
A Framework for Writing Trigger-Action Todo Comments
in Executable Format

Pengyu Nie, Rishabh Rai, Junyi Jessy Li, Sarfraz Khurshid, Raymond J. Mooney, and Milos Gligoric
The University of Texas at Austin (USA)

{pynie@,rishabh.rai@,jessy@austin.,khurshid@ece.,mooney@cs.,gligoric@}utexas.edu

ABSTRACT

Natural language elements, e.g., todo comments, are frequently used
to communicate among developers and to describe tasks that need
to be performed (actions) when specific conditions hold on artifacts
related to the code repository (triggers), e.g., from the Apache
Struts project: “remove expectedJDK15 and if() after switching to
Java 1.6”. As projects evolve, development processes change, and
development teams reorganize, these comments, because of their
informal nature, frequently become irrelevant or forgotten.

We present the first framework, dubbedTrigIt, to specify trigger-
action todo comments in executable format. Thus, actions are exe-
cuted automatically when triggers evaluate to true. TrigIt specifica-
tions are written in the host language (e.g., Java) and are evaluated
as part of the build process. The triggers are specified as query state-
ments over abstract syntax trees, abstract representation of build
configuration scripts, issue tracking systems, and system clock time.
The actions are either notifications to developers or code transfor-
mation steps. We implemented TrigIt for the Java programming
language and migrated 44 existing trigger-action comments from
several popular open-source projects. Evaluation of TrigIt, via a
user study, showed that users find TrigIt easy to learn and use.
TrigIt has the potential to enforce more discipline in writing and
maintaining comments in large code repositories.

CCS CONCEPTS

• Software and its engineering → Software maintenance

tools; Domain specific languages; Software evolution.

KEYWORDS

Todo comments, trigger-action, domain specific languages

ACM Reference Format:

Pengyu Nie, Rishabh Rai, Junyi Jessy Li, Sarfraz Khurshid, Raymond J.
Mooney, and Milos Gligoric. 2019. A Framework for Writing Trigger-Action
Todo Comments in Executable Format. In Proceedings of the 27th ACM Joint

European Software Engineering Conference and Symposium on the Founda-

tions of Software Engineering (ESEC/FSE ’19), August 26–30, 2019, Tallinn,

Estonia.ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3338906.
3338965

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5572-8/19/08. . . $15.00
https://doi.org/10.1145/3338906.3338965

1 INTRODUCTION

Natural language elements, such as todo comments, are frequently
used to communicate among developers [35, 46, 49]. Some of these
comments document that a developer should perform an action if a
trigger evaluates to true, e.g., from the Apache Wave project [26]:
“Remove this [line] when HtmlViewImpl implements getAttributes”

action trigger
We consider those comments where the trigger is a query over
artifacts related to the code repositories and actions are either
notifications to developers or code modifications. We call these
comments trigger-action comments.

Although trigger-action comments are ubiquitous [31, 35, 45],
they are, like other types of comments, written in natural language.
Thus, as projects evolve, development processes change, and de-
velopment teams reorganize, these comments frequently become
irrelevant or forgotten. As an example, consider the following com-
ment from the Apache Gobblin project [18]:
“Remove [this class] once we commit any other classes”

action trigger
This comment, followed by an empty class, was included in Decem-
ber 2015 in the package-info.java file to force the Javadoc tool
to generate documentation for an empty package. Three months
later (February 2016) classes were added to the package, but the
comment and the empty class in package-info.java file were not
removed. More than three years later (2019), the comment and the
empty class are still in the repository.

Having pending actions, i.e., those actions that should have
been done because the triggers evaluate to true, and outdated
comments may negatively impact program comprehension and
maintenance [35, 45, 46, 49–51]. Additionally, having comments
written in an informal way presents a challenge for some software
engineering tools, such as refactorings [17, 37, 38], as those tools
may not know how to manipulate code snippets and identifiers
embedded in comments [44].

Developers in industry have recognized the problem with out-
dated todo comments and recently developed tools to help with
maintenance of todo comments. imdone [31] extracts and maintains
the list of pending todo comments at one place. todo_or_die [45]
enables developers to write executable statements that will break
the program execution if a todo comment is not addressed by a
specific date. The main developer of todo_or_die says: “[in the
past] the comment did nothing to remind myself or anyone else to
actually delete the code [...] this eventually resulted in an actual
support incident (long story)” [45].

To further motivate our work, we also reached out to ten de-
velopers at large software companies, including Google, Dropbox,
Groupon, and Palantir, to ask if they write todo comments and

385

https://doi.org/10.1145/3338906.3338965
https://doi.org/10.1145/3338906.3338965
https://doi.org/10.1145/3338906.3338965

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Pengyu Nie, Rishabh Rai, Junyi Jessy Li, Sarfraz Khurshid, Raymond J. Mooney, and Milos Gligoric

trigger-action comments. Based on eight replies, seven developers
said that they have todo comments and trigger-action comments.
These developers also highlighted the importance of improving
the maintenance of todo comments, e.g., “I’m very tired of half-
complete migrations and stale todos” and “we have a lot of todos
at [company] that get forgotten until something breaks”.

With the goal to enforce more discipline in writing and maintain-
ing comments, we present the first framework, dubbed TrigIt, to
specify trigger-action comments in executable format; the triggers
are evaluated automatically at each build run and actions are taken
based on users’ specifications. TrigIt introduces a domain spe-
cific language (DSL) that can be used to write triggers and actions.
Specifically, triggers are written as query statements over ASTs,
build configuration scripts, issue tracking systems, and system
clock time; actions are either notifications to developers or trans-
formation steps over ASTs. To provide a natural access to the AST
elements and improve maintenance, the TrigIt DSL is embedded in
the host language. However, the semantics of the language enables
the executable trigger-action comments to be evaluated as part of
the static program analysis phase (prior to program execution).

We implemented the TrigIt technique in a tool for Java; we use
the same name for both the technique and the tool. TrigIt analyzes
compiled code and modifies either compiled code, source code, or
neither, depending on user-defined actions. TrigIt allows users to
force execution of actions, for example during testing or during
debugging of TrigIt specifications, without modifying sources. If
a user chooses to modify source code with an action, she would be
provided with a patch once the action is taken. TrigIt should be
integrated in the build process after the compilation step. Ideally,
we envision TrigIt being used as a bot that sends a code review
with changes whenever a trigger evaluates to true.

We evaluated TrigIt via a user study with 20 participants which
showed that users find TrigIt easy to learn and use; most users
correctly encoded trigger-action comments in the TrigIt DSL with
less than ten minutes of training. Additionally, we evaluated TrigIt
by manually migrating 44 existing trigger-action comments to the
TrigIt DSL; all the comments are from ten popular open-source
projects available on GitHub. In our experiments, we also report the
complexity of TrigIt statements measured in terms of the number
of tokens in the specifications, as well as the overhead introduced
by the tool in the build process. TrigIt does not introduce any over-
head at runtime. Our results show that TrigIt introduces negligible
overhead in the build process, and triggers and actions are short to
write (on average 18.0 tokens).
The main contributions of this paper include:
⋆ Idea: We introduce an idea to encode trigger-action comments,

currently written in natural language, as executable statements
in the host language. Having executable trigger-action comments
enables their maintenance (e.g., refactoring), testing, and auto-
matic execution of the triggers and actions when artifacts related
to the code repository change.

⋆ Tool: We implemented our idea in a tool, dubbed TrigIt, for Java.
We also developed a Maven plugin to simplify the integration of
TrigIt with an existing build system.

⋆ User study and case studies: We evaluated TrigIt via a user
study with 20 participants, including 6 developers working for

// AbstractStreamingHasher.java

protected AbstractStreamingHasher(int chunkSize, int bufferSize) {

// TODO(kevinb): check more preconditions
// (as bufferSize >= chunkSize) if this is ever public
if (trigItIsPublic())

checkArgument(bufferSize >= chunkSize);

checkArgument(bufferSize % chunkSize == 0); ... }

@TrigtItMethod

boolean trigItIsPublic() {

return TrigIt.getMethod("<init>", int.class, int.class).isPublic();}

Figure 1: An example from the google/guava project and

TrigIt encoding to illustrate a local action.

// FreemarkerResultMockedTest.java

void testDynamicAttributesSupport() throws Exception { ...

