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ABSTRACT
Software model checkers, such as JPF, are routinely used to ex-
plore executions of programs that have very large state spaces.
Sometimes the exploration can take a significant amount of time
before a bug is found or the checking is complete, in which case
the user must patiently wait, possibly for quite some time, to
learn the result of checking. A progress bar that accurately shows
the status of the search provides the user useful feedback about
the time expected for the search to complete. This paper in-
troduces JPFBar, a novel technique to estimate the percentage
of work done by the JPF search by computing weights for the
execution paths it explores and summing up the weights. JPF-
Bar is embodied into a listener that prints a progress bar during
JPF execution. An experimental evaluation using a variety of
Java subjects shows that JPFBar provides accurate information
about the search’s progress and fares well in comparison with a
state-based progress estimator that is part of the standard JPF
distribution. We implement JPFBar as a JPF listener and it is
available at https://github.com/kaiyuanw/JPFBar.
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1. INTRODUCTION
Software model checking [Godefroid 1997, Visser et al. 2000, Cor-
bett et al. 2000] today is a well-established method for systemati-
cally analyzing behavioral correctness of software systems. Mod-
ern model checkers, such as Java PathFinder (JPF) [Visser et al.
2000], readily handle complexities of advanced programming lan-
guage constructs, e.g., JPF handles all of Java bytecode. How-
ever, checking complex software systems that have very large
state spaces can still take state-of-the-art model checkers that
have sophisticated pruning techniques, such as partial order re-
ductions [Clarke et al. 1999], quite some time to report a bug or
complete the checking. Due to the underlying complexity of the
core model checking problem, during the run of a model checker,
it is hard for the user to determine when that run may terminate.
Indeed, sometimes the user may be compelled to terminate the
analysis out of frustration without gaining much insight into the
percentage of work that has been done before the termination.

A progress bar that accurately predicts the state of the run of a
model checker can provide a valuable practical tool that not only
enhances the overall user experience with their model checker but
also provides useful technical feedback. However, designing an
accurate progress bar for a software model checker is a challenging
problem. A key issue is that for many non-trivial systems the
shape of the state space of the system is only known once the
analysis is complete, which makes accurately determining how
much work is remaining hard.

In this paper we study the problem of defining a progress bar
for JPF and report on our work that introduces JPFBar, a novel
technique to quantify the work completed by JPF search. Our
key insight is that since an explicit-state model checker like JPF
actually executes and checks (many) program behaviors, a useful
progress bar can be based on the program executions that are
explored by the model checker. Specifically, for each complete ex-
ecution path that JPF explores, JPFBar computes the progress
with respect to that path and adds it to the overall progress made
so far. Conceptually, JPFBar assigns each path a weight based
on the non-deterministic choices in the system under test. Specif-
ically, the weight of each path is the reciprocal of the product of
the numbers of non-deterministic choices along that path. Thus,
each weight is a number between 0 and 1, and can be calculated
independently of the other paths explored. Moreover, the progress
is monotonic, i.e., the overall progress grows monotonically, be-
tween 0 and 1 (i.e., 100%). Since JPFBar calculates the progress
simply based on the execution paths explored, it naturally sup-
ports the different search strategies in JPF, including the various
heuristic searches. Moreover, JPFBar handles state space graphs
that may not be acyclic, e.g., when two unique paths in the graph
lead to the same state, which JPF can detect when state matching
is turned on.

We embody JPFBar as a JPF listener on top of the JPF core,
which in principle allows it to function with existing JPF exten-
sions. We evaluate JPFBar using a suite of benchmarks that have
state spaces with various characteristics, e.g., some have uniform
branching and some have highly skewed branching. The results
show that JPFBar introduces a promising approach for estimat-
ing the model checker’s progress. Moreover, we compare JPF-
Bar with a previous progress reporting technique, namely the
StateCountEstimator listener, which is a part of the standard
JPF distribution and reports monotonic progress based on the
number of states explored. Experimental results show that JPF-
Bar compares well with StateCountEstimator for the standard
depth-first search. Also, we find that the StateCountEstimator

listener only supports the depth-first search strategy.

