
Noname manuscript No.
(will be inserted by the editor)

Precise Semantic History Slicing Through Dynamic
Delta Refinement

Yi Li · Chenguang Zhu · Milos
Gligoric · Julia Rubin · Marsha Chechik

Received: date / Accepted: date

Abstract Semantic history slicing solves the problem of extracting changes
related to a particular high-level functionality from software version histo-
ries. State-of-the-art techniques combine static program analysis and dynamic
execution tracing to infer an over-approximated set of changes that can pre-
serve the functional behaviors captured by a test suite. However, due to the
conservative nature of such techniques, the sliced histories may contain irrele-
vant changes. In this paper, we propose a divide-and-conquer-style partitioning
approach enhanced by dynamic delta refinement to produce much smaller se-
mantic history slices. We utilize deltas in dynamic invariants generated from
successive test executions to learn significance of changes with respect to the
target functionality. Additionally, we introduce a file-level commit splitting
technique for untangling unrelated changes introduced in a single commit.
Empirical results indicate that these measurements accurately rank changes
according to their relevance to the desired test behaviors and thus partition
history slices in an efficient and effective manner.

Y. Li
School of Computer Science and Engineering
Nanyang Technological University, Singapore, 639798
E-mail: yi_li@ntu.edu.sg

C. Zhu · M. Gligoric
Department of Electrical and Computer Engineering
University of Texas at Austin, TX, USA, 78712
E-mail: {cgzhu, gligoric}@utexas.edu

J. Rubin
Department of Electrical and Computer Engineering
University of British Columbia, Vancouver, BC, V6T1Z4
E-mail: mjulia@ece.ubc.ca

M. Chechik
Department of Computer Science
University of Toronto, ON, Canada, M5S3G4
E-mail: chechik@cs.toronto.edu

2 Yi Li et al.

Keywords Semantic history slicing · Program analysis · Software configura-
tion management

1 Introduction

Software Configuration Management systems (SCMs) are widely used in soft-
ware development practices. These systems, e.g., Git [15], SVN [48], and Mer-
curial [35], are useful for capturing incremental changes made by developers,
examining or reverting changes, identifying developers responsible for a spe-
cific change, creating development streams, and more. Incremental changes are
manually grouped by developers to form commits (a.k.a. change sets). Com-
mits are stored sequentially and ordered by their time stamps, so that it is
convenient to trace back to any version in the software history.

Yet, the sequential organization of changes is inflexible and lacks support
for many tasks that require high-level, semantic understanding of program
functionality [36,45]. For example, developers often need to locate and trans-
fer functionality from one branch to another: either for porting bug fixes
or for splitting large chunk commits into multiple functionally-independent
pull requests. Developers also face the challenge of identifying failure-inducing
changes in software histories.

1.1 Semantic History Slicing

Semantic history slicing identifies a set of commits in a software history that
relate to each other based on a certain criterion. For example, CSlicer [30,33]
identifies and extracts a set of functionally-related commits that correspond
to a specific high-level functionality; this set of commits forms a history slice.
In CSlicer, the functionality is defined with a test suite, i.e., if all tests in the
test suite pass, then functionality is available and works correctly. If a history
slice contains only commits when the functionality is available and works, then
the history slice is considered valid. Git-bisect [14] and delta debugging [53]
isolate failure-inducing changes in version histories using a divide-and-conquer-
style refinement approach, where a set of commits is partitioned and tested
separately until a minimal subset that exposes the test failures is found.

The biggest challenge for precisely solving the semantic slicing problem lies
in the very large number of possible (invalid) history slices for a given software
history, i.e., we can create one history slice by choosing any subset of commits
from the software history.

Existing solutions approach this problem from two different angles. CSlicer
analyzes the latest program version to collect test coverage information and
then computes an over-approximated set of commits that include changes to
the covered elements. CSlicer trades accuracy for efficiency: it executes the
test suite only once, but it conservatively assumes that all changes traversed
by the test execution can potentially alter the test results. This assumption

Precise Semantic History Slicing Through Dynamic Delta Refinement 3

Partition

Execute Learn

History

Tests

1-minimal
Slice

Sub-history Change
Significance

Dynamic Invariants

Signals✔

�

Fig. 1 Dynamic delta refinement loop.

results in potential inclusion of unnecessary or irrelevant commits into the
history slice.

