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In the past decade, C++ has emerged as one of the main languages for

high performance computing. Frameworks such as OpenMP [4], CUDA [10],

and HIP [13] target different hardware architectures and have different APIs.

The Kokkos [7] programming model provides a way to abstract the under-

lying APIs for different architectures and build code for different targets by

configuring at compile time. Python programming language, on the other

hand, is one of the top choices for developers today because of its ease of

use and the fact that most recent machine learning and data science libraries

are developed targeting this language. To provide performance portability

in Python as well, PyKokkos [11, 12] was developed. PyKokkos allows de-

velopers to write portable kernels which are translated to C++ Kokkos at

runtime.

This report provides an insight into the feasibility of implementing ma-

chine learning algorithms using PyKokkos. We first look into the perfor-

mance difference in commonly used functions in basic machine learning al-
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gorithms like, variance, log, transpose, etc. when implemented in PyKokkos

as compared to NumPy [9]. We then implement Scikit-learn’s [6] Gaussian

Naive Bayes and Logistic Regression using PyKokkos, and discuss the per-

formance differences in the two implementations. The results show evidence

that performance gains from using PyKokkos can be significant for individual

functions, and further work is needed to enable efficient algorithms.
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1 Introduction

Different frameworks written in C++ like CUDA, OpenMP, and HIP, all

have a different set of APIs which target different underlying hardware ar-

chitectures. This hinders the program’s ability to be easily run on different

architectures/targets without significantly changing it to make it compatible

with other frameworks. This not only requires rewriting a large chunk of code

but also introduces the need to learn new frameworks and maintain different

versions of the same code for different frameworks. The Kokkos framework [7]

was developed to solve the above issues and make code portable by providing

layers of abstraction over the actual underlying frameworks. It builds code

for different targets and architectures from the configuration input at compile

time. This means that a single code written using the Kokkos framework can

run on different architectures with very slight or no modifications at all.

Even though Kokkos was developed (in C++) to facilitate the scientific

and machine learning community, it did not fully cater to everyone’s needs.

This is because people with limited coding and computer science knowledge

generally find memory management and static typing difficult to work with.

Due to the aforementioned challenges, one of the most prevalent languages

among the scientific and machine learning community today is Python be-

cause of its ease of use, minimal learning curve, and availability of a huge

set of tools and libraries which support data science, machine learning and

scientific computing. To this end, PyKokkos was developed by Al Awar

et al. [11, 12] to provide the performance portability provided by Kokkos

in Python. PyKokkos allows developers to specify the execution space and
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write portable kernels while maintaining performance equivalent to that of

Kokkos. PyKokkos achieves this by translating the kernels to C++ Kokkos

at runtime.

In this report we explore how machine learning algorithms implemented

in PyKokkos perform compared to the algorithms implemented by Scikit-

learn [6]. Essentially, we compare our implementation of Gaussian Naive

Bayes [8] and Logistic Regression [3], written using PyKokkos against the

Scikit-learn’s implementation of these algorithms. In order to do that, we

first compare how some of the most common functions used by machine learn-

ing algorithms (like variance, transpose, mean) perform against the same im-

plementations by one of the most commonly used array types in the Python

scientific community: NumPy [9]. We then compare the performance of our

implementation of the algorithms with the Scikit-learn’s implementation. Fi-

nally, we evaluate the feasibility of using PyKokkos for implementing machine

learning algorithms.

All the functions and machine learning algorithms implemented as part

of this report are publicly available at https://github.com/kokkos/pykokkos,

the official PyKokkos repository.
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2 Background

This section introduces important concepts related to PyKokkos and its cor-

responding APIs that are used to implement the selected machine learning

(ML) algorithms.

2.1 Writing a Parallel For Kernel using PyKokkos

The example in Figure 1 shows a transpose kernel written using PyKokkos.

The @pk.workunit decorator, in the first line, defines the code which will

be executed by each parallel running thread. The main function, in line 27,

sets the default execution space to OpenMP. An execution space defines the

type of processors which will be running the operation. Line 28 initializes a

PyKokkos view. A view in PyKokkos is a multidimensional array-like data

structure. The constructor of the view class is passed the dimensions as

the first argument and the type as the second argument. Thus, the defined

view is a two dimensional array with 10 rows and 5 columns, and data type

pk.double. The view is filled with 1’s and passed to the transpose function.

To run the workunit on each of the rows of the view, in line 17, parallel for

is called. The constructor of the parallel for is passed the execution policy

as the first argument. The execution policy defines how the parallelism would

be carried out. In our example, we are simply passing a number n to the

policy which means that we run our operation for all the values in the range

0 to n. The second argument to the constructor is the name of the workunit.

Finally, any data is passed as key-value arguments which is required by the

parallel running threads for carrying out the computation in the workunit.
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1 @pk.workunit

2 def transpose_impl_2d_double(

3 tid: int,

4 view: pk.View2D[pk.double],

5 out: pk.View2D[pk.double]):

6

7 for i in range(view.extent(1)):

8 out[i][tid] = view[tid][i]

9

10 def transpose(view):

11 if view.rank() == 1:

12 return view

13

14 if view.rank() == 2:

15 if str(view.dtype) == "DataType.double":

16 out = pk.View(view.shape[::-1], pk.double)

17 pk.parallel_for(

18 view.shape[0],

19 transpose_impl_2d_double,

20 view=view,

21 out=out)

22 return out

23

24 raise RuntimeError("Transpose supports 2D views only")

25

26 def main():

27 pk.set_default_space(pk.ExecutionSpace.OpenMP)

28 a: pk.View2D[pk.double] = pk.View([10, 5], dtype=pk.double)

29 a.fill(1)

30 transpose(a)

Figure 1: Transpose function (RangePolicy).

