
Mutation Testing Meets Approximate Computing
Milos Gligoric1, Sarfraz Khurshid1, Sasa Misailovic2, and August Shi2

1The University of Texas at Austin, 2University of Illinois at Urbana-Champaign
{gligoric, khurshid}@utexas.edu, {misailo, awshi2}@illinois.edu

Abstract—One of the most widely studied techniques in soft-
ware testing research is mutation testing – a technique for
evaluating the quality of test suites. Despite over four decades
of academic advances in this technique, mutation testing has
not found its way to mainstream development. The key issue
with mutation testing is its high computational cost: it requires
running the test suite against not just the program under test but
against typically thousands of mutants, i.e., syntactic variants, of
the program. Our key insight is that exciting advances in the
upcoming, yet unrelated, area of approximate computing allow
us to define a principled approach that provides the benefits of
traditional mutation testing at a fraction of its usually large cost.

This paper introduces the idea of a novel approach, named
APPROXIMUT, that blends the power of mutation testing with
the practicality of approximate computing. To demonstrate the
potential of our approach, we present a concrete instantiation:
rather than executing tests against each mutant on the exact
program version, APPROXIMUT obtains an approximate test/pro-
gram version by applying approximate transformations and runs
tests against each mutant on the approximated version. Our
initial goal is to (1) measure the correlation between mutation
scores on the exact and approximate program versions, (2) eval-
uate the relation among mutation operators and approximate
transformations, (3) discover the best way to approximate a test
and a program, and (4) evaluate the benefits of APPROXIMUT.
Our preliminary results show similar mutation scores on the
exact and approximate program versions and uncovered a case
when an approximated test was, to our surprise, better than the
exact test.

I. INTRODUCTION

Mutation testing techniques evaluate the quality of a test
suite by systematically inserting small syntactic changes into
the code under test, e.g., replacing a ‘+’ operator with ‘-’, to
generate mutants (the changed program versions), and then
measuring the number of mutants killed by the given test
suite [1], [13], [14]. A mutant is killed by the test suite if
any test from the test suite fails when run on the mutant. The
overall quality of a test suite – mutation score – is measured
as the fraction of killed mutants.

Although valuable, mutation testing is costly due to a large
number of mutants and tests. While researchers have explored
various techniques to reduce the mutation testing cost, includ-
ing mutant schemata, higher-order mutants, selective mutation,
random selection, sampling mutation, etc. [13], [18], mutation
testing is rarely used in practice because of the perceived costs.

We propose a novel approach, called APPROXIMUT, to
reduce the mutation testing cost via approximate computing.
Approximate computing is an emerging area of computer
science that exposes sources of approximation at the computer
system level and explicitly reasons about the tradeoff between

accuracy and performance. Researchers have proposed various
techniques for approximation in programming languages [6],
[22], compilers [16], [20], [21], systems [3], [11], and hard-
ware architectures [10], [15], [19]. For instance, approximate
compilers automatically apply transformations that change the
program semantics to trade off quality of results for better
performance. These techniques exploit the inherent approxi-
mate nature of many applications (e.g., in domains such as
image/multimedia processing, data mining, machine learning,
and financial and engineering simulations).

The primary goal of APPROXIMUT is to reduce the cost
of mutation testing for test suite evaluation, specifically the
cost of computing (1) the mutation score for one test suite,
or (2) the relation between mutation scores for a pair of test
suites. We do not require the test suite to always be run using
approximation; if the purpose of running the test suite is to
find bugs in the program under test, the execution – which
is against just one program and not many mutant programs –
should indeed be non-approximate.

In our opinion, the specific context of mutation testing
makes the application of approximate computing in testing
appealing because computing a mutation score is inherently a
heuristic computation, and its accuracy can be relaxed. As an
illustration, consider two scenarios of using mutation testing:

• Computing mutation score of one test suite: the goal is to
preserve mutation score – overall – across many mutant
programs. The desired quality of the computed score is
met whenever the mutation score is within a developer-
specified threshold, even if approximation operators make
(erroneously) some mutants killed or not killed.

• Comparing the mutation scores of two test suites: the goal
is to preserve the relative mutation scores for the two
suites. Even if the approximate mutation score of each
test suite individually is significantly different from its
non-approximate mutation score, as long as the relative
approximate mutation scores are in the same order as the
non-approximate mutation scores, we achieve the desired
goal of comparing two test suites correctly.