Divide-and-conquer-style techniques, such as delta debugging [53], guaran-
tee accuracy of the result. Specifically, they guarantee that the resulting slice
is 1-minimal [53], i.e., it fails to satisfy the slicing criteria when any single
commit is removed. Yet, these techniques can be very expensive to run as
they execute the test suite multiple times, depending on the way history is
partitioned and on the order in which partitions are tested.

1.2 Dynamic Delta Refinement

In this paper, we propose a precise semantic history slicing technique, De-
finer, based on iterative refinement and change significance learning. We
discover relevance of changes to the target tests through successive test runs
and utilize this information to guide the history partitioning and speed up the
refinement process. We refer to this technique as dynamic delta refinement.
Our key insight is that by comparing the runtime executions of two program
versions – before and after a change – we can extract information about the
precise impact of the changes at various program points. By combining impact
information with test outcomes (pass or fail), we are able to accurately infer
the significance of changes with respect to the target tests. In particular, if
the tests still pass after removal of a change, then the removed change and its
family of related changes are insignificant to the tested functionalities. We give
more details on how such families of changes can be detected using dynamic
program invariants generated by Daikon [10] in Section 4.

Figure 1 shows an overview of the delta refinement loop. Using the sig-
nificance measurements of changes, dynamic delta refinement is able to effi-
ciently find 1-minimal semantic history slices through well informed partition
schemes. With much higher confidence, changes of less significance are removed
first and, upon success, the analysis scope is reduced and the refinement con-
tinues recursively. The results of test executions, either successes or failures,
are used to update significance ranking of the remaining changes. The ranking
accuracy is improved with each execution, and the refinement loop terminates

4 Yi Li et al.

when the minimality condition is met. Note that the algorithm maintains a
valid semantic slice throughout this process, so it can be interrupted at any
time, which will return a valid best-effort result.

1.3 File-level Commit Splitting

Existing history slicing techniques operate at the commit level, i.e., a commit
is either included in or excluded from the history slice. Using commits as a unit
of granularity has the benefit of preserving the original commit structure and
meta information, such as authors, change dates, and log messages. Yet, when
a single commit includes changes related to different functionalities, commit-
level treatment may result in adding unnecessary changes to the slice.

To increase the precision of history slicing, we introduce a file-level commit
splitting operator, which splits a commit from the original version history into
smaller units, called file-level commits, each consisting of changes to a single
file. We choose to perform the split at the file level because files are natural
units of change supported by the mainstream, language-agnostic SCMs such
as Git (see Sections 5 and 6.3 for more details). By applying the split operator
on the original software history, we create a file-level software history, which is
used as the input to history slicing. File-level software history leads to a higher
accuracy of slicing – the produced slice includes only commits that modify files
relevant to the functionality of interest – without any substantial degradation
in efficiency of the slicing tool.

1.4 Contributions

An earlier version of this work appeared in [32]. This paper expands the pre-
sentation of the technique, cleans up its formal underpinnings and provides
a deeper comparison with related work. We have also significantly expanded
the experimental evaluation, including a larger benchmark suite (20 cases vs.
8 used in [32]) and providing insights on the observed results. In addition, the
idea of file-level splitting is completely new (the technique is presented in Sec-
tion 5, its implementation – in Section 6.3, and evaluation of its effectiveness –
in Section 7.5).

Overall, this paper makes the following contributions:
• We show how dynamic delta refinement can learn significance of changes
with respect to a specific high-level functionality.

• We define a file-level commit splitting operator which splits the original
software history into a set of file-level commits.

• We report on an implementation of a fully-automated precise semantic his-
tory slicing technique that leverages dynamic delta refinement and file-level
commit splitting and operates on Java projects hosted in Git repositories.

• We compare our technique with prior work on history slicing in terms of
precision and efficiency.

Precise Semantic History Slicing Through Dynamic Delta Refinement 5

• We measure the effectiveness of dynamic delta refinement, comparing it to
the basic partition scheme used by delta debugging.