// TODO : remove expectedJDK15 and if() after switching to Java 1.6
if (TrigIt.getJavaVersion().ge(TrigIt.JAVA6)) {

String expectedJDK16 = "<input type=\"text\" ...";

assertEquals(expectedJDK16, result);

} else {

String expectedJDK15 = "<input type=\"text\" ...";

String expectedJDK16 = "<input type=\"text\" ...";

if (result.contains("foo=\"bar\" ..."))

assertEquals(expectedJDK15, result);

else
assertEquals(expectedJDK16, result); } ... }

Figure 2: An example from the apache/struts project and

TrigIt encoding to illustrate a build configuration trigger.

// Mapper.java

// TODO: make this protected once Mapper and FieldMapper are merged together
public final String simpleName() { return simpleName; }

@TrigItMethod

void checkMerge() {

if (!TrigIt.hasClass("Mapper")

|| !TrigIt.hasClass("FieldMapper")) {

TrigIt.getMethod(simpleName()).setProtected(); } }

Figure 3: An example from the elastic/elasticsearch
project and TrigIt encoding to illustrate a global action.

large software companies. Additionally, we report our experience
in manual migration of existing comments.

⋆ Dataset: A byproduct of our work is the first dataset of trigger-
action comments and their executable counterparts. Additionally,
we manually added various labels on the comments that can be
useful in future research projects.

Our tool and the dataset are available at cozy.ece.utexas.edu/trigit.

2 ILLUSTRATIVE EXAMPLES

This section presents several existing trigger-action comments from
large open-source projects, and the encoding of these comments in
the TrigIt DSL and TrigIt’s workflow. We chose the comments
such that we can illustrate various aspects of the TrigIt approach.

Figure 1 shows a code snippet from the google/guava
project [19]. We show the encoding of the executable trigger-
action comment within boxes. This comment was added in commit
c92e1c7 (2017-05-31) and is still present as of 2019-06-11 (bf9e8fa).
In this case, a developer wants to add more precondition checks if
the method or constructor becomes public. The trigger in TrigIt
is encoded as a separate method that returns a boolean value, and
each TrigIt method needs to have the @TrigItMethod annotation.
trigItIsPublic finds the constructor and checks its modifiers.

386

http://cozy.ece.utexas.edu/trigit

A Framework for Writing Trigger-Action Todo Comments in Executable Format ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 1: Examples of Query Expressions in the TrigIt DSL.

Type Query Expression Natural Language Description

AST TrigIt.getClasses().findAny(“C”).isPresent() Checks if there is a class with name “C”
Build TrigIt.getJavaVersion().ge(TrigIt.JAVA8) Checks if the Java version is greater or equal than Java 8
Issue TrigIt.isClosed(“https://github.com/google/closure-compiler/issues/1897”) Checks if the issue (specified with URL) is closed
Time TrigIt.after(“2019-04-02”) Checks if the system time is after 2019-04-02

The invocation of trigItIsPublic is a guard for an extra precon-
dition check. It is important to observe that in this case, the action
(transformation step) is local, i.e., we simply execute extra state-
ments within the method. As this comment is not specific enough,
i.e., we do not know all the preconditions that developers would
like to check, we could include an extra action to print a warning to
developers when the trigger evaluates to true. Recall that triggers
are evaluated during the build process prior to the execution; this
means that methods annotated with @TrigItMethod, if statements
that guard actions, and statements of either then or else branch
are removed by TrigIt prior to the program execution. As stated
earlier, ideally TrigIt is integrated in a bot that sends code reviews
or pull requests once the trigger evaluates to true.

Figure 2 shows a code snippet from the apache/struts
project [7], which is a web framework for creating Java web appli-
cations. The specified action was performed at commit a5812bf
(2015-10-06), five months after the trigger evaluated to true. Unlike
the previous example, this one illustrates a query statement over
the build configuration script. Specifically, the trigger evaluates
to true if the current Java version is greater than 1.6. Regarding
the action, we guard the modified code in the then branch and the
original code is in the else branch.

Finally, Figure 3 shows a code snippet from the elastic
/elasticsearch project [13], which is a distributed search engine.
We use this example to illustrate the global code transformation
action. In this example, developers want to change the access mod-
ifier of a method (simpleName) from public to protected if two
classes (Mapper and FieldMapper) are merged. Although there is
no unique way to encode a trigger that checks if two classes are
merged, the check can be approximated in several ways. Our ap-
proach is to check that one of the classes is no longer available. A
better option might be to check that one class is removed while
the other one is still present. By knowing the relation between the
classes (FieldMapper extends Mapper) and their usage, we believe
that the original developers could provide a more precise trigger.
The action specifies that the modifier of the method should be
changed to protected. Unlike prior examples, the action is global,
i.e., impacts code elements outside a method body, and it is ex-
pressed as a transformation step over the class AST.

3 TRIGIT TECHNIQUE

This section describes the TrigIt DSL, presents the workflow and
the integration with existing build processes, and briefly describes
the current implementation.

3.1 Language

Specifications in the TrigIt DSL are written in a subset of Java with
slightly modified semantics. The TrigIt DSL consists of three syn-
tactic components: query expression for triggers, action statement

for actions, and TrigIt method. A query expression is syntactically

package org.trigit.project;

public class ClassModel extends ModelBase {

public String getName() {...}

public ModifiersModel getModifiers() {...}

public List<FieldModel> getFields() {...}

public List<MethodModel> getMethods() {...}

public boolean isPublic() {...}

public boolean isProtected() {...}

public boolean isPrivate() {...}

public boolean isPackagePrivate() {...} ... }

Figure 4: Part of TrigIt’s ClassModel API.

equivalent to a Java expression (that evaluates to boolean). An ac-
tion statement is syntactically equivalent to a Java statement. A
TrigIt method is syntactically equivalent to a Java method dec-
laration (with either boolean or void return value and without
arguments). We first describe each component, and then describe
how they are combined into TrigIt specifications.
Query expression. Each query expression is a logical expression,
such that each operand queries the state of the artifacts related to the
code repository via the TrigIt Application Programming Interface
(API). The triggers supported in our design include queries over
(1) AST elements, (2) build configuration scripts, (3) issue tracking
systems, and (4) system clock time. Our decision to support these
trigger types is based on the most commonly seen types of trigger-
action comments that developers write in open-source projects.
Table 1 lists the types of triggers as well as one example for each
type. Each trigger has to start with an invocation of the TrigIt API.

For the query over AST, a user works with a stream of model
classes. Once a developer obtains a stream, the developer can use
any standard Java stream operation [6] (e.g., map, filter, count,
etc.) to create a query. In case the stream support is not available
in the Java version used by the project, the developers may opt for
equivalent operations available in the TrigItAPI. The result of each
query has to be a boolean value. Clearly, as arguments to stream
operations, the developer can use model classes, fields, methods,
etc. to access AST elements and their properties, including class
name, modifier, return type, and others. We only show signatures
of a few methods from ClassModel in Figure 4, which is a model
of a class in the project. TrigIt model classes offer a rich API, and
many syntactic sugars are available, e.g., get a model of a method by
name; the complete TrigIt API is available on the accompanying
web page [54].

Additionally, when constructing queries, a developer can use
constant values, as well as field accesses and method invocations;
however, the semantics for the latter two differ from the one speci-
fied by the Java Language Specification, as we discuss below.

For the last three query types, TrigIt provides an API to get
the build configuration, an API to check the status of an issue on
an issue tracking system, as well as an API to check if the current
system clock time is past a specific date.

387

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Pengyu Nie, Rishabh Rai, Junyi Jessy Li, Sarfraz Khurshid, Raymond J. Mooney, and Milos Gligoric

Action statement. Similarly to a query expression, each action
statement has to start with an invocation of the TrigIt API to ob-
tain a stream of model classes. We currently provide only an API for
modifying ASTs of classes but not other artifacts related to the code
repository. Unlike the instances of model classes that are available
in the query expressions, the instances of model classes available
in actions can be both queried and modified, i.e., extra API meth-
ods are available to specify modifications; this is similar to API’s
available in IDEs to perform AST rewrites [16]. The expressions
used as arguments to stream operations may include constants,
field accesses, and method invocations. There are no limits on the
number of action statements that can be guarded by a single query
expression. For example, if we want to modify an access modifier
of a field “f” in the current class, we can write (in a short form) the
following action statement:

TrigIt.getField(f).setPrivate();

TrigIt method. Each TrigIt method should be a Java method
that (1) has a return type boolean or void, (2) has no arguments,
and (3) is annotated with @TrigItMethod. TrigIt methods that
return a boolean value need to have only a single statement:
return ⟨query expression⟩; that implements the trigger. TrigIt
methods that do not return any value (i.e., void) can have multi-
ple statements, but the first statement has to be an if statement,
such that the conditional expression is a query expression; Other
statements, which are always a part of the then block, are action
statements. The following are templates for TrigIt methods with a
boolean return value and with a void return type, respectively.