The workunit, in addition to the supplied parameters, has an integer as

the first parameter. This integer represents the work index which is the

unique thread ID. The next line runs a for loop from 0 to the number of

columns in the input view. The extent function on a view simply returns

the length of a particular dimension of the view. The value of the iterator
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in addition to the thread ID are used to then calculate the transpose of a

single row. All of the threads perform this computation for each row. The

final result is written to the out view.

This example can be run using CUDA simply by changing the default

execution space to pk.ExecutionSpace.Cuda. PyKokkos internally man-

ages the memory spaces and layouts to ensure optimal execution in different

execution spaces.

2.2 Writing a Parallel Reduce Kernel using PyKokkos

Similarly, PyKokkos also supports the parallel reduce pattern. To better un-

derstand the working of a parallel reduce, let’s consider an example of the sum

function which takes as input a one dimensional view and returns the sum

of all the elements of the view. Instead of calling parallel for, we call the

parallel reduce function. The parameters of the parallel reduce func-

tion are similar to those of a parallel for parameters with the exception

of the optional initial value which simply sets the initial value of the re-

sult accumulator. The workunit associated with the parallel reduce pattern,

in addition to the thread ID and any developer-defined inputs, also has the

accumulator as the second parameter. The accumulator is responsible for

storing intermediate values as a result of the reduction. Once the reduction

is complete, the final value of the accumulator is returned.
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2.3 PyKokkos Execution Policy

We provide some background on Range and Team execution policies.

2.3.1 RangePolicy

The RangePolicy [14] defines the execution space for a one dimensional

iteration space only. Like in the previous example, when we pass a number

n to the execution policy, we simply divide the indices from 0 to n among

the threads which are responsible for carrying out the parallel work. We see

that using the RangePolicy, the best we could do was parallelize for each

row only. The work inside each thread is still iterative. The effect of this

policy on performance for multidimensional arrays is clearly visible when the

number of columns gets large.

2.3.2 TeamPolicy

The TeamPolicy [15] like the RangePolicy, defines the execution space

for a one dimensional iteration space. The difference is that instead of as-

signing each row to a single thread, a team of threads is assigned each row.

Team policies further allow us to use nested policies in the workunits which

means that we can further parallelize and divide the work in each row among

the team of threads responsible for the row. The example in Figure 2 shows

the same transpose function from the previous example but this time us-

ing the TeamPolicy. The workunit associated with the parallel for using

the TeamPolicy has the team member as the first parameter instead of the

thread ID. Calling league rank on the team gets the row index the team is

6



1 @pk.workunit

2 def transpose_impl_2d_double(

3 team: pk.TeamMember,

4 view: pk.View2D[pk.double],

5 out: pk.View2D[pk.double]):

6

7 n: int = team.league_rank()

8

9 def team_for(i: int):

10 out[i][n] = view[n][i]

11

12 pk.parallel_for(

13 pk.TeamThreadRange(team, view.extent(1)),

14 team_for)

15

16 def transpose(view):

17 if view.rank() == 1:

18 return view

19

20 if view.rank() == 2:

21 if str(view.dtype) == "DataType.double":

22 out = pk.View(view.shape[::-1], pk.double)

23 pk.parallel_for(

24 pk.TeamPolicy(view.shape[0], pk.AUTO),

25 transpose_impl_2d_double,

26 view=view,

27 out=out)

28 return out

29

30 raise RuntimeError("Transpose supports 2D views only")

Figure 2: Transpose function (TeamPolicy).

responsible for. Next we define a function, the computational body, we want

each of the team members to run. Finally we run the parallel for which

simply splits the indices from 0 to the number of columns of the input view

among the threads in the team.
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2.4 Scikit-learn

Scikit-learn [6] is an open-source library of a wide range of machine learning

algorithms for Python. It uses NumPy [9] and Cython [5] internally for high

performance. In this report, we compare the performance of Scikit-learn’s

version of Gaussian Naive Bayes and Logistic Regression with the PyKokkos

equivalents to judge the feasibility of implementing performance portable ML

algorithms with PyKokkos.
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3 Technique

This section describes our approach to implementing the Machine Learning

(ML) algorithms with PyKokkos. The entire process was divided into three

steps.

The first step involved finding the most commonly used functions in some

of the basic ML algorithms. This step entailed scanning the Scikit-learn’s

implementation of various ML algorithms, and filtering out all the operations

being performed on the NumPy arrays.

The second step was to implement the functions filtered out in step one

in the PyKokkos framework and evaluate the performance of the functions

compared to their NumPy counterparts.

Lastly, we implemented the Scikit-learn’s version of Gaussian Naive Bayes

and Logistic Regression using PyKokkos and evaluated their performance

against their Scikit-learn’s versions.

3.1 Collecting Functions

In order to implement the actual ML algorithms, the first step was to discover

the basic functions that are required to build a complete algorithm. To find

all the functions which work on arrays, we implemented a simple Python

script that finds all the uses of NumPy functions in a file using a simple

regex. This script was run on Scikit-learn’s code for Gaussian Naive Bayes

and Logistic Regression. The functions collected from these algorithms are

listed in Table 1.
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Table 1: List of functions that was discovered in Scikit-learn.