• We measure the effectiveness of using the file-level commit splitting oper-
ator for further improving slicing accuracy.

1.5 Organization

The rest of this paper is structured as follows. Section 2 illustrates how dy-
namic invariants are used for learning change significance and guiding history
partition, and how file-level commit splitting helps improve the slicing accu-
racy. Section 3 provides the necessary formal background for the rest of the
paper. Section 4 formalizes the delta refinement algorithm for finding minimal
semantic slices and proves its correctness. Section 5 describes file-level commit
splitting and introduces a file-level history slicing algorithm. Sections 6 and
7 describe our implementation and evaluation, respectively. We compare our
work with related approaches in Section 8 and conclude the paper in Section 9.

2 Examples

In this section, we use several examples to introduce necessary terminology, il-
lustrate the dynamic delta refinement approach, and show the way we improve
accuracy via file-level commit splitting.

2.1 Changes and Dependencies

We use Figure 2 to illustrate the core of our slicing technique. Figure 2a
shows two versions of a Java program A.java: “base” and “final”. The “final”
version introduces a few modifications to the class B through a series of atomic
changes. Atomic changes are defined over the abstract syntax trees (ASTs) of
the program as insertions (Ins), deletions (Del), or updates (Upd) of AST
nodes (e.g., fields, methods, etc.). Specifically, there are six atomic changes
between the “base” and the “final” versions (listed in no particular order), 1 :
an update to the field B.x; 2 : an insertion of a new field y into the class B; 3 :
an update to the field B.s; 4 : an update to the method B.g(), which adds an
additional statement “z = lib(*) ? z : m()”, conditionally assigning the
returned value of m() to the local variable z; 5 : an update to method B.h(),
which replaces “==” by “!=”; and 6 : an insertion of a new method m() into
the class B.

The lib(*) method invoked by the g() method represents an external
library invocation whose returned value is only known at runtime. We assume
that the library method behaves deterministically but that its return value
cannot be determined without executing it. The desired functionality of the
program is captured by a unit test for A.java which asserts that the returned
value of the method A.f() should be equal to 3 (see Figure 2b). We denote

6 Yi Li et al.

Final:Base:

class A {

 int f() {return (new B).g();}

}

class B {

 int x = 1;

 String s = null;

 int g() {

 int z = h(s, x);

 return z;

 }

 int h(String v, int t) {

 return v == null ? 0 : t;

 }

}

1: UPD(B.x)

class A {

 int f() {return (new B).g();}

}

class B {

 int x = 2;

 int y = 2;

 String s = "abc";

 int g() {

 int z = h(s, x);

 z = lib(*) ? z : m();

 return z;

 }

 int h(String v, int t) {

 return v != null ? 0 : t;

 }

 int m() {return ++y;}

}

3: UPD(B.s)

2: INS(B.y)

4: UPD(B.g)

5: UPD(B.h)

6: INS(B.m)

(a) Atomic changes.

Test:

class ATest {
 @Test
 void test() {
 A a = new A();
 assertEquals(3, a.f());
 }
}

(b) Target test.

62

51 3

4 ✔

(c) Change dependencies.

class B {
 int x = 1;
 int y = 2;
 String s = null;

 int g() {
 int z = h(s, x);
 z = lib(*) ? z : m();
 return z;
 }

 int h(String v, int t) {
 return v == null ? 0 : t;
 }

 int m () {return ++y;}
}

(d) Class B after slicing.

Fig. 2 Atomic changes between the “base” and “final” versions of A.java.

this test by T . Note that the test assertion holds in the final version of the
program but fails in the base version.

A semantic history slice is a subset of the changes which produces a well-
formed and fully functional program that can still pass the test. Since we
only care about a subset of the program behaviors captured by the test, some
atomic changes are unnecessary. In our example, the minimal set of changes
which qualifies as a valid semantic slice is { 2 , 4 , 6 }. The test T fails when
any of these changes is missing and passes whenever all of them are present.
The class B after applying the history slice with only three changes is shown in
Figure 2d. Other changes are either never executed or do not alter the asserted
values. Interestingly, the test passing property is not monotone, i.e., adding
modifications may change the tests from passing to failing.

