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Abstract. Testing refactoring engines is a challenging problem that has
gained recent attention in research. Several techniques were proposed to
automate generation of programs used as test inputs and to help devel-
opers in inspecting test failures. However, these techniques can require
substantial effort for writing test generators or finding unique bugs, and
do not provide an estimate of how reliable refactoring engines are for
refactoring tasks on real software projects.

This paper evaluates an end-to-end approach for testing refactoring en-
gines and estimating their reliability by (1) systematically applying refac-
torings at a large number of places in well-known, open-source projects
and collecting failures during refactoring or while trying to compile the
refactored projects, (2) clustering failures into a small, manageable num-
ber of failure groups, and (3) inspecting failures to identify non-duplicate
bugs. By using this approach on the Eclipse refactoring engines for Java
and C, we already found and reported 77 new bugs for Java and 43 for
C. Despite the seemingly large numbers of bugs, we found these refactor-
ing engines to be relatively reliable, with only 1.4% of refactoring tasks
failing for Java and 7.5% for C.
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1 Introduction

Refactorings [11] are behavior-preserving code transformations that developers
traditionally apply to improve the design of existing code. Modern IDEs—such as
Eclipse, NetBeans, or Visual Studio—contain refactoring engines that automate
applications of refactorings. Previous studies [6, 8, 28, 45] show that most com-
monly applied refactorings include renaming program elements, extracting meth-
ods, and inlining methods. The list of refactorings is growing as researchers and
practitioners recognize new patterns that are worth automating [5, 9, 10,36,48].
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Testing refactoring engines is an important yet challenging problem. It is
important because bugs3 in refactoring engines can affect programmer produc-
tivity, introduce errors in the code being refactored, and reduce the confidence
of the programmer who may decide to perform manual refactorings that can
be even more error-prone. It is challenging because refactoring engines require
complex test inputs, i.e., programs/projects to be refactored; such test inputs
are hard to generate using naive random generation or symbolic execution [14].

Automated testing of refactoring engines has gained attention in research [7,
12, 17, 35, 38, 39, 41]. Most proposed techniques require manually writing test

generators that use sophisticated random or bounded-exhaustive generation to
produce the required complex test inputs. Such techniques have had some im-
pact on the research and practice of building refactoring engines, e.g., by finding
real bugs in widely used IDEs [7, 12, 38, 39] or by affecting design of refactoring
engines [15, 31, 34, 35]. However, such techniques also have several deficiencies.
First, they require substantial manual effort for writing test generators. Sec-
ond, the generated test inputs may not represent real refactoring scenarios; the
generators often produce “corner cases” that IDE developers or users do not
care about. Third, they do not provide any estimate of how reliable refactoring
engines are for tasks on real software projects.

Instead of using artificially generated programs to evaluate refactoring en-
gines, several research projects [4, 5, 37, 41, 44] use real programs. Spinellis [41]
mentions testing the Rename refactoring of his CScout refactoring engine on all
identifiers in the Linux kernel. Independently, Thies and Steimann [44] tested
two refactorings in Eclipse in a similar manner. However, these projects did
not consider the overall process from applying refactorings to inspecting fail-
ures to reporting new, unique bugs, and they did not quantify the reliability of
widely used refactoring engines such as those in Eclipse. While previous stud-
ies [7,35,38,39] show (and our current study confirms) that systematic testing of
refactoring engines can expose a large number of failures, it is important to map
these failures to bug reports. Jagannath et al. [17] proposed a technique that
clusters failures to help in inspection, but they evaluated the technique only on
artificially generated programs. (Section 6 discusses related work in more detail.)

This paper makes two contributions.

End-to-End Approach:We propose testing refactoring engines and evaluating
their reliability by combining techniques that systematically apply refactorings
on a large number of places in real software projects [4, 5, 41, 44] and that ef-
fectively cluster the failures to a small number of (likely unique) bugs [17]. Our
approach consists of the following steps: (1) given a set of projects, systemati-
cally apply refactorings in many places and collect failures where the refactoring

3 The term “bug” used in this paper is more formally called a “fault”, i.e., an error
in the code of a refactoring engine, in contrast to a “failure”, i.e., an error observed
from an execution of the refactoring engine.
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engine throws an exception or produces refactored code that does not compile4,
(2) split these failures into clusters such that all failures in the same/different
cluster/clusters are likely due to the same/different underlying bug/bugs, (3) in-
spect randomly selected failures from the clusters, minimize them, identify non-
duplicate bugs, and report them. We fully automated step 1, semi-automated
step 2, and, for now, manually perform step 3.

While previous work explored some individual steps separately, our com-
bined approach leads to a more effective, end-to-end methodology for evalu-
ating refactoring engines. In contrast to techniques that automate test gen-
eration [7, 12, 17, 38, 39], our approach does not require manually writing test
generators, finds bugs that occur in real refactoring tasks, and allows us to char-
acterize reliability of refactoring engines for real refactoring tasks. We expect
that bugs commonly found in real applications are more likely to be fixed than
bugs discovered from artificially generated corner cases.

Evaluation: We use our approach to extensively evaluate the Eclipse refac-
toring engines for two programming languages—Java and C. Our study is the
first to test all refactorings—23 for Java and 5 for C—currently implemented
in Eclipse for these two languages. So far we have found 77 bugs in 21 refac-
torings for Java (not finding any bug in two refactorings) and 43 bugs in 5
refactorings for C, which is more bugs than any previous study that we are
aware of [7, 12, 38, 39]. We reported these bugs to the Eclipse developers, who
acknowledged our reports—“Thanks for opening all the useful bug reports.
Much appreciated!” (http://dev.eclipse.org/mhonarc/lists/jdt-ui-dev/
msg01278.html)—and have already fixed 8 of these bugs. Our clustering tech-
nique effectively reduces almost 15000 failures in Java and C to 356 clusters to
be inspected. Moreover, we find refactoring engines to be relatively reliable, with
the average rate of failing refactoring tasks being 1.4% for Java and 7.5% for C.

To the best of our knowledge, our study is the first to (1) evaluate this end-
to-end approach of applying refactorings on real software projects and mapping
the failures to unique bugs, (2) cluster failures of refactoring engines on real
projects, (3) highlight the challenge of finding duplicate failures and bug reports,
(4) show that this approach can be easily adopted for multiple programming
languages unlike test generators that need to be written from scratch for each
language, and (5) report failure rates for refactoring engines as a way to estimate
their reliability. Our promising results provide motivation for the community to
automate various steps from our approach, including minimization of programs
that lead to failures [27, 33, 50] and searching for duplicate bug reports that
involve programs as test inputs.

The key automated steps of our approach have been successfully evaluated by
the ECOOP Artifact Evaluation Committee (http://ecoop13-aec.cs.brown.
edu/) and found to meet expectations. Our main results with the links to the
reported bugs are available online: http://mir.cs.illinois.edu/rtr.

