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Abstract. Bisection debugging, which is based on binary search over
software version history, is widely used in practice to identify the bug
introducing commit. However, this process can be expensive because it
requires costly compilation and test execution at many commits. We
introduce a novel technique—selective bisection (consisting of test se-
lection and commit selection)—to reduce the number of bisection steps,
the number of compiler invocations, and the number of executed tests.
We evaluated selective bisection on 10 popular open-source projects by
performing 25,690 debugging sessions and measuring: (1) savings in num-
ber of compiler invocations obtained by commit selection, (2) savings in
number of executed tests obtained by test selection, and (3) savings in
overall debugging time by selective bisection. Our results show that, in
65% of debugging sessions, commit selection saves between 14% and 71%
compiler invocations. Test selection saves 74% of testing effort on aver-
age (ranging from 42% to 95%) compared to when developers do not use
any test selection. Finally, we demonstrate that one can save substantial
time using selective bisection for large projects.

1 Introduction

In large software systems, where many developers work together making hun-
dreds of commits per day [14, 36, 37], coping with regression bugs is one of the
most challenging problems. According to Linux Kernel developers, 80% of the
release cycle time is dedicated to fixing regression bugs [3]. Identifying the bug
introducing commit is very important to isolate and understand regression bugs.
Bisection debugging is a well known technique that performs a binary search over
software version history to identify the bug introducing commit. The popular ver-
sion control systems, such as Git and Mercurial, have in-built commands (git
bisect and hg bisect) to help developers perform bisection debugging [7, 15].
Since these commands are integrated with the version control systems, they are
frequently used by developers. For example, a well known Linux developer, Ingo
Molnar says about his use of Git bisect [3]:

“I most actively use it during the merge window (when a lot of trees get
merged upstream and when the influx of bugs is the highest) - and yes, there

? Most of this work was completed when Ripon Saha was a Ph.D. Student at The
University of Texas at Austin.
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have been cases that I used it multiple times a day. My average is roughly once
a day.”

Although bisection debugging can isolate the bug introducing commit quickly
in terms of number of bisection steps, the whole process could be still expensive
if the program takes a long time (even a couple of minutes) to compile and the
tests take a long time to run, which is the case for most large systems [2, 8].

This paper presents a novel technique called selective bisection that fre-
quently reduces the cost of bisection debugging by minimizing (1) the number
of compiler invocations using commit selection and (2) the number of tests to
execute using test selection. Test selection [10, 14, 19, 20, 23, 30, 31, 35–39, 42] is
a well known technique to select tests that are affected by a particular change.
Therefore, test selection is used to speed up regression testing [39]. Our key
insight is that a significant amount of compilation and testing effort could be
reduced during debugging by selecting only relevant commits and running only
those tests that are relevant to the buggy changes. To this end, we have proposed
a commit selection technique and leveraged an existing test selection technique
for bisection debugging. In order to evaluate the effectiveness of our idea, we
performed 25,690 bisection debugging sessions in 10 open-source projects. Our
empirical evaluation shows that commit selection saves between 14% and 71%
compiler invocations across all projects in 65% of debugging sessions. Addition-
ally, test selection saves 74% of testing effort on average (ranging from 42% to
95%) compared to when developers do not use any test selection. This paper
makes the following key contributions:

? To the best of our knowledge, we are the first to introduce the notion of commit
selection and test selection in bisection debugging.

? We present a commit selection approach to save the number of compilations.
We also present various testing strategies used in bisection debugging, and
show how an existing test selection technique can be integrated with various
strategies to substantially reduce the testing effort.

? We present an extensive evaluation to demonstrate the effectiveness of commit
selection and test selection.

2 Background

This section introduces the basic terminology used in this paper and briefly
describes bisection debugging and test selection.

2.1 Commit and Version

In this paper, by a commit we mean a set of changes that developers include
one at a time in a version control system. By a version, we mean the snapshot
of the code base at a given commit.