Precise Semantic History Slicing Through Dynamic Delta Refinement 7

Atomic changes are not completely independent from each other. In order
to construct a well-formed program, some changes have to be applied as pre-
requisites for others [30, 43]. For example, in Figure 2a, Ins(B.m) depends on
Ins(B.y) since the method B.m() accesses the field B.y and requires the dec-
laration of the field in order to compile; and Upd(B.g) depends on Ins(B.m)
since the new version of the method B.g() invokes B.m() (see Figure 2c). We
call dependencies contributing to the well-formedness of programs compilation
dependencies.

Since we are only interested in producing well-formed programs, the par-
tition of changes has to obey the dependency relations. That is, reverting a
subset of atomic changes results in a well-formed program only if the remaining
changes have all their dependencies satisfied. The compilation dependencies
can be computed statically, as we describe in Section 6.

2.2 Inferring Change Significance

We now show how information observed from successive test runs can be used
to infer significance of atomic changes with respect to a target test suite.

In the example in Figure 2, the target test T passes in the final version.
We can use this information to establish facts about the program variables at
various program points by generating dynamic invariants [10] (denoted as I):
likely invariants that may not generalize but that hold for the executed test.
For simplicity, we refer to them as invariants from now on. For instance, B::x
== 2 is a field invariant which indicates that the value of the field B.x equals
to 2 during the execution of tests on the final version of the program. Another
example is A.f()::return == 3 which is a method post-condition asserting
that the return value of A.f() is 3.

We denote by H− the set of reverted changes, I the set of invariants for
the final version of the program, and I ′ the invariants after some changes are
reverted. The row H− of Figure 3 shows four possible cases of reverted changes
for our example. The differences in the generated invariants before and after
reverting changes are shown in row “I \ I ′” of the table. The rows “T (H+)”
and “Signals” show the test outcomes and significance signals (which indicate
the likelihood that a change impacts the test execution) learned for each case,
respectively. We discuss each case in turn.

2.2.1 Case 1: Test Passing with Significance Update to Reverted Changes

Suppose an atomic change set H− = { 1 } is reverted, and the new program is
now equivalent to applying H+ = { 2 , 3 , 4 , 5 , 6 } to the base version. The
declarations and initializations of x are reverted to the base version, i.e., x
initialized to 1 instead of 2.

Static analysis is unable to determine whether this change would affect the
test outcome, because the return value of lib(*) is unknown. However, we
are able to precisely detect the impact of reverting 1 by comparing the new

8 Yi Li et al.

Case 1 Case 2 Case 3 Case 4
H− 1 1 3 4 3 4

I \ I ′ B::x == 2
B::x == 2

B::s != null
B.h(I,S)::return ==

0

B::y one of {2, 3}
B.g()::return == 3
B.m()::return == 3
A.f()::return == 3

B::s != null
B.h(I,S)::return ==

0
B::y one of {2, 3}
B.g()::return == 3
B.m()::return == 3
A.f()::return == 3

T (H+) 4 4 8 8

Signals 1 ↓ 1 ↓ 3 ↓ 5 ↓ 2 ↑ 4 ↑ 6 ↑

Fig. 3 Change significance learning case by case.

set of invariants I ′ generated during the actual execution of the new program
to the original invariants I. In this case, we observe that only one invariant
disappears after reverting 1 , namely, B::x == 2 (see row “I \I ′” in Figure 3).
This indicates that the impact of reverting 1 is local to the change itself and
does not flow into other program points.

We assume that lib(*) returns false at runtime and thus the change on
B.x does not propagate through – the returned value from h(s,x) is overwrit-
ten by m() which is independent of the change. The test outcome is unchanged
and therefore, the value of B.x is considered to be insignificant. The signif-
icance scores of all changes are initialized to zero and in light of the test
outcome, we decrease the score of 1 by a predetermined constant (denoted
by ↓ in Figure 3, row “Signals”).

