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Abstract

Shortest-Path and Maximal Independent Set in PyKokkos

Olivia Zhuhe Mitchell, MS
The University of Texas at Austin, 2023

SUPERVISOR: Milos Gligoric

There are a wide variety of platforms to choose from when deciding to write a

parallel algorithm. The chosen platform has a great impact on how developers write

and run their code. Incompatibility between platforms is a major problem: in order

for a developer to change systems or devices they often must rewrite their program

from scratch.

PyKokkos is an alternative option to committing to a specific platform. It sits

on top of the Kokkos framework that bridges the gap between various XPU devices.

While Kokkos allows users to program parallel functions that can run expeditiously

on both GPU and CPU in C++, PyKokkos also allows users to program in Python.

Code written in PyKokkos has all the benefits of Python, while being both performant

and portable.

Presented here are two examples of graph algorithms implemented for the first

time in PyKokkos (or in Python): a parallel Maximal Independent Set algorithm and

a parallel Shortest Path algorithm using Lattice-Linear Predicate. These implementa-

tions showcase the versatility of PyKokkos, where it makes writing parallel operations

simple and easy, while not sacrificing performance.
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Chapter 1: Introduction

As computer systems get more complex and problem sizes increase, there is a

greater need to run parallel computations both quickly and effectively. There is also

a greater divide between the versatile CPU and the powerful but less flexible GPU.

For developers who value flexibility, to run code on or across multiple device types,

there are few good options. They must either choose and be bound to running on the

CPU, or write code exclusively for a specific flavor of GPU.

Performance portability is the concept in which the same code written by

developers can be run on different platforms without sacrificing the performance of

writing directly for a specific CPU or GPU. The Kokkos [12, 28] framework is one such

performance portable framework that not only allows the same parallel C++ code to

be compiled to run on different platforms, but also automatically handles platform

specific configurations such as how data must be organized and the abstraction of

parallel threads.

PyKokkos [2, 3] makes performant portable programming accessible to de-

velopers new to the environment by allowing development to be done in Python; a

language popular in the growing AI/ML space. Python has an enormous catalog

of libraries available and allows for quick prototyping of a function or application.

PyKokkos give users the ability to write code in Python, generate the device specific

code using Kokkos, compile, and then bind and run the code and return the results

back in Python, all in one step (from users’ point of view). This allows PyKokkos

users to quickly prototype parallel, performant code that can run on multiple devices.

Graph algorithms are a useful and popular family of problems. The two cho-

sen for implementation here are the Maximal Independent Set and the ever popular

Shortest Path problems. The Maximal Independent Set algorithm is based on a fast

and highly parallel approach to solving MIS [9]. The Shortest Path algorithm is
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implemented in a new format for deriving parallel algorithms that exist in a linear

solution space. This specific MIS algorithm and Lattice-Linear Predicate format [14]

in general has never been implemented in Python. These examples are the first graph

algorithms implemented in PyKokkos. This is also the first approach that allows these

particular algorithms to run on both CPU and GPU with the same source code.

The motivation behind this project is to illustrate the ease of which portable

code can be written in a user friendly format, to demonstrate the performance differ-

ences between the same PyKokkos code on the GPU versus on the CPU, and to show

the significant improvement in performance over existing Python implementations.
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Chapter 2: Background

As the algorithms in this paper are implemented in PyKokkos [2, 3] and involve

graphs, we provide some background on the Kokkos framework, PyKokkos framework,

and graph algorithms.

2.1 Kokkos

Kokkos [12, 28] itself is a portable performance framework. It is implemented

in C++, one of the more popular languages to write highly optimized and parallel

code in.

Code written in Kokkos can be run on multiple device types, as Kokkos han-

dles all the device specific libraries and limitations by using its own abstraction of

memory spaces and parallelism. This allows for code developed in Kokkos to ignore

complicated device details. An example of a Kokkos parallel section, taken from the

Kokkos examples [12], is shown in Listing 2.1.

The Kokkos (and PyKokkos) parallel reduce() or parallel for() function con-

tains a parallel section. In the parallel reduce() in Listing 2.1, there are several pa-

rameters being passed in. The ”02” is the optional label to the parallel code, mostly

used for debugging or obtaining timing measurements. The N is how many threads

are needed, or how many parallel instances of the code are needed per function call

This is also equivalent to the number of indices in the array x since that is the size of

the data being operated on. The rest is a pointer to the parallel code; in this case it

is written within the function call. j denotes the thread ID which is unique to each

otherwise identical copy of the parallel section. Since this is a parallel reduce(), that

means there must be a single result to the operation. The last parameter denotes the

variable, result to hold that end result.
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1 // Application: <y,Ax> = y^T*A*x

2 // Assuming M and N are passed in

3 // Initialize y, x, and A

4 double result = 0;

5 Kokkos::parallel_reduce("02", N, KOKKOS_LAMBDA(int j, double &update){

6 double temp2 = 0;

7

8 for (int i = 0; i < M; ++i){

9 temp2 += A(j, i) * x(i);

10 }

11

12 update += y(j) * temp2;

13 }, result);

14

15 // Output result.

16 if (repeat == (nrepeat - 1)){

17 printf(" Computed result for %d x %d is %lf\n", N, M, result);

18 }

Listing 2.1: Kokkos code example

Views are the Kokkos (and PyKokkos) equivalent of arrays or vectors of one

or more dimensions. Variables x, y, and A are all initialized as Views prior to running

the parallel section of code.