2.2 Bisection Debugging

In large projects, commits happen so frequently that a bug introducing commit,
even after a few days of introduction, can be hundreds of commits away from
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Fig. 1. Process of Bisection Debugging

the current version [2]. Certainly, going through all the commits in software
history from the latest known good version is not feasible. Bisection debugging
performs a binary search through the commit history to help developers quickly
identify the bug introducing commit. git bisect is a popular tool for bisection
debugging [7]. Given a range of commits where the version (νgood) at the first
commit is good and the version (νbad) at the last commit is bad, git bisect

checks out the version (νbisect) at the middle commit. Then νbisect is tested
(manually or automatically) to determine whether it is good or bad, and marked
as νgood or νbad for the next step depending on the test results. The whole
process is repeated until a νgood followed by a νbad is found. Figure 1 illustrates
a debugging scenario where a developer starts bisection debugging with 100
commits and finally discover that 29th commit introduced the bug.

Although bisection debugging is based on the binary search, the number of
steps in bisection debugging to isolate a bug introducing commit and that of
binary search to search a value in a list is not the same. In a list of n values,
a binary search can terminate even at the first step if the value is found there.
Therefore, the best case performance of binary search is O(1). On the other
hand, in the worst case when the desired value is not in the list, the complexity
is O(log 2n). However, the number of steps in bisection debugging is always
blog 2n + 1c, since we do not know which commit actually introduced the bug.
Even if the version at first bisection step introduced the bug, we cannot terminate
the search until we find two consecutive versions such that a good version is
followed by a bad version.

2.3 Test Selection

Given a set of changes in a project, a test selection technique [10, 14, 19, 20, 23,
30, 31, 35–37, 39, 42] seeks to select a subset of tests that are sufficient to test
the new version of the program. A test selection technique is safe if it selects all
tests affected by changes. Among many test selection techniques, we have chosen
Ekstazi [9,10] for our work, since our goal was to improve bisection debugging of
projects written in JVM languages (e.g., Java, Scala, etc.). Additionally, Ekstazi
is publicly available. Ekstazi collects coverage for each test class, i.e., dynamically
accessed files. It then selects, at a new version, all tests that depend on at
least one modified file. Ekstazi collects both the executable and data files (e.g.,
property files) that are used during the execution of the test class; in the reminder
of the text, we denote a test class with test. Ekstazi is considered safe under
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certain assumptions [29, 32], e.g., that test cases are deterministic and that the
environments used in testing remains unchanged. Prior work showed Ekstazi’s
effectiveness (selects a small number of tests and provides speedup compared
to running all the tests) on a number of open-source projects [4, 10]. Recently,
Ekstazi has been adopted by several open-source projects and companies.

In the default configuration, which we use in Section 4, Ekstazi collects a
checksum for each dependency used by tests; the checksum is used later to find
the tests that should be run after code changes. Ekstazi computes the checksum
of executable files (i.e., classfiles) by ignoring the content that is commonly not
observed by tests (e.g., debug information). Ekstazi smoothly integrates with
popular testing frameworks (e.g., JUnit) and build systems (e.g., Maven) [5],
which simplified our study.

3 Selective Bisection

This section describes selective bisection that comprises of two techniques: com-
mit selection and test selection.

3.1 Commit Selection

In bisection debugging, at each bisection step, first the current version is com-
piled and then tests are executed. However, compiling a large project is costly [12,
40]. Commit selection predicts if a certain commit in a bisection step is likely
irrelevant to failing tests. If it predicts that a commit is irrelevant to the fail-
ing tests, it skips compiling that version, and moves to the next bisection step.
Predicting if a given commit νbisect is relevant or irrelevant to the failing tests is
always performed with respect to a reference version νref , for which we already
have the test results. Our key insight is that for a given pair of versions (νref
and νbisect), if we have the test coverage for νref and we know all the source
code changes between νref and νbisect, we can predict whether the failing tests
are affected due to changes between νref and νbisect without compiling νbisect.
If failing tests are not affected by the changes, the test results of νref and νbisect
are the same, i.e., if νref is good, νbisect is good; if νref is bad, νbisect is also bad.

Note that this is a prediction, not a determination, because it detects dif-
ferences between source files, but test selection technique that we used collects
tests coverage on compiled code (i.e., classfiles). For example, if two classes are
defined in a single source file, they are compiled to two classfiles (and a test
can depend on either of those classfiles or both of them), however, by looking at
differences between source files, we can detect changes only in the classfile that
matches the name of the source file. However, we can make the whole approach
correct by automatically detecting inconsistencies due to any inaccurate predic-
tion, and then switching back to traditional bisection debugging. On the other
hand, if prediction is accurate, we may save substantial amount of compile time.
Prediction. This section describes our technique to predict if the failing tests
are affected by the change between νref and νbisect. The following steps describe
the way we predict if a test should execute:
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Table 1. An Example of Commit Selection for Jackrabbit for the Failing Test
OakSolrNodeStateConfigurationTest. Result: Number of Compilations With and
Without Commit Selection is 2 and 7 Respectively. Savings: 71%.