@TrigItMethod boolean <modifiers> <name>() {

return <query expression>; }

@TrigItMethod void <modifiers> <name>() {

if (<query expression>) { <action statement>* }}

TrigIt specifications. A complete TrigIt specification consists
of both a trigger part and an action part. We differentiate two types
of actions: (1) global and (2) local. We define a global action as a
sequence of statements that specify modifications to the program
structure [59]. These actions modify out-of-method code elements,
including method signatures, class declarations, etc. Figure 3 from
Section 2 illustrates a global action that updates a modifier of a
method. A TrigIt specification with a global action is written as a
TrigItmethod with a void return type, where the query expression
is the trigger part and the action statements are the action part.

We define a local action as a sequence of statements that should
or should not be executed depending on a trigger that guards those
statements. We say that these actions modify in-method code ele-
ments (i.e., a sequence of statements to be executed). Figures 1 and
2 from Section 2 illustrate local actions. A local action is written as
an if statement, whose condition is a query expression or a TrigIt
method with a boolean return value, and whose then branch is the
code that should be executed if the trigger evaluates to true, while
the else branch is the code that should not be executed in that case.
The following is the general format of a TrigIt specification with
a local action:

if (<query expression> | <TrigIt method name>()) <statement>

else <statement>

if (<expr>) ...→⊥ [<expr> , <query expression>]
<stmt>→⊥ [<stmt> < {<action statement>, <if statement>}]
this.f | ClassName.f→ “f” [ClassName , TrigIt]
this.m() | ClassName.m()→ “m” [ClassName , TrigIt]
this.m(arg1, ...) | ClassName.m(arg1, ...)→ “m”, arg1.type, ...

[ClassName , TrigIt]

Figure 5: Rewrite rules to “prepare” TrigItmethods for the

evaluation by the framework.

When writing a local action statement, a developer may opt
to use an API call available only in a new version of a library,
e.g., java.util.List.of(...) from Java 9. However, writing such
code could result in compilation errors if project uses Java 8. One
approach that the developer can take is to write amethod invocation
using the reflection mechanism [5].
Semantics. Although evaluation of the TrigIt specifications
closely follows Java semantics, there are two main differences. First,
all method invocations and field accesses (that do not belong to the
TrigIt API) are substituted with the names of methods and fields,
i.e., those methods and fields are never invoked or accessed. In case
of a method invocation, all the arguments are replaced with their
corresponding types. (The TrigIt API uses the argument types to
differentiate between overloaded methods.) For example, the code
snippet shown above that changes a filed access to private would
be modified prior to the evaluation to:
TrigIt.getField("f").setPrivate();

We made this decision to avoid using strings to refer to a field,
method, or class name unless that is absolutely necessary. Our deci-
sion will help to keep comments up-to-date with code, e.g., during
refactoring, to avoid what researchers call fragile comments [44].

Second, prior to evaluating a TrigIt specification, the class that
contains the method is rewritten to remove anything other than
the query expressions, action statements (in TrigIt methods), and
if statements. This is done to enable evaluation of the executable
trigger-action comments without worrying about the environment
that is required to execute any piece of code from the project itself.
For example, even loading a class may require substantial setup
and execution cost if a static block is present. To prepare a class for
evaluation with TrigIt, we define a set of rewrite rules, shown in
Figure 5. Each rule has the following format:

before→ after [condition]
where before and after are AST elements in Java or an empty string
denoted by ⊥; condition defines when a rule is applicable. The first
two rules remove any statement from a class that is irrelevant for
TrigIt specifications. The last three rules rewrite each field access
to the name of the accessed field, and method invocation to the
name of invoked method and types of its arguments (if any). We
recursively apply the rewrite rules on the method until no more
rewrite rules can be applied, and then the obtained code can be
evaluated by Java.
Rationale. We would like to emphasize that our decision to enable
the evaluation of trigger-action comments independently of other
code was to keep the separation between production code and
comments, to enable the evaluation of comments regardless of the
requirements needed for running the project’s code, and to avoid the

388

A Framework for Writing Trigger-Action Todo Comments in Executable Format ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Java
Files

Compiler

ClassFiles

Test/Execute

TrigIt
Specs

rewrite
2○ evaluate

3○

apply
4○

1○Build Configuration
Issue Tracker
System Time

Warning Messages

Patch to Java Files

TrigIt

Figure 6: TrigIt’s workflow.

<query expression>→ evaluate(<query expression>)
m()→ evaluate(m) [m is TrigIt method]
if (true) <stmt1> else <stmt2>→ <stmt1>
if (false) <stmt1> else <stmt2> → <stmt2>
<modifiers> m() ... →⊥ [@TrigItMethod ∈ <modifiers>]

Figure 7: Rewrite rules for applying the local actions and

removing the TrigIt specifications.

performance overhead of evaluating comments at runtime. As our
decisions are inspired by examples found in open-source projects
and feedback from several developers working in industry, some of
these decisions might need to be revisited in the future to support
the encoding of comments as executable statements for a broader
class of comments.

3.2 Workflow

Figure 6 shows TrigIt’s workflow. TrigIt interposes between the
compiler and (test) execution. The first step to use TrigIt is to
encode existing trigger-action comments as executable TrigIt spec-
ifications. Once a project is compiled, the query expressions, action
statements and TrigIt methods, are part of the resulting class-
files. Having executable trigger-action comments checked by the
compiler is one advantage over informally written comments.

TrigIt accepts the compiled classfiles and works in four steps.
First (step 1○ in Figure 6), TrigIt processes all the classfiles from the
project to build the intermediate AST representation to be used by
the query expressions and action statements; TrigIt also retrieves
build configurations, issue status (from an issue tracker) and system
time lazily upon request by the query expressions. Next (step 2○),
TrigIt modifies classfiles, based on the rewrite rules in Figure 5,
to prepare the TrigIt specifications for evaluation. The modified
classfiles are never stored on disk, unless a developer specifies
the debug option, but they are only available in-memory and they
are dynamically loaded [4]. Then (step 3○), TrigIt evaluates each
query expression and booleanTrigItmethod in a non-deterministic
order. We discuss potential dependencies between TrigIt methods
in Section 7. If the project being built requires a Java version prior
to Java 8, which is currently required for TrigIt execution, TrigIt
methods are evaluated by spawning an external process.

Finally (step 4○), TrigIt takes actions and applies changes de-
pending on the evaluation results. If a query expression or a boolean
TrigIt method evaluates to true, there are three possible outcomes.
First, TrigIt can notify a developer with the list of triggers that
hold, without executing any action. In addition to printing which
triggers hold, TrigIt also includes a short explanation that justifies

the outcome of the trigger (e.g., “Java version “1.8” greater than
“1.7”; at pom.xml:77”).

Second, TrigIt can rewrite the classfiles on disk to apply the ac-
tions (both global and local) guarded by those triggers evaluated to
true. For global actions, the action statements are executed to mod-
ify the ASTs. Then, TrigIt applies a set of rewrite rules in Figure 7
to apply the local actions and to clean the TrigIt specifications
from the classfiles; we omit the condition in a rewrite rule if the rule
always applies. The first two rules inline the evaluation results of
query expressions and boolean TrigItmethods. The next two rules
only keep the correct branches for local actions, depending on the
evaluation results. The last rule cleans all TrigIt methods from the
classfiles. The resulting classfiles for test or execution contain no
TrigIt specifications, thus TrigIt introduces no runtime overhead.

Finally, TrigIt can be configured to create a patch for the source
code, which developers may inspect, modify, and apply. The config-
uration provided by the user determines what option is taken. The
configuration options are not mutually exclusive. As mentioned
earlier, ideally, TrigItwill be used as a bot running on a continuous
integration server that sends code review with changes when a
trigger holds; we do not expect developers to run TrigIt in the
default build profile on code that is automatically deployed.