2.2.2 Case 2: Test Passing with Significance Update to Additional Changes

Now suppose that two atomic changes, H− = { 1 , 3 }, are reverted together.
The initial values of both x and s are affected: x taking the value 1 instead of 2
and s being initialized to null instead of "abc". This time, we observe three
invariants disappearing after changes are reverted and the test is executed:
B::x == 2, B::s != null, and B.h(I,S)::return == 0, which involve an
additional method h(I,S) whose return value is affected by the revert.

Since the test passes again, none of the three invariants in I \ I ′ are con-
sequential for the target functionality. This includes B.h(I,S)::return ==
0, which implies that the return value of the function B.h(I,S) is likely not
affecting the test result. Apart from 1 and 3 which are obviously insignifi-
cant (thus, we lower their significance scores), we could also infer that 5 is
insignificant. This is achieved by discovering, through static change impact
analysis, the fact that 5 could only possibly affect the return value of the
function B.h(I,S) which is already shown insignificant to the test results. At
this point, we have determined that the change set { 1 , 3 , 5 } is insignificant
for the target test. This information can be used to speed up the dynamic dis-
covery of semantic history slices by prioritizing changes to revert in the next
iteration (5 in our example).

Precise Semantic History Slicing Through Dynamic Delta Refinement 9

2.2.3 Case 3: Test Failing by Determined Causes

When 4 is reverted, the conditional assignment statement z = lib(*) ? z
: m() in g() is removed. The test fails because now the value from h(s,x)
impacts the return value of m(), which is different from the old value from
m(). Since an atomic change is already the smallest unit in our analysis, we
can pinpoint 4 as the definite cause of the test failure.

All invariants violated by the revert are directly impacted by the change
and most likely cause the failure. They are as follows: B::y one of 2, 3
which asserts that the field y used to take both values 2 and 3 (now y can only
be 2), and B.m()::return == 3 which asserts that the return of m() used to
be 3 (now m() does not return at all). Additionally, any change which directly
affects these invariants is likely to cause test failures as well. Therefore, we
consider both 2 and 6 , which are associated with B.y and B.m(), respectively,
as significant for the test (denoted by ↑ in Figure 3).

2.2.4 Case 4: Test Failing by Undetermined Causes

When H− = { 3 , 4 } is reverted, the test fails but we cannot infer useful
significance information. In this case, the test fails after reverting multiple
atomic changes, and thus the causes for the failure are undetermined. The
actual cause can be any one in the reverted changes or their combination. We
equally increase their significance scores assuming each atomic change has the
same probability being the actual cause of failure.

2.3 History Partition by Significance Ranking

The basic idea of history partition is inspired by delta debugging [53]. In
the first iteration, the history is split into two halves which are then tested
individually. If one of the partitions passes the test, then the process continues
recursively on the successful partition. Otherwise, fine-grained partitions are
produced by reverting fewer changes at once. For example, we can split the
history into four similar-size change sets and revert each of them, one at a
time. If none of the attempts are successful, then finer-grained partitions are
produced until we reach a point where only a single atomic change is reverted
at a time. Then we are able to classify the change precisely according to the
test results. The process terminates when a 1-minimal history slice if found.

In this paper, we make two enhancements to the basic partition scheme:
(1) before attempting basic partitions, we prioritize removal of low signifi-
cance changes whenever possible, and (2) by precisely analyzing dependencies
between changes, we detect compilation errors without the need to compile
the program.

We use an example with a slightly more complex change history to illustrate
our enhanced history partition scheme. In this example, there are eight atomic
changes { 1 , . . . , 8 }, adding two non-essential changes 7 and 8 on top of the

10 Yi Li et al.

n Partition (H+, H−) T Signals

1 1 2 3 4 5 6 7 8 -
1 2 3 4 5 6 7 8 -

2

1 2 3 4 5 6 7 8 -
1 2 3 4 5 6 7 8 8

1 2 3 4 5 6 7 8 -
1 2 3 4 5 6 7 8 4 3 ↓ 5 ↓ 7 ↓ 8 ↓

3 1 2 3 4 5 6 ∗ ∗ 4 3 ↓ 5 ↓

4 1 2 ∗ 4 ∗ 6 ∗ ∗ -
1 2 ∗ 4 ∗ 6 ∗ ∗ 8

5 1 2 ∗ 4 ∗ 6 ∗ ∗ 4 1 ↓

6
∗ 2 ∗ 4 ∗ 6 ∗ ∗ -
∗ 2 ∗ 4 ∗ 6 ∗ ∗ 8 2 ↑ 4 ↑ 6 ↑
∗ 2 ∗ 4 ∗ 6 ∗ ∗ -

Fig. 4 Enhanced history partition scheme.

history in Figure 2. The set of essential changes is still { 2 , 4 , 6 }. Details of
the additional changes can be found at https://bitbucket.org/liyistc/
gitslice/wiki/partition-example.