4 One can use other test oracles [7, 39] in addition to refactored code not compiling.
Note that we check compilation only when the refactoring engine raises no warning
that the refactoring should not proceed because some precondition is violated.

http://dev.eclipse.org/mhonarc/lists/jdt-ui-dev/msg01278.html
http://dev.eclipse.org/mhonarc/lists/jdt-ui-dev/msg01278.html
http://ecoop13-aec.cs.brown.edu/
http://ecoop13-aec.cs.brown.edu/
http://mir.cs.illinois.edu/rtr
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2 Example

As an example, we illustrate using our approach to test the Change Method

Signature refactoring for Java. This refactoring takes as input one method and
a set of changes to make to various parts of the method signature: visibility (e.g.,
private), return type, method name, and parameter list (add, remove, or reorder
parameters). Changing the signature of one given method can lead to changing
several other methods (e.g., those that override or are overridden by the given
method) and can require changing the call sites to the method(s) being changed.

Our approach has three steps. In the first step, our automated tool compiles
our corpus of real programs and finds all the program elements where a given
refactoring can be applied (Section 3.1). For Change Method Signature,
this corresponds to finding all the methods. For each such element, the tool then
repeatedly applies the applicable refactoring tasks that pass the preconditions,
records if there is a failure, and undoes the applied refactoring so that the next
refactoring task can be applied. For Change Method Signature, our tool
performs four refactoring tasks for each method: (1) changes visibility, (2) adds
a parameter in first position, (3) removes the first parameter, and (4) reverses
the order of parameters. (Section 3 has a detailed list.) Note that some tasks
may not apply to some methods, e.g., a parameter cannot be removed if the
target method has no parameters.

For the experiments, we use five popular Java projects: JPF, JUnit, log4j,
Lucene, and Math (Section 5). On these projects, our tool performs a total of
28526 refactoring tasks for Change Method Signature. These tasks result
in 565 failures. While the absolute number of failures is relatively large, the
relative rate of failures is 565/28526=2.0%, i.e., only a relatively small fraction
of all refactoring tasks result in a failure. Of these 565 failures, 555 are compiler
errors denoting that the resulting program does not compile any more, and 10
are exception cases in which the refactoring engine throws an exception while
applying the change. For each failure, our tool records where the refactoring is
applied, the type of failure, and the messages produced by the failure—compiler
error messages or exception stack traces.

It is worth pointing out that no prior study on testing refactoring engines [7,
12, 17, 35, 38, 39, 41, 44] report finding any exception case. At least one paper [7]
explicitly states checking for such cases but finding no failure, and other papers
use automated tools that would likely crash for uncaught exceptions and thus
be observed by the researchers. Hence, the large number and diversity of real
refactoring tasks, arising from applying our approach systematically on several
open-source projects, enables us to discover these cases missed by previous work.

Even when the absolute number of failures is relatively large, many of them
are due to the same underlying bug in the refactoring engine. Inspecting all
the failures is prohibitively expensive and unnecessary to identify unique bugs.
Since one of our goals is to identify new, unique bugs in the refactoring engine,
we want to inspect a relatively small number of the failures that likely have
different underlying bugs. A naive approach that randomly selects some number
of failures to be inspected does not work well [17], and it is not obvious a priori
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how many failures to randomly inspect. Thus, one can end up wasting time by
inspecting several failures with the same underlying bug, or one can miss a bug
by not inspecting any failure for that bug.

In the second step, our tool splits the failures into clusters based on the mes-
sages produced by the failure (Section 3.2). Ideally, clustering should satisfy two
conditions: (1) all the failures in the same cluster should have the same underly-
ing bug such that inspecting only one representative from each cluster will not
miss any bug, and (2) the failures from different clusters should have different
underlying bugs such that inspecting representatives from multiple clusters will
not find duplicate bugs. To cluster the failures, we build on the idea of abstract
messages [17]. This idea was previously proposed for automatically generated
test inputs for refactoring engines but was not evaluated for failures on real
refactoring tasks.

For Change Method Signature, our clustering splits 555 failures with
compiler errors into 10 clusters (that have between 1 and 526 failures per cluster)
and splits 10 failures with exceptions into 2 clusters (that have 4 and 6 failures).
If one has insufficient resources to inspect all the clusters, one can prioritize
the clusters based on the type of bugs one is looking for. For example, one can
inspect clusters that have more failures before clusters that have fewer failures
(thus looking for common bugs rather than looking for more “corner cases”), or
inspect clusters that have failures arising from multiple projects before clusters
that have failures arising from only one project (thus looking for bugs that
are more common to be encountered by the users), or inspect clusters with
exceptions before clusters with compiler errors (our anecdotal experience shows
that Eclipse developers fix the exception cases faster as they may consider these
bugs to be more severe).

In the third step, we manually analyze the clusters to identify and report
non-duplicate bugs. For our running example, we inspect one randomly selected
failure from each of these 10+2 clusters. This inspection involves two tasks:
(1) minimizing the input project to understand the underlying bug and to pre-
pare a bug report that makes debugging easier, and (2) identifying likely dupli-
cates among the bugs in our clusters and bugs already in the Eclipse Bugzilla
database. While there is research on automated minimization [27,33,50], we cur-
rently perform minimization manually. We experienced that minimizing a failure
can sometimes take less time and effort than identifying duplicate bugs. Mini-
mizing a failure took us 5–60 minutes, with an average around 10 minutes, while
identifying duplicates sometimes took over 60 minutes, with an average around
15 minutes. For the examples in figures 1a and 1b, the minimization took 10 and
60 minutes, respectively. In the end, by inspecting 10+2 (compiler+exception)
failures, we found 4+2 unique bugs, and of those 1+2 bugs were previously
unreported in Eclipse Bugzilla.

We discuss in more detail the two bugs that lead to uncaught exceptions.
Figure 1a shows the minimized code based on the Lucene project [24] that leads
to a NullPointerException when the Change Method Signature refactoring
is used to reorder the two parameters of the method m. In this case, the names
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// C. java
class C {

C( Object o ) {}
void m() {

new C(new Object ( ) {
// Reorder parameters
void m( int i , int j )
{}

} ) ;
}

}

(a) NullPointerException

// . s e t t i n g s /org . e c l i p s e . j d t . core . pre f s
org . e c l i p s e . j d t . core . compi le r . source =1.4

// A. java
class A {

// Remove parameter
void add( int i ) {
}

}

(b) IndexOutOfBoundsException

Fig. 1: Examples of bugs found in Change Method Signature by applying
refactorings on Lucene and log4j projects, respectively

of the class, method, and parameters are not relevant for reproducing the ex-
ception. Figure 1b shows the minimized code from log4j [23] that leads to an
IndexOutOfBoundsException when Change Method Signature is used to re-
move the parameter of the method add; as opposed to the first bug, the method
name must be add in order to be able to reproduce the bug. Additionally, the
project must be using Java version 1.4 or lower (shown in the settings file in
Figure 1b). Indeed, we find that reproducing some bugs requires more informa-
tion about the project rather than just the source code of the program. This
bug cannot be exposed by existing automated techniques for testing refactoring
engines [7,12,38,39], because they focus on generating Java source code and not
project configurations. In contrast, we found these bugs by applying refactorings
on real projects.