This paper makes the following contributions:

• Path-based progress bar. It introduces the idea of mea-
suring the progress of an explicit state model checker using
the execution paths it explores.

• Technique. It introduces JPFBar, a novel progress bar
that handles various search strategies and heuristics, as well
as state space graphs that may or may not be acyclic. We
make JPFBar publicly available at https://github.com/
kaiyuanw/JPFBar.

• Evaluation. It experimentally evaluates JPFBar to demon-



import gov.nasa.jpf.vm.Verify;
public class TwoChoices {

public static void main(String[] a) {
System.out.println(

"<" + Verify.getInt(1, 3) +
"," + Verify.getInt(1, 2) + ">");

}
}

(a) Example with 2 non-deterministic choices

<1,1>
<1,2>
<2,1>
<2,2>
<3,1>
<3,2>

(b) JPF

Figure 1: Example program and JPF output

Figure 2: State-space graph for the example program.
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(a) StateCountEstimator
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[PATH]: 5 / 6 (83.3333%)
[PATH]: 6 / 6 (100.000%)

(b) JPFBar

Figure 3: Progress output – depth-first search

strate its potential usefulness.

An accurate progress bar can indeed serve as a key tool that
enhances the practical usability of model checkers and, more gen-
erally, other tools that handle very large exploration spaces, e.g.,
constraint solvers [Boyapati et al. 2002, Een and Sorensson 2003],
decision procedures [de Moura and Bjorner 2008], and program
analyzers [King 1976]. We believe JPFBar provides a promising
technique for explicit-state model checkers in general and JPF in
particular, and in future work can provide a basis for more accu-
rate state coverage estimators that serve as practical metrics for
evaluating different search strategies or even checking techniques.

2. EXAMPLE
This section illustrates JPFBar using a simple example that makes
two non-deterministic choices (Figure 1a). The TwoChoices ex-
ample program simply creates two choice generators and prints
a pair of integers where the first integer ranges from 1 to 3 and
the second integer ranges from 1 to 2. If we run JPF against the
example, we will observe 6 pairs of integers (Figure 1b).

Figure 2 shows the state-space graph for the TwoChoices pro-
gram. Each edge represents a non-deterministic choice and is
labeled with (1) the weight that is used to calculate the progress
for the paths that contain that edge; and (2) the choice (in square
brackets) represented by that edge. Each leaf node is labeled
with the weight of the corresponding path, i.e., the incremental
progress that JPFBar computes for that path. The graph has 10
states (s0, s1, . . . , s9), of which 6 states (s4, . . . , s9) are end states.

As its default search strategy, JPF uses depth-first search (DFS),
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(a) StateCountEstimator
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(b) JPFBar

Figure 4: Progress output – breadth-first search

which is implemented in class gov.nasa.jpf.search.DFSearch.
Figure 3a and Figure 3b show the JPF output for DFS of the main
method using the traditional StateCountEstimator listener and
our JPFBar listener, respectively. The StateCountEstimator

listener prints the progress information periodically in the for-
mat of “State: $X / $Y ($Z%)”, where $X is the number of
states explored so far, $Z is an estimated progress percentage,
and $Y is computed by $X/$Z; in addition to state information,
StateCountEstimator also prints time information, which we
omit here. JPFBar prints the progress information periodically in
the format of “[Path] $X / $Y ($Z%)”, where $X is the number of
paths explored so far, $Z is an estimated progress percentage, and
$Y is computed by $X/$Z. For this example, JPFBar’s progress
information is more evenly distributed and accurate w.r.t. the
program output compared to the StateCountEstimator listener.

In addition to DFS, JPF supports various searches, e.g., breadth-
first search (BFS) (in the gov.nasa.jpf.search.heuristic pack-
age). Figure 4b shows the JPF output with respect to BFS of the
main method using our JPFBar listener. In comparison, the tra-
ditional StateCountEstimator listener does not support BFS (or
other searches in gov.nasa.jpf.search.heuristic) and outputs
just “State: 0 / 0 (100.000%)”.