Function Description Input

Shapes

Add Sums positionally corresponding elements of

the two input views

(1D, 1D),

(2D, 0D)

Subtract Subtracts positionally corresponding elements

of the two input views

(1D, 1D)

Multiply Multiplies positionally corresponding elements

of the two input views

(1D, 1D)

Matmul Matrix multiplication (1D, 2D)

Divide Divides positionally corresponding elements of

the two input views

(1D, 1D),

(2D, 0D)

Negative Computes element-wise negative (1D)

Positive Computes element-wise positive (1D)

Power Return a view with each val in viewA raised to

the positionally corresponding power in viewB

(1D, 1D),

(2D, 0D)

Fmod Element-wise remainder of division when ele-

ment of viewA is divided by positionally cor-

responding element of viewB

(1D, 1D)

Greater Return the truth value of viewA > viewB

element-wise

(1D, 1D)

Logaddexp Return a view with log(exp(a)+exp(b)) calcu-

late for positionally corresponding elements in

viewA and viewB

(1D, 1D)
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Table 1: cont.

Function Description Input

Shapes

Logaddexp2 Return a view with log(2a + 2b) calculated for

positionally corresponding elements in viewA

and viewB

(1D, 1D)

Floor divide Divides positionally corresponding elements of

viewA with elements of viewB and floors the

result

(1D, 1D)

Sin Element-wise trigonometric sin of the view (1D)

Cos Element-wise trigonometric cos of the view (1D)

Tan Element-wise tan of the view (1D)

Logical and Return the element-wise truth value of viewA

∧ viewB

(1D, 1D)

Logical or Return the element-wise truth value of viewA

∨ viewB.

(1D, 1D)

Logical xor Return the element-wise truth value of viewA

⊕ viewB.

(1D, 1D)

Logical not Element-wise logical not of the input view (1D)

Fmax Return the element-wise fmax of the input

view

(1D)

Fmin Return the element-wise fmin of the input view (1D)

Exp Element-wise exp of the input view (1D)

Exp2 Element-wise 2**x of the view (1D)
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Table 1: cont.

Function Description Input

Shapes

Var Computes variance along specified axis (2D)

In1d Test whether each element of a 1-D view is also

present in a second view

(1D); 1D

Mean Computes mean along specified axis (1D)

Transpose Reverses the axis of the input view (2D)

Index Index a view with another view (1D, 1D)

Sum Return the sum of all the elements of the input

view. For 2D inputs; return sum along the

specified axis

(1D),

(2D)

Linspace Return evenly spaced numbers over a specified

interval

(1D)

Logspace Return evenly spaced numbers over a specified

interval on log scale

(1D)

3.2 Implementing Commonly Used Functions in Ma-

chine Learning Algorithms with PyKokkos

The second step involved implementing the functions collected in step one,

using the PyKokkos framework. The implementation of each of the functions

involved designing a function which takes as input the views and triggers the

appropriate workunits based on the input types, dimensions, and axis.
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An example implementation of the add function is provided in Figure 3.

The add function takes as input two views and returns the sum of positionally

corresponding elements of the viewA with viewB. In line 18, we check if the

viewB is not of type pk.View, i.e., viewB is a scalar, and convert viewB to

a view with a single dimension if the condition is true. The rest of the code

in the body of the add function simply checks the dimensions of the input

views and triggers the corresponding workunit. The need to create multiple

workunits arises from the fact that the workunits are directly translated into

C++ code and the function cannot be passed data of different types and

dimensions than what translated function actually expects. For this very

reason, PyKokkos ensures that the workunit function parameters are always

type annotated otherwise it raises an error. Because of this, a workunit, for

example, which expects a 1D view of type double cannot accept a view with

a type different than double or a dimension other than one.

Once the add function body satisfies a condition, it creates a new output

view of appropriate type and shape, and triggers the parallel for on the

corresponding workunit. There are three different workunits defined in the

figure. The first workunit, add impl 1d double, expects all the views to be

of type pk.double and single dimension. The body of the work unit simply

sums the corresponding elements of the two input views and stores the sum in

the output view. The second workunit, add impl 1d float, works exactly

like the previous work unit but only for floats. Lastly, the third worku-

nit, add impl 2d 1d double, only works when the viewA is two dimensional

whereas the viewB is one dimensional. The body of this function simply

iterates over each column of viewA and adds the scalar number in viewB to

13



1 @pk.workunit

2 def add_impl_1d_double(tid: int, viewA: pk.View1D[pk.double],

3 viewB: pk.View1D[pk.double], out: pk.View1D[pk.double],

):

4 out[tid] = viewA[tid] + viewB[tid]

5

6 @pk.workunit

7 def add_impl_1d_float(tid: int, viewA: pk.View1D[pk.float],

8 viewB: pk.View1D[pk.float], out: pk.View1D[pk.float]):

9 out[tid] = viewA[tid] + viewB[tid]

10

11 @pk.workunit

12 def add_impl_2d_1d_double(tid: int, viewA: pk.View2D[pk.double],

13 viewB: pk.View1D[pk.double], out: pk.View2D[pk.double]):

14 for i in range(viewA.extent(1)):

15 out[tid][i] = viewA[tid][i] + viewB[i % viewB.extent(0)]

16

17 def add(viewA, viewB):

18 if not isinstance(viewB, pk.View):

19 view_temp = pk.View([1], pk.double)

20 view_temp[0] = viewB

21 viewB = view_temp

22

23 if viewA.rank() == 2:

24 out = pk.View(viewA.shape, pk.double)

25 pk.parallel_for(viewA.shape[0], add_impl_2d_1d_double,

viewA=viewA, viewB=viewB, out=out)

26

27 elif str(viewA.dtype) == "DataType.double" and

str(viewB.dtype) == "DataType.double":

28 out = pk.View([viewA.shape[0]], pk.double)

29 pk.parallel_for(viewA.shape[0], add_impl_1d_double,

viewA=viewA, viewB=viewB, out=out)

30

31 elif str(viewA.dtype) == "DataType.float" and

str(viewB.dtype) == "DataType.float":

32 out = pk.View([viewA.shape[0]], pk.float)

33 pk.parallel_for(viewA.shape[0], add_impl_1d_float,

viewA=viewA, viewB=viewB, out=out)

34 else:

35 raise RuntimeError("Incompatible Types")

36 return out

Figure 3: Add function implementation using PyKokkos.
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every element in the row tid.

It is important to note that this implementation of the add function is

execution space independent (i.e., portable). The developer using the add

function can set the execution space of their choice and PyKokkos will ensure

any views created in the function have the correct layout and memory space

for optimal execution in the defined execution environment.

All functions which perform basic operations like add, subtract, multiply,

divide, square, float divide, logical and, logical or, logical not,

and logical xor are implemented in the same way.

Next we have the functions like fmod, fmax, fmin, etc. which require using

an operator from the C++’s cmath library. An example of such a function

(fmax) is given in Figure 4. The basic fmax takes as input two views and

returns a view which has the element-wise max of the elements in the two

input views. The body of the fmax function is very similar to the body of

the add function which we saw earlier. The difference is in the workunits of

fmax. In line 4 and 9, the function fmax is called on the elements at index

tid of both of the views. This function (fmax) is undefined in the Python

scope but exists in the C++ realm as part of the cmath library. Since

PyKokkos always includes cmath in the translated code and the workunits

are translated directly into C++ code, the fmax function is readily available

in the environment. This allows us to write workunits for functions like sin,

cos, tan, fmax, fmin, fmod, exp, pow, logaddexp, logaddexp2, exp2, log,

log2, log10, and log1p directly using the cmath library functions.

Furthermore, we implemented functions which use parallel reduce in-

stead of the parallel for parallelization pattern. The matrix multiplication

15



1 @pk.workunit

2 def fmax_impl_1d_double(tid: int, viewA: pk.View1D[pk.double],

3 viewB: pk.View1D[pk.double], out: pk.View1D[pk.double]):

4 out[tid] = fmax(viewA[tid], viewB[tid])

5

6 @pk.workunit

7 def fmax_impl_1d_float(tid: int, viewA: pk.View1D[pk.float],

8 viewB: pk.View1D[pk.float], out: pk.View1D[pk.float]):

9 out[tid] = fmax(viewA[tid], viewB[tid])

10

11 def fmax(viewA, viewB):

12 if len(viewA.shape) > 1 or len(viewB.shape) > 1:

13 raise NotImplementedError("fmax() ufunc only supports 1D

views")

14

15 if str(viewA.dtype) == "DataType.double" and

str(viewB.dtype) == "DataType.double":

16 out = pk.View([viewA.shape[0]], pk.double)

17 pk.parallel_for(viewA.shape[0], fmax_impl_1d_double,

viewA=viewA, viewB=viewB, out=out)

18

19 elif str(viewA.dtype) == "DataType.float" and

str(viewB.dtype == "DataType.float":

20

21 out = pk.View([viewA.shape[0]], pk.float)

22 pk.parallel_for(viewA.shape[0], fmax_impl_1d_float,

viewA=viewA, viewB=viewB, out=out)

23

24 else:

25 raise RuntimeError("Incompatible Types")

26 return out

Figure 4: Fmax function implementation using PyKokkos.

and sum functions are two such examples where we use parallel reduce.

In Figure 5, the matrix multiplication function takes as input two views,

and returns the scalar result. The function assumes that both of the views

are one dimensional i.e., one view has n rows whereas the other view has n

columns and only one row. Body of the matmul function is very similar to

16



all the functions we have seen earlier like add and fmax. The only difference

is the use of parallel reduce instead of parallel for. The workunits of

the parallel reduce function in line 18 and 21, in addition to tid (thread

ID), also receive an accumulator as an input which is used to store the result

of the reduction. The body of the workunits for matmul store the sum of the

product of corresponding matrix indices. The sum function follows the same

pattern as the matrix multiplication.

Additionally, we implemented a few functions which perform computa-

tions along various axes instead of a fixed one. The mean function is a good

example of this. A two dimensional array can have its mean calculated along

each column or each row depending on the requirements of the developer.

To cater computation along multiple axes, we design multiple workunits and

based on the axis input, and choose the work unit based on the input. Some

other examples of such functions are sum and variance.