While the minimized versions can look like “corner cases”, the bugs actually
arise on real code, and the IDE developers can use that information to priori-
tize fixing of the bugs. For example, NullPointerException related to Figure 1a
arises in four refactoring tasks, whereas IndexOutOfBoundsException related to
Figure 1b arises in six refactoring tasks.

3 Approach

This section describes in more detail our end-to-end approach for testing refac-
toring engines. Our approach consists of three main steps: (1) collecting failures

discovers all refactoring tasks, runs these tasks, and outputs failing tasks (Sec-
tion 3.1), (2) clustering failures splits failing tasks into clusters (Section 3.2), and
(3) inspecting failures minimizes one failing task per cluster and finds duplicate
failures to report new, unique bugs (since this step is currently manual, we do
not discuss it in this section).

3.1 Collecting Failures

Figure 2 outlines the basic procedure for collecting failures. The procedure takes
three inputs: the refactoring under test (RUT), a Java/C project containing the
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1 collect failures(refactoring, project, threshold):
2 elements = find elements(refactoring, project)
3 for el in elements:
4 if is reached(threshold): break
5 refactoring tasks = create refactoring tasks(refactoring, project, el)
6 for task in refactoring tasks:
7 configure properties(task)
8 try:
9 if check preconditions(task):

10 refactored project = perform(task)
11 else: continue
12 except exc:
13 report(”Failure: Refactoring threw an exception”, exc, task)
14 continue

15 errors = compile(refactored project)
16 if errors is not empty:
17 report(”Failure: Refactored program failed check”, errors, task)
18 continue

19 report(”Success”, task)

Fig. 2: Collecting failures for one given refactoring and project

program on which the refactoring will be applied, and a threshold that deter-
mines the maximum number of times to apply the RUT on the project. The
procedure first finds the set of program elements in the given project on which
the RUT can be applied and then computes a set of refactoring tasks for each
element. For example, for Change Method Signature, the set of elements
consists of all methods in the project, and the set of tasks can include chang-
ing method visibility, adding a parameter, removing a parameter, and reversing
parameter order.

For each refactoring task, the procedure performs several steps in a loop. It
first configures the properties for the refactoring task: in addition to the input
project and program element, each refactoring can have a number of properties.
For example, changing method visibility in Change Method Signature re-
quires providing the new visibility: private, protected, default, or public. The
specific property values depend on the particular refactoring task. For example,
to actually change the method visibility we need to choose a new value for the
visibility that differs from the old value, so different values can be provided for
different refactoring tasks.

The procedure next checks if the refactoring task should proceed (line 9).
In some cases the refactoring engine gives a warning that the refactoring could
change the program behavior thus violating the definition that refactorings are
behavior-preserving. For example, the refactoring engine could give a warning
if we attempt to change visibility of a method to private when the method is
called from outside its class. In those cases, our procedure does not proceed
with the refactoring as checking the resulting program for compiler errors could
produce many false positives because the problems do not arise from real bugs
in the refactoring engine but from the ignored warnings. An alternative would
be to proceed despite warnings but to check only whether the refactoring engine
throws an exception and not whether the refactored program compiles.
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1 # the procedure maintains a set called ”abstractions”
2 # each abstraction maps a concrete message (exception or compiler error) to an abstract message
3 # applying abstractions to a concrete message returns either an abstract message or ”cannot abstract”
4

5 cluster failures(refactorings, projects, threshold):
6 # collect all failures
7 failures = {} # empty set
8 for rf in refactorings:
9 for pj in projects:

10 failures += collect failures(rf, pj, threshold)
11

12 # cluster all failures
13 all abstract messages = {} # empty set
14 for failure in failures:
15 failure.abstract messages = {} # empty set
16 for c msg in failure.concrete messages:
17 if apply(abstractions, c msg) = ”cannot abstract”:
18 if can automatically abstract messages(): # JDT tool
19 abstractions += automatically abstract message(c msg, failure.task)
20 else: # current CDT tool
21 abstractions += ask user for abstraction(c msg)
22 a msg = apply(abstractions, c msg)
23 failure.abstract messages += a msg
24 all abstract messages += a msg
25

26 clusters = {} # empty set of sets of failures
27 for rf in refactorings:
28 for type in { exception, compiler }:
29 for a msg in all abstract messages:
30 cluster = { f ∈ failures | f.refactoring = rf ∧ f.type = type ∧
31 a msg ∈ f.abstract messages }
32 clusters += cluster

Fig. 3: Clustering failures for several given refactorings and projects

The procedure then performs the program transformation. Note that both
this action and the previous action (lines 9 and 10) execute the actual RUT code
from the refactoring engine. If these actions result in an uncaught exception, the
procedure records a failure with an exception message.

If the refactoring task produced a refactored project, the procedure checks
whether the new project compiles (line 15). One could optionally check other
oracles [7,39], e.g., whether the refactored project still passes all its tests [41]. If
there are any compiler errors, the procedure records a failure with all the error
messages. Note that when one refactored project does not compile, there can be
multiple compiler error messages, whereas when the refactoring engine throws
an exception, there is only one message with a stack trace.

3.2 Clustering Failures

Figure 3 shows the procedure that runs a set of refactorings on a set of projects
(up to the maximum number of refactoring tasks per refactoring and project
pair), collects the failures, and then clusters the failures (lines 12 to 24). The
goal of clustering is to reduce the number of failures that should be inspected to
detect unique bugs.
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The clustering first computes abstract messages from the concrete messages
that were recorded with the failures. Each failure corresponds to a refactor-
ing task that either threw an exception during the refactoring or produced
compiler error(s) on the refactored project. The concrete messages are the ac-
tual strings, e.g., “The type new MultivariateFunction(){} must implement the

inherited abstract method MultivariateFunction.value(double[])” and “The
type FieldValueHitQueue<T>.OneComparatorFieldValueHitQueue<T> must impleme-

nt the inherited abstract method PriorityQueue<T>.lessThan(Object, T, T)”.
The goal of abstracting these messages is to form clusters of failures that are
likely due to the same underlying bug.

The procedure maintains a set of abstraction functions, each of which maps
a concrete message (exception or compiler error) to an abstract message. For ex-
ceptions, our tool currently maps a failure to the top stack frame from the stack
trace. For compiler errors, the abstractions are regular expressions. Our tool for
Eclipse JDT automatically creates a regular expression from an object repre-
senting a compiler error during Eclipse execution; to obtain the error object, our
tool reruns the refactoring task (line 19) and replaces all the arguments (e.g.,
new MultivariateFunction(){}) of the error message with “.*”. For example,
it can create a regular expression “The type .* must implement the inherited

abstract method .*”. Our tool for Eclipse CDT currently requires the user to
manually provide a set of such regular expressions; we do not have full automa-
tion because some messages are more project specific because they are output
from make not just compiler errors. These regular expressions typically ignore the
project-specific details such as identifiers, file names, or line/column numbers.
For each error, the tool checks whether the error matches one of the regular ex-
pressions; if not, the user is asked to provide a new expression. If yes, the regular
expression itself is used as the abstract message. For example, the two messages
from the previous paragraph are both abstracted to the same abstract message
from this paragraph. Note that many regular expressions can be reused across
refactorings. Across all failing refactoring tasks in our experiments, we had 112
automatically generated regular expressions for Java and 50 manually written
regular expressions for C; it takes under a minute to manually write one regular
expression, and we did not find it to be a big burden.