G=Good, B=Bad, C=Current, LAG=Last Actual Good, LAB=Last Actual Bad
Step G B C Affected(G,C) Affected(B,C) Compile LAG LAB

1 1 100 50 Yes No No 1 100
2 1 50 25 No Yes No 1 100
3 25 50 37 Yes No No 1 100
4 25 37 31 Yes No No 1 100
5 25 31 28 Yes Yes Yes&Run 1 28
6 25 28 26 No Yes No 1 28
7 26 28 27 No Yes No 1 28
8 27 28 - - - Yes&Run 27 28

1. For a given version νbisect, and a reference version νref , we extract the source
code differences between (νbisect and νref )=∆ref only for Java source files.

2. We extract the file names of each added, deleted, and modified Java files
from ∆ref , and store them in a list, Fref = {F1, F2, .., Fk}.

3. We extract the coverage information from νref , which contains the infor-
mation of all tests and the name of source code classes that each test class
executes. We convert class names to file names. For most classes, class name
is the same as the file name. However, if a class is an inner class then file
name does not directly match the class name. For example, for an inner class
B in file A, the fully qualified name would be A$B. We will discard the later
part of the fully qualified name to get the file name A.

4. Then we search if the failing tests access any of the files in Fref . If yes, then
we conclude that we have to run that test for νbisect.

Commit selection in action. A developer generally starts bisection debugging
with a known good version νgood and a known bad version νbad.

1. We instrument both versions using Ekstazi to collect test coverage matrix at
file level for a negligible cost [10].

2. In each bisection step, we predict if failing tests are affected by the changes
between i) νbisect and νgood, and ii) νbisect and νbad.
(a) If both reference versions tell that the failing tests are affected at νbisect,
then we compile νbisect, run the tests, and mark νbisect as νgood or νbad de-
pending on the results.
(b) If one of the reference versions (νgood or νbad) tells that the failing tests
are not affected, we would simply transfer the corresponding test result of
νref (νgood or νbad) to νbisect, and thus would not compile νbisect.

3. We keep track of versions where the test results are updated using prediction,
and where the results are updated after actual test run. Therefore, we always
know the last actual good version (νlastActualGood) and the actual bad version
(νlastActualBad) where the good or bad was decided after running tests.

Detecting inconsistencies and switching back. After we get a buggy ver-
sion (νprobableBuggy) at the end of a debugging session, we check the consis-
tency of our result. For a valid bug introducing version, the version before the
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bug introducing changes (νprobableBuggy−1) should be good. Therefore, we test
νprobableBuggy−1. If that is a good version, then we conclude that νprobableBuggy

is actually buggy. Otherwise, we perform traditional bisect (without prediction)
between νlastActualGood and νlastActualBad. Table 1 illustrate commit selection on
an open-source project, Jackrabbit, when its 28th commit is buggy.

3.2 Test Selection

During a bisection debugging session, at each step, (some) tests are executed
to determine if the current version is good or bad. To this end, developers may
follow one of the three testing strategies:3

1. All Tests (AT ): In the safest form, developers run all the tests to determine
if a given version is good or bad.

2. Failing Tests (FT ): In the most optimistic form, developers only run the
failing tests to determine if a given version is good or bad.

3. All Tests After Failing Tests (ST ): A middle ground may be that de-
velopers first run the failing tests. If they keep failing, the version is marked
as bad. However, if the failing tests pass, developers run other tests to make
sure that the version is good indeed.

At a first glance, the second strategy may be tempting but it may not always
give the expected result, since even if the failing test passes, it is not guaranteed
that the version is good since other affected tests may fail. To get developers’
feedback, we asked a question on Stack Overflow4. As we expected, we got mixed
answers. One developer prefers the second strategy but another developer dis-
agrees. By combining the first and the second strategy, we introduced ST , which
we believe is the optimal strategy that gives the expected result.