APPROXIMUT starts by approximating tests and the pro-
gram under test by applying approximate transformations
(e.g., transform a loop to execute fewer iterations). Then,
APPROXIMUT determines expected values in each test for
the approximate program version. Finally, APPROXIMUT mea-
sures the mutation score by treating the approximate program
as the exact program.

Our approach opens a number of research questions, includ-
ing (1) what is the correlation between mutation scores on
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1 // MathArraysTest.java
2 void testUnique() {
3 double[] x = {0, 9, 3, 0, 11,
4 7, 3, 5, −1, −2};
5 double[] values = {11, 9, 7, 5, 3,
6 0, -1, -2};
7 assertArrayEquals(values,
8 MathArrays.unique(x), 0);
9 }

10 // MathArrays.java
11 static double[] unique(double[] data) {
12 TreeSet<Double> values =
13 new TreeSet<>();
14 for (int i = 0; i < data.length; i++) {
15 if (i%2 != 0) continue;
16 values.add(data[i]);
17 }
18 int count = values.size();
19 double[] out = new double[count];
20 Iterator<Double> iterator =
21 values.descendingIterator();
22 int i = 0;
23 while (iterator.hasNext()) {
24 if (i == data.length / 2 + 1) break;
25 out[i++] = iterator.next();
26 }
27 return out;
28 }

(a)

// MathArraysTest.java
void testUnique() {

double[] x = {0, 9, 3, 0, 11,
7, 3, 5, −1, −2};

double[] values = {11, 9, 7, 5, 3,
0, 0, 0};

assertArrayEquals(values,
MathArrays.unique(x), 0);

}
// MathArrays.java
static double[] unique(double[] data) {

TreeSet<Double> values =
new TreeSet<>();

for (int i = 0; i < data.length-1 ; i++) {
if (i%2 != 0) continue;
values.add(data[i]);
}
int count = values.size();
double[] out = new double[count+1 ];
Iterator<Double> iterator =

values.descendingIterator();
int i = 0;
while (iterator.hasNext()) {

if (i == data.length / 2 + 1) break;
out[i++] = iterator.next();
}
return out;
}

(b)

// MathArraysTest.java
void testUnique() {

double[] x = {0, 9, 3, 0, 11,
7, 3, 5, −1, −2};

double[] values = {11, 3,
0, -1};

assertArrayEquals(values,
MathArrays.unique(x), 0);

}
// MathArrays.java
static double[] unique(double[] data) {

TreeSet<Double> values =
new TreeSet<>();

for ( int i = 1 ; i < data.length; i++) {
if (i%2 != 0) continue;
values.add(data[i]);
}
int count = values.size();
double[] out = new double[count];
Iterator<Double> iterator =

values.descendingIterator();
int i = 0;
while (iterator.hasNext()) {

if (i == data.length / 2 + 1) break;
out[i++] = iterator.next();
}
return out;
}

(c)

Fig. 1: Example test from Apache Math project [2]. Loop perforation is highlighted in bright and mutants in dark blue. (a)
The exact code and test. (b) The exact code kills the mutant, but the approximate version does not. (c) The approximate code
kills the mutant, but the exact version does not.

the exact and approximate program versions, (2) what is the
relation between mutation operators and approximate transfor-
mations, (3) what approximations maximize the performance
of tests and programs, and (4) what is the speedup that can
be obtained by APPROXIMUT.

In this paper, we only tackle the first question by measuring
mutation scores on several approximate program versions for
a test from the Apache Commons Math project [2]. Our
evaluation shows that the mutation scores of the approximate
versions are similar to the mutation score of the exact program.

We believe that approximate computing holds a key to
making software testing more effective. Indeed, testing, by
definition, is a form of approximation – specifically, under-
approximation in the sense of verification. Approximate com-
puting provides a principled way to methodically introduce
new, well-defined approximations into testing techniques to
increase their efficacy, thereby allowing software testing to
play an even more vital role in developing more reliable
software systems.

II. PRELIMINARY STUDY

This section describes how APPROXIMUT approximates
mutation score computation by using a specific approximate
transformation: loop perforation.

A. Example

Exact program. Figure 1a shows a code snippet from
the Apache Commons Math (SHA: d9e43edd) [2]. The
method unique removes duplicate values from the input
array (Lines 12-17) and sorts the values in descending order
(Lines 20-26). The method testUnique invokes unique with

the argument x and checks whether the actual result matches
the expected values from the array values.
Loop perforation. Loop perforation is a compiler-level
transformation [16], [24], which transforms loops such as
for (int i = 0; i < n; i++) {...} to execute only a
subset of its iterations. We consider two forms of perforation:

• Interleaving perforation: skipping intermediate loop iter-
ations. It skips every 2nd or 4th iteration, or executes
every 4th iteration. We applied this transformation to the
first loop in the subject (Line 15 in Figure 1c).