After the messages are abstracted, the clustering splits the failures into
groups that have the same refactoring name (ignoring options for the refac-
toring task), the same type of failure (either exception or compiler error), and
contain the same abstract message. As a result, one failure can belong to multi-
ple clusters (known as “overlapping clustering” or “multi-view clustering” [16]),
i.e., if a failure has multiple compiler errors, it is put in all the clusters that
correspond to these errors. The expectation is that failures in the same cluster
are likely due to the same bug, and failures in different clusters are likely due to
different bugs. (Note that one failure by itself may be due to several bugs.) The
clustering splits the failures based on the refactoring name because the chance
is lower that failures for different refactorings are caused by the same bug, al-
though the chance is not zero as some refactorings share code. Likewise, the
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clustering keeps separate the clusters for exceptions and compiler errors because
those clusters are unlikely to be caused by the same bug.

4 Implementation

This section describes how we implemented our approach for two refactoring
engines in Eclipse—JDT [18] for Java and CDT [3] for C. While we implemented
the approach only for Eclipse because of our familiarity with the infrastructure,
the approach also applies to other IDEs.

4.1 Testing JDT

We implemented our tool as an Eclipse plug-in that supports testing all 23 refac-
torings available in the Eclipse refactoring menu (the first column of Figure 4)5.
Our plug-in fully automates all the steps from figures 2 and 3 for the Eclipse
JDT refactoring engine.

Our plug-in selects the set of relevant program elements for each refactoring
based on the refactoring specification [32] (e.g., it selects methods for Change

Method Signature). The second column of Figure 4 shows the precise set of
elements that our tool selects by default. It selects only a subset of elements for
some refactorings to match what was used in previous studies [7,12,38,39], e.g.,
for Rename these studies selected all fields, local variables, and methods but
not types or packages. Our implementation offers a number of options that can
select a superset or subset of the default set of elements, but our evaluation uses
the default set.

Many refactorings have a number of properties that can be configured, e.g.,
for Convert Local Variable to Field the properties include: mark the field
as final, mark the field as static, name for the field, location of initialization, and
modifiers. By default our plug-in uses only one configuration of property values.
Our experiments (Section 5) show that using one configuration suffices to find
many new bugs in the current Eclipse refactoring engines; in the future, we plan
to explore testing multiple configurations. The third column of Figure 4 lists
the precise pairs (property, value) for all properties that our plug-in explicitly
sets. For the properties that are not listed, our plug-in uses the default values
that Eclipse provides. We select the values such that refactorings are likely to
proceed and not raise warnings about violated preconditions, e.g., we rename a
program elements to a name that is new to the project rather than some existing,
conflicting name.

The main loop of our plug-in executes refactoring tasks and checks the results.
These operations would be very slow if implemented naively by first creating a
new Eclipse Java project for each refactoring task, then populating this project
with the source code under test, refactoring the code, and compiling the entire
refactored project to check for compiler errors. Our plug-in provides two im-
portant optimizations. First, it does not create a new Eclipse Java project for

5 The order of the refactorings matches the order in the Eclipse refactoring menu.



XI

Refactoring Elements (Property, Value)

Rename
fieldsF

local variablesL

methodsM

F,L,Mnew name, non-conflicting
L,Mupdate references, true

Move
instance methodsIM

static methodsSM

IM,SMdelegate updating, true
IM,SMdeprecate delegates, true
IMinline delegator, true
IMuse getter/setters, true
IMtarget, non-primitive
parameter types

SMtarget, previous type in
lexicographical order

Change Method Signature
methodsM

parametersP

Mvisibility, private
Pdefault value for added, null
Padd/remove position, 0
Pnew order, reverse

Extract Method expressions
new name, non-conflicting
visibility, public
replace duplicates, true

Extract Local non-void expressions
declare final, true
replace all occurrences, true
new name, non-conflicting

Extract Constant
literals
exp.s with literals
method invocations

replace all occurrences, true
visibility, public
qualify references, true

Inline
constantsC

local variables
methodsM

Cremove declaration, true
Mdelete source, true

Convert Local To Field local variables -

Convert Anonymous anonymous classes
new name, non-conflicting
declare static, true

Move Type To New File non-local types -

Extract Superclass top level classes

create method stubs, true
instanceof, true
delete methods, true
elements, all public methods

Extract Interface types
annotations, true
visibility, public
replace, true

Use Supertype types destination, all supertypes

Push Down types element to push, a member

Pull Up types

use keyword this, true
override annotation, true
destination, a supertype
element to pull, a member

Extract Class fields create getter/setter, true

Introduce Param. Object methods top level, false

Introduce Indirection methods update references, true

Introduce Factory methods protect constructor, true

Introduce Parameter expressions -

Encapsulate Field fields
visibility, public
encapsulate declaring class, true

Generalize Declared Type types destination, a supertype

Infer Type Arguments compilation units -

Fig. 4: Default set of elements and (property, value) pairs for JDT
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Refactoring Elements (Property, Value)

Rename

global variables
local variables
function parameters
functions
structure members
macros

new name, non-conflicting

Extract Function
expressions
single statements

new name, non-conflicting

Extract Local Variable expressions new name, non-conflicting

Extract Constant literals new name, non-conflicting

Toggle Function functions create header, true

Fig. 5: Default set of elements and (property, value) pairs for CDT

each task; instead, it creates one Eclipse Java project for the first task and then,
after applying the refactoring and checking the results, it undoes the refactoring
to restore the original project state. Undoing the refactoring is over an order
of magnitude faster than creating a new Eclipse project. Currently, we rely on
the Eclipse implementation of undo refactoring. However, as this implementa-
tion may be incorrect by itself, we could optionally copy the project to check
the undo and to ensure that the project under refactoring is consistent before
each refactoring task. Second, the plug-in does not compile the entire refactored
project but only focuses on the file that contains the program element being
refactored. Although this optimization significantly improves the performance,
it may lead to false negatives as compiler errors may be in other affected files or
the files that depend on the affected files. Our plug-in could be easily configured
to compile the entire project after each refactoring task.

4.2 Testing CDT

Our implementation for Eclipse CDT, which targets the C and C++ program-
ming languages, is similar to the implementation for JDT. For CDT we also
implemented an Eclipse plug-in that supports all five C-specific refactorings
available in CDT. We tested Eclipse 4.2.1 and CDT 8.1.1 (the Juno SR1 release
of both Eclipse and CDT) [21].

Similar to our plug-in for testing the JDT refactorings, the set of relevant
program elements for the CDT refactorings was derived from the refactoring
specification. The default sets of elements and the default configurations for the
refactorings are shown in Figure 5.