3.3 Implementation

We implemented TrigIt as a standalone Java library that can be
used from the command line or integrated into a build system.
TrigIt uses the ASM Java bytecode manipulation and analysis
framework [11] to rewrite executable code, check correctness of
encoding, and transform executable code. More precisely, TrigIt
uses the visitor mechanism to build the model classes of the en-
tire project, which are queried with the stream operations. TrigIt
executes the action statements, one by one, which transform the
underlying bytecode using ASM.

Additionally, we implemented a Maven plugin to simplify the
integration of TrigIt into the build process, as Maven is still one of
the most popular build systems for Java. We integrated the plugin
in the Maven lifecycle after the compilation phase.

TrigIt provides various options, including “–debug” to show
execution steps and store stripped files used to evaluate TrigIt
methods, “–assume-true” to force the evaluation of triggers to true,
and “–no-action” to tell that no action should be taken. “–assume-
true” can be used to check the effect of executing the actions and
“–no-action” can be used to check correctness of encoding and
report what actions would be taken in the current build run.

We currently support basic checks of correctness of executable
trigger-action comments. Specifically, TrigIt checks if a query
expression and action statements refer to code elements that should
exist. As an example, consider the following trigger:

TrigIt.getClass("C").getField("f").isPrivate()

If class C or field f does not exist, we report the incorrect encod-
ing. These checks are important to detect modifications in code,
likely due to software evolution, which invalidate executable com-
ments and notify developers.

Finally, TrigIt can output a patch for the source code if the
trigger evaluates to true and actions are executed. Our current ap-
proach for creating a patch utilizes the debug info to get the source

389

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Pengyu Nie, Rishabh Rai, Junyi Jessy Li, Sarfraz Khurshid, Raymond J. Mooney, and Milos Gligoric

code location of the patch, and aggregates the patches generated
from each executed global action and local action. The patch also
removes any TrigIt specification if its trigger evaluates to true,
thus avoiding technical debt. We expect that a developer would
inspect a patch and revise their code manually.

4 USER STUDY

This section describes our user study to evaluate whether developers

can quickly implement correct triggers and actions using TrigIt.

4.1 Study Design

Initially, we asked each participant to read a tutorial for up to ten
minutes. The tutorial provided a brief explanation of the TrigIt
DSL with three examples. Next, we asked each participant to do
three tasks; the tasks were chosen randomly from a set of executable
trigger-action comments (from open-source projects) we encoded
in the TrigIt DSL and are independent from the examples in the
tutorial. Each task asked the participant to migrate an existing
trigger-action comment to the TrigIt DSL. We did not ask the
users to run TrigIt as that was outside the scope of our study;
recall that our goal was to evaluate encoding of comments. We
provided only a brief description of each task with the goal to clarify
triggers and actions. This was necessary, because the participant,
unfamiliar with the project, may not be able to infer the unspecified
part of triggers and actions, and our goal was not to evaluate the
understanding of code and comments but rather to evaluate the
complexity of encoding the comments. Due to space limit, the
detailed content of the tutorial and the descriptions are available
on the accompanying web page [54]. We sent the tasks in the same
order to each participant, and we used the first task as a warm-up
task without telling this to the participants; the warm-up task was
not considered in the evaluation.We provided a bash script to install
tools, unpack projects that contain todo comments, and start the
tasks. Our script sets up IntelliJ to provide a uniform environment
with code completion.

We asked participants to track time spent on each task, to rate the
level of confidence of their solutions for each task separately, and
to send us their solutions. Then we asked them to rate the easiness
of learning the TrigIt DSL (on a scale of 1—5, with 5 being the
easiest). Finally, we asked them to tell us about their programming
experience, experience with Java and experience with IntelliJ. We
wrote scripts to process the responses, and we manually checked
the correctness of each solution.
Participants. Our study was conducted in two batches. In the first
batch, we sent the study to 15 people, including seven professionals
(six working for large software companies and one researcher) and
eight students (three undergraduate and five PhD). We received
12 valid responses in total. One (PhD student) participant did not
follow the instructions. Two participants (one PhD student and one
professional) had issues with running our bash scripts on OS X,
specifically because of incompatible versions of sed, find and Java
Development Kit between Linux and OS X. In the second batch,
we sent the study to eight people, including two professionals
(one working for large software company and one researcher) and
six students (one undergraduate and five PhD). We received valid
responses from all participants.

Table 2: Study Results Grouped By Tasks and Roles: Time

Spent (Unit: Minute), Participants’ Confidence (on a Scale of

1—5), andCorrectness; Tri., Act. and Syn. areNumbers of Par-

ticipants Who Got Correct Triggers, Actions and Syntax.

Grouped

By

Time Confidence Correctness

Avg. Med. Avg. Med. Tri. Act. Syn.

Task

A 4.7 4.5 4.2 4.5 12/12 12/12 9/12
B 4.3 5.0 4.4 4.5 12/12 12/12 12/12
C 7.6 7.5 3.9 4.0 8/8 7/8 8/8
D 7.2 6.5 4.2 4.0 7/8 8/8 8/8

Role Prof. 5.0 5.0 4.5 5.0 16/16 15/16 15/16
Stu. 6.1 5.5 4.0 4.0 23/24 24/24 22/24

All 5.7 5.0 4.2 4.0 39/40 39/40 37/40

Among all 20 valid responses, the participants have on average
8.4 years (median: 6.0 years) of programming experience, and have
moderate Java skills (average self-reported score 3.7 on a scale of
1—5); 12 participants have used IntelliJ before the study.
Tasks. We randomly chose tasks from the corpus of trigger-action
comments mined from open-source projects that we previously
encoded with the TrigIt DSL. The tasks (excluding the warm-up
task) were:
• TaskA from google/guava: “check more preconditions (as buffer-

Size >= chunkSize) if this is ever public”. See Figure 1.
• TaskB from apache/struts: “this is to keep backward compati-

bility, remove once when tooltipConfig is dropped”. See Figure 8a.
• TaskC from apache/ignite: “this comparison should be switched

back to assertEquals when https://issues.apache.org/jira
/browse/IGNITE-7692 is fixed”. See Figure 8b.

• TaskD from jenkinsci/jenkins: “ remove once Minimum sup-

ported Remoting version is 3.15 or above”. See Figure 8c.
In the first batch we used TaskA and TaskB; in the second batch

we used TaskC and TaskD. We confirmed that none of our partici-
pants contributed to the open-source projects used in the study.

4.2 Results

Table 2 summarizes the results, grouped by tasks and roles (profes-
sionals: Prof., students: Stu.). For each group, we show the average
andmedian time inminutes to complete the task (Time), the average
and median of participants’ confidence on scale 1—5 (Confidence)
and the number of participants that wrote the correct solution
(Correctness). We access the correctness of different parts of the so-
lution: trigger (Tri.), action (Act.), and syntax (Syn.) that we defined
as correct locations for triggers and actions.

We can see that, on average, the participants took 5.7 minutes to
migrate a trigger-action comment in an unfamiliar project; pro-
fessionals took less time than students (average time: 5.0 min-
utes vs. 6.1 minutes). Most of the solutions were correct. There
was one mistake on the trigger part and one mistake on the ac-
tion part, both because of misunderstanding of the executable
trigger-action comments. There were three mistakes on the syn-
tax part of TaskA because the users put the local action inside the
TrigIt method; we show a representative mistake in Figure 8d.
Compared to the correct solution in Figure 1, the local action

390

A Framework for Writing Trigger-Action Todo Comments in Executable Format ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

// UIBean.java

public void evaluateParams() { ...

// TODO: this is to keep backward compatibility, remove
// once when tooltipConfig is dropped
if (TrigIt.getCurrentClass().hasField("tooltipConfig")) {

String jsTooltipEnabled = (String) getParameters()

.get("jsTooltipEnabled");

if (jsTooltipEnabled != null)
this.javascriptTooltip = jsTooltipEnabled;

} ... }

(a) TaskB from the apache/struts project.

// IgniteCacheLockPartitionOnAffinityRunTest.java

private static int getPersonsCountSingleCache(final IgniteEx ignite,

IgniteLogger log, final int orgId) throws Exception { ...

// TODO this comparison should be switched back to assertEquals
// when https://issues.apache.org/jira/browse/IGNITE-7692 is fixed.
if (TrigIt.isClosed("https://issues.apache.org/jira/" +

"browse/IGNITE-7692")) {

assertEquals(partCnt, sqlCnt);

assertEquals(partCnt, sqlFieldCnt);

} else {

if (partCnt != sqlFieldCnt)

assertFalse("...", primaryPartition(ignite, orgId));

if (partCnt != sqlCnt)

assertFalse("...", primaryPartition(ignite, orgId));

} ... }

(b) TaskC from the apache/ignite project.