Finally, we implemented the functions which depend on the functions we

have coded as of now and use their result as the inputs. One such example is

the variance. The variance function gets a two dimensional view as input

and returns the variance along an axis as output. To calculate the variance

along an axis, our workunits, in addition to the original view, require a view

of mean along the same axis, which is calculated using the mean function we

implemented earlier.
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1 @pk.workunit

2 def matmul_impl_1d_double(tid: int, acc: pk.Acc[pk.double],

3 viewA: pk.View1D[pk.double], viewB:

pk.View2D[pk.double]):

4 acc += viewA[tid] * viewB[0][tid]

5

6

7 @pk.workunit

8 def matmul_impl_1d_float(tid: int, acc: pk.Acc[pk.float],

9 viewA: pk.View1D[pk.float], viewB: pk.View2D[pk.float]):

10 acc += viewA[tid] * viewB[0][tid]

11

12 def matmul(viewA, viewB):

13 if len(viewA.shape) != 1 or viewA.shape[0] != viewB.shape[0]:

14 raise RuntimeError(

15 "Input operand 1 has a mismatch in its core dimension

(Size {} is different from

{})".format(viewA.shape[0], viewB.shape[0]))

16

17 if str(viewA.dtype) == "DataType.double" and

str(viewB.dtype) == "DataType.double":

18 return pk.parallel_reduce(viewA.shape[0],

matmul_impl_1d_double, viewA=viewA, viewB=viewB)

19

20 elif str(viewA.dtype) == "DataType.float" and

str(viewB.dtype) == "DataType.float":

21 return pk.parallel_reduce(viewA.shape[0],

matmul_impl_1d_float, viewA=viewA, viewB=viewB)

22

23 else:

24 raise RuntimeError("Incompatible Types")

Figure 5: Matmul function implementation using PyKokkos.

3.3 Implementing Machine Learning Algorithms

As the next step, we implemented two machine learning algorithms, namely

Gaussian Naive Bayes and Logistic Regression, using PyKokkos. We then

compared their performance with their Scikit-learn’s counterparts; we pro-
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vide the results of comparison in the next section.

To ensure that the performance comparisons were fair, we copied the

exact implementation of the algorithms from the Scikit-learn’s source code

and converted them to PyKokkos from NumPy. In order to convert the

algorithm, we replaced all the NumPy arrays with PyKokkos views and re-

placed any NumPy functions operating on the arrays with their PyKokkos

equivalent. If a function was not a part of the PyKokkos library, it was imple-

mented and then replaced in the algorithm. There were two different kinds

of missing functions in the PyKokkos library, i) functions not existing at all,

and ii) existing functions expecting an input of type which is not already

supported by the workunits. An example of the former kind of the issue is

the scalar multiplication with PyKokkos views. Since we used a regex to

figure out the most commonly used functions in the basic machine learning

algorithms, we missed some functions which were not invoked explicitly from

the NumPy library. For instance, n ij = -0.5 * np.sum(np.log(2.0 *

np.pi * self.var [i, :])), this code snippet from the original Gaussian

Naive Bayes source code [16], multiplies negative 0.5 with a NumPy array,

but this operation was not supported in the PyKokkos ecosystem for the

views i.e., a view did not support scalar multiplication. We implemented all

the missing functions to ensure all the workunits required by the algorithms

were available for the PyKokkos views. On the other hand, the latter case

included functions like divide, or log on views of dimension greater than

the ones already supported. We simply implemented new workunits which

supported inputs of required dimensions.

The next step was to copy any functions from the Scikit-learn’s library
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which our algorithms were dependent on and convert them to PyKokkos too

to ensure a fair comparison between the implementations. For this report, we

left out any functions which did not significantly impact the performance of

our algorithms, and imported them directly from the Scikit-learn’s library in-

stead. An example is the check is fitted [17] method which simply checks

if a list of attributes passed to it contains certain strings. Some other exam-

ples included the validation functions for the inputs and intermediate results.

Most of these functions required NumPy arrays as input and returned NumPy

arrays too. Since PyKokkos interoperates with NumPy, we did not have to

change anything for these inputs. However, the output of these functions

had to be converted to PyKokkos views from NumPy arrays for them to be

compatible with PyKokkos kernels, which introduces some overhead.

Finally, we tested the result of Gaussian Naive Bayes and Logistic Re-

gression implemented in PyKokkos with the result of their Scikit-learn coun-

terparts to confirm the correctness of the implemented algorithms. This step

involved training our algorithms on the Iris [1, 2] dataset, and comparing

their mean accuracies and prediction results against the Scikit-learn’s algo-

rithms when they were trained and tested on the same inputs. The final

implementations were then subject to stress testing, the results of which can

be found in the next section.
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4 Evaluation

All of the above algorithms and functions were benchmarked on Ubuntu

22.04, with Python 3.10.6, Kokkos 3.7.0, NumPy 1.23.3 and PyKokkos latest

develop (SHA: 679a21ebf237241b93a467c6aa3a4577b0ba6ea5) branch. The

system had a 2.2 GHz Intel Core i7 processor with 6 physical and 12 logical

cores, and 16 GB 2400 MHz DDR4 memory. PyKokkos was configured to

use all 12 cores for parallelization whereas NumPy was run with the default

configuration.

4.1 Benchmarking Functions

For each of the functions that we implemented (see Table 1) in this study, we

compared its performance against its NumPy equivalent. Even though each

PyKokkos version of the function has multiple workunits associated with it,

we only benchmarked a single workunit for each function. The Table 2 below

shows the shape of the input arrays/views for different functions that were

put to test.

We tested each of the functions against inputs (views/arrays) of 6 different

lengths where the the length, in terms of number of elements, of the inputs

ranged from 101 to 106. The data type of each of the input can be found in

Table 2. For each function, we timed the execution of 50 individual runs for

each of the input array/view size and reported two different results:

i) mean of the last 40 runs,

ii) median of the last 40 runs (see Table 5 in the appendix).