Our key insight is that developers could safely use a test selection tool such
as Ekstazi to select only the tests that are affected by the changes between
νbad/νgood and νbisect in each debugging step. In traditional test selection, gen-
erally a subset of tests are selected with respect to a single (often the previous)
version. However, for bisection debugging, we can take advantage of both νgood
and νbad to reduce the number of tests further. The idea is that only intersection
of two selected subsets for νbisect with respect to νgood and νbad are enough to
test νbisect safely [11].

Let us discuss a debugging scenario with a hypothetical example, as pre-
sented in Figure 2. Assume that Alice is debugging with seven versions of a
program (ν1 and ν7) to identify a bug introducing commit (which are changes
introduced in ν2 in our example). Let us assume that there are n source files
{C1, C2, . . . , Cn} and m tests {T1, T2, . . . , Tm} in the project. In Figure 2, the la-
bel between two consecutive versions represents the program difference between

3 It should be noted that we have not found any study on the use of bisection debug-
ging; the identified methodologies are inspired by reading blogs and posts on GitHub
related to bisection debugging [7, 8].

4 http://goo.gl/oHyX2g
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Table 2. A Hypothetical Test Coverage Matrix

C1 C2 C3 C4 C5 C6 · · · Cn

T1 3 3 · · ·
T2 3 3 · · ·
T3 3 3 · · ·
T4 3 · · ·
T5 3 · · ·
T6 3 · · · 3

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
Tm · · · 3
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Fig. 2. Some Hypothetical Change Scenarios in a Git Repository

those two versions in terms of Java files. For instance, δ(ν1, ν2) = C1, which
means that the file C1 has been changed between ν1 to ν2. The level of gran-
ularity in our example is at the file level, which is also the level of granularity
of Ekstazi (Section 2). Table 2 represents a hypothetical test coverage matrix.
In this example, we assume that the matrix remains constant, but our approach
works even if the matrix changes due to changes in code.

Savings when running all tests (AT). Now let us simulate the number of
tests Alice has to run without test selection during this debugging session. First,
Alice marked ν1 as good and ν7 as bad. At this step bisection debugging moves
to ν4. Alice runs all m tests to test ν4. In this case, ν4 would be buggy since
the bug was introduced in ν2. So Alice marks ν4 as bad. The next bisection step
is at ν3. Alice runs the tests again, marks ν3 as buggy. Finally Alice does the
same thing for ν2, and identifies that ν2 is the bug introducing commit. So Alice
executed all tests 3 times, which is 3×m tests in total.

Now we simulate the same scenario when Alice integrates Ekstazi in the
project and then starts debugging. In the first step at ν4, Ekstazi first uses ν1
and then ν7 as a reference version to select tests for ν4. When ν7 is the reference
version, δ(ν4, ν7) = {C3, C4}. From the coverage matrix in Table 2 (which is
generated by Ekstazi) we see that only T1, T2, T3, T4, and T6 are affected by the
changes. When ν1 is the reference version, the affected tests are T1, T2, T3 since
the change set is {C1, C2}. Therefore, Alice runs only the tests in the intersection,
i.e., T1, T2, and T3, to test ν4. The results for the other tests can be transferred
from the corresponding reference versions. In the second bisection step, Alice
need not run any tests in ν3 since no test is affected by both changes in C1 and
C2. Finally, Alice runs T1 and T3 to test ν2 due to the change in C1. Therefore,
in total Alice runs only five tests using test selection instead of 3×m tests.
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Savings when running only failing tests (FT). Now we consider the sce-
nario where Alice plans to run only failing tests. Even in this scenario, Ekstazi
can save testing effort by not running the failing tests at all, if they are not
affected by the changes. Since in this scenario Alice would run only the failing
tests, she knows the failing tests in advance. To simplify the discussion, let us
assume that Alice got only one failing test, T1. Now while testing at the first
bisection step ν4, we can see that the changes between ν4 and ν7 are {C3, C4}.
From the coverage matrix we observe that test T1 is affected by the change in C3

and C4. Therefore, Ekstazi would run T1. Since at ν4 the result of T1 should be a
failure, ν4 would be bad. Now for the second bisection step, ν3, Ekstazi sees that
only C2 changed. From the coverage matrix we observe that T1 is not affected by
this change. Therefore, Ekstazi would not run the test at all, and would transfer
the results of T1, which is a “failure” from ν4 to ν3. Therefore, ν3 would be bad.
Further, Ekstazi would run T1 for ν2 since it is affected. So Ekstazi would save
running the failing test one out of three times for this example.
Savings when running all tests after failing tests (ST). Since ST is a
combination of AT and FT, we do not describe it step by step.