2.2 PyKokkos

PyKokkos [2, 3] is a performance portable framework implemented in Python

that allows users to write parallel code and seemingly run it in a Python environment.

Unlike C++, Python has a relatively low learning curve which makes it ideal for

users that are more interested in quick prototypes rather than investing in writing

complicated, highly optimized, device specific code.

One of the biggest drawbacks to using Python alone is that Python is limited

to running on the CPU only, and due to constraints in the language implementation,

often only on a single thread at a time. In order to allow code written in Python to

run in parallel both on the CPU and on the GPU, different techniques are needed.

In many performant Python libraries, the library call is just a wrapper, or
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translation layer, for an underlying and highly optimized device-specific libraries. It

outsources the more compute intensive sections to some library written in a more

optimized, parallel-friendly language and returns the results back to Python. This

means that Python users are limited to either slower custom code or a limited selection

of more performant code that may not be compatible on all device types.

PyKokkos gets around these limitations by translating fragments of Python

code to Kokkos code, compiling it to the appropriate device, and linking it back into

the user’s script. This allows for functions to be seamlessly written in pure Python

but have all the performance benefits of running in parallel on a CPU or GPU. In

Listing 2.2, the equivalent PyKokkos parallel section to Listing 2.1 is shown.

1 # PyKokkos parallel section

2 @pk.workunit

3 def yAx(j: int,

4 acc: pk.Acc[float],

5 M: int,

6 y: pk.View1D[pk.double],

7 x: pk.View1D[pk.double],

8 A: pk.View2D[pk.double]):

9 temp2: float = 0

10 for i in range(M):

11 temp2 += A[j][i] * x[i]

12

13 acc += y[j] * temp2

14

15 # and would be called like so after initializing

16 # y, x, and A (M and N are passed in):

17 p = pk.RangePolicy(pk.get_default_space(), 0, N)

18 result = pk.parallel_reduce(p, yAx, M=M, y=y, x=x, A=A)

19 print(f"Computed result for {N} x {M} is {result}")

Listing 2.2: PyKokkos code example

Very similar in format to the Kokkos code in Listing 2.1, the PyKokkos code

also has passed in a thread ID indicator, still j, and somewhere to store the results,

acc (accumulator). Because the PyKokkos code is not in an inline format but in a

separate function, the rest of the data must also be passed in as parameters. Like

the Kokkos example, the Views x, y and A are initialized earlier in the method
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before being passed into the parallel reduce(). The RangePolicy() dictates what the

parallelism will look like; how many parallel operations will be needed, on what device

will this take place, and how threads can be distinguished in the parallel workload.

PyKokkos code sections are demarcated by the use of a decorator (like the

@pk.workunit in the example code) for PyKokkos classes (Workloads or Functors)

and functions (workunit). The decorators can also provide information to PyKokkos

on what memory spaces need to be initialized or where data will be located. This

can help fill in the gap between the Kokkos/C++ user managed memory and the

PyKokkos/Python non-user managed memory.

2.3 Graphs and Graph Algorithms

Graph Algorithms are the family of problems that are related to a specific

type of data structure called a Graph. Graphs are defined as a set of Nodes or Vertices

and the Edges (indicating relationship) between them. In math terms, a graph can

be defined like so and shown in Figure 2.1:

G = (V,E)

V = {n1, n2, n3, n4, n5}
E = {(n1, n2), (n1, n3), (n2, n3), (n2, n4)}

Figure 2.1: Example of a Simple Graph

Each edge can have a value and this value is called a Weight. This can be

written as e = (n1, n2, 4) with the last value, 4, representing the weight between

nodes n1 and n2.
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Edges can also have direction. Graphs with directed edges are called directed

graphs and those without directed edges are called undirected graphs. Let us define

e1 = (n1, n2) and e2 = (n2, n1). In an undirected graph, e1 == e2. In a directed

graph, e1! = e2 since e1 is the path from n1 to n2 and e2 is the path from n2 to n1.

Graphs (edges) can be both weighted and directed at the same time, however

graphs will not mix edge types; they are only directed or undirected. An example of

a weighted, directed graph is shown in Figure 2.3.

In this paper, any non-weighted graphs will have a default edge weight of 1

and an edge weight of 0 will imply no relation or edge between the nodes.

2.3.1 Encoding Graphs

There are several formats in which to encode graphs. While the list of nodes

and edges from the more formal definition of a graph is certainly an option, it is an

inefficient format to run an algorithm with. A more natural format for computation

is an array. If every index, n, of an N dimensional array or an NxN matrix represents

a node on the graph, then the edges can be encoded with a non-zero value.

For example, a simple 3 node, {n0, n1, n2}, undirected graph with 2 edges,

{(n0, n2), (n2, n1)} (see Figure 2.2) and might look like this:
0 0 1
0 0 1
1 1 0

Figure 2.2: Example Graph from Encoded Matrix
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If the same edges were directed and weighted, the graph would look like Fig-

ure 2.3 and the matrix written as:
0 0 7
0 0 0
0 5 0

Figure 2.3: Example of a Weighted and Directed Graph from Matrix

2.3.2 Compressed Sparse Format(s)

One drawback to a full matrix representation of a graph is that most values in

a real-world graph in matrix form are zeros. This type of matrix (or graph) is defined

as sparse. A dense matrix would have more non-zero values than zeros values.