5 Evaluation

Our main goal was to evaluate how our proposed end-to-end approach helps in
testing refactoring engines and estimating their reliability. This section describes
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Subject Description Version LOC

Java

JPF [19] Model checking tool hg:960 95962
JUnit [20] Unit testing framework git:r4.8.1-408-ge8b91fa 18199
log4j [23] Logging framework svn:1406847 30058
Lucene [24] Text search engine library 3.5.0 129820
Math [26] Library of mathematics components 3.3.0 120424

C
GMP [13] Arbitrary precision arithmetic library 4.3.2 81900
libpng [22] Official PNG reference library 1.2.6 33908
zlib [51] Lossless data-compression library 1.2.5 19855

Fig. 6: Subject programs used in the experiments

the projects that we used for testing Eclipse JDT and CDT refactoring engines,
the failures that were collected, the clusters that were created, and the bugs that
we reported to Eclipse Bugzilla.

5.1 Projects Under Refactoring

Figure 6 shows the Java and C projects that we use in our evaluation. We tab-
ulate the project name and the reference from which the project was obtained,
a brief description of each project, version/revision number, and the number of
(non-comment, non-blank) lines of code. We selected these projects because we
were familiar with them, and they provide a diverse set of projects of various
sizes (#LOC, #classes, #methods) and using different programming language
features and design styles. For example, JUnit is a representative of a highly
modular object-oriented design, whereas Math has a large number of local vari-
ables and constants.

5.2 Failure and Clustering Statistics

Figures 7 and 9 show the execution statistics from applying refactorings (in
configurations from figures 4 and 5) on the selected set of projects for Java and
C, respectively. For each refactoring and project, we tabulate the number of times
that the refactoring is applied, the number of failures, and the total execution
time (which includes finding the places where to apply the refactoring, applying
the refactoring, and checking the refactored project).

JDT Results We ran all JDT experiments on a 64-core Intel Xeon CPU L7555
@ 1.87GHz with 64GB of main memory, running Oracle Java version 1.7.0 04.
In all runs we set the maximum number of refactoring tasks per file to 100 to
limit the execution time. The runs still took over 200hrs of machine time overall.

The bottom of Figure 7 shows the ratio of the total number of failures and
the total number of refactoring tasks applied on each project. The maximum
ratio of 2.0% indicates that the Eclipse JDT refactoring engine is quite reliable,
but there is still space for improvements.
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Rename 20024 10 760 4025 8 69 5320 2 92 25897 24 626 26447 48 489
Move 1557 0 62 246 1 6 438 0 9 750 4 42 507 0 23

Change Method Signature 5021 289 429 5286 30 125 4261 65 129 6146 124 516 7812 57 440
Extract Method 26405 182 156 6183 28 27 8770 72 32 39468 152 206 39177 234 265
Extract Local 34834 0 245 4460 0 22 11020 0 46 50278 0 353 50796 0 393
Extract Constant 16752 0 183 2355 0 13 5444 0 26 26965 0 245 29997 0 257
Inline 18446 180 329 3745 60 41 4853 34 48 23499 569 323 21978 662 174

Convert Local To Field 7605 1 58 1041 0 4 2307 4 7 13802 8 58 2934 0 17
Convert Anonymous 146 1 4 143 0 1 7 0 0 293 38 3 314 5 5
Move Type To New File 198 19 10 440 5 9 82 3 1 550 22 24 165 2 5

Extract Superclass 248 0 74 419 0 11 87 0 2 232 0 24 590 0 43
Extract Interface 1251 237 69 730 31 15 332 43 7 1365 725 51 1122 121 29
Use Supertype 940 44 48 257 4 3 278 0 3 1195 24 31 814 13 19
Push Down 2666 79 353 387 11 9 529 7 8 2932 72 328 2001 14 51
Pull Up 3146 34 145 692 14 9 1774 2 11 5550 25 216 1657 87 40

Extract Class 61 2 1 363 45 2 92 15 1 221 22 4 2033 490 48
Introduce Param. Object 4590 114 1258 2421 105 73 2036 30 83 5185 233 515 7793 519 743

Introduce Indirection 4418 30 170 1813 4 37 1248 2 28 4835 41 200 4768 44 112
Introduce Factory 776 53 9 197 7 2 297 9 2 1069 62 13 1140 100 17
Introduce Parameter 895 359 12 2711 298 64 1711 110 42 2365 556 64 1721 194 44
Encapsulate Field 2749 37 50 563 3 6 977 71 11 4309 109 71 2885 10 41

Generalize Declared Type 2734 314 280 1285 157 15 2506 544 24 1240 144 37 2638 65 35
Infer Type Arguments 886 8 8 330 1 2 250 0 0 817 10 5 970 72 10
∑

156348 1993 4713 40092 812 565 54619 1013 612 218963 2964 3955 210259 2737 3300

#Failures/#Refact. Tasks 1.3% 2.0% 1.9% 1.4% 1.3%

Fig. 7: Execution statistics of our JDT plug-in on a set of Java projects
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Compiler Error Exception
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Rename 81713 92 90 5 1 54 ‡6 2 1 2 2 1
Move 3498 5 5 2 1 4 1 0 0 - - 0

Change Method Signature 28526 565 555 10 1 526 8 10 2 4 6 2
Extract Method 120003 668 665 14 1 390 5 3 1 3 3 0
Extract Local 151388 0 0 0 - - 0 0 0 - - 0

Extract Constant 81513 0 0 0 - - †1 0 0 - - 0
Inline 72521 1505 1475 42 1 790 12 30 3 2 23 0

Convert Local To Field 27689 13 13 9 1 5 2 0 0 - - 0
Convert Anonymous 903 44 29 8 1 10 2 15 1 15 15 0
Move Type To New File 1435 51 50 22 1 18 5 1 1 1 1 0

Extract Superclass 1576 0 0 0 - - 0 0 0 - - 0
Extract Interface 4800 1157 1143 16 1 725 4 14 1 14 14 0
Use Supertype 3484 85 85 21 1 16 6 0 0 - - 0
Push Down 8515 183 183 11 1 121 6 0 0 - - 0
Pull Up 12819 162 45 10 1 23 3 117 2 3 114 0

Extract Class 2770 574 574 16 1 275 3 0 0 - - 0
Introduce Param. Object 22025 1001 839 15 1 455 2 162 4 2 140 0

Introduce Indirection 17082 121 72 7 4 31 1 49 3 4 32 2
Introduce Factory 3479 231 231 7 1 223 3 0 0 - - 0

Introduce Parameter 9403 1517 0 0 - - 0 1517 2 1 1516 ‡3
Encapsulate Field 11483 230 212 10 1 94 8 18 1 18 18 0

Generalize Declared Type 10403 1224 1176 22 1 339 8 48 3 6 26 1
Infer Type Arguments 3253 91 7 7 1 3 1 84 2 83 84 2
∑

680281 9519 7449 254 87 2070 27 11

#Failures/#Refact. Tasks 1.4%

Fig. 8: Failure and cluster statistics for Java projects. (The number of bugs is
likely higher; while we minimized one failure from each of 281 clusters, we have
not checked duplicates for 141 minimized failures.) †The refactoring implements
too strong precondition. ‡We reported two bugs that had the same stack trace
but result in different compiler errors in the latest version of Eclipse.