3. TECHNIQUE
This section presents our JPFBar technique. While our focus here
is the Java PathFinder (JPF) model checker, the core JPFBar
technique can be applied to other explicit-state model checkers.

JPFBar introduces an execution-based technique to report the
JPF model checker’s progress. For each complete execution path
that JPF explores, i.e., paths that terminate in an end state, JPF-
Bar computes the progress for that path as its weight based on the
path’s branching structure with respect to the non-deterministic
choices along that path. More precisely, let p be a complete
execution path that consists of the following sequence of non-
deterministic choices: 〈c1, . . . , ck〉, where ci is a choice out of ti
total choices. The weight of p, written weight(p) then is 1

t1×...×tk
.

JPFBar incrementally computes the overall search progress as
each execution path is explored by JPF and reports the progress
as a percentage (starting at 0%) at the end of each path.

Since the weight is divided evenly amongst all of a state’s children,
at any state s, the weight of its children adds up to the weight of
s. We assign the weight of the root to be 1, so the weight of all
paths sums to 1.

JPFBar handles state-space graphs that are acyclic as well as
graphs that are not acyclic. If the graph is not acyclic and state
matching in JPF is turned on, JPF may backtrack along a path
before reaching an end state. JPFBar accurately accounts for such
backtracking by incrementing the overall progress by the weight
of the path that backtracks due to state matching. To illustrate,



Figure 5: State-space graph that is not acyclic. JPF explores three
paths: p1 : 〈s0, s1, s3, s4〉; p2 : 〈s0, s1, s3, s5〉; and p3 : 〈s0, s2, s3〉.
JPFBar calculates the following weights for them: p1 : 1

4
; p2 : 1

4
; and

p3 : 1
2

. The weights add up to 1 and represent 100% progress when
JPF search terminates.

Figure 5 shows a hypothetical state space graph that has a cycle,
and how JPFBar handles it. Moreover, if a path terminates in an
error state, JPFBar updates the progress with the weight of that
path to handle such paths.

Overall, the progress reported by JPFBar, i.e., Σpweight(p), where
p ranges over all explored execution paths that terminate in an
end state, a state match, or an error, takes a numeric value be-
tween 0 and 1 (i.e., 100%). Observe that the weight of each path
can alternatively be viewed as the probability of executing it us-
ing a random search strategy that begins at the start state and
at each non-deterministic choice point, picks one of the choices
uniformly. We plan to explore this connection in future work.

We embodied JPFBar as the PathCountEstimator listener that
we built on top of core JPF. Figure 6 shows the key parts of our
listener implementation.

4. EVALUATION
We evaluated JPFBar on 10 subjects and 8 search methods, and
compared it to StateCountEstimator, the existing comparable
tool. For lack of space, we show our experimental results in scat-
ter plots for 7 subjects and 3 search methods in Figure 7. We ob-
serve similar results for other subjects and search methods which
are not shown. DiningPhil and Racer are from the standard
JPF distribution. List uses JPF to count the set of valid and
invalid singly-linked lists within a given bound on the number of
list nodes; this subject uses non-deterministic choice to initialize
all candidate lists and checks the validity of each of them using
an executable check (repOk method). BinaryTree similarly uses
JPF to count the set of valid and invalid binary tree with a given
bound. LeaningLeft, LeaningRight and LeaningBalanced
are programs that we specifically designed to make JPF state
exploration graphs that lean towards the left, lean towards the
right, and are balanced, respectively. DFSearch is the default
depth-first search strategy. BFSHeuristic is the breadth-first
search strategy. RandomHeuristic is the random search strat-
egy. All these search strategies are available in the standard JPF
distribution under the package gov.nasa.jpf.search.