The solution to saving space in the graph encoding is to use a Compressed

Sparse Format. This format only encodes the coordinates and non-zero data values

of a matrix.

The two related Compressed Sparse Formats used here are the Compressed

Sparse Row (CSR) and the Compressed Sparse Column (CSC) formats. Both work

very similarly with the matrix being encoded into three separate arrays.

For the CSR format, the data or value array holds all the non-zero values of

the matrix sorted in row then column order. The indexpointer (indptr) array which

points at the beginning (inclusive) and ending (non-inclusive) indices for each row

in the matrix on the other two arrays. The column (col, or more generally, indices)
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array holds which column in the matrix that the equivalent data value belongs to.

CSC format is equivalent except it uses row for column and column for row.

The above weighted and directed graph/matrix can be written in CSR as:

indptr = {0, 1, 1, 2}

col = {2, 1}

data = {7, 5}

The CSC equivalent would be written as:

indptr = {0, 0, 1, 2}

row = {2, 0}

data = {5, 7}

Notice that it is simple to find the total number of edges by getting the last

value of the indptr array. For the CSR format, since the edges are first indexed by

row, then column, all out-bound edges of a node (directed edges where the node is

the source node of the edge) are grouped consecutively in the data and row arrays.

Likewise, all in-bound edges of a node are grouped together in the CSC format.

2.3.3 NetworkX

Python has libraries implemented to read formatted graph files. One such

library was used: the NetworkX [15] library handles reading in and writing to a

multitude of different standardized formats. It can also convert the format once it is

in NetworkX to the compressed sparse arrays, making it an ideal library to preprocess

input data files. Additionally, it has the capability of creating graphs from both user

input and a variety of graph generators. This makes it an excellent way to create

graphs both trivial and small (for development and debugging), as well as large-scale

(as will be discussed in later chapters).
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Chapter 3: The Parallel Maximal Independent Set

(MIS) Algorithm

3.1 MIS Background

An independent set of nodes is a set where all nodes in the set do not share

any neighbors. A neighbor is defined as a pair of nodes that share an edge between

them. While in directed graphs there are in-bound and out-bound neighbors where

there is significance in edge direction; the Maximal Independent Set problem only

applies to undirected graphs.

If there is a 5-node graph with G = (V,E) with edges, E =

{(A,B), (B,C), (C,D), (D,E)}, then the set of nodes {A,C} would be a indepen-

dent set since there are no shared edges between A and C. This graph is shown in

Figure 3.1.

Figure 3.1: Example Graph

A maximal or maximum set refers to a set where nothing more can be added

to the set and the condition still hold true. Another way of putting it is that a

maximal set may not be a subset of another set that meets the same criteria. For

example, the independent set of nodes {A,C} is not maximal because the larger set

of nodes {A,C,E} is also an independent set. Since {A,C} is a subset of {A,C,E},

then set {A,C} cannot be a maximal independent set. The set of nodes {A,C,E}

is a maximal independent set because no more nodes, B or D, can be added and
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the independent condition still hold true. For the same graph, there can be multiple

maximal independent sets. For the example graph above, the set of nodes {B,D}

also is a valid solution since it is both independent and maximal. Some of the possible

solutions are shown in Figure 3.2.

Figure 3.2: Possible MIS Solutions, MIS nodes in grey

3.2 The Parallel Maximal Independent Set Algorithm

The contribution of this report–the PyKokkos implementation of the algorithm–

is based off the pseudocode in the paper: “A High-Quality and Fast Maximal Inde-

pendent Set Implementation for GPUs” [9]. The parallel section of the pseudocode

is shown in Listing 3.1.

The algorithm initializes by setting all nodes to undecided and also assigning

a random priority to each node. The local highest priority node in the set of all

undecided nodes then marks itself as within the MIS and all its neighbors as outside

the set. This goes on till all nodes are marked as in or out of the set. Since each

undecided node only needs to check its own neighbors to see if it is the local highest

priority, the time cost for each iteration decreases as there are fewer remaining nodes

with fewer unmarked neighbors. Since checking and marking a node happens with

no dependencies on any non-neighboring values (and if marked, not only eliminates

the MIS node from doing more work but also all its neighbors), the algorithm is

highly parallel and will run in O(log2(N)) time with high probability. While there is

potential for two nodes in the MIS set to share a neighbor and mark it as not MIS,
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this will not cause a race condition. Since they are writing the same value, it does

not matter which node’s thread actually succeeds.

1 // This is the parallel section

2 compute_kernel() {

3 //tid is thread ID

4

5 if(status[tid] == undecided) {

6 // find highest priority (random array) neighbor

7 best = get_best_neighbor(tid);

8 if(random[tid] > best) {

9 status[tid] = in;

10 mark_neighbor_out(tid);

11 } else {

12 need_another_round = true;

13 }

14 }

15 }

16

17 MIS() {

18 //allocate memory and transfer graph

19 //init status array to undecided

20 //init random array to random values

21 do {

22 need_another_round = false;

23 compute_kernel();

24 } while (need_another_round);

25 }

Listing 3.1: MIS pseudocode

In the pseudocode examples, need another round checks if any nodes are still

undecided and if another round is needed. get best neighbor() checks the neighboring

undecided nodes for the priority and returns the highest found, andmark neighbor out()

marks all neighbors as out of the MIS.