Figure 8 shows additional statistics about failures. The column “#Refact.
Tasks” shows the number of refactoring tasks performed across all the projects,
and the column “#Failures” shows the total number of failures. The next two
groups of columns split the results for the failures that have compiler errors or
exceptions. Each group tabulates the number of failures, the number of clus-
ters, the minimum and maximum sizes of clusters (measured by the number of
failures), and the number of bugs we found based on these clusters.
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Rename 6688 555 739 2395 43 118 1569 0 9

Extract Method 16742 1176 579 5092 548 172 1496 58 24

Extract Local 5893 363 1240 2660 554 65 3473 406 59

Extract Constant 18788 387 902 2208 142 62 2800 331 28

Toggle Function 1434 403 10 302 293 2 332 167 1
∑

49545 2884 3470 12657 1580 419 9670 962 121

#Failures/#Refact. Tasks 5.8% 12.4% 9.9%

Fig. 9: Execution statistics of our CDT plug-in on a set of C projects

We believe that the total of 680281 refactoring tasks cover a diverse spectrum
of refactoring tasks and allow us to identify bugs that can be encountered in
practice. The total number of failures is 9519, which may look large but is a
relatively small fraction of the total number of refactoring tasks.

These failures are split into a total of 281 clusters: 254 compiler error clusters
and 27 exception clusters. Clusters vary in size from 1 to 1516 failures, with the
median and mean of 5 and 40.3, respectively. Recall that the cluster size can
be used to prioritize inspection and/or fixing of bugs, and the same failure can
appear in multiple clusters. For example, consider the two exception clusters for
Infer Type Arguments. One cluster has all 84 failures, and the other cluster
has 83 failures. It means that 83 failures have two messages each, and one failure
has only one message (that abstracts to the same abstract message as one of the
two messages from the other failures).

CDT Results We ran all CDT experiments on an Intel Xeon Quad Core CPU
X3440 @ 2.53GHz with 16GB of main memory.

For Rename, we run refactoring tasks on all C files in a given project. For
each file, we attempt to rename at most 50 local variables, 50 function param-
eters, 20 global variables, 20 function names, and 20 macros. Across all three
projects, the Rename refactorings run for a total of 866 minutes—overall, 10652
refactorings are attempted with 598 failures. Of these failures, 42% are compiler
errors, while 58% are exception failures. We find a larger percentage of exceptions
in CDT, presumably because it is less stable than JDT.

For Extract Function, we attempt to extract at most 100 statements and
100 expressions per C file. Out of 23330 attempts, 1782 fail, with 1453 compiler
error failures and 329 exception failures. The total run takes 775 minutes. For
Extract local Variable, Extract Constant, and Toggle Function,
we attempt to extract at most 100 expressions, literals, and functions per C
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Rename 10652 598 252 3 1 173 2 346 2 3 343 0

Extract Method 23330 1782 1453 34 1 435 21 329 8 1 56 3

Extract Local 12026 1323 754 11 3 412 7 569 4 6 263 3

Extract Constant 23796 860 142 3 1 84 2 718 3 125 426 2

Toggle Function 2068 863 9 2 1 8 1 854 5 23 409 2
∑

71872 5426 2610 53 33 2816 22 10

#Failures/#Refact. Tasks 7.5%

Fig. 10: Failure and cluster statistics for C projects

file, respectively. Across all refactorings, libpng has the highest failure rate with
12.4%, followed by zlib and GMP.

While we only check that the refactored program compiles, one can use other
oracles [7, 39]. For example, for the Rename refactoring on GMP, we ran tests
(‘make test’) in addition to compilation (‘make’). However, this did not produce
any extra errors and was taking too much time, so we did not run tests for other
cases. In the future, we plan to evaluate our approach with other oracles.

Figure 10 shows additional statistics about failures. We had 75 clusters in
total: 53 compiler errors clusters and 22 exception clusters. These clusters vary
in size from 1 to 435, with the median and mean of 27 and 79.5, respectively.

5.3 Bugs

After clustering all the failures, we inspected one, randomly selected failure from
each of 281+75 clusters. We first minimized the project under refactoring such
that the failure is preserved in the minimized version. We performed minimiza-
tion manually, which took between a few minutes and 1hr, with the average of
around 10min. In the future, we plan to evaluate the existing automated mini-
mization techniques [27,33,50].

After we prepared a minimized version, we want to check whether it is a new,
unique bug. We compared the minimized version with the other bugs that we
found and also searched through the Eclipse Bugzilla database to ensure that
the bug we found had not been reported before. This search for duplicates is
also performed manually and took on average 15min per bug. (So far we have
performed the search for 140 of 281 clusters for JDT and all 75 clusters for
CDT.) Our goal was to report as few duplicates as possible, and we found it
somewhat harder to search for duplicates than to minimize the project. One
could consider searching for duplicates directly from failures, even before mini-
mization, but our experience showed that the result is not obtained faster, e.g.,
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searching based purely on compiler errors does not provide a good result. The
existing techniques [1,40,47] for searching duplicate bug reports mostly use nat-
ural language processing and do not focus on searching for programs that are
inputs to refactoring engines. We leave it as future work to explore automated
search for duplicates in this context. We point out that our study is the first
to raise this concern; previous related studies [7, 12, 17, 35, 38, 39, 41, 44] did not
report the effort for inspecting duplicates, presumably because (1) they found a
smaller number of bugs than we found, (2) the number of bug reports for Eclipse
was smaller at the time when they searched for duplicates than it was when we
searched for duplicates, and/or (3) they did not search for duplicates.

So far we have reported a total of 77 bugs in JDT and 43 bugs in CDT. Each
report includes the minimized example on which the bug can be reproduced.
Our work is ongoing; we have 141 more Java minimized examples to check for
duplicates and plan to run our tool for more projects in the future. The updated
list of our reports is available online: http://mir.cs.illinois.edu/rtr.

Java Results Figure 11 shows summary information about the bugs we have
reported for Eclipse JDT so far. The first column lists the refactorings. The
next column lists how many of the bugs we found are likely duplicates (either
of previously reported bugs in Bugzilla or among our own clusters), which we
did not report. The next group of columns lists how many reports we submitted
and the current status of those reports in Bugzilla (NEW - the bug is reported but
not yet considered by the Eclipse developers, ASSIGNED - the bug is confirmed
and assigned to a developer, FIXED - the bug is fixed, and DUPLICATE - the bug is
marked as a duplicate by the Eclipse developers).

The last row of the table summarizes the results: of the 77 bugs reported, 8
were already fixed, 62 assigned as real bugs, 4 marked as duplicates, and the rest
were not inspected. We have noticed that the developers were more responsive
if a reported bug causes an exception rather than a compiler error.