For both of the results, we skipped the time of the first 10 runs from the
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final result to make sure that any initializations or the initial translation of

the workunits to C++ does not impact the final result. We do this for both

PyKokkos and NumPy functions to maintain the integrity of the results. The

final results for mean times are reported in Table 2.

Table 2: Performance comparison against NumPy (mean [ms]).

101 102 103 104 105 106

Var (2D view of shape[x, 10])

pk 0.18 0.20 0.22 0.36 1.3 34.0

np 0.1 0.11 0.13 0.83 8.6 96.0

Mean (2D view of shape[x, 10])

pk 0.11 0.17 0.18 0.16 0.74 13.0

np 0.018 0.12 0.11 0.36 2.8 28.0

Sum (2D view of shape[x, 10])

pk 0.083 0.13 0.09 0.12 0.78 10.0

np 0.029 0.083 0.022 0.18 1.6 16.0

Divide (2D view of shape[x, 10])

pk 0.19 0.14 0.21 0.41 3.7 53.0

np 0.0034 0.0086 0.019 0.12 1.3 26.0

Power (2D view of shape[x, 10])

pk 3.9 0.23 0.33 7.2 4.7 40.0

np 0.0021 0.0058 0.16 0.37 3.3 42.0

Log (1D view of shape[x])

pk 0.19 0.14 0.15 0.68 5.6 50.0

np 0.019 0.026 0.081 0.59 5.5 83.0
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Table 2: cont.

101 102 103 104 105 106

Exp (1D view of shape[x])

pk 0.092 0.15 0.18 0.18 0.95 3.1

np 0.003 0.024 0.031 0.18 1.6 10.0

Logical Not (1D view of shape[x])

pk 0.084 0.11 0.23 0.12 0.36 0.49

np 0.0015 0.0014 0.0038 0.0061 0.03 0.46

Multiply (1D view of shape[x])

pk 0.23 0.17 0.16 0.19 0.76 1.7

np 0.0018 0.0015 0.0031 0.0086 0.051 0.82

Index (viewA shape[x], viewB shape[x])

pk 0.1 0.084 0.11 0.18 0.3 4.0

np 0.0005 0.00045 0.0017 0.016 0.15 1.7

Transpose (2D view of shape[x, 10])

pk 0.24 0.099 0.12 0.27 4.5 34.0

np 0.0023 0.0018 0.0015 0.0016 0.0011 0.0012

All (1D view of shape[x])

pk 0.022 0.044 0.3 2.6 20.0 220.0

np 0.026 0.036 0.0035 0.052 0.097 0.87

Add (viewA shape[x, 10], viewB shape[10])

pk 0.095 0.25 0.32 0.3 3.2 15.0

np 0.0026 0.0043 0.015 0.41 1.7 25.0
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Table 2: cont.

101 102 103 104 105 106

In1d (viewA shape[x], viewB shape[x])

pk 0.28 0.3 1.2 13.0 650.0 47000.0

np 0.043 0.076 0.11 0.54 13.0 84.0

Zeros (2D view of shape[x, 10])

pk 0.028 0.028 0.038 0.031 0.27 17.0

np 0.00056 0.00099 0.0034 0.023 0.32 0.092

The results show that when the size of the inputs is small i.e., in the range

101 to 104, NumPy outperforms our PyKokkos implementation of the func-

tions. We believe that this can be attributed to the fact that the PyKokkos

version of the functions have an extra parallelization overhead.

However, for input sizes greater than 104, the result for many of PyKokkos

functions is better than their NumPy equivalents. Examples of such functions

are mean, var, sum, exp, and add. The reason for this better performance is

that for larger input sizes the reduction in execution time from parallelizing

the computation is greater than any addition in the execution time because

of the parallelization overhead.

Furthermore, as can be seen in the Table 2, a few of PyKokkos version of

the functions have performance comparable to those of their NumPy equiv-

alents when the size of inputs is large. Some examples of such functions are

multiply, logical not, and power.

Finally, there are only a handful of cases where PyKokkos functions per-

24



formed worse than the NumPy’s functions for large sized inputs. Examples

of such functions include, all, zeros, and transpose. The slow performance

of the all function can be attributed to the fact that it checks all the ele-

ments of the array sequentially. Currently PyKokkos does not support the

parallel reduction pattern which accepts any other operator than ‘+‘. In case

of transpose, our implementation allocates a new view and transposes by

moving the data physically. On the other hand, NumPy transpose works

by simply allocating a new array and changing the strides. Since PyKokkos

does not support strides for views as of now, we had to stick to manually

moving data in case of a transpose operation. Lastly, the implementation of

the zeros function in PyKokkos is slower because of the additional step of

Kokkos framework initializing the PyKokkos views and allocating memory

for them. This initialization process is relatively slower than the NumPy’s

initialization of a zeros array.

4.2 Replacing RangePolicy with TeamPolicy

After figuring out the performance of our initial implementations, we worked

on further optimizing the performance of our functions. As part of this ef-

fort, we identified issues with the execution policies of various workunits.

The initial implementation ran all of the workunits with the RangePolicy,

however, this was not optimal for cases where the workunits operated on

multidimensional arrays. An example of such a case is the sum function. Us-

ing the RangePolicy we divided the work for each row to a thread and made

each thread responsible for calculating the sum of the entire row. In order
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to fix all instances of this issue, we replaced the use of RangePolicy with a

TeamPolicy and made the computation further parallel by parallelizing the

work for each row too. The results after updating the execution policy for

all the functions, which take as input multidimensional arrays, namely var,

mean, sum, divide, and power, were benchmarked again.