// MasterToSlaveCallable.java

// TODO: remove once Minimum supported Remoting version is 3.15 or above
public Channel getChannelOrFail() throws ChannelClosedException

{ ... }

@TrigItMethod

void trigItMinRemotingVersion() throws Exception {

if (((Version) TrigIt.getBuildConfigurations()

.getProperty("remoting.minimum.supported.version"))

.greaterEqualThan("3.15")) {

TrigIt.getMethod(getChannelOrFail()).remove();

} }

(c) TaskD from the jenkinsci/jenkins project.

// AbstractStreamingHasher.java

protected AbstractStreamingHasher(int chunkSize, int bufferSize) {

// TODO(kevinb): check more preconditions
// (as bufferSize >= chunkSize) if this is ever public
checkArgument(bufferSize % chunkSize == 0); ... }

// SYNTAX INCORRECT

@TrigtItMethod

void trigItPreconditionCheck() {

if (TrigIt.getMethod("<init>", int.class, int.class).isPublic())
checkArgument(bufferSize >= chunkSize);

}

(d) An example of an incorrect encoding for TaskA.

Figure 8: Tasks used in the user study (TaskA is already shown in Figure 1) and one example of an incorrect solution to TaskA.

checkArgument(bufferSize >= chunkSize) was incorrectly put
in the TrigIt method. After the study was done, we implemented
checks in TrigIt to prevent such mistakes.

The participants claimed to be confident with their solutions
(average score: 4.2); professionals are more confident than students
(average score: 4.5 vs. 4.0).

Based on the results, we can say that participants obtained cor-
rect solutions with very little training. We consider these results
even more encouraging because participants worked with unfamil-
iar projects. We believe that participants would perform better in
a familiar environment and avoid mistakes due to the misunder-
standing of comments. Finally, most participants consider TrigIt
easy to learn (average score: 4.0).

5 CASE STUDIES

In this section, we describe our process of mining trigger-action
comments in open-source projects and encoding them as executable
trigger-action comments in TrigIt. As additional evaluation, we
measure the overhead of TrigIt on the build process, as well as
the number of tokens needed to encode executable trigger-action
comments compared to the existing comments.

5.1 Projects and Comments

In the first step, we selected ten popular open-source projects to
find trigger-action comments. Table 3 shows the list of projects (first
column) and revisions used in our experiments (second column).We
selected projects that differ in size, number of todo comments, and
application domain. More importantly, we selected projects based
on our prior experience with codebases. The last requirement was
necessary tomake the experiments feasible [55]; wewanted projects
that we can build to ensure that we can run our tool after migrating

Table 3: Projects Used in our Case Studies, Number of Com-

ments with “TODO” Marker (#TODO), Number of Trigger-

Action Comments (#TAC), and Number of Other Types of

Comments (#Other).

Project Revision #TODO #TAC #Other

apache/cayenne 9c07e18 379 9 370
apache/ignite 299f557 426 91 335
apache/struts e2c2ea8 62 6 56
elastic/elasticsearch 850e9d7 436 66 370
google/closure-compiler 3d4f525 918 85 833
google/guava ea66419 1298 96 1202
google/j2objc e85caea 327 58 269
java-native-access/jna c333527 93 2 91
jenkinsci/jenkins 043abd8 393 57 336
jenkinsci/gmaven 80d5f66 28 1 27

Avg. N/A 436.0 47.1 388.9
Σ N/A 4360 471 3889

the comments. In the second step, we extracted all todo comments
from the selected projects. We searched for “TODO”, which is the
most common marker for todo comments [49]. Column 3 in Table 3
shows the number of todo comments for each project.

In the third step, we manually inspected all 4360 todo comments
and labeled each comment with “yes” (if the comment is a trigger-
action comment) or “no” (if the comment is not a trigger-action
comment). Columns 4 and 5 in Table 3 show for each project the
number of labeled trigger-action comments and the number of other
types of comments. The inspectionwas done by three authors of this
paper together, and in addition to the comment itself, we inspected
the context of the comment, i.e., surrounding source code, and
potentially other files in the project. We discussed each comment
until we reached unanimous agreement.

391

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Pengyu Nie, Rishabh Rai, Junyi Jessy Li, Sarfraz Khurshid, Raymond J. Mooney, and Milos Gligoric

high medium low

Trigger

h
ig
h

m
e
d
iu
m

lo
w

A
c
ti
o
n

122 62 79

29 31 43

12 16 77

In the fourth step, we in-
spected 471 trigger-action com-
ments that we annotated with
“yes” in the previous step and
assigned values to two more la-
bels: trigger_specificity, and ac-
tion_specificity. Specificity can
take one of the following values:
(1) “high”, which means that we
can understand the trigger/action and migration should be feasible,
(2) “medium”, which means that we mostly understand the trig-
ger/action and migration could potentially be done, and (3) “low”,
which means that we cannot understand the trigger/action or mi-
gration is not feasible. The heatmap above shows the distribution of
labels for 471 trigger-action comments.We illustrate the assignment
of labels using several examples:
• “this is to keep backward compatibility, remove once when tooltip-

Config is dropped” from apache/struts; trigger_specificity:
“high”, action_specificity: “high”.

• “When FieldAccess detection is supported, mark that class

as reachable there, and remove the containsPublicField flag

here” from google/j2objc; trigger_specificity: “medium”,
action_specificity: “medium”.

• “Enable testing for unused fields when ElementUtil glitch

is fixed” from google/j2objc; trigger_specificity: “low”,
action_specificity: “medium”.

• “embedded Derby Mode... change to client-server once we fig-

ure it out” from apache/cayenne; trigger_specificity: “low”,
action_specificity: “low”.
Finally, we manually encoded 44 trigger-action comments as

executable trigger-action comments in TrigIt, and used them
as subjects in the following evaluations. We randomly selected
these trigger-action comments from only those comments where
trigger_specificity: “high”.

5.2 Build Overhead

We compute the build overhead to illustrate the cost of TrigIt
analysis and code transformation. Recall that TrigIt runs after
compilation and prior to program/test execution.

To compute the time overhead introduced in the build process,
we measured the build time (e.g., mvn test-compile for Maven
projects) for each project with and without TrigIt. TrigIt does not
introduce any runtime overhead, so we do not run tests during the
build. (Moreover, transformations performed by action statements
may impact tests, i.e., new or different code may be executed, thus
including test execution time might lead to misleading results.) If
the build is run with TrigIt, we include all the phases, i.e., building
the model of the project, evaluating the trigger, and executing the
action (see Section 3). We run each configuration five times and
compute the average time.

We ran experiments on an Intel i7-6700U CPU @ 3.40GHz with
16GB of RAM, running Ubuntu 18.04 LTS.

We find that the overhead varies between 1.91% and 26.75%; the
average overhead is 8.85% and the median is 6.63%. We consider
this to be acceptable overhead especially considering the sizes of
the analyzed projects.

@TrigItMethod void checkMerge() {

1 2 3

if(!TrigIt.hasClass(“Mapper”) | | !TrigIt.hasClass(“FieldMapper”))
1 2 3 4 5 6 7

TrigIt.getMethod(“simpleName”).setProtected(); }
1 2 3 4

Figure 9: Example of token counting; we show number of to-

kens in the boilerplate code (first line), trigger (second line),

and action (third line).

5.3 Complexity of the TrigIt DSL

We estimate the complexity of writing executable trigger-action
comments with the number of tokens needed to encode triggers and
actions. Concretely, we count three parts for each executable trigger-
action comment: (1) trigger, which is the number of tokens to encode
the trigger, (2) action, which is the number of tokens to encode
the action, and (3) boilerplate code, which is the number of tokens
to satisfy the TrigIt DSL syntax, e.g., method signature. Figure 9
illustrates, using an earlier example, the way we count the tokens.
We compare the complexity of executable trigger-action comments
with their informal counterparts written in natural language.

We found that the average number of tokens in the original
comments was 12.2 (median: 12.0, min: 6, max: 26), while the total
number of tokens in the encoded comments (trigger + action +
boilerplate code) was, on average, 18.0 (median: 16.5, min: 11, max:
36). Additionally, the number of tokens in the triggers was, on
average, 7.3 (median: 6.0, min: 4, max: 19); the number of tokens in
the actions was, on average, 7.4 (median: 5.0, min: 2, max: 27); the
average number of tokens in the boilerplate code was 3.3 (median:
3.0, min: 3, max: 7).