The remaining groups of columns for Java show the results for reproducing
in two other IDEs, specifically NetBeans and IntelliJ IDEA, the bugs we found
in Eclipse. The goal is to find how many of these bugs appear in one IDE but not
another. Presumably the developers of an IDE may want to prioritize more the
bugs that are unique to their IDE. We attempted to run on NetBeans and Intel-
liJ each minimized example that we used as part of our bug reports for Eclipse.
We find that some of the bugs from Eclipse do not apply in other IDEs (e.g.,
because they do not have an equivalent refactoring or have too strong precondi-
tions for the refactoring). Of the bugs that do apply, some are shared between
independent implementations of refactorings, 24 between Eclipse and NetBeans,
and 26 between Eclipse and IntelliJ (although not the same as NetBeans). A
number of bugs (12) is shared even for all three IDEs. Of the bugs that could
potentially apply, a number of bugs from Eclipse do not appear in the other
IDEs. Note that this does not imply that the other IDEs are more reliable as we
did not evaluate their bugs on Eclipse. Indeed, our goal was to find how bugs
we found are shared among refactoring engines rather than to compare IDEs.

http://mir.cs.illinois.edu/rtr
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Rename 2 5 2 3 0 0 0/5/0 1/4/0 0 2 1/1/0 0/0/2
Move 0 1 0 1 0 0 1/0/0 0/1/0 0 - - -

Change Meth. Sig. 7 3 1 1 1 0 0/2/1 0/2/1 0 - - -
Extract Method 0 5 0 4 1 0 4/1/0 2/3/0 2 24 17/7/0 5/2/17
Extract Local 0 0 0 0 0 0 0/0/0 0/0/0 0 10 0/0/10 0/0/10
Extract Constant 0 1 0 1 0 0 0/0/1 0/1/0 0 4 0/0/4 0/0/4
Toggle Function - - - - - - - - - 3 0/0/3 0/0/3
Inline 5 7 0 7 0 0 4/3/0 4/3/0 3 - - -

Loc. To Field 0 2 0 2 0 0 1/0/1 0/2/0 0 - - -
Anon. To Nested 0 2 0 2 0 0 1/1/0 0/2/0 0 - - -
Move Type 3 2 0 2 0 0 0/2/0 1/1/0 0 - - -

Extract Superclass 0 0 0 0 0 0 0/0/0 0/0/0 0 - - -
Extract Interface 0 4 0 4 0 0 0/1/3 3/1/0 0 - - -
Use Supertype 1 5 0 4 0 1 2/2/1 2/3/0 1 - - -
Push Down 2 4 0 3 0 1 3/1/0 1/3/0 1 - - -
Pull Up 0 3 0 2 1 0 2/1/0 2/1/0 2 - - -

Extract Class 0 3 0 3 0 0 0/0/3 0/0/3 0 - - -
Intro. Param. Obj. 0 2 0 2 0 0 0/2/0 1/1/0 0 - - -

Intro. Indirection 0 3 0 3 0 0 0/0/3 0/0/3 0 - - -
Intro. Factory 0 3 0 3 0 0 3/0/0 1/2/0 1 - - -
Intro. Param. 0 3 0 1 0 2 1/2/0 1/2/0 0 - - -
Encapsulate Field 1 7 0 5 2 0 2/5/0 5/2/0 2 - - -

Gen. Decl. Type 0 9 0 8 1 0 0/0/9 2/6/1 0 - - -
Infer Gen. Type 0 3 0 1 2 0 0/0/3 0/3/0 0 - - -
∑

21 77 3 62 8 4 24/28/25 26/43/8 12 43 18/8/17 5/2/36

Fig. 11: Number of bugs for each refactoring from the Eclipse refactoring menu

Anecdotal Experience We found out that even duplicate reports can help
developers, confirming some published results [1]. After inspecting a failure from
one of the exception clusters, we discovered that the bug had been reported
previously. However, the original bug reporter explicitly stated being unable to
create a small example that causes the exception. After we added our minimized
example to the bug report, it was fixed within a day (by adding one line and
updating one line), more than 4 years after the bug had been originally reported.
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We also found out that some refactorings are quite reliable. As can be seen
from Figure 11, we did not report any new bug for the Extract Local Vari-

able and Extract Superclass refactorings. Suspecting that our configura-
tions (Section 4.1) may be incorrect for these refactorings, we modified the con-
figurations and rerun the refactorings but still did not find any failure. In the
future, we would like to explore many more additional configurations for these
refactorings and to investigate the implementation of these refactorings to iden-
tify the reasons for their reliability.

C Results Figure 11 (rightmost columns) shows summary information about
the bugs we have reported for Eclipse CDT so far. The “Eclipse” column lists
the number of bugs, and they are all still marked NEW in Bugzilla. We tried to
manually reproduce the 26 Rename and Extract Function CDT bugs in two
other refactoring engines: Visual Assist X (VAX) [46] and XRefactory [49]. The
other three refactorings are not supported in these refactoring engines. VAX is
a plugin that provides refactorings for Visual Studio; XRefactory is a plugin for
Emacs, xEmacs, and jEdit. We used VAX running on Visual Studio 2008 and
XRefactory version 2.0.14 running on Emacs version 24.1.

Of the two Rename bugs in CDT, one was about renaming functions in
system/external libraries (e.g., printf), and the other one was about renaming
a macro in a file that has been declared or used in another file. VAX successfully
handled the first case, but failed in the second case. The bugs were not applicable
to XRefactory, which did not make any changes on the given inputs. Interest-
ingly, XRefactory does not allow renaming of any function except main. This is
obviously a bug, but not exactly the one that we identified in CDT. Hence, we
marked this case as not applicable.

Of the 24 bugs in Extract Function, 17 could be reproduced in VAX. Of
these bugs, 8 produced the same outputs as CDT after extraction. The remain-
ing 9 produced outputs that were different from CDT outputs, but they were
incorrect too. 6 failures were related to incorrect return type of the functions.
For example, when a user attempts to extract an assignment expression with
VAX, the extracted function has a boolean return type, even if the assignment’s
type is not boolean. CDT also introduces incorrect return type for an Extract

Function refactoring: it incorrectly determines the return type of a pointer
variable to be a non-pointer variable of that type.

We could not apply 17 out of 24 Extract Function bugs in XRefactory.
Most of them (16 out of 17) were about applying Extract Function on ex-
pressions, whereas XRefactory only allows extraction on statements. Another
case was about extracting multiple configurations of the C preprocessor; in this
case, XRefactory did nothing. Among the remaining 7 cases that were applica-
ble, 5 were buggy. These cases failed while attempting to extract a statement
related to a macro definition, a statement containing a variadic function, or a
goto statement to a function.

We also looked at the quality of our clustering approach. In GMP, we found
one duplicate compiler error bug across 6 different clusters and another duplicate
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compiler error bug across other 3 different clusters. We also found 4 different
compiler error bugs within one cluster. Predictably, there are more bugs in the
extract refactorings, because they are more complex. The search for duplicates
is easier in CDT as it has fewer overall bugs reported for it. It is also less actively
developed, so we did not see any change in Bugzilla for our CDT bug reports.