Table 3: TeamPolicy performance comparison against NumPy (mean [ms]).

101 102 103 104 105 106

Var (2D view of shape[x, 10])

pk 0.18 0.25 0.24 0.34 2.8 25.0

np 0.051 0.056 0.15 0.79 7.8 99.0

Mean (2D view of shape[x, 10])

pk 0.12 0.17 0.12 0.25 1.0 12.0

np 0.034 0.036 0.065 0.33 2.3 24.0

Sum (2D view of shape[x, 10])

pk 0.085 0.12 0.14 0.16 0.95 13.0

np 0.024 0.025 0.04 0.23 1.6 18.0

Divide (2D view of shape[x, 10])

pk 0.19 0.41 0.22 0.82 6.2 55.0

np 0.02 0.025 0.039 0.15 2.2 27.0

Power (2D view of shape[x, 10])

pk 0.18 0.21 0.35 0.98 8.1 43.0

np 0.014 0.018 0.046 0.34 2.4 38.0

As reflected in Table 3, any further parallelization did not help improve
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the performance of these workunits. We believe that the bottleneck here is

the CPU on which we are benchmarking. The low number of cores, i.e., 6

physical and 12 logical cores, do not leave a lot of room for further paral-

lelization when the TeamPolicy is used.

4.3 Benchmarking the Algorithms

Lastly, we benchmarked the two machine learning algorithms, Gaussian

Naive Bayes and Logistic Regression. The benchmarking methodology was

very similar to what we saw above for the individual functions. We used

the Iris [1, 2] dataset from the Scikit-learn’s dataset library to train each

algorithm 100 times on the dataset, and calculated the average time it took

for the last 90 runs. We skipped the first 10 runs to make sure we do

not include any iterations where a workunit was being translated or any

initializations were taking place. We benchmarked the Scikit-learn’s version

of these algorithms in the same manner. The final execution times can be

found in the Table 4.

Table 4: Algorithms performance (mean [ms]).

PyKokkos Scikit-learn

Gaussian Naive Bayes 3.4 0.81

Logistic Regression 26.1 19.6

The results show that the performance of the PyKokkos version of the

machine learning algorithms is about four folds slower than the original Gaus-

sian Naive Bayes and 1.3 times slower than the original Logistic Regression.
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The reason for this performance can be attributed to the fact that all of

the functions implemented using PyKokkos do not perform as well as their

NumPy’s equivalents. When the size of the views is smaller than 103 ele-

ments, as discussed above, the parallelization overhead takes over the perfor-

mance gained by actually parallelizing. On the other hand, when the size of

the views is larger, some of the functions like max, all, zeros, and transpose

perform poorly because PyKokkos currently does not support the reduction

operators required to implement them. Secondly, since we only implemented

the nested library functions from Scikit-learn up to a depth of 1, all other

functions require conversion of their output to PyKokkos views. This intro-

duces an additional overhead which impacts the overall performance of the

algorithms.
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5 Future Work

We describe several directions for future work.

5.1 GPU Based Performance Benchmarks

For this report, all of the functions and algorithms implemented using

PyKokkos were benchmarked on a CPU with a very small number of cores.

However, in the real world, computer systems generally have access to graph-

ics processing units (GPUs) as well. This means that such systems should be

able to run the PyKokkos workunits with CUDA and HIP as the execution

space. It would be interesting to see how PyKokkos version of the functions

we implemented, compare in performance to their NumPy counterparts when

the PyKokkos execution space is CUDA or HIP.

5.2 Reduction Operators

Currently, PyKokkos only supports addition as the parallel reduction opera-

tor. This means that the parallel reduction can only perform addition on the

accumulator value. The algorithms, however, frequently require computing

the min, max, product, logical conjunction/disjunction, binary and/or, etc.

Without the support for such reductions, we came up with the serial versions

of these reductions to temporarily use in the machine learning algorithms.

This led to a degradation of the performance and had an impact on our

benchmarks.

Since Kokkos already supports many of the reductions listed above, intro-

ducing them in PyKokkos should be straightforward. It would be interesting
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to see how using these operators improve the performance of the algorithms

using them internally.

5.3 Broadcasting

Currently, all the functions implemented with PyKokkos assume that the in-

puts are broadcastable and make use of the modulus function in the workunits

to ensure that the views are not indexed beyond their shapes. An example of

this are the multiply, divide, add, power, etc. functions. With the add func-

tions, for example, we calculate the sum as follows: out[tid] = viewA[tid]

+ viewB[tid] % viewB.extent(0)]. Even though this works fine with the

assumption in place that viewB will always be the smaller of the two views

in terms of the shape. However, if the same function is passed the inputs in

reversed order, we might see unexpected results since some elements of viewA

will never be indexed as tid will always be smaller than the total number

of elements in ViewA. This will yield incorrect results. Such issues can be

easily caught if PyKokkos builds a method to verify the broadcastability of

the two views and uses the appropriate workunits based on that.

5.4 Implementing Nested Library Functions

As of now, the algorithms we implemented using PyKokkos still relied on the

functions from the Scikit-learn library. We only implemented the dependent

functions up to a depth of 1 from within the Scikit-learn library and skipped

any further nested functions. Using these function adds extra overhead since

their output has to be converted to PyKokkos views. This can, however, be
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avoided if we implement our own version of all the Scikit-learn’s functions

our algorithms are dependent upon.