3.3 Implementation

The PyKokkos implementation of the algorithm is fairly straightforward. The

parallel section in PyKokkos as shown in Listing 3.2. The thread ID in this example

is i. done is a View with a single index and priority and status are Views that hold
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their respective value for each node.

1 # Initialized beforehand are:

2 # done: pk.View[int] value initialized to 0 (not done)

3 # priority: pk.View[int] set to random values

4 # status: pk.View[int] set to unmarked (-1)

5

6 # Graph CSR arrays (minus data)

7 # indices: pk.View[int]

8 # indptr : pk.View[int]

9

10 @pk.workunit

11 def compute_kernel(self, i: int):

12 d : int = 0

13 # check if self is undecided (-1)

14 if self.status[i] == -1:

15 best: int = 1

16 # figure out if a neighbor has a higher priority

17 for j in range(self.indptr[i], self.indptr[i+1]):

18 neighbor: int = self.indices[j]

19 if neighbor == -1:

20 break

21 if self.status[neighbor] != 0:

22 if self.priority[i] < self.priority[neighbor]:

23 best = 0

24 break

25 # if highest priority among neighbors, set self to in (1)

26 # set all neighbors to out (0)

27 if best == 1:

28 self.status[i] = 1

29 for j in range(indptr[i], self.indptr[i+1]):

30 neighbor: int = self.indices[j]

31 self.status[neighbor] = 0

32 # might need another round to check resolution status (0)

33 else:

34 self.done[0] = 0

Listing 3.2: Parallel section of the PyKokkos MIS

Since MIS is only concerned with neighboring nodes, and not edge weight, a

small optimization was made by removing the data, or value, array of the CSR format

into the algorithm.
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3.3.1 MIS Checker

A simple parallel MIS checker was also implemented in PyKokkos. Since the

definition of a MIS set is that: for all nodes in the set, all neighbors must not be

within the set, and for all nodes not within the MIS set, there must be at least one

neighbor in the MIS set. It was trivial to write a parallel checker that took a single

round to check for that condition and return true or false. The parallel section for

the checker is in Listing 3.3. The only input for the checker is the graph and the MIS

view output from the MIS algorithm.

1 @pk.workunit

2 def check_node(self, i: int):

3 # in the mis set

4 if mis[i] == 1:

5 # check for no other included neighbors

6 for j in range(indptr[i], self.indptr[i+1]):

7 neighbor: int = self.indices[j]

8 if self.mis[neighbor] == 1:

9 self.valid[0] = 0

10 # not in mis set, need at least one mis set neighbor

11 else:

12 found_mis: int = 0

13 for j in range(indptr[i], self.indptr[i+1]):

14 neighbor: int = self.indices[j]

15 if self.mis[neighbor] == 1:

16 found_mis = 1

17 if found_mis == 0:

18 self.valid[0] = 0

Listing 3.3: Parallel section of the PyKokkos MIS Checker
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Chapter 4: The Parallel Lattice-Linear Shortest

Path Algorithm

4.1 Algorithm Background

A path between 2 nodes in a graph is any list of edges that when taken in order

will start at the source node and reach the destination node. A shortest path then is

the optimal path between 2 nodes. In an undirected graph the path will be the same,

regardless of which node is source and which node is the destination. In a directed

graph, this does not hold true. For an unweighted graph, this will be the sets with

the least number of edges. For a weighted graph, this will be the set of edges with the

least total cost (or sum of the weight values for all the edges in the path). A shortest

path algorithm is simply: the shortest (or least costly) way of getting between a pair

or pairs of nodes in a graph.

If there is an unweighted, 3-node graph G = (V,E) with

E = {(A,B), (A,C), (B,C)} (see Figure 4.1). Then to go from A to C, the path

{(A,C)} would be taken. While there is another path to get from A to C:

{(A,B), (B,C)} this would not be the shortest path since it would take two edges

instead of one.

Figure 4.1: Example Graph

If a graph is weighted, the edges have cost associated with transversal, then

the ’shortest’ path might change. For example, if the same edges had a weight: E =
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{(A,B, 2), (A,C, 7), (B,C, 2)} (such as in Figure 4.2) then the path {(A,B), (B,C)}
would cumulatively cost 2+2 = 4 and be the least cost path since the only alternative

path has a total cost of 7.

Figure 4.2: Example Weighted Graph

This type of problem applies to directed and undirected graphs alike and is

widely applicable in many contexts from plotting an efficient road trip across the U.S.

to packet routing in a network.

There are several subcategories of the shortest path problem:

� Single Source: from a single source node to all destinations

� Single Destination: shortest path from all sources to a single destination

� All Pairs: shortest path for every pair of nodes in the graph

In this paper the single source variant is discussed and implemented.

4.1.1 Dijkstra’s and Bellman-Ford

The classical algorithm to solve the Shortest Path problem is Dijkstra’s Algo-

rithm [11]. It works by gradually working from the source nodes and searching for

the neighboring edge of least weight or distance. The node at the other end of this
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edge is marked as done since there is no path ’shorter’ and its neighbors are also

added to the search space. By greedily choosing the paths of least cost one by one,

the algorithm finds the optimal paths between all nodes and the source node after all

nodes have been marked.

Since Dijkstra’s algorithm is a serial algorithm, only one edge is processed at

a time and similarly, a single node marked. It will also not find the correct path for

graphs of negative edge weights as it has a built in assumption that all edges in the

path will have a greater cost the further away the path gets from the source.