The results show that even if we count all the tokens in exe-
cutable trigger-action comments, the increase in the number of
tokens compared to the informal text is only 58.74%. If we take into
account only the tokens in triggers and actions, executable trigger-
action comments are in some cases even shorter than the original
comments. Additional benefits of the executable trigger-action com-
ments is that developers can utilize the features of IDEs, such as
auto-completion and generation of method signatures, which do
not work for comments written in natural language.

6 ANECDOTAL EXPERIENCE

We briefly report on our experience on using TrigIt and interact-
ing with open-source developers to understand their comments. To
encode each comment, we read the comment and encoded what
we believe were valid triggers and actions. In several cases, we
observed that TrigIt always executes the actions, and we thought
that there was a bug in our tool. However, by looking at those
triggers manually, we found that the triggers are satisfied but the
actions have not been executed. Table 4 shows the time when the
comment was included in the code repository, time when the trig-
ger is satisfied, and when the action is executed. We only show
comments where the trigger is satisfied. Note that Freemarker-
ResultMockedTest is a special case, because the developer forgot
to remove the todo comment even after the action was taken. We
found this todo comment interesting and used an older revision of
the project in our evaluation. We reported to the corresponding

392

A Framework for Writing Trigger-Action Todo Comments in Executable Format ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

Table 4: Timeline of the Comments: Added (Column 3-4), Trigger Satisfied (Column 5-6), Action Executed (Column 7-8).

Project Class

First Added Trigger Satisfied Action Executed

Revision Date Revision Date Revision Date

apache/cayenne DeduplicationVisitor 39b70d1 2016-10-02 b332610 2017-08-18 After we reported
apache/struts FreemarkerResultMockedTest 0f2c049 2012-11-22 25cdfd6 2015-05-28 a5812bf 2015-10-06
google/closure-compiler DependencyInfo fc465c1 2016-04-25 62ba0ab 2017-10-11 N/A N/A
google/guava AbstractFuture 0b76074 2014-11-25 86fb700 2016-11-04 N/A N/A
google/guava ClassPath 896c51a 2017-01-12 9ebd95a 2018-02-20 N/A N/A
google/j2objc GeneratedExecutableElement 6eac122 2016-12-14 bc5dbad 2017-08-31 N/A N/A

developers five comments that have satisfied triggers but not exe-
cuted actions. We got responses from all developers just a few hours
after we submitted the reports. A developer of apache/cayenne
immediately performed the action and sent a note: “Thank you for
the reminder!” A developer of google/j2objc confirmed that the
trigger is satisfied and said: “it’s time to cleanup the TODOs – any
volunteers? :-)”. Developers of other comments explained that the
comments were not specific enough:
• “Unfortunately Java 8 still causes some issues with some Google-

internal infrastructure. Java 8 is allowed in tests but not in the

main part of the code (yet).”

• “The comment should say something like ‘when jdk8 is available

to all flavors of Guava.’ We currently maintain a backport that

targets JDK7 and older versions of Android, and we try to keep the

backport and mainline mostly in sync. That’s not to say that we

couldn’t do this, but we’d have to weigh the benefits against the

cost of diverging the two.”

Some of the responses confirmed the impression that we had
while reading todo comments: knowing the details of the project
is likely necessary to do valid migration of comments to TrigIt.
However, this is not surprising considering that todo comments are
written to communicate among developers of the project.

7 DISCUSSION

Other observations related to comments. We encountered a
large number of interesting cases while analyzing the comments.
We describe only one case here due to the limited space. We ob-
served several examples with a trigger that depend on a test case,
e.g., “delete this variable and corresponding if statement when jdk

fixed java.text.NumberFormat.format’s behavior with Float”. We plan
to explore how to encode triggers based on test execution results.
Naïve alternatives. Writing tests or throwing exceptions can be
used to partially encode trigger-action comments, e.g., a test can
fail or an exception can be thrown when Java version is 7. TrigIt
overshadows these naïve approaches in three ways: (1) TrigIt can
perform actions that modify code; (2) TrigIt provides an API for
querying the codebase, build scripts, bug tracking systems, and
system clock time; and (3) unlike TrigIt specifications, exceptions
would remain in compiled code, which could lead to unexpected
behaviors once software is deployed.
Future work. (1) We qualitatively evaluated TrigIt’s benefit via
discussion with developers in industry and the user study; we en-
vision a systematic cost-benefit analysis once TrigIt is adopted
in real-world developing process. (2) The current implementation
does not consider dependencies (and conflicts) between executable

trigger-action comments, although we have not observed any yet.
For example a trigger from one comment may become true when
the action of another comment is executed. To support the cor-
rect order of execution, we will need to maintain dependencies
between comments. (3) With recent advances of general-purpose
code synthesis from natural language [2, 3, 12, 60], it is worth ex-
ploring training a semantic parser to automatically map natural
language comments to TrigIt specifications, which will remove the
burden from developers. Our initial work in this direction focused
on identifying trigger-action comments in a given repository [36].

8 THREATS TO VALIDITY

External. We extracted only comments containing “TODO” mark-
ers, however, developers use other markers, including “FIXME”,
“XXX”, “HACK”, etc. Our decision was based on prior work that
showed that “TODO” is the most common marker [49].

The projects that we used in the evaluation may not be represen-
tative of all open-source projects. To mitigate this threat, we used
popular open-source projects that are actively maintained.

TrigIt supports only projects written in the Java programming
language. We chose Java because it is one of the most popular
languages, and prior work on analyzing (todo) comments showed
the need for automating comment maintenance (see Section 9).
However, the idea behind TrigIt is broadly applicable.

We encountered challenges in recruiting a large number of ex-
perienced participants in our user study. However, we consider 20
participants, including eight professionals, to be a sufficiently large
group for our kind of study.
Internal. Our scripts for mining repositories and TrigIt code may
contain bugs. We used scripts already utilized in prior work, and
we manually inspected the results of some of those scripts.
Construct. The focus of TrigIt is on triggers and actions related to
the content of compiled code, build files, issue tracking systems, and
system clock. Many comments belong to these categories. Support
for queries that check data available only in the source code, e.g.,
compile time annotations, are left for future work.

Time taken to perform the study was self-reported by the par-
ticipants. Although we were considering to capture the screen,
participants rejected this option. As reported times are similar with
the time it took us to write those comments, we have no reason to
believe that anybody reported incorrect numbers.

9 RELATEDWORK

Comment analysis and automation. Ying et al. [61] were among
the first to identify the importance and frequency of todo com-
ments. They analyzed two groups of comments that are a subset

393

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Pengyu Nie, Rishabh Rai, Junyi Jessy Li, Sarfraz Khurshid, Raymond J. Mooney, and Milos Gligoric

of trigger-action comments: “communication: self-communication”
and “future task: once the library is available...”. Empirical studies
done by Storey et al. [49] and Haouari et al. [22] confirmed that
todo comments are ubiquitous and may lead to maintenance issues.
Sridhara [46] developed a rule-based system for identifying out-of-
date todo comments. Nie et al. [35] proposed several techniques
for comment and program analysis to support todo comments as
software evolves. Pascarella and Bacchelli [40] performed man-
ual classification of comments and showed that machine-learning
has potential to automate the classification. Innobuilt Software de-
veloped imdone [31], an online tool that extracts and tracks todo
comments by creating and updating issues (e.g., on GitHub or JIRA).
TrigIt is motivated by prior work on identifying and analyzing
todo comments, and our main goal is to simplify maintenance of
comments and code.

Prior work studied detecting and eliminating the inconsistency
between code and comments. For example, Fluri et al. [15] studied
co-evolution of code and comment; Tan et al. developed iCom-
ment [51] and tComment [52] to detect code/comment inconsisten-
cies; Ibrahim et al. [25] found that rare inconsistent updates lead
to bugs in future revisions of software; Svensson [50] developed a
program for manual comment consistency checks; Ratol and Ro-
billard [44] and Zhou et al. [63] looked at the identifiers in API or
comments that may become inconsistent as the result of a code
refactoring (e.g., renaming). todo_or_die [45] is a tool for keeping
todo comments up-to-date by specifying a date for each comment,
and breaking the execution upon outdated todo comments. TrigIt
is the first solution towards avoiding inconsistencies between code
and trigger-action comments, by automatically maintaining code
repository and executing actions when associated triggers hold.
TrigIt also removes the need for detecting identifiers in comments
as the trigger-action comments are encoded as executable Java code,
which would be refactored together with other code.