4 Empirical Evaluation

To investigate the effectiveness of selective bisection, we performed an empirical
evaluation in terms of three research questions.

RQ1: How much compilation effort is saved through commit selection?

RQ2: How much testing effort is saved through test selection for different testing
strategies (AT, FT, and ST )?

RQ3: How much overall time is saved through selective bisection?

4.1 Projects

We used 10 open-source projects in our evaluation. We followed several criteria,
similar to prior studies on regression testing [10, 34], to select these projects.
Specifically, the projects i) use Git as a version control system, ii) use Maven
as a build system, iii) have at least 100 commits, and iv) build without any
error. These projects are from diverse application domains and have been widely
used in software testing research. The first requirement is necessary since we
are investigating git bisect as bisection debugging. The requirements of Maven
and JUnit tests were set to make our experiments fully automatic. Finally, the
requirement of 100 commits helps ensure that the projects are non trivial. For
each selected project, Table 3 shows its name, the start and end version SHA
(which we consider to be a starting pair of a good and a bad version in each
debugging session), the code size in terms of lines of code (LOC), the number
of source files and test classes, and their build time and test execution time (on
the latest version). From the table, we can see that the sizes of the projects
vary from small (Codec) to fairly large (Jetty) in terms of LOC. Their build
times (without test execution) vary from few seconds to several minutes, and
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Table 3. Projects Used in the Evaluation
Project Start End KLOC #Source #Test Time [mm:ss]

SHA SHA files classes build test

CCompiler 14a9e6fe a8a53e83 239.2 630 262 01:08 02:20
Codec 5af6d236 535bd812 17.6 67 48 00:29 00:18
Collections 45a0337e c87eeaa4 60.3 357 160 00:24 00:42
Lang 9e575c4d 17a6d163 69.0 159 134 00:30 00:33
Math ff4ec1a3 471e6b07 174.8 841 479 00:30 02:35
Net 17ecff74 4450add7 26.9 224 42 00:26 01:13
GraphHopper d1a0fd81 c0a328f8 43.6 254 100 00:35 00:45
Guava 67695cce e9a23fe5 274.2 1,372 364 01:09 08:15
Jackrabbit 4a309b76 222b4cda 253.1 1,654 539 02:12 44:18
Jetty f645e186 f630a841 301.1 1,929 550 07:05 30:29∑

N/A N/A 1,459.8 7,487 2,678 14:28 91:28
Average N/A N/A 146.0 749 268 01:27 09:08
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Fig. 3. Distribution of Number of Files Changed in Each Commit

test execution times vary from few seconds to 44 minutes (Jackrabbit). The last
two rows show the total and average values computed across all projects.

We also present the distribution of changes per commit in Figure 3 in terms
of the number of files added, deleted or modified. We presented the changes at
file level, since all of our analysis is at that level. From the figure we observe that
in all projects the number of files changed was one or two (median values). This
statistics further motivated us to propose selective bisection debugging since it is
highly likely that a small number of tests would be selected due to small changes.

4.2 Experimental Setup

For an extensive evaluation, we designed our experiment based on simulation to
replicate the steps in bisection debugging. More specifically, in order to answer
RQ1 we took 100 versions [νi, νi+99] for each project, and considered that any
of the intermediate versions [νi+1, νi+98] can be the one with a bug introducing
commit. Then for each intermediate version νj where (i + 1) ≤ j ≤ (i + 98),
we set the test results w.r.t. the bug introducing commit. For example, if for a
given debugging session we assume that ν5 is the bug introducing commit, all
the commits after (and including) ν5 would be bad, and all the commits before
ν5 would be good. Then for each bisection step, we have used Ekstazi to select
tests for the version under test based on the real changes between that version
and good/bad version and test coverage information.
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To answer RQ2, in addition to assuming a buggy version, we also had to
assume the fault-revealing tests. For a change set between two versions, literally
any test, which is affected by the changes, can be the failing test. For example,
when we assume that νj is buggy, we first check which tests are affected by the
changes between νj−1 and νj . If there are m tests that are affected by the bug
introducing change, any subset of them can be failing. If we assume that there is
only one failing test, we have to simulate our experiment m times for the buggy
version νj . For two failing tests, we have to simulate for

(
m
2

)
times, and so on.