This is where the Bellman-Ford Algorithm [7, 13] comes into play. Unlike

Dijkstra’s, the Bellman-Ford algorithm can handle not only negative edge weights,

but also detect negative cycles in a graph. A negative cycle in a graph means that

there is a path to and from the same node with a negative total cost and that there is

no shortest path. Entering this cycle would have −∞ total cost as the path continues

to repeat it. An example of a negative cycle is shown in Figure 4.3.

Figure 4.3: Example Negative Cycle

The Bellman-Ford algorithm has more overhead than Dijkstra’s since it both

adds new edges to the search space, and updates all existing paths with the new in-

formation. This handles the scenario of discovering a better path due to the inclusion

of a negative edge weight to lower total cost. Since all paths must be found after all
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edges have been traversed, the algorithm ends when either no updates can be made

or it has run that many times. Should a change be made to the total node cost in

any one node after all the edges have been explored, then there must be a negative

cycle in the graph and the shortest path problem for that graph is unsolvable.

While Bellman-Ford is originally a serial algorithm, it is easily made parallel

by distributing the work of checking and then updating the node information across

multiple threads.

4.1.2 Lattice-Linear Predicate (LLP)

Lattice-Linear Predicate [14] is a new parallel approach to solving problems

with a distributed linear solution space.

For linear problems, the solution can take the form of an array or vector.

All potential solutions defined by this vector form a lattice. The point at which the

algorithm is at in the lattice is called the global state. The nodes in the lattice are

every permutation of the global state. The edges are the relationships, or paths,

between these states.

1 #global state vector

2 G

3

4 # done in parallel with regards to

5 # the size of the global state vector

6 do {

7 # check to see if the predicate is satisfied

8 # for all indices of the vector

9 forbidden: bool = predicate(G)

10

11 # if the state is forbidden,

12 # advance in the lattice.

13 if forbidden:

14 advance(G)

15 } while (forbidden && G is changing)

Listing 4.1: Generalized LLP parallel section

To determine if the current global state is the solution or if the algorithm
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must continue searching, the solution must satisfy the predicate. If the predicate is

not satisfied, then the state is forbidden and the global state should be adjusted or

advanced. The advance is the change made to the global state from one or more

threads that advances the global state closer to a solution that satisfies the predicate.

Listing 4.1 shows the general format of an LLP algorithm.

4.2 LLP Shortest Path

For the shortest path problem, the global state consists of the vector of total

cost it would take to reach each node and is initialized to: (0,∞,∞, ....,∞) (assuming

the first node is the start node). The solution space would be from ∞ to −∞ for all

nodes (also assuming negative costs are possible).

The predicate for shortest path would be that for every node in the graph

(excluding the start) there shall be no path to that node from any of its neighbors

that costs less than what it has in the global state: for graph G(V,E) for all edges

(i, j) ∈ E : G[j] <= G[i]+weight(i, j) (assuming also that total number of iterations

does not exceed the total number of edges).

Figure 4.4: Moving Through a Lattice (Global State)

Let us consider the graph shown in Figure 4.2. As an example of how this

applies to the lattice, the total cost to reach each node, excluding the start node
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which is always 0, is somewhere between −∞ and ∞. The initial global state would

then be (0,∞,∞). Depending on algorithm execution, one or more of the nodes

could update their own total cost in the global state. B could update itself to 2 and

C could update itself to 7. Eventually, this leads to the final global state of (0, 2, 4).

The relevant subset of this lattice is shown in Figure 4.4. The state (0, 0, 0) is also

shown in the figure as it is a valid possible solution in the overall lattice.

1 # global state vector or current node in lattice

2 G

3

4 do{

5 # check to see if cost for this node

6 # is greater than the cost it takes to

7 # get to this node from a neighbor

8 # for all neighbors n

9 forbidden: if G[tid] > G[n] + weight(n, tid)

10

11 # update the Global State and ensure

12 # this node has the min cost of

13 # the path from all neighbors n

14 if forbidden:

15 G[tid] = min(G[n] + weight(n, tid))

16 } while(forbidden && total iterations <= number of edges)

Listing 4.2: Shortest Path LLP parallel section

Putting the Shortest Path specific details and the generalized LLP formula

gets an LLP-Shortest Path parallel section shown in Listing 4.2.

4.2.1 Implementation

In the PyKokkos implementation, the global state vector is initialized to in-

finity, with the exception of the start node which is set to 0. There is an additional

vector keeping track of the previous node to later build the full shortest path from,

this is also initialized. Also initialized to false is a variable to indicate if the advance

was made (if the previous global state was forbidden), and if another round of the

parallel section should be run.

The rest of the code is essentially the same as the above LLP Shortest Path

30



in Listing 4.2: check if forbidden by the shortest path predicate, if not, update the

global state with the advance. The advance for shortest path is simply updating the

previous node and the new total cost to the previous node vector and global state

vector. This is done per thread which is per index of the global state vector (per

node). The parallel section of the PyKokkos LLP-Shortest Path implementation is

shown in Listing 4.3.