Work on self-admitted technical debt [8, 24, 32, 42, 62] (SATD)
identifies comments that document temporary code fixes. Unlike
work on identifying SATD, TrigIt could be used to clean up the
codebase when the trigger condition is satisfied.

Work on generating comments from code [20, 23, 27, 33, 34,
47, 48] , generating code / specifications from comments [9], and
both directions [41], are other approaches to keep a repository
consistent. TrigIt provides a way to write executable comments
that automatically and consistently update both code and comments
as the codebase evolves.
Code query languages. JQuery [28, 56] and CodeQuest [21] are
source code querying tools; the former uses a logic programming
language, while the latter uses Datalog. Recently, Urma and My-
croft [57] proposed source-code queries with graph databases.
While prior work mostly targeted program comprehension, TrigIt
targets encoding of trigger-action comments with a language em-
bedded in Java. Another difference is that TrigIt supports querying
various other artifacts, e.g., build configuration files.

Ozdemir et al. developed a tool, built on their prior work
CodeAware [1], for monitoring code repositories and notifying de-
velopers if some code metrics (e.g., complexity) change [39]; TrigIt
is for encoding executable comments, querying code repositories,
and transforming the program.

The Reflection API [5] can be used to query code, but other types
of queries supported in TrigIt cannot be written using this API.
Program transformations. Actions available in TrigIt are
closely related to behavior-preserving transformations, i.e., refac-
torings [17, 37, 38, 53]. Most relevant work is that on scripting
refactorings [29, 58, 59], i.e., providing simple building blocks that
can be composed in sophisticated transformations. One of the key
differences is that TrigIt actions may not be behavior-preserving,
e.g., using new API calls or removing a statement. If actions that
we discover in the future would require complex code transforma-
tions offered by existing refactoring engines, it would be worth
integrating our actions with those engines.

TrigIt methods and their encoding follow similar patterns as
the AOP condition-action patterns [14]. However, in TrigIt the
“aspect” code lives in the same place as the regular code and global
actions can change the internal and external API.
IFTTT (if-this-then-that) recipe synthesis. Researchers have
studied synthesizing IFTTT recipes from natural language [10, 12,
30, 43, 60]. IFTTT recipes are short scripts of trigger-action pairs
in daily life domains such as smart home, personal well-being and
social networking, shared by users on websites such as IFTTT.com.
Frequently a recipe is accompanied by a short natural language
description. In IFTTT recipes, triggers and actions are functions
from APIs and services (e.g., Instagram). In our work, triggers and
actions are drawn from unstructured todo comments during soft-
ware development. Instead of translating from natural language to
an already developed target programming language, our goal is to
develop the target programming language.

10 CONCLUSION

We presented the first approach, dubbed TrigIt, to encode trigger-
action comments as executable statements. A developer can use
a Java-like language to encode triggers as query statements over
artifacts related to the code repository and actions as code transfor-
mation steps.TrigIt integrates into the build process and interposes
between the program compilation and execution. We migrated 44
trigger-action comments from several large open-source projects.
Evaluation of TrigIt, via a user study, showed that users find
TrigIt easy to learn and use. Additionally, we showed that TrigIt
introduces negligible overhead in the build process and the num-
ber of tokens needed to encode the comments differs only slightly
from the original comments written in natural language. Although
TrigIt could be extended in several ways, we believe that timely
code updates enabled by TrigIt can already have positive impact
on code comprehension and maintenance.

ACKNOWLEDGMENTS

We thank Ahmet Celik, Nima Dini, Lamyaa Eloussi, Alex Gyori,
Vilas Jagannath, Yun Young Lee, Yu Lin, Darko Marinov, Aleksan-
dar Milicevic, Stas Negara, Karl Palmskog, Sheena Panthaplackel,
Marinela Parovic, Jesse Piascik, Rohan Sharma, Kaiyuan Wang,
Tifany Yung, Zhiqiang Zang, Chenguang Zhu, and the anonymous
reviewers for their feedback on this work. We also thank all the
user study participants. This work was partially supported by the
US National Science Foundation under Grant Nos. CCF-1652517
and CCF-1704790.

394

A Framework for Writing Trigger-Action Todo Comments in Executable Format ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia

REFERENCES

[1] Rui Abreu, Hakan Erdogmus, and Alexandre Perez. 2015. CodeAware: Sensor-
based fine-grained monitoring and management of software artifacts. In Interna-

tional Conference on Software Engineering, Vol. 2. 551–554.
[2] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. 2018.

A survey of machine learning for big code and naturalness. Comput. Surveys 51,
4 (2018), 81.

[3] Miltos Allamanis, Daniel Tarlow, Andrew Gordon, and Yi Wei. 2015. Bimodal
modelling of source code and natural language. In International Conference on

Machine Learning. 2123–2132.
[4] Oracle and/or its affiliates. 2019. Chapter 5. Loading, Linking, and Initializing.

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html.
[5] Oracle and/or its affiliates. 2019. The Reflection API. https://docs.oracle.com/

javase/tutorial/reflect/.
[6] Oracle and/or its affiliates. 2019. Stream (Java Platform SE 8). https://docs.oracle.

com/javase/8/docs/api/java/util/stream/Stream.html.
[7] Apache. 2019. Apache Struts. https://github.com/apache/struts.
[8] Gabriele Bavota and Barbara Russo. 2016. A large-scale empirical study on self-

admitted technical debt. In International Working Conference on Mining Software

Repositories. 315–326.
[9] Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla, Michael D.

Ernst, Mauro Pezzè, and Sergio Delgado Castellanos. 2018. Translating code
comments to procedure specifications. In International Symposium on Software

Testing and Analysis. 242–253.
[10] Shobhit Chaurasia and Raymond J. Mooney. 2017. Dialog for language to code.

In International Joint Conference on Natural Language Processing. 175–180.
[11] OW2 Consortium. 2018. ASM. http://asm.ow2.io.
[12] Li Dong and Mirella Lapata. 2016. Language to logical form with neural attention.

In Annual Meeting of the Association for Computational Linguistics. 33–43.
[13] Elastic. 2019. Elastic Elasticsearch. https://github.com/elastic/elasticsearch.
[14] Robert E. Filman and Daniel P. Friedman. 2000. Aspect-oriented programming

is quantification and obliviousness. Technical Report. Research Institute for
Advanced Computer Science.

[15] Beat Fluri, Michael Wursch, and Harald C. Gall. 2007. Do code and comments co-
evolve? On the relation between source code and comment changes. In Working

Conference on Reverse Engineering. 70–79.
[16] Eclipse Foundation. 2019. Eclipse Java development tools (JDT). https://www.

eclipse.org/jdt.
[17] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts. 1999.

Refactoring: Improving the design of existing code.
[18] Apache Gobblin. 2019. Apache Gobblin. https://github.com/apache/incubator-

gobblin.
[19] Google. 2019. Google Guava. https://github.com/google/guava.
[20] Jhe-Jyun Guo, Nien-Lin Hsueh, Wen-Tin Lee, and Shi-Chuen Hwang. 2014. Im-

proving software maintenance for pattern-based software development: A com-
ment refactoring approach. In International Conference on Trustworthy Systems

and their Applications. 75–79.
[21] Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. 2006. CodeQuest: Scalable

source code queries with Datalog. In European Conference on Object-Oriented

Programming. 2–27.
[22] Dorsaf Haouari, Houari Sahraoui, and Philippe Langlais. 2011. How good is your

comment? A study of comments in Java programs. In International Symposium

on Empirical Software Engineering and Measurement. 137–146.
[23] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. 2018. Deep code comment

generation. In International Conference on Program Comprehension. 200–210.
[24] Qiao Huang, Emad Shihab, Xin Xia, David Lo, and Shanping Li. 2018. Identifying

self-admitted technical debt in open source projects using text mining. Empirical

Software Engineering 23, 1 (2018), 418–451.
[25] Walid M. Ibrahim, Nicolas Bettenburg, Bram Adams, and Ahmed E. Hassan.

2012. On the relationship between comment update practices and software bugs.
Journal of Systems and Software 85, 10 (2012), 2293–2304.

[26] Apache Incubator-Wave. 2019. Apache Incubator-Wave. https://github.com/
apache/incubator-wave.

