
IMUnit: Improved Multithreaded Unit Testing

Position Statement

Vilas Jagannath, Milos Gligoric, Dongyun Jin, Grigore Rosu, Darko Marinov
Department of Computer Science, University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA
{vbangal2, gliga, djin3, grosu, marinov}@illinois.edu

ABSTRACT
This position paper argues for an approach to bring sev-
eral techniques successful for (regression) testing of sequen-
tial code over to multithreaded code. Multithreaded code is
getting increasingly important but remains extremely hard
to develop and test. Most recent research on testing mul-
tithreaded code focuses solely on finding bugs in one given
version of code. While there are many promising results,
the tools are fairly slow (as they, conceptually, explore a
large number of schedules) and do not exploit the fact that
code evolves over several versions during development and
maintenance.

Our proposal is to allow explicit specification of relevant
schedules (either manually written or automatically gener-
ated) for multithreaded tests, which can substantially speed
up testing, especially for evolving code. To enable the use of
schedules, we propose to design a novel language for speci-
fying schedules in multithreaded tests, and to develop tools
for automatic generation of multithreaded tests and for im-
proved regression testing with multithreaded tests.

1. PROBLEM AND MOTIVATION
With the advent of the multi-core computing era, par-

allel programs are becoming the norm rather than the ex-
ception. The currently dominant paradigm for developing
parallel programs is that of multithreaded code with shared
memory, which is prone to data races, atomicity violations,
deadlocks, and related bugs. Improved unit testing of multi-
threaded code has the potential to significantly decrease the
number of these bugs and increase the quality of code.

Software testing is the most widely used approach for de-
tecting bugs in practice. We propose an approach that could
substantially improve testing of multithreaded code by lever-
aging both on proven successes in testing of sequential code
and on recent advances in checking multithreaded code. For
testing sequential code, researchers and practitioners have
developed a number of approaches and tools that develop-
ers have adopted to help in producing more reliable code.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWMSE ’10, May 1 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-964-0/10/05 ...$10.00.

Some of the most successful techniques and tools include
unit-testing frameworks such as JUnit for Java (which auto-
mates execution of tests and reporting of results, especially
for regression testing which reruns tests after a code change),
regression test selection [6,12] (which determines what tests
to rerun after changing code), and test prioritization [10,11]
(which determines in what order to run the tests to find bugs
faster). The existing approaches work fairly well for sequen-
tial code, but unfortunately do not work nearly as well if
translated directly for multithreaded code.

For checking multithreaded code, there has been recently
a lot of promising research. Some of the testing tools in-
clude CalFuzzer, CHESS, ConTest, and CTrigger. (See [5]
for some references.) Since multithreaded code can have dif-
ferent behaviors for different thread schedules, these tools
conceptually explore a large number of schedules. As a re-
sult, the tools typically take fairly long to check code. More-
over, the existing tools check one given version of code at
a time, and do not exploit the fact that code evolves over
several versions during development and maintenance. Con-
trast the focus on checking one version for multithreaded
code with regression testing (which validates evolving code)
for sequential code.

In other words, while these testing tools are helpful for
detecting and replaying bugs, they are suboptimal for ensur-
ing that these bugs are fixed and do not reappear in future
versions of the program. The reasons for this are twofold.
First, the exploration of a test for multiple possible sched-
ules is much more costly than the normal single execution
of a test. Therefore, these tools cannot be used frequently
as test runners in a continuous testing or regression testing
setup. Second, these tools do not capture the detected bugs
in the form of tests that can be quickly re-executed against
future versions of the program. For example, a tool could
record a schedule that leads to some bug, but a patch for
that bug may, say, add a lock which would invalidate the
schedule. Therefore, when a program is modified, the tests
have to be completely re-explored to detect any regressions.

2. PROPOSED SOLUTION
To improve testing of multithreaded code in face of pro-

gram evolution, we argue that it is necessary to develop a
set of new techniques and tools for multithreaded tests. A
multithreaded test is a piece of code that creates and exe-
cutes two or more threads (and/or invokes code under test
that itself creates and executes two or more threads). Exe-
cuting a test follows some schedule for the execution of the
multiple threads (and different schedules can give different

http://www.vilasjagannath.com/
http://mir.cs.illinois.edu/~gliga/
http://fsl.cs.uiuc.edu/index.php/Dongyun_Jin
http://fsl.cs.uiuc.edu/~grosu/
http://mir.cs.illinois.edu/~marinov/


results). The key of our approach is to allow specifying a set
of relevant schedules for each test. These schedules can be
written manually by the developer/tester or generated au-
tomatically by tools. Our approach conceptually generalizes
traditional testing, which can be obtained as an instance by
specifying all possible (semantically valid) schedules.

Exploring a set of schedules can be costly, based on the
size of the set. Our approach allows specifying a set for
each test, thus controlling the trade-off between exploration
time and thoroughness, effectively controlling the cost and
expected benefit. In the limit on one side—(implicitly) spec-
ifying all possible schedules—the exploration may be pro-
hibitively expensive (if not infeasible) but provides the most
thorough check. In the limit on the other side—specifying a
singleton set—the exploration of exactly one schedule lacks
coverage but is actually very important for debugging (to
replay/reproduce a particular schedule).