1 @pk.workunit

2 def compute_kernel(self, i: int):

3 if i == self.start:

4 return

5

6 # get min{G[in-bound neighbor] + weight[in-bound neighbor, i] for all in-bound

neighbors}

7 curr_cost: float = self.G[i]

8 prev_node: int = self.prev_nodes[i]

9

10 # get G[in-bound neighbor] + weight[in-bound neighbor, i]

11 for j in range(self.indptr[i], self.indptr[i+1]):

12 neighbor: int = self.indices[j]

13 neighbor_cost: pk.float = self.G[neighbor]

14 this_weight: pk.float = self.weights[j]

15 this_cost: pk.float = neighbor_cost + this_weight

16

17 # min{} check

18 if this_cost < curr_cost:

19 prev_node = neighbor

20 curr_cost = this_cost

21

22 # LLP format: check if forbidden, if so, advance

23

24 # Global state is forbidden if

25 # G[i] > min{}

26 if self.G[i] > curr_cost:

27 # advance is set G[i] to min{}

28 self.done[0] = 0

29 self.prev_nodes[i] = prev_node

30 self.G[i] = curr_cost

Listing 4.3: Parallel section of the PyKokkos Shortest Path
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Chapter 5: Evaluation

Kokkos and PyKokkos allow code to be compiled and run on a variety of

platforms. The variable that controls which platform (CPU, GPU, etc.) and how it is

run (OpenMP, Serial, POSIX Threads, etc.) is called a ’space’. We ran the algorithms

in three different spaces: (1) Serial, which is on the CPU, (2) OpenMP (OMP), which

allows for multi-threading on the CPU, and (3) CUDA, which is on an Nvidia GPU.

Also being compared is the NetworkX implementation of the algorithms, which is in

Python and thus single-threaded on CPU by default. OpenMP restricts the number of

threads allowed through the OMP NUM THREADS variable. If left unset, it will be

configured automatically. For OpenMP multithreaded runs, OMP NUM THREADS

is left unset, and for OpenMP with a single thread it is set to 1.

All runs were done on Frontera [27] and are the average of 5 or more runs.

The Frontera nodes have Intel Xeon CPU E5-2620 v4 processors (2 sockets with 16

cores each) and 4 NVIDIA Quadro RTX 5000 per node. The PyKokkos version used

is commit 1c6e3e6c, which was the latest on main at the time of our experiments.

5.1 Graphs

The graphs used to test the algorithms were pulled/generated from a variety

of different sources. The characteristics of the graphs used and their sources (Matrix

Market (MM), NetworkX (NX) and Stanford Network Analysis Project (SNAP)) are

shown in Table 5.1.

5.1.1 Matrix Market (MM)

The initial set of graphs came from Matrix Market [8]. It is a National Institute

of Standards and Technology (NIST) repository of sparse matrices and generators.

The Matrix Market files are encoded in specific, well-defined formats (coordinates
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Table 5.1: Graphs Used to Evaluate Implemented Algorithms

Graph #Nodes #Edges Source Type

e05r0000 236 5,846 MM directed, weighted
reg ud 1000 n 1,000 50,000 NX undirected
rand ud 1000 n 1,000 100,000 NX undirected
e20r0000 4,241 131,412 MM directed, weighted
s1rmq4m1 5,489 262,411 MX directed, weighted
e30r0000 9,661 305,794 MX directed, weighted
reg ud 10000 n 10,000 5,000,000 NX undirected
rand ud 10000 n 10,000 10,000,000 NX undirected
Oregon-1 11,492 23,409 SNAP undirected
e40r0100 17,281 553,562 MM directed, weighted
e40r0100 P 17,281 553,562 MM directed, weighted
reg ud 100000 n 100,000 50,000,000 NX undirected
com-Amazon 334,863 925,872 SNAP undirected
as-Skitter 1,696,415 11,095,298 SNAP undirected
com-Orkut 3,072,441 117,185,083 SNAP undirected
com-LiveJournal 3,997,962 34,681,189 SNAP undirected

and a value or as a column-oriented array). Reading from and writing to this format

is already implemented by NetworkX.

As all the graphs in this set have negative edge weights and self-directed edges,

they are unsuitable for the MIS algorithm. Since the matrices in this data set were

not originally meant to be interpreted as graphs, the actual listing of values in the

matrix do not strictly translate to edges in a graph. Coordinates which list an edge

weight of zero are disregarded as a non-edge when transforming the matrix to a graph.

The tables in this chapter show the adjusted edge counts taken after the file is read in

as a graph. e40r0100 P is e40r0100 modified to have all edges made positive, which

we use for detailed performance analysis.

5.1.2 Stanford Network Analysis Project (SNAP)

When running performance testing on the algorithms, larger datasets are re-

quired. The Stanford Network Analysis Project (SNAP) [21] has a wide variety of
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well-cataloged networks in its database. This provided some good examples of real-life

datasets to run performance comparisons on. These larger graphs are collected from

various internet community relationships (’com’ prefixed) [30] or routing networks

(Oregon-1, as-Skitter) [20], and thus are all undirected and unweighted. These par-

ticular graphs were chosen out of the database because they represent a wide range of

large graph sizes and are compatible to both of the algorithms. We used as-Skitter as

one of the graphs the MIS paper tested their OpenMP and CUDA implementations

(ECL-MIS) on. All SNAP graphs were pre-translated to Matrix Market format as

part of the SuiteSparse Matrix Collection [10].

5.1.3 NetworkX

The NetworkX graphs were all randomly generated by NetworkX’s graph gen-

erators [15]. The ’rand’ or ’reg’ prefix distinguishes if the graph was generated as a

purely random graph or if it is a random regular graph. The number indicates the

number of nodes.