[27] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and Luke Zettlemoyer. 2016.
Summarizing source code using a neural attention model. In Annual Meeting of

the Association for Computational Linguistics. 2073–2083.
[28] Doug Janzen and Kris De Volder. 2003. Navigating and querying code without

getting lost. In International Conference on Aspect-Oriented Software Development.
178–187.

[29] Huiqing Li and Simon Thompson. 2012. A domain-specific language for scripting
refactorings in Erlang. In Fundamental Approaches to Software Engineering. 501–
515.

[30] Chang Liu, Xinyun Chen, Eui Chul Shin, Mingcheng Chen, and Dawn Song. 2016.
Latent attention for if-then program synthesis. In Advances in Neural Information

Processing Systems. 4574–4582.
[31] Innobuilt Software LLC. 2019. All your TODO comments in one place. https:

//imdone.io/.

[32] Everton da S Maldonado, Rabe Abdalkareem, Emad Shihab, and Alexander Sere-
brenik. 2017. An empirical study on the removal of self-admitted technical debt.
In International Conference on Software Maintenance and Evolution. 238–248.

[33] Laura Moreno, Jairo Aponte, Giriprasad Sridhara, Andrian Marcus, Lori Pollock,
and K Vijay-Shanker. 2013. Automatic generation of natural language summaries
for Java classes. In International Conference on Program Comprehension. 23–32.

[34] Dana Movshovitz-Attias and William W Cohen. 2013. Natural language models
for predicting programming comments. In Annual Meeting of the Association for

Computational Linguistics. 35–40.
[35] Pengyu Nie, Junyi Jessy Li, Sarfraz Khurshid, Raymond Mooney, and Milos

Gligoric. 2018. Natural language processing and program analysis for supporting
todo comments as software evolves. In Workshops of the the AAAI Conference on

Artificial Intelligence. 775–778.
[36] Pengyu Nie, Rishabh Rai, Junyi Jessy Li, Sarfraz Khurshid, Raymond J. Mooney,

and Milos Gligoric. 2018. Executable trigger-action comments. CoRR

abs/1808.01729 (2018).
[37] William F. Opdyke. 1992. Refactoring object-oriented frameworks. Ph.D. Disserta-

tion. University of Illinois at Urbana-Champaign.
[38] William F. Opdyke and Ralph E. Johnson. 1990. Refactoring: An aid in designing

application frameworks and evolving object-oriented systems. In Symposium on

Object-Oriented Programming Emphasizing Practical Applications. 145–161.
[39] Alim Ozdemir, Ayse Tosun, Hakan Erdogmus, and Rui Abreu. 2018. Lightweight

source code monitoring with Triggr. In Automated Software Engineering, Tool

Demonstrations. 864–867.
[40] Luca Pascarella and Alberto Bacchelli. 2017. Classifying code comments in Java

open-source software systems. In International Working Conference on Mining

Software Repositories. 227–237.
[41] Hung Phan, Hoan Anh Nguyen, Tien N Nguyen, and Hridesh Rajan. 2017. Sta-

tistical learning for inference between implementations and documentation.
In International Conference on Software Engineering: New Ideas and Emerging

Technologies Results Track. 27–30.
[42] Aniket Potdar and Emad Shihab. 2014. An exploratory study on self-admitted

technical debt. In International Conference on Software Maintenance and Evolution.
91–100.

[43] Chris Quirk, Raymond J Mooney, and Michel Galley. 2015. Language to Code:
Learning semantic parsers for If-This-Then-That recipes.. In Annual Meeting of

the Association for Computational Linguistics. 878–888.
[44] Inderjot Kaur Ratol and Martin P. Robillard. 2017. Detecting fragile comments.

In Automated Software Engineering. 112–122.
[45] Justin Searls. 2019. todo_or_die. https://github.com/searls/todo_or_die.
[46] Giriprasad Sridhara. 2016. Automatically detecting the up-to-date status of ToDo

comments in Java programs. In India Software Engineering Conference. 16–25.
[47] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K Vijay-

Shanker. 2010. Towards automatically generating summary comments for Java
methods. In Automated Software Engineering. 43–52.

[48] Giriprasad Sridhara, Lori Pollock, and K Vijay-Shanker. 2011. Generating pa-
rameter comments and integrating with method summaries. In International

Conference on Program Comprehension. 71–80.
[49] Margaret-Anne Storey, Jody Ryall, R. Ian Bull, Del Myers, and Janice Singer. 2008.

TODO or to bug. In International Conference on Software Engineering. 251–260.
[50] Adam Svensson. 2015. Reducing outdated and inconsistent code comments during

software development: The comment validator program. Master’s thesis. Uppsala
University, Information Systems.

[51] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. 2007. /*iComment: bugs
or bad comments?*/. In Symposium on Operating Systems Principles. 145–158.

[52] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T. Leavens. 2012. @tCom-
ment: Testing Javadoc comments to detect comment-code inconsistencies. In
International Conference on Software Testing, Verification, and Validation. 260–269.

[53] Lance Tokuda and Don Batory. 1999. Evolving object-oriented designs with
refactorings. In Automated Software Engineering. 174–181.

[54] TrigIt. 2019. TrigIt web page. http://cozy.ece.utexas.edu/trigit.
[55] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco

Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2017. There and back again:
Can you compile that snapshot? Journal of Software: Evolution and Process (2017),
e1838.

[56] Raoul-Gabriel Urma and Alan Mycroft. 2012. Programming language evolution
via source code query languages. In Workshop on Evaluation and Usability of

Programming Languages and Tools. 35–38.
[57] Raoul-Gabriel Urma and Alan Mycroft. 2015. Source-code queries with graph

databases—with application to programming language usage and evolution. Sci-
ence of Computer Programming 97, P1 (2015), 127–134.

[58] Mohsen Vakilian, Nicholas Chen, Roshanak Zilouchian Moghaddam, Stas Negara,
and Ralph E. Johnson. 2013. A compositional paradigm of automating refactorings.
In European Conference on Object-Oriented Programming. Berlin, Heidelberg, 527–
551.

[59] Mathieu Verbaere, Ran Ettinger, and Oege de Moor. 2006. JunGL: A scripting
language for refactoring. In International Conference on Software Engineering.
172–181.

395

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-5.html
https://docs.oracle.com/javase/tutorial/reflect/
https://docs.oracle.com/javase/tutorial/reflect/
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://github.com/apache/struts
http://asm.ow2.io
https://github.com/elastic/elasticsearch
https://www.eclipse.org/jdt
https://www.eclipse.org/jdt
https://github.com/apache/incubator-gobblin
https://github.com/apache/incubator-gobblin
https://github.com/google/guava
https://github.com/apache/incubator-wave
https://github.com/apache/incubator-wave
https://imdone.io/
https://imdone.io/
https://github.com/searls/todo_or_die
http://cozy.ece.utexas.edu/trigit

ESEC/FSE ’19, August 26–30, 2019, Tallinn, Estonia Pengyu Nie, Rishabh Rai, Junyi Jessy Li, Sarfraz Khurshid, Raymond J. Mooney, and Milos Gligoric

[60] Pengcheng Yin and Graham Neubig. 2017. A syntactic neural model for general-
purpose code generation. In Annual Meeting of the Association for Computational

Linguistics. 440–450.
[61] Annie T. T. Ying, James L. Wright, and Steven Abrams. 2005. Source code that

talks: An exploration of Eclipse task comments and their implication to repository
mining. In International Working Conference on Mining Software Repositories. 1–5.

[62] Fiorella Zampetti, Cedric Noiseux, Giuliano Antoniol, Foutse Khomh, and Massi-
miliano Di Penta. 2017. Recommending when design technical debt should be
self-admitted. In International Conference on Software Maintenance and Evolution.
216–226.

[63] Yu Zhou, Ruihang Gu, Taolue Chen, Zhiqiu Huang, Sebastiano Panichella, and
Harald Gall. 2017. Analyzing APIs documentation and code to detect directive
defects. In International Conference on Software Engineering. 27–37.

396

	Abstract
	1 Introduction
	2 Illustrative Examples
	3 TrigIt Technique
	3.1 Language
	3.2 Workflow
	3.3 Implementation

	4 User Study
	4.1 Study Design
	4.2 Results

	5 Case Studies
	5.1 Projects and Comments
	5.2 Build Overhead
	5.3 Complexity of the TrigIt DSL

	6 Anecdotal Experience
	7 Discussion
	8 Threats To Validity
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