• Truncating perforation: skipping the last quarter, half,
or three quarters of iterations. We applied this transfor-
mation to the second loop in the subject (Line 24 in
Figure 1b).

Loop perforation typically makes computations run faster by
doing less work, but also produces different, typically less
accurate results. The fraction of iterations to execute is a
parameter that controls the tradeoff space for the computation.
Approximations. Figures 1b and 1c present two approximate
versions of this computation that apply loop perforation to
speed up mutation score calculation. The implementation
of perforation is highlighted with bright (blue) color. The
perforations cause the first loop to add only a subset of the
elements in the ordered set values and the second loop to
read only the first few elements values (in descending order).

After applying perforation to the function unique, AP-
PROXIMUT also needs to repair the test to reflect the change in
the results of the tested function, e.g., using the approach from
ReAssert [8]. For the example 1b, the approximate function
computes the ordered list of the first six elements of the
array correctly and keeps the remaining two as zeros. The
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test changes the constants for these two array elements (high-
lighted). For the example 1c, the approximate result contains
a subset of odd-positioned elements, including the maximum
element, but the resulting array is smaller (highlighted).
Performance. Profiling reveals that the first loop (Line 15)
consumes over 68% of the run time and the second loop
(Line 24) consumes less than 7% of the run time. Therefore,
perforation of the first loop, which inserts elements in a
TreeSet – an O(n log n) operation – can contribute more to
the run time savings than the perforation of the second loop,
which does a linear scan over the tree elements.

B. Mutation Score Optimization

Optimization statement. We navigate the tradeoff space
induced by three transformations: interleaving loop perfora-
tion, truncating loop perforation, and input reduction (which
removes a part of the input array from the test – e.g., one half
or one quarter of the elements). The quality metric measures
the effectiveness of a test suite. Specifically, APPROXIMUT
computes mutation score, as the number of killed mutants di-
vided by the total number of mutants. Our search is looking for
the versions of the test suite that yield maximum performance
savings while computing the mutation score that is within a
given percent of the mutation score of the exact test suite.
Such a defined set of transformations, a quality metric and a
quality degradation are sufficient for automatic exploration of
the quality/performance tradeoff space [16], [24].
Mutation score. We obtained mutants and computed mutation
score by running the PIT mutation testing tool1 on the subject
program from Figure 1a. We configured PIT to use all mu-
tation operators it supports; the operators modify constants,
conditional statements, and method calls. PIT generated a
total of 22 mutants for the subject program. The number of
first-order mutants (those where only one program location is
changed) is the same for the exact version of program and for
all approximate programs, i.e., we do not mutate code that is
inserted by approximate transformations.

Specifically, for our subject program, we (1) apply one
approximate transformation at a time, (2) execute the test to
obtain the expected value, (3) update the expected value in
the approximate test, and (4) run PIT with the approximate
program version to compute mutation score.
Results. Table I shows the mutation score values for the
exact and the approximate program versions. The first column
shows the approximate transformation type that was used,
the second column specifies the instance of the approximate
transformation, and the third column shows the mutation score.
(“Exact version” row denotes the exact program version.)

The results show that the mutation scores computed on
approximate programs are only a few percentage points from
the exact mutation score. For this subject, the approximate
programs obtained by “Input Summarization” have the most
similar mutation scores to the exact program.

1PIT is available at http://pitest.org

TABLE I: Mutation score for the exact and various approxi-
mate program versions.

Approximate
Transformation Instance Mutation

Score [%]

Exact version - 95

Interleaving perforation
(loop on Line 15)

skip 2nd iter. 100
skip 4th iter. 95
execute 4th iter. 100

Truncating perforation
(Loop on Line 24)

skip last 1/4 iters. 91
skip half iters. 91
skip last 3/4 iters. 91

Input summarization
remove last 1/4 iters. 95
remove half iters. 100
remove last 3/4 iters. 95

To our surprise, we identified several cases (e.g., “Input
Summarization” with “Remove Half”) that obtain higher mu-
tation scores than the exact test. This is especially interesting in
the case of “Input Summarization” because the approximation
does not alter the exact control flow of the program but only
provides a different input. In other words, by approximating
test inputs, we could obtain a test suite with better fault-
detection capability (as measured by a mutation score).