5.2 MIS

Listed in Table 5.2 are the average run times of the parallel sections for each

of the PyKokkos spaces and configurations (i.e., OPM NUM THREADS) as well as

the run times of NetworkX’s implementation of a MIS algorithm. All values are in

milliseconds and rounded to one decimal place. Figure 5.1 is a bar chart showing the

MIS algorithm times from Table 5.2. NetworkX took over ∼13hrs to run before timing

out without completion on the com-LiveJournal graph. Measurement for PyKokkos

only includes the time spent executing the parallel sections of the Kokkos code. For

NetworkX, only the algorithm’s run time was measured. The loading of the graph

into NetworkX or PyKokkos was excluded. For performance runs, we also exclude

running the MIS checker on the results. It is expected that performance on smaller

graphs be comparatively worse on multithreaded and GPU runs due to the overhead
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of setting up the parallelism outweighing any parallel performance benefits.

Table 5.2: MIS Times (in ms)

Graph Serial OMP Single OMP Multi GPU NetworkX

reg ud 1000 n 0.1 0.1 1.3 2.0 0.7
rand ud 1000 n 0.1 0.1 1.7 2.1 0.7
reg ud 10000 n 1.1 1.2 3.0 4.5 23.7
rand ud 10000 n 1.2 16.4 3.3 6.6 28.2
Oregon-1 0.2 0.3 0.6 1.8 734.9
reg ud 100000 n 16.8 20.6 11.6 5.7 760.2
com-Amazon 13.2 13.8 3.8 2.0 354,762.2
com-Orkut 442.6 483.6 71.6 24.0 10,913,850.5
com-LiveJournal 261.8 318.7 49.5 13.9 timeout

In Table 5.3, we show the speedup ratio of the various times compared to the

Serial results. For the GPU Ratio, this would be calculated with Serial time divided

by GPU time.

Table 5.3: Ratio of MIS Speedups to Serial

Graph OMP Single OMP Multi GPU NetworkX

reg ud 1000 n 0.6 0.0 0.0 0.1
rand ud 1000 n 0.6 0.0 0.0 0.1
reg ud 10000 n 0.9 0.4 0.2 0.0
rand ud 10000 n 0.1 0.4 0.2 0.0
Oregon-1 0.9 0.4 0.1 0.0
reg ud 100000 n 0.8 1.5 3.0 0.0
com-Amazon 1.0 3.5 6.6 0.0
com-Orkut 0.9 6.2 18.5 0.0
com-LiveJournal 0.8 5.3 18.8 N/A

Table 5.4 is the comparison of ECL-MIS implemented both in CUDA and

OpenMP vs PyKokkos. as-Skitter was a SNAP graph used by the original paper in

their performance tests. For the OpenMP ECL-MIS, the parameters also required a

thread-count as an input. For ECL Single, 1 was passed in and for ECL Multi, 36

(the number of processor cores) was used.
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Table 5.4: MIS vs ECL-MIS (in ms) on as-Skitter

OMP Single ECL Single OMP Multi ECL Multi GPU ECL GPU

94.8 70.8 18.1 40.9 3.5 1.4

5.3 LLP-Shortest Path

Similarly to the MIS tables, tables 5.5 and 5.6 show the time and speed up

ratios for the Shortest Path algorithm and Figure 5.2 is a chart of the PyKokkos

times. The largest of the graphs were omitted for the sake of time as this algorithm

runs much longer than MIS, and for this algorithm graphs with negative edge weights

(marked with a †) were included.

Table 5.5: Shortest Path Times (in ms)

Graph Serial OMP Single OMP Multi GPU NetworkX

e05r0000† 37.3 40.9 73.6 66.7 69.1
reg ud 1000 n 0.6 0.5 0.6 2.2 45.9
rand ud 1000 n 1.0 1.0 1.4 2.2 102.9
e20r0000† 14,923.3 15,912.1 14,059.1 1,554.6 347.2
s1rmq4m1† 58,623.6 58,731.5 39,368.7 4,127.6 905.2
e30r0000† 79,915.4 81,012.0 50,326.0 5,831.5 14,242.9
reg ud 10000 n 57.0 56.2 12.6 15.1 6,533.4
rand ud 10000 n 109.9 106.6 22.8 18.7 13,569.7
Oregon-1 0.8 1.0 0.8 3.9 57.4
e40r0100† 257,923.1 266,121.0 104,526.0 16,368.6 29,729.7
e40r0100 P 88.6 86.5 26.8 23.3 6,846.5
com-Amazon 244.8 297.5 24.9 25.2 3,719.5

For graphs: e05r0000, e20r0000, e30r0000, e40r0100 and s1rmq4m1, there are

negative cycles meaning that Bellman-Ford was forced to run number of edges + 1

times to detect the cycle and thus the lack of a solution. When edges are all positive,

the performance of the PyKokkos implementations significantly increased as shown

by the run times of e40r0100 compared to e40r0100 P.

