defining all pos-
sible replacement mutation operators is not practical due
to the number of possible replacements. SMutant includes
standard sets of replacement mutation operators (e.g., arith-

def ineUserOperator := Def ineUserOperator new .

de f ineUserOperator o r i g i n a l : #+.

de f ineUserOperator replacement : #−.

de f ineUserOperator runtime : #plusToMinus .

de f ineUserOperator f i r s tType : Number .

de f ineUserOperator secondType : Number .

de f ineUserOperator d e f i n e .

Figure 3: Code to evaluate in Workspace in order

to define new mutation operator.

metic replacement operators) and includes support for user-
defined mutation operators. User can decide, based on the
application, which mutation operators to define. User only
has to specify the name of the original message (i.e., the
message to be replaced), replacement message, and type of
the arguments that must hold to enable application of muta-
tion. The code in Figure 3 can be used to define “arithmetic
replacement operator + to - when arguments are Numbers”.
It is important to mention that the list of mutation op-

erators, available in MutationTestRunner (Figure 2), is au-
tomatically updated, after the message (Figure 3) is sent.
Also code that is needed to support new operators is auto-
matically generated.

3.6 Mutation Testing Library Classes
Mutation Testing of library classes (e.g., Set) introduces

an additional challenge since these classes may be in use by
the image, the runtime, or the mutation testing tool itself.
Therefore, direct application of mutation testing on library
classes could result in unpredictable and usually incorrect
behavior. Existing tools do not specifically deal with this
issue, but leave it up to the user to copy the class and per-
form necessary changes (e.g., renaming). SMutant comes
with support for testing classes that are used by the im-
age. Instead of direct application of mutation testing as de-
scribed earlier, the tool copies the classes (classesToMutate
and classesWithTests), and performs necessary changes to
the new classes before applying the mutations. The user
can easily turn this feature on by returning “true” from is-

Copy method (see Figure 1). Caution is needed with isCopy

option; whenever possible this option should be off, since
it introduces additional overhead. Note that the classes are
copied only once, at the beginning of a mutation testing run.

3.7 Implementation Details
SMutant is developed in Pharo [10] Smalltalk. Neverthe-

less, we expect that the tool should work, after minor modi-
fications (e.g., renaming), with the Squeak [11] implementa-
tion of Smalltalk. It is important to mention that no single
line of code has to be modified/deleted/added in the base im-
age in order to support SMutant. Changes that are needed
to support GUI, which is optional, are made automatically
when the tool is installed by the user. These changes are
reverted when the tool is uninstalled. In addition, SMutant,
as many other tools for mutation testing [6,8], runs mutated
version of the code in a separate thread and kills the thread if
it did not finish in the given amount of time, which prevents
infinite loops, deadlocks, and livelocks. SMutant deploys
SUnit framework, described in Section 2, to perform muta-
tion testing: for each mutant, SMutant creates a test case
with the appropriate values that is executed by SUnit.

3.8 Limitations
There are several features that can be improved. First,

specification of mutation scenarios should be separated from
running mutation scenarios (Figure 2). We have designed a
separate GUI, which has to be integrated in SMutant, for
specifying mutation scenarios, because manually writing a
list of mutation operators may be quite tedious, although
not difficult. Second, at this point, defining new mutation
operators can be done only by sending a single message (Fig-
ure 3). We plan to design a simple GUI to simplify defining
new mutation operators. Finally, the applicability of defin-
ing new mutation operators is to be determined.

4. CONCLUSIONS
We presented SMutant, a tool for mutation testing of pro-

grams written in Smalltalk. Because the type information
is not known before the program is executed, SMutant ap-
plies mutations dynamically (at run-time), when informa-
tion about the types becomes available. Also, SMutant
supports defining new mutation operators without requir-
ing the user to know any of the implementation details of
SMutant. The code that is needed to support new mutation
operators is automatically generated. SMutant is available
at http://www.squeaksource.com/smutant/.

Acknowledgments

We thank Vilas Jagannath and Darko Marinov for great
comments on this work. Aleksandar Milicevic and Rohan
Sharma provided comments on an early draft of this pa-
per. We also thank the fellow students of CS 598REJ at the
University of Illinois at Urbana-Champaign for constructive
discussions on the material presented in this paper. This ma-
terial is based upon work partially supported by the US Na-
tional Science Foundation under Grant Nos. CCF-0746856,
CNS-0958199, and CCF-1012759.

5. REFERENCES
[1] P. Ammann and J. Offutt. Introduction to Software

Testing. 2008.

[2] L. Bottaci. Type Sensitive Application of Mutation
Operators for Dynamically Typed Programs. In ICST

Workshops, 2010.

[3] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints
on Test Data Selection: Help for the Practicing
Programmer. Computer, 4(11), 1978.

[4] R. G. Hamlet. Testing Programs with the Aid of a
Compiler. IEEE TSE, 3(4), 1977.

[5] Heckle. http://seattlerb.rubyforge.org/heckle/.

[6] S. A. Irvine, T. Pavlinic, L. Trigg, J. G. Cleary,
S. Inglis, and M. Utting. Jumble Java Byte Code to
Measure the Effectiveness of Unit Tests. In
MUTATION, 2007.

[7] Y. Jia and M. Harman. An Analysis and Survey of the
Development of Mutation Testing. IEEE TSE, 99(6),
2010.

[8] D. Marinov. Automatic Testing of Software with

Structurally Complex Inputs. PhD thesis, MIT, 2004.

[9] Pester. http://jester.sourceforge.net/.

[10] Pharo. http://www.pharo-project.org/.

[11] Squeak. http://squeak.org/.