For each subject and search method, we gathered data in the
form of progress reports from the listeners, and recorded the ac-
tual completeness of the search at that time, as defined by the
number of actions (StateAdvanced and StateBacktracked) taken
so far divided by the final number of actions. In the experi-
ment, we let JPF report all errors instead of stopping the ex-
ploration at the first error. We then plotted these points in a
scatter plot of reported progress (y-axis) versus actual progress
(x-axis) in percent, and computed the Pearson correlation co-
efficients, or R-values, for these relationships. Red circles rep-

public class PathCountEstimator extends ListenerAdapter {
@Override
public void stateAdvanced(Search search) {

...
if (search.isEndState() || search.isErrorState() ||

search.isVisitedState()) {
m_pathNum++;
updateProgress(search);
return; } }

private void updateProgress(Search search) {
VM vm = search.getVM();
Path path = vm.getPath();
double pathWeight = 1.0;
for (int i = 0; i < path.size(); i++) {

Transition transition = path.get(i);
ChoiceGenerator cg = transition.getChoiceGenerator

();
pathWeight /= cg.getTotalNumberOfChoices(); }

m_progress += pathWeight; }
... }

Figure 6: Code snippet from PathCountEstimator listener.

resent StateCountEstimator and blue triangles represent JPF-
Bar. Intuitively, an ideal progress-tracking metric has an R-value
of 1 (linear and monotonically increasing), passes (0%,0%) and
(100%,100%), and reports progress regularly during the search.

We can see that StateCountEstimator only works for DFSearch
and does not work for all other heuristics, i.e. reporting only
“State: 0 / 0 (100.000%)” and thus returning an R-value of
NaN. For DFSearch, JPFBar and StateCountEstimator have
similar trends and JPFBar reports the progress before State-

CountEstimator for most cases. StateCountEstimator only re-
ports progress twice (0% and 100%) for LeaningLeft and once
(100%) for LeaningRight while JPFBar reports progress more of-
ten. So both JPFBar and StateCountEstimator perform simi-
larly under DFSearch and JPFBar is better for LeaningLeft and
LeaningRight. For BFSHeuristic and RandomHeuristic, JPF-
Bar clearly performs better than the StateCountEstimator lis-
tener because StateCountEstimator only reports 100% progress
after the search finishes. Overall, JPFBar performs similarly
to StateCountEstimator for DFSearch and clearly better than
StateCountEstimator for other heuristics. Sometimes JPFBar’s
progress reports are highly skewed, e.g., DiningPhil and Binary-
Tree, which represent state-space properties that currently limit
the effectiveness of JPFBar’s execution path based approach. We
plan to address JPFBar’s limitations in future work.

5. DISCUSSION
This section discusses some limitations of our current embodiment
of JPFBar. We plan to enhance it to address them in future work.

5.1 Additional backtracking scenarios
JPFBar calculates progress based on the paths that reach end
states, error states, or states that match previously visited states.
For some systems, the model checker may backtrack the search
along some paths under additional scenarios. For such systems,
the progress computed by JPFBar after JPF explores the last path
may be less than 100% even though the search is over. There are
two scenarios when this may happen:

• Search depth bound. When search depth is set, JPF back-
tracks the search when any execution path length exceeds
the depth. Figure 8 shows a hypothetical example where
the search depth is exceeded along one path out of 3 paths
explored and JPFBar calculates 66.7% progress when the
search completes.
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Figure 7: JPFBar and StateCountEstimator Results Comparison

• Explicit backtracking. Client code may explicitly instruct
JPF search to backtrack its current execution path, for ex-
ample using the Verify.ignoreIf(...) method, which
causes JPF to backtrack when the method argument is true.
E.g., running “Verify.ignoreIf(Verify.getBoolean());”

using JPF reports only 1 end state (and not 2), and therefore
JPFBar calculates 50% progress when the search completes.

Note however that regardless of the scenario, the progress com-
puted by JPFBar never exceeds 100% and grows monotonically.



Figure 8: State-space graph with search depth exceeded.