NetworkX has a library of a variety of Shortest Path Algorithms. The one run
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Table 5.6: Ratio of Shortest Path Speedups to Serial

Graph OMP Single OMP Multi GPU NetworkX

e05r0000† 0.9 0.5 0.6 0.5
reg ud 1000 n 1.0 1.0 0.3 0.0
rand ud 1000 n 1.0 0.7 0.5 0.0
e20r0000† 0.9 1.1 9.6 43.0
s1rmq4m1† 1.0 1.5 14.2 64.8
e30r0000† 1.0 1.6 13.7 5.6
reg ud 10000 n 1.0 4.5 3.8 0.0
rand ud 10000 n 1.0 4.8 5.9 0.0
Oregon-1 0.9 1.1 0.2 0.0
e40r0100† 1.0 2.5 15.8 8.7
e40r0100 P 1.0 3.3 3.8 0.0
com-Amazon 0.8 9.8 9.7 0.1

here is the Bellman-Ford implementation which returns all the previous nodes in the

path in addition to the total cost per node; this is most similar to the implemented

PyKokkos algorithm. Since NetworkX constantly maintains the full paths for each

node, it performs better on graphs with negative cycles, as it does negative cycle

checking in each iteration as opposed to waiting for the last iteration.

An implementation of LLP Bellman-Ford was done in Java (by a fellow stu-

dent) that returns only the total cost of the input graph. The comparison is shown

in Table 5.7. As the algorithm only runs on graphs with integer edge weights, it was

run on the smaller of the unweighted (thus weight 1) graphs.

Table 5.7: Shortest Path vs Java (in ms)

Graph OMP Single OMP Multi GPU LLP Java

reg ud 1000 n 0.5 0.6 2.2 1,041.8
rand ud 1000 n 1.0 1.4 2.2 969.6
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Chapter 6: Abstracting the Creation of Views in

PyKokkos

6.1 Improving View Creation Abstraction

While Views in PyKokkos could be built by hand, much of the time, data is

already in an array format such as an numpy array [16] or a cupy array [23].

Initially when first starting out on PyKokkos, there was no unified way of

bringing data from either the GPU or CPU space (numpy or cupy arrays respectively)

without calling the space specific functions.

In the course of implementing the graph algorithms, using one or the other of

these functions made writing code for either CPU or GPU more difficult. A small

improvement to the PyKokkos API was made by abstracting both of these functions,

which allows users to call the same function to handle either device’s arrays in one

function call. A comparison of before and after the change is shown in Listing 6.1.

1 # before:

2 view_c = pk.from_cupy(cupy_array)

3 view_n = pk.from_numpy(numpy_array)

4

5 # after:

6 view_c = pk.array(cupy_array)

7 view_n = pk.array(numpy_array)

8 view_l = pk.array([int1, int2, ..., intn])

Listing 6.1: PyKokkos View array() changes
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Chapter 7: Related Work

CPython [29] is the official implementation of the Python language specifi-

cation and the most popular and prevalent Python runtime. One drawback to this

implementation is the Python Global Interpreter Lock (GIL). While the GIL sim-

plified the safe handling of memory in Python, it is also the main restriction on

parallelism as it blocks multiple threads from running at the same time. Alternative

Python compilers do not share this restriction. Numba [18] compiles Python code

to LLVM. Cython [6], which is a superset of the Python specification, compiles the

same as C++ and has C++ like calls. There is also an accepted proposal, PEP 703,

to add an option in CPython to run without the GIL, which would allow for true

multithreading in Python.

Libraries with Python Wrappers mitigate the GIL issue in Python by out-

sourcing parallel operation to languages that do support multithread CPU or GPU

operations. Well-known AI/ML libraries in Python such as scikit-learn [26], Py-

Torch [25] and TensorFlow [1] handle their large scale computations in this way. In

addition to having a database of large graph datasets, Stanford Network Analysis

Project (SNAP) [22] also provides a Python wrapper to its collection of graph algo-

rithms in C++.

In the area of Portable Performance Graph Algorithms, there is an implemen-

tation of a parallel MIS in Kokkos which runs on both CPU and GPU [17]. IrGL [24]

is a graph algorithm specific compiler that creates optimized GPU code from an

intermediate representation.

For other models that provide portable performance, Legion [5] has a data-

centric design that tries to solve the high overhead cost of moving around large vol-

umes of data. It gives users the ability to describe data attributes to optimize parallel

operations on the data in C++. Legate [4] is in Nvidia project that sits on top of
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Legion and also allows users to program in a familiar Python interface through im-

porting Legate core libraries instead of numpy and other common libraries.

Parla [19] is a Python orchestration layer that handles data and task man-

agement between heterogeneous compute nodes. Paired with PyKokkos, distributed

portable and performant code could be run over a system with many nodes.
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Chapter 8: Conclusion

In this report, we demonstrated two performant and portable parallel algo-

rithms. One is the first implementation of the Maximal Independent Set (MIS)

algorithm by Burtscher et al. in Python. The other is the first implementation of

an algorithm using Lattice-Linear Predicate in Python or on a GPU. Both of these

algorithms, MIS and LLP-Shortest Path, are also the first graph algorithms to be

written in PyKokkos.

The performance of the algorithms on graphs of various sizes demonstrate

the versatility of PyKokkos allowing users to write code once and run on whichever

platform is most convenient. The portability of PyKokkos does not come at the cost

of readability or performance. PyKokkos code is not only readable, it also shows

significant performance improvements, even run serially, over ’pure’ Python code

alternatives. This holds true both on moderately sized graphs and on larger graphs

when either GPU or multithreaded CPU is enabled.

Despite the performance of the algorithm itself, the biggest slowdowns of run-

ning the algorithm came from the NetworkX preprocessing of the graphs. The in-

clusion of a graph library into PyKokkos would be of great performance benefit to

future graph algorithms and make PyKokkos even more attractive to parallel appli-

cation developers.
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