We consider three important challenges in specifying and
exploiting schedules for multithreaded tests:

(1) Test schedules: How to specify a set of schedules? We
propose to develop a novel language that makes it easy to
specify schedules. The basic entity is an event that an ex-
ecution can raise at various points (e.g., a thread getting
blocked or a shared variable being accessed). A schedule
is then a (monitorable) property on the sequence of events
(e.g., a desired or undesired order of events). The language
also allows composition of sets (i.e., building larger sets from
smaller sets). How to execute the code for the given set of
schedules? If a specification is imperative (i.e., telling how
to proceed from one thread to another), code can be simply
run as is; if a specification is declarative (i.e., only stating
the properties of event sequences), the exploration requires
some search to find an appropriate schedule. A question re-
lated to specifying and executing a set of schedules is what
schedules from the set to explore. We leave it up to the user
to instruct the tool how much to explore: it can be one/any
schedule from the set or some/few specific ones or several
randomly selected ones or even all schedules when it is fea-
sible to explore the entire set. We plan to use JavaMOP [2]
for monitoring and controlling code executions.

(2) Test Generation: How to automatically generate sched-
ules for a given testing code? While we expect develop-
ers/testers to manually write high-level schedules to guide
tools in exploration, it would be impractical to manually
write low-level schedules that contain too many events, e.g.,
the sequence of all thread context switches in a test execu-
tion. We plan to build on previous work on jPredictor [3],
a hybrid dynamic and static tool aimed at finding concur-
rency bugs. While jPredictor found many bugs in real pro-
grams, it currently does not generate sets of schedules that
lead to bugs. How to automatically generate both the testing
code and the schedules? Experience with jPredictor shows
that multithreaded tests often involve a lot of code and have
long executions, but the bugs found can be located in small
pieces of code. For example, a test may exercise several
methods from some class, whereas the bug occurs because
of mis-synchronization between only two methods. We will
develop techniques and tools that build smaller tests from
bigger ones, as an aid in debugging multithreaded code.

(3) Regression Testing: How to perform test selection
for multithreaded tests (with schedules)? After developers
change the code under test, they typically run the tests to

validate that there are no regression errors. Regression se-
lection techniques [6,12] make this process faster by selecting
only a subset of tests to run. This approach is successfully
used in practice [11], but the existing selection techniques
were designed for sequential code and most would not be
safe for multithreaded code. How to prioritize multithreaded
tests (with schedules)? Test prioritization further improves
on test selection: after we select to run a subset of tests, in
which order should we run them to faster detect failures (if
any)? Again, there are a number of techniques that showed
good results for sequential code [10,11]. We plan to develop
novel techniques for test selection and prioritization for mul-
tithreaded code. Our first step was on improving mutation
testing for multithreaded code [5].

3. SOME RELATED WORK
Writing multithreaded unit tests in plain Java or C# has

several problems due to reliance on real time to express spe-
cific schedules. Others also observed these problems and
proposed specialized test frameworks, including ConAn [7],
ConcJUnit [9], MultithreadedTC [8], and ThreadControl [4].
MultithreadedTC is the most related but has several differ-
ences: (1) It uses one, hard-coded policy for handling events
such as blocking threads and advancing time; (2) It only al-
lows abstract time to be observed in the test code and not
in the code under test; and (3) Setting appropriate linear
values for abstract time is tedious and error-prone.

Gambit [1] is an extension of the CHESS tool for per-
forming context-bounded exploration of unit tests for con-
current libraries. Gambit allows two indirect ways to pri-
oritize/select schedules: (1) It replaces depth-first search
with best-first search, which uses a priority function to de-
cide which branch/schedule to explore next; (2) User can
specify prioritization and preemption sealing, namely which
methods/variables are more important so that higher prior-
ity is assigned to exploring schedules involving those meth-
ods/variables. However, it does not consider code evolution.

4. REFERENCES
[1] T. Ball, S. Burckhardt, K. Coons, M. Musuvathi, and

S. Qadeer. Preemption Sealing for Efficient Concurrency
Testing. Technical report, Microsoft Research, 2009.

[2] F. Chen, P. Meredith, D. Jin, and G. Rosu. Efficient
formalism-independent monitoring of parametric properties. In
ASE, 2009.

[3] F. Chen, T. F. Şerbănuţă, and G. Roşu. jPredictor: A
predictive runtime analysis tool for Java. In ICSE, 2008.

[4] A. Dantas, F. V. Brasileiro, and W. Cirne. Improving
automated testing of multi-threaded software. In ICST, 2008.

[5] M. Gligoric, V. Jagannath, and D. Marinov. MuTMuT:
Efficient exploration for mutation testing of multithreaded
code. In ICST, 2010. (To appear.).

[6] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and
G. Rothermel. An empirical study of regression test selection
techniques. ACM TOSEM, 2001.

[7] B. Long, D. Hoffman, and P. A. Strooper. Tool support for
testing concurrent java components. IEEE TSE, 2003.

[8] W. Pugh and N. Ayewah. Unit testing concurrent software. In
ASE, 2007.

[9] M. Ricken and R. Cartwright. ConcJUnit: Unit testing for
concurrent programs. In PPPJ, 2009.

[10] G. Rothermel, R. J. Untch, C. Chu, and M. J. Harrold.
Prioritizing test cases for regression testing. IEEE TSE, 2001.

[11] A. Srivastava and J. Thiagarajan. Effectively prioritizing tests
in development environment. In ISSTA, 2002.

[12] J. Zheng, B. Robinson, L. Williams, and K. Smiley. Applying
regression test selection for COTS-based applications. In ICSE,
2006.


	Problem and motivation
	Proposed Solution
	Some related work
	References