In order to keep the experiment cost affordable, we assumed there is only one
failing test due to the bug. Even for a single test failure, we have simulated our
experiment 25,690 times in 10 projects.

4.3 Results

This section presents the experimental results for our research questions.

RQ1: Savings due to commit selection. We present the savings in compila-
tion effort in terms of the proportion of compilations skipped. More specifically,
for a given bisection debugging session, if we need to compile nc times without
commit selection and mc times with commit selection, the savings is computed
as nc−mc

nc . It should be noted that a negative saving indicates the case where
commit selection actually increases the cost. This may happen when commit se-
lection predicts an irrelevant commit inaccurately, and our technique moves some
steps back to perform traditional bisection (Section 3). Therefore, to present the
complete results, we provide the number of simulations where we decreased or
increased the number of compilations in Table 4, and complete distribution of
savings, both positive and negative, in Figure 4.

From the results, we observe that commit selection frequently reduces com-
pilation cost. The “Total” row in Table 4 shows that commit selection helped
saving compilation cost in 65% of simulations, whereas it increased the cost in
only 6% of simulations. Interestingly, most of the cost increase came from Jetty.
For other projects, the cost increase happened in only 1% of simulations. Com-
mit selection did not change any effort in compilation in 29% of simulations.
From Figure 4, we observe that the improvement (in 65% of simulations) varied
between 14% and 71% across projects. Although cost increase can be also high
in some cases (up to 67% for Jetty; this cannot be seen in Figure 4 as we do not
show the outliers), our results show that this happens rarely.

RQ2: Savings due to test selection. We present the savings in testing effort
in terms of the proportion of tests that one can skip with test selection. More
specifically, for a given bisection debugging, we compute the savings as:

PTts =

∑
for−each−bisection−step n(Tts)∑
for−each−bisection−step n(T )

(1)

savings = 1− PTts (2)
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Fig. 4. Savings in the Number of Compiler Invocations via Commit Selection

Table 4. Number of Simulations When the Compilation Cost Decreased, Remained
the Same, or Increased due to Commit Selection

Projects #Simulations #Decreased #Same #Increased %Decreased

CCompiler 6,171 3,615 2,556 0 59
Codec 91 87 4 0 96
Collection 975 657 212 106 67
Lang 678 548 125 5 81
Math 5,275 3,411 1,856 8 65
Net 204 96 104 4 47
GraphHopper 1,247 613 612 22 49
Guava 1,347 997 346 4 74
Jackrabbit 3,436 3,034 313 89 88
Jetty 6,266 3,667 1,404 1195 59

All Projects 25,690 16,725 7,532 1,433 65

where n(Tts) is the number of tests to run selected by Ekstazi and n(T ) is
the number of tests to run without Ekstazi. Therefore, the savings may vary
between 0 and 1, which can be translated to percentages as well.

Figure 5 presents the distribution of savings, computed by Equation 2, for AT,
FT, and ST strategies. Our results show that, regardless of a testing strategy, test
selection is very effective to reduce the number of tests in bisection debugging.
For AT (the first/orange box in each group), the median savings varied from 43%
(CCompiler) to 95% (Codec). Considering that there are hundreds of tests in
projects and a number of steps in bisection debugging, the savings are significant.
For example, Jetty has 550 test classes. In our simulation for 100 commits, it
takes 6 or 7 steps to complete a bisection debugging. Therefore, we may need
to run 3,850 tests to test Jetty in a single debugging session if all tests are
executed. From Figure 5, we see that the median savings in Jetty is 63%. So
test selection may skip running 2,425 tests to debug Jetty. For majority of the
projects, the savings in AT is 70% or more. Even in FT (the second/gray box
in each group), where only the failing tests are run, test selection can reduce
the number of executed tests by 29%-71% (median values). Like AT, we also
observe a similar savings in ST, which we consider to be the optimal strategy.
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Fig. 5. Savings in the Number of Tests during Bisection Debugging via Test Selection

The median savings (the third/white box in each group) varied from 42% to
91% across projects. For majority of projects, the median savings are more than
70%. Finally, the fourth/blue box in each group shows the savings for ST when
we also apply commit selection. Results show that the savings of ST is further
increased (up to 7%) by commit selection. Interestingly, although in some cases
commit selection increases the number of compilation, it does not increase the
number of tests to run.