31



6 Conclusion

Using PyKokkos, we implemented the Gaussian Naive Bayes and Logistic

Regression algorithms to test the feasibility of using PyKokkos for the im-

plementation of machine learning algorithms altogether. For common op-

erations on views, we saw that PyKokkos, compared to NumPy, generally

performs very well when the size of the inputs is large. The performance,

however, is comparable to that of NumPy for smaller inputs. We then imple-

mented the Scikit-learn’s version of the Gaussian Naive Bayes and Logistic

Regression using PyKokkos and compared the performance of our implemen-

tation with that of Scikit-learn’s versions. We saw that PyKokkos version

of the algorithms performed poorly because of PyKokkos lack of support for

certain reduction operators, and addition of overhead for using Scikit-learn’s

validation functions.

This work has shown that PyKokkos is a powerful framework which can

be used to code and test machine learning algorithms in different execution

spaces with performance comparable to C++ Kokkos equivalent code, with-

out worrying about portability.

All the functions and machine learning algorithms implemented as part

of this report are publicly available at https://github.com/kokkos/pykokkos,

the official PyKokkos repository.

32

https://github.com/kokkos/pykokkos


7 Appendix

In this section, tables 5 and 6 show the median time of execution for the

functions implemented using PyKokkos and their NumPy counterparts. Ta-

ble 7, on the other hand, shows the median time of execution for PyKokkos’s

and Scikit-learn’s implementation of the machine learning algorithms.

Table 5: Performance comparison against NumPy (median [ms]).

101 102 103 104 105 106

Var (2D view of shape[x, 10])

pk 0.17 0.17 0.17 0.29 1.2 37.0

np 0.037 0.053 0.11 0.77 8.5 96.0

Mean (2D view of shape[x, 10])

pk 0.099 0.1 0.095 0.11 0.65 12.0

np 0.016 0.02 0.046 0.3 2.8 28.0

Sum (2D view of shape[x, 10])

pk 0.075 0.13 0.077 0.1 0.7 9.8

np 0.0066 0.0083 0.022 0.17 1.6 16.0

Divide (2D view of shape[x, 10])

pk 0.12 0.11 0.14 0.33 1.8 24.0

np 0.0034 0.0052 0.018 0.11 1.3 26.0

Power (2D view of shape[x, 10])

pk 2.1 0.13 0.17 4.9 3.6 32.0

np 0.0021 0.0051 0.034 0.29 3.2 37.0

33



Table 5: cont.

101 102 103 104 105 106

Log (1D view of shape[x])

pk 23.0 26.0 30.0 28.0 35.0 52.0

np 0.0018 0.0043 0.031 0.3 2.8 17.0

Exp (1D view of shape[x])

pk 0.079 0.08 0.083 0.13 0.42 2.8

np 0.0017 0.0036 0.023 0.16 1.5 10.0

Logical Not (1D view of shape[x])

pk 0.076 0.076 0.078 0.082 0.12 0.48

np 0.0013 0.0013 0.0017 0.0044 0.028 0.45

Multiply (1D view of shape[x])

pk 0.11 0.11 0.11 0.14 0.32 1.6

np 0.0015 0.0015 0.0022 0.0069 0.048 0.83

Index (viewA shape[x], viewB shape[x])

pk 0.079 0.076 0.088 0.1 0.3 4.0

np 0.00036 0.00044 0.0017 0.014 0.13 1.7

Transpose (2D view of shape[x, 10])

pk 0.084 0.082 0.11 0.24 3.2 25.0

np 0.0017 0.0017 0.0015 0.0015 0.0011 0.0012

All (1D view of shape[x])

pk 0.019 0.04 0.26 2.6 20.0 200.0

np 0.026 0.024 0.024 0.033 0.088 0.87
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Table 5: cont.

101 102 103 104 105 106

Add (viewA shape[x, 10], viewB shape[10])

pk 0.079 0.084 0.13 0.25 2.0 15.0

np 0.0021 0.0039 0.014 0.13 1.7 24.0

In1d (viewA shape[x], viewB shape[x])

pk 0.11 0.11 0.4 11.0 620.0 44000.0

np 0.037 0.058 0.088 0.49 12.0 -

Zeros (2D view of shape[x, 10])

pk 0.028 0.028 0.028 0.031 0.16 16.0

np 0.00054 0.00098 0.0028 0.023 0.29 0.062

Table 6: TeamPolicy performance comparison against NumPy (median
[ms]).

101 102 103 104 105 106

Var (2D view of shape[x, 10])

pk 0.17 0.20 0.22 0.29 2.7 22.0

np 0.037 0.043 0.091 0.71 7.7 94.0

Mean (2D view of shape[x, 10])

pk 0.09 0.14 0.11 0.22 0.71 8.7

np 0.026 0.028 0.048 0.24 2.4 24.0

Sum (2D view of shape[x, 10])

pk 0.063 0.1 0.11 0.14 0.63 8.4.0

np 0.018 0.02 0.031 0.14 1.6 18.0
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Table 6: cont.

101 102 103 104 105 106

Divide (2D view of shape[x, 10])

pk 0.17 0.17 0.2 0.69 5.8 49.0

np 0.015 0.016 0.025 0.11 1.4 26.0

Power (2D view of shape[x, 10])

pk 0.16 0.18 0.31 0.87 7.6 43.0

np 0.011 0.013 0.044 0.3 2.3 34.0

Table 7: Algorithms performance (median [ms]).

PyKokkos Scikit-learn

Gaussian Naive Bayes 2.8 0.68

Logistic Regression 26.0 19.0
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