The actual steps taken when analyzing this example are shown in Figure 4.
Column “Partition” shows how some changes are reverted (in dashed boxes)
and the others are kept (in solid boxes) in each round of partition. Columns
“T” and “Signals” show the test results and corresponding significance sig-
nals learned (using methods illustrated in Section 2.2), respectively. During
the first step (n = 1), the history is partitioned into two equal halves, i.e.,
{ 1 , 2 , 3 , 4 } and { 5 , 6 , 7 , 8 }. We keep one set and revert the other but
only to find that the dependencies 6 → 2 and 4 → 6 are violated. In
Figure 4, change dependency violations are represented with a “-” in column
“T”. No test run is needed so far.

During the second step (n = 2), we increase the partition granularity and
revert two changes at a time. Reverting { 3 , 4 } produces a well-formed pro-
gram, but the test fails (8) since 4 is an essential change. No significance signal
is learned because the cause of the failure is not determined: the cause may
be the absence of either 3 or 4 , or both. The test passes (4) when { 7 , 8 }
is reverted. The additional signals learned for 3 and 5 (see Figure 4) allow
us to lower their significance as well.

During the third step (n = 3), we revert { 3 , 5 } as suggested by their
significance measurements and successfully reduce the scope down to only
four atomic changes.

Similarly to the first step, neither half of the partition produced during
Step 4 (n = 4) is a valid semantic slice. Therefore, we increase the partition
granularity again in Step 5 (n = 5), reverting a single change at a time. This

Precise Semantic History Slicing Through Dynamic Delta Refinement 11

time, 1 can be reverted which leaves a valid 1-minimal semantic history slice
{ 2 , 4 , 6 }. During the final step (n = 6), the delta refinement loop terminates
because none of the changes can be successfully reverted.

For this example, six test runs are needed for finding the minimal solution
using the enhanced partition scheme. In contrast, the basic partition scheme
without significance learning or change dependency analysis [53], requires thir-
teen test runs and twelve additional (failed) compilations.

Although the examples in Figure 2 and Figure 4 illustrate the history
slicing technique that operates directly on atomic changes, the same technique
can also be applied on commits. We implemented and evaluated a tool that
supports the latter (more details in Section 6.2).

2.4 File-level Commit Splitting to Increase Precision

File A

File B

File C

!c

!b

!d
!f

!g

∆1 ∆2 ∆3 ∆4

!a
!e

1
2
3

1

3

1
3

history

compilation

commit

Legend

Fig. 5 An illustration of sources of imprecision in commit-level history slicing.

Figure 5 shows a diagram illustrating sources of imprecision in commit-
level history slicing. The history segment H contains four commits, i.e., H =
〈∆1, ∆2, ∆3, ∆4〉. Each commit can be further broken into a set of hunks po-
tentially spreading over multiple files. A hunk [11, 30] is a group of adjacent
or nearby line insertions or deletions. For instance, ∆1 has two hunks, δa and
δb, over files A and B, respectively.

The only functionality-related changes in this example are δb and δe, shaded
in gray. However, when performing history slicing on the commit level, we
inevitably have to include unnecessary changes due to commit dependencies
(two hunks within the same commit are commit-dependent on each other).
For example, δa has to be included in the history slice because of δb, and δf
is included because of δe (commit bundles are depicted as dashed boxes in
Figure 5).

Unnecessary changes introduced by commit dependencies can induce fur-
ther imprecision. For example, there is a compilation dependency between δf

12 Yi Li et al.

and an earlier hunk δd (shown as a dashed arrow in Figure 5). The inclusion of
δf , therefore, forces us to include δd as well. Thus, with commit-level history
slicing, the best achievable result is a sub-history containing three commits:
〈∆1, ∆2, ∆3〉.