RQ3: Overall time savings. Since ST is the optimal strategy with respect
to the testing effort and correctness, we calculate the end-to-end time savings
for ST. It should be also noted that we considered the median compilation and
testing savings for each project. Table 5 presents the total time required for
traditional bisection and selective bisection including the time required for pro-
gram instrumentation and test coverage collection by Ekstazi. From the results,
we observe that, on average, we achieved 24% to 60% of time savings across
projects. Even for small projects like Codec, we achieved more than 2 minutes
of savings, which is 44% of time using traditional bisection. The savings can be
as big as 1 hour and 23 minutes (Jackrabbit). It also should be noted that this
saving is for ST, which is already considered optimal for traditional bisection. If
developers follow AT, the savings would be even more.

5 Discussion

Effect of simulation based evaluation. Our evaluation is based on simu-
lation. However, in the context of measuring savings using selective bisection
debugging, there is no difference between a real bug reproducing experiment
and a simulation. For example, in our evaluation, when we assume that νi is
buggy and Tj is the failing test, we followed exactly the same steps to isolate
the bug what any bisection debugging technique (e.g., git bisect) would take if
there is a real bug in νi and Tj is the real failing test. And since, we have used
real tests in each version and the real commits, we got exact number of tests in
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Table 5. Time Savings (in Seconds) Using Selective Bisection for ST

Projects Traditional CS+TS Ekstazi Selective Total time Savings
bisection overhead bisection savings [%]

CCompiler 1,029 672 81 753 276 27
Codec 276 150 4 154 122 44
Collection 329 187 6 193 136 41
Lang 337 200 5 205 132 39
Math 831 387 152 539 292 35
Net 403 231 5 236 167 41
GraphHopper 423 295 6 301 122 29
Guava 1,880 683 75 758 1,122 60
Jackrabbit 8,873 3,299 544 3,843 5,030 57
Jetty 8,462 5,515 908 6,423 2,039 24

simulation that developers need to run with and without test selection. Further-
more, due to simulation our advantage is that we were able to conduct massive
number of experiments for many combination of buggy version and failing tests,
that would have never been possible with real bugs.
Effect of number of commits. In our simulation, we have isolated each bug
by considering only 100 commits. Our rational is that developers use bisection
debugging like git bisect for a reasonable number of commits since linear search
for a bug introducing commit is not effective [2]. Therefore, we believe that the
evaluation with 100 commits shows the effectiveness of our technique but in a
wider range of commits, our technique would provide additional savings.

6 Threats to Validity

External. The projects used in our evaluation may not be the representative
of the general projects population. To mitigate the threat, we performed our
experiments on a diverse set of projects in terms of size, number of tests, and
applications. However, we do not generalize our results to other projects. Fur-
thermore, we performed our experiments with 100 commits in each project. For
a different set or length of commits, we may have different savings. We discussed
the rationale and effect of this choice in the previous section. We have used only
projects that are written in the Java programming language. In the future, it
will be interesting to explore if the results differ for projects written in other
programming languages.

We have used Ekstazi as the test selection tool. A different tool, which tracks
test dependencies on methods or statements, would likely produce different re-
sults (and select even small number of tests). Future work should evaluate various
test selection techniques with selective bisection.
Internal. The implementation of Ekstazi or our scripts for bisection debugging
may have bugs which may impact our conclusion. However, Ekstazi is, to the
best of our knowledge, the only available tool for regression test selection (for
Java). Furthermore, it has been adopted in a number of open-source projects,
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which increases our confidence in its correctness. We have also performed many
small experiments and code reviews to validate our scripts. Therefore, the effect
of this threat should be minimal.

We have assumed that there is only one bug introducing commit in the
versions under investigation. Furthermore, we assume that the monotonicity
property holds, i.e., once a change introduces a bug, any subsequent version
manifests the bug as well.
Construct. Our experiment is based on simulation. We have already discussed
the effect of this threat in detail.