III. FUTURE DIRECTIONS

Approximating tests can lead to improved performance of
the overall testing, but it also opens up a number of research
questions. We discuss below several of them.

Can mutation testing be optimized by computing the mu-
tation score on an approximate version of the program? To
answer this question, we need to find the common relations
between mutation scores for the exact program/test and ap-
proximate program/test. We know that a mutant killed by the
exact program does not have to be killed by the approximate
program, and vice versa. We illustrated these two cases in
Section II, Figures 1b (the exact test kills the mutant) and 1c
(the exact test does not kill the mutant), respectively.

What is the relation between mutants and approximate
transformations? For instance, modification of the loop in-
duction variable increment from i=i+1 to i=i+2 can be a
result of both program approximation and program mutation.
Our insight is that certain approximate transformations can
be valid mutation operators. However, only some mutation
operators can be seen as approximate transformations.

We plan to study the relation between mutation operators
and approximate transformations. To the best of our knowl-
edge, no prior work has explored this relation. We plan to eval-
uate if some approximate transformations subsume existing
mutation operators (or vice versa) and what mutation operators
may impact program efficiency. We will also compare this
set of mutants with the mutants obtained through selective
mutation [17]. Finally, we plan to investigate the relation
of mutants that make multiple code modifications [13] (i.e.,
higher-order mutants) with approximate transformations.

What are the mutation operators that are appropriate for
approximate programs? We plan to develop new mutation
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operators appropriate for approximate programs. For example,
rather than mutating constant integer values, which is one of
the most common operators, we plan to mutate floating point
numbers. Furthermore, we can mutate the distribution function
(e.g., uniform to Bernoulli), which generates the input data
used to compute parts of the output. Toward this goal, selective
mutation [4], [17], [18], [23] is a promising research direction
that can be applied to find mutation operators that subsume
the others and discover relations between traditional mutation
operators and mutation operators for approximate programs.

Can we use approximation to speed up test execution? The
preliminary study considered only approximating mutation
score computation. Once the developer has enough confidence
in the test suite, he or she runs the original (exact) test
suite. However, we could also use approximated tests (e.g.,
like those in Figures 1b and 1c during test execution. The
main challenge, however, is ensuring that the approximated
test is likely to reveal bugs that the original test would have
revealed. One conservative approach is to find transformations
that ensure the approximated test will reveal a bug if the
original test reveals it, but it may signal false alarms even
when the original test does not. Another more liberal approach
is to specify relaxations of the test oracles (but such that they
preserve key safety properties). For instance, the list of unique
elements should contain all the values, but only a majority of
them need to be ordered.

Which applications are amenable to approximate mutation
testing? We anticipate that the approximate mutation testing
is particularly well-suited for application domains that have
an inherent notion of quality of results. However, in some
scenarios, approximate transformations can be used on arbi-
trary programs, e.g., if an approximation is used as a (general)
mutation operator.

IV. RELATED WORK

We propose the first technique that applies mutation testing
and approximate computing in tandem. Previous work on
optimizing mutation testing focused primarily on selective
mutation [17], which reduces the number of mutants to run
by applying a subset of mutation operators that subsume the
other operators, or by running a select subset of the pool of
candidate mutants. In contrast, APPROXIMUT optimizes the
execution of individual tests regardless of the set of used
mutation operators. Predictive mutation [26] computes the
mutation score without running tests on mutants; however, it
allows lesser control over mutation score accuracy.

The spirit of approximation in testing is common. For
example, test-suite reduction [25] can remove the entire tests
from a test suite. In contrast, APPROXIMUT reduces the
execution of each test while keeping all tests in the test suite.

Testability transformations introduced the use of program
transformations for improved testing [12]. Recent follow-up
work used standard transformations, e.g., compiler optimiza-
tions, as well as ad hoc, non-semantics-preserving transforma-
tions in the context of symbolic execution [5], [7], [9].

V. CONCLUSION

This paper advocates the integration of testing – the most
widely used method for validating quality of software – and
automated approximation – a promising new approach for
developing and optimizing an increasingly important class of
programs. In particular, the insights at the heart of approxi-
mation can be leveraged to introduce a fresh approach for re-
thinking mutation testing techniques, which already have a rich
history, and making them even more effective and efficient.
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