Application to OpenRefactory/C We are actively integrating the approach
described in this paper to test OpenRefactory/C [30], a new refactoring engine
for C that we are developing. The approach is established as an essential part
of developer testing: we are accumulating a set of well-known, open-source C
projects, and refactorings are not eligible to be deemed “production quality”
until they have successfully passed on those projects.

To use our approach for continuous developer testing, we have found it helpful
to keep the number of tests relatively small (e.g., 50–100), at least during the
early stages of testing. This typically produces just a few clusters, which the
developer can investigate and fix immediately. Test results are persisted outside
of Eclipse runs (currently in a database), which allows the developer to re-run
failed tests after fixing a bug, or to continue running tests where a previous test
run stopped. At the time of this writing, only one refactoring—Rename—in
OpenRefactory/C is mature enough to be continously tested using this approach.
Applying it to GMP, libpng, and zlib has already identified seven bugs: four bugs
in the Rename refactoring itself (one unexpected exception) and three bugs in
the supporting infrastructure (including one unexpected exception).

Use Frequency vs. Failure Rate Several researchers have studied the fre-
quency of refactoring use in Java IDEs [6, 8, 28, 45] and ranked Rename, Ex-
tract Local Variable, Inline, Extract Method, and Move as the top
five most commonly performed automated refactorings in practice. It would be
reasonable to expect the most commonly used refactorings to have fewer bugs
and thus a smaller failure rate. However, our study does not find a very strong
correlation between the frequency of use and failure rate of a refactoring. While
the top five used refactorings are also among the most reliable refactorings, the
ordering based on the failure rate does not perfectly match the ordering based
on the use frequency. Also, we find that Extract Superclass, which is almost
unused in practice (its share reported as less than 0.2%), is one of the most
reliable refactorings; on the other hand, Extract Interface is the least reli-
able refactoring that has some number of real uses (reported as around 0.5%).
We believe that the frequency of refactoring use should be a factor that aids in
ranking the importance of bug reports.

6 Related Work

Testing refactoring engines requires input programs, which are rather complex
test inputs. Programs can be represented as data structures such as abstract syn-
tax trees (ASTs). Automated systematic generation of complex data structures
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has been proposed a while ago [2, 25], but only more recently Daniel et al. [7]
proposed a systematic technique, called ASTGen, for testing refactoring engines.
ASTGen requires the user to write imperative generators that can build parts
of Java programs and offers a new approach to combine these generators. Given
these generators, ASTGen systematically generates a large number of (small)
Java programs described with the generators. Although ASTGen exposed sev-
eral bugs in Eclipse and NetBeans, it comes at the cost of writing the imperative
generators, requires skillful users, and may not be adequate for describing some
properties of complex inputs. We proposed UDITA [12], a non-deteministic lan-
guage that enables the users to combine imperative generators with declarative
filters to describe a set of complex test inputs in a concise way. Like ASTGen,
UDITA requires rather sophisticated users. More recently Soares et al. [38, 39]
follow an approach similar to UDITA and combine it with random testing to
search for semantic changes introduced by refactorings. In contrast to these
approaches, the approach presented in this paper introduces an end-to-end ap-
proach for testing refactoring engines on existing projects: applying refactorings
on a number of existing projects, clustering failures, minimizing failing inputs,
and detecting duplicate bugs. Our approach avoids the effort of writing test gen-
erators and increases the confidence that the bugs found are more important.
However, our approach requires minimization of programs, which for now we
perform manually; in the future, we plan to evaluate automated minimization
approaches [27,33,50].

Applying refactorings on real programs has been explored by several re-
searchers in different contexts. Spinellis [41] tested theRename refactoring of his
CScout refactoring engine on the Linux kernel source by systematically applying
CScout to replace all identifiers with mechanically derived names and testing the
correctness of the refactored code by checking that it compiles correctly. Thies
and Steimann [44] tested two Eclipse refactorings, Move Class and Pull Up

Method, by systematically applying them on existing open-source projects.
Schäfer et al. [37] applied a few refactorings on more than million lines of open-
source projects to investigate scalability of their refactoring implementation.
Cinneide et al. [4] automatically applied refactorings on a number of projects as
part of evaluating and comparing software metrics. Coker and Hafiz [5] tested
three program transformations that fix C integer problems (signedness, overflow,
underflow, and widthness problems) by applying these transformations on real
C programs. In constrast, our paper evaluates an end-to-end approach for test-
ing refactoring engines and evaluating their reliability on all refactorings in both
Eclipse JDT and Eclipse CDT, and points out some key challenges in the process
from applying refactorings to finding bugs, e.g., minimizing failing inputs and
finding duplicate bugs.

Jagannath et al. [17] proposed clustering based on abstract messages of fail-
ures obtained by refactoring small corner-case programs. Our paper evaluates
clustering on failures in real programs (there is no a priori reason to believe
that a technique that works for small artificial corner cases also works well for
real failures), applies it to the C language, and automates the abstraction of
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messages for JDT. Clustering has been also used for determining which program
runs result in failures; most recently, Sun et al. [43] proposed a cost-sensitive
strategy for inspecting clusters of program runs. In our approach, the outcome
of each test is known after the execution of the test, and our end-to-end approach
focuses on finding new, unique bugs.

Several projects have studied the usage of refactorings [6, 8, 28, 29, 45] and
agreed that refactoring engines are underused. Most recently, Vakilian et al. [45],
through a field study followed up by semi-structured interviews, investigated
the reasons for low usage of refactorings and reported that the low usage is
mostly due to unpredictability of the refactorings rather than their reliability.
Our findings empirically confirm that the number of failures is not too high,
but there is still a need for improvement and developing new infrastructure for
building more reliable refactoring engines [15,31,34,42,45].

7 Conclusions

We presented a simple yet extremely effective approach to detect unique, real
bugs in refactoring engines and to estimate their reliability. As opposed to previ-
ous techniques that generate input programs, our approach uses existing projects
as inputs. As opposed to previous techniques that used existing projects as in-
puts for testing/evaluating refactorings, our approach identifies unique bugs us-
ing clustering, minimization, and finding duplicates. We applied our approach
on testing Eclipse refactoring engines for Java and C, and we found and reported
77 new bugs for Java and 43 for C. We expect that bugs commonly found from
real applications are more likely to be fixed than bugs discovered from artificially
generated corner cases; in fact, the Eclipse developers already fixed 8 of the bugs
we reported and confirmed 62 more as real bugs.

The main message of this paper is not that refactoring engines are buggy but
that the proposed end-to-end approach works well to find these bugs. However,
the approach also has challenges to be addressed in the future, e.g., automated
minimization of programs and finding of duplicate bugs. While the paper focused
on testing refactoring engines, we believe that the same approach can be used
to test other aspects of IDEs that require programs/projects as test inputs, and
to estimate their reliability on real projects.
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35. M. Schäfer, T. Ekman, and O. de Moor. Sound and extensible renaming for Java.

In OOPSLA, pages 277–294, 2008.
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