7 Related Work

Automated debugging has been an active research area over the past few decades.
To date, researchers proposed many approaches for localizing and isolating the
root causes of bugs automatically. Test selection is also an active research area
for a long time. Therefore, related work in these fields are enormous. In this
section, we focus on the representative work in each area.
Bug Localization. Researchers proposed many automated bug localization
approaches to aid debugging. Existing techniques can be broadly categorized
into two categories: dynamic [1] and static [16]. Spectrum based bug localiza-
tion [1, 17, 21] and dynamic slicing [43] are some of the well known techniques
in this category. Spectrum based techniques generally monitor the program ex-
ecution of passing and failing tests. Then based on the execution traces, these
tools present developers a ranked list of suspicious lines. Pastore et al.’s [27] and
Zuddas et al.’s [46] techniques do not only provide the suspicious lines but also
provide explanations to help developers understand the bug.

Static approaches, on the other hand, do not require any program tests or
execution traces. In most cases, they need only program source code and/or bug
reports. The static approaches can be also divided into two categories: i) pro-
gram analysis based approaches, and ii) information retrieval based approaches.
FindBug [16] and Error Prone [6] are two popular bug localization tools based
on static program analysis that can detect bugs by identifying buggy patterns
that frequently happen in practice. On the other hand, IR based approaches
utilize the contents of bug reports. In these approaches [22, 25, 28, 33, 45], each
bug report is treated as a query, and all the source files in the project comprise
the document collection. IR techniques then rank the documents by predicted
relevance, returning a ranked list of candidate source code files that may contain
the bug. Recently, researchers also combined the spectrum based and IR-based
bug localization to get advantages from both approaches [18]. Unlike the forego-
ing techniques, selective bisection localizes the bug introducing commit rather
than suspicious lines.
Isolating Buggy Changes. Ness and Ngo [24] first proposed a linear approach
to isolate buggy changes. In their approach, when a bug is discovered in a partic-
ular version, they consider a set of ordered changes to investigate, and apply one
after another until they find first buggy version. Gross first introduced the notion
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of bisection debugging [13]. However, his context was a little different from git

bisect. Given two versions of a program, Gross applied binary search by parti-
tioning program source code until the bug is isolated in minimum changed lines.
Delta debugging is a well known technique to isolate a buggy change between
two versions [41].

Recently Ziftci and Ramavajjala [2] proposed an algorithm to rank all the
commits based on a suspiciousness score to find the bug introducing commit
as early as possible. They calculated the suspicious score using metrics such as
the change size, and the distance between changed files and the project under
investigation. However, all these prior approaches run all tests once a version is
selected for testing. In this paper, we use dynamic test dependencies to select
commits and then we reduce the number of executed tests at each version.

Test Selection. To date, researchers have proposed quite a few approaches for
test section [10,14,19,20,23,30,31,35–37,39,42]. These approaches vary in terms
of strategies such as static program analysis based [44] vs. dynamic test coverage
based [10], and/or granularity of tests e.g., class [10,26] vs. method [29]. In this
paper, we have used Ekstazi, which is a dynamic tool and works at the class
granularity. In this work, our objective is not to introduce any new test selection
technique. Rather, we introduce an application of test selection in automated
debugging to improve debugging effectiveness.

8 Conclusion

In a large software project, it frequently happens that a bug is detected many
commits after it was actually introduced. In this case, bisection debugging such
as git bisect is frequently used to isolate the bug introducing commit. However,
for large projects even bisection debugging may be expensive. In this paper, we
introduced selective bisection debugging, which comprises of commit selection
and test selection. We investigated the savings through selective bisection debug-
ging for various testing strategies, where developers execute all tests, only failing
tests, and execute passing tests if and only if the failing tests pass. Our evalua-
tion shows that commit selection can save compilation time in 65% of debugging
scenarios. The savings (in number of compiler invocations) may vary from 14%
to 71%. Test selection can skip up to 95% tests during debugging, where devel-
opers follow safe approach, i.e., execute all tests. The saving is also very similar
if a developer first execute the failing tests, and then execute the passing tests
if and only if failing tests pass. Finally, we demonstrate that the overall time
savings can be substantial using selective bisection for large projects. We believe
our results will encourage developers to use selective bisection debugging, and
researchers to investigate commit selection and test selection in more detail.
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