5.2 Different search strategies
Since JPFBar computes progress based on execution paths that
reach end states and each progress increment is based on just
one path, JPFBar works with any search strategy that reaches
some end states. Indeed, any strategy that performs a complete
search must reach some end states (unless no complete execution
of the system is explored, say due to all paths exceeding the search
depth). The specific points at which progress is updated and
reported by JPFBar, however, depends on the search strategy.
For instance, breadth-first search may take longer than depth-
first search to reach an end state and hence may require more
time before progress bar shows >0.

5.3 Non-uniform structure of the state-space
Recall, the weight of a path computed by JPFBar is inversely
proportional to the product of the numbers of non-deterministic
choices along the path. An advantage of this property is that it
allows monotonic behavior of the progress bar. A disadvantage is
that a shorter path with a few choice points contributes more to
the progress computed than a longer path with more choice points.
Thus, for state space graphs with a few short paths and many long
paths, if the short paths are covered earlier, the progress bar will
show significant growth even though just a few paths are covered.
Likewise, if the search covers many long paths before getting to
the shorter ones, the progress bar will show little progress even
though the search is actually close to completion. Overall, the
more uniform the structure of the state space, the higher the
accuracy of the progress bar.

6. RELATED WORK
The technical problem at the heart of defining a progress bar for
JPF (and other similar search techniques) is to estimate the size
of a backtrack search tree. Knuth addressed this problem using
a probing sample back in the 1970’s [Knuth 1975]. The prob-
lem started to receive more and more attention from the early
2000’s [Kokotov and Shlyakhter 2000, Aloul et al. 2002, Kilby
et al. 2006], specifically in the context of propositional satisfia-
bility (SAT) solvers [Moskewicz et al. 2001, Een and Sorensson
2003], which had come of age by then and required adaptation
of Knuth’s original work. For Java PathFinder, Taleghani and
Atlee [Taleghani and Atlee 2009] introduced an algorithm based
on Monte Carlo techniques to estimate the state-space size, specif-
ically state-space coverage. A key difference of our JPFBar and
previous work is that JPFBar estimates the progress purely based
on the information already available during JPF search; for ex-
ample, JPFBar does not require any additional probes into the
search space. In this regard, JPFBar follows the spirit of the
StateCountEstimator listener, which is a part of the standard
JPF distribution. A key difference is StateCountEstimator’s use
of state counts and JPFBar’s use of exploration path counts to de-
fine progress. Moreover, JPFBar works with various JPF search
strategies that StateCountEstimator does not handle. We be-
lieve probing can play an important role in defining a more accu-
rate progress bar for JPF and we plan to investigate it further.

7. CONCLUSIONS
This paper introduced JPFBar, a novel technique to estimate the
percentage of work done by the JPF search by computing weights
for the execution paths it explores and summing up the weights.
JPFBar is embodied into a listener that prints a progress bar dur-
ing JPF execution. An experimental evaluation using a variety of
Java subjects shows that JPFBar provides accurate information
about the search’s progress and fares well in comparison with
StateCountEstimator, a state-based progress estimator in the
standard JPF distribution. We implement JPFBar as a JPF lis-
tener and it is available at https://github.com/kaiyuanw/
JPFBar.
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Thiébaux, and Toby Walsh. 2006. Estimating Search Tree
Size. In AAAI.

[King 1976] James C. King. 1976. Symbolic Execution and
Program Testing. CACM 19, 7 (1976).

[Knuth 1975] D Knuth. 1975. Estimating the Efficiency of
Backtrack Programs. Math. Comp. 29, 129 (1975).

[Kokotov and Shlyakhter 2000] D. Kokotov and I. Shlyakhter.
2000. Progress Bar for SAT Solvers. (2000). Unpublished
manuscript.

[Moskewicz et al. 2001] Matthew W. Moskewicz, Conor F.
Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
2001. Chaff: Engineering an Efficient SAT Solver. In DAC.

[Taleghani and Atlee 2009] Ali Taleghani and Joanne M. Atlee.
2009. State-Space Coverage Estimation. In ASE.

[Visser et al. 2000] Willem Visser, Klaus Havelund,
Guillaume P. Brat, and Seungjoon Park. 2000. Model
Checking Programs. In ASE.