In contrast, if instead of considering each commit as a whole, we treat
each file-level hunk individually, then we are no longer constrained by commit
dependencies. In fact, finer-grained history slicing at the file-level hunks allows
us to reduce the number of unnecessary changes, resulting in only two hunks:
δb and δe.

3 Preliminaries

In this section, we provide background and definitions for the rest of the paper.

3.1 Programs

To keep the presentation of algorithms concise, we step back from the com-
plexities of the full Java language and concentrate on its core object-oriented
features. We adopt a simple functional subset of Java from Featherweight
Java [21], denoting it by P .

3.1.1 Language Syntax

The syntax rules of the language P are given in Figure 6. Many advanced Java
features, e.g., interfaces, abstract classes and reflection, are stripped from P ,
while the typing rules which are crucial for the compilation correctness are
retained [26].

P ::= L

L ::= class C extends C{C f; K M}

K ::= C(C f){super(f); this.f = f;}

M ::= C m(C x){return e;}

e ::= x | e.f | e.m(e) | new C(e) | (C)e

Fig. 6 Syntax rules of the P language [21].

We say that p is a syntactically valid program of language P , denoted by
p ∈ P , if p follows the syntax rules. A program p ∈ P consists of a list of
class declarations (L), where the overhead bar L stands for a (possibly empty)
sequence L1, . . . , Ln. We use 〈〉 to denote an empty sequence and comma for
sequence concatenation. We use |L| to denote the length of the sequence. Every

Precise Semantic History Slicing Through Dynamic Delta Refinement 13

foo

BA

f() x:I s:S g() h(I,S)

Fig. 7 AST of A.java at the base version.

class declaration has members including fields (i.e., C f), methods (i.e., M)
and a single constructor (i.e., K). A method body consists of a single return
statement; the returned expression can be a variable, a field access, a method
invocation, an instance creation or a type cast.

3.1.2 Abstract Syntax Tree

A valid program p ∈ P can be parsed as an abstract syntax tree (AST), denoted
by Ast(p). We adopt a simplified AST model where the smallest entity nodes
are fields and methods. Formally, r = Ast(p) is a rooted tree with a set
of nodes V (r). The root of r is denoted by Root(r) which represents the
compilation unit, i.e., the program p. Each entity node x has an identifier and
a value, denoted by id(x) and ν(x), respectively. In a valid AST, the identifier
for each node is unique (e.g., fully qualified names in Java), and the values
are canonical textual representations of the corresponding entities. We denote
the parent of a node x by Parent(x). Figure 7 shows an AST for the base
version of the program A.java from Figure 2a.

3.2 Program Semantics

Behavioral semantics of programs can be effectively captured by test execu-
tions.

3.2.1 Tests and Test Suites

We assume that semantic functionalities can be captured by tests and the
execution trace of a test is deterministic [44]. For simplicity, a test can be
abstracted into two parts – the setup code which initializes the testing envi-
ronment and executes the target functionalities using specific inputs, as well
as the oracle checks which verify that the produced results match with the
expected ones. A test execution succeeds if all checks pass.

Definition 1 (Test). A test t is a predicate t : P 7→ B such that for a given
program p, t(p) is true if the test succeeds, and false otherwise.

14 Yi Li et al.

Definition 2 (Test Suite). A test suite is a collection of tests that can exercise
and demonstrate the functionality of interest. Let test suite T be a set of test
cases {ti}. We write p |= T if and only if program p passes all tests in T , i.e.,
∀t ∈ T · t(p).

3.2.2 Dynamic Invariants

Dynamic invariants [42] are likely invariants that are discovered from program
executions. They assert predicates that hold during the execution at specific
program points including procedure entries and exits, and aggregate program
points of multiple class instances. We are particularly interested in three types
of predicates:

• method preconditions asserting values of input parameters,
• method postconditions asserting returned values, and
• all values taken by fields throughout the execution.
A wide range of dynamic invariants is detected and reported by Daikon [10],

but only a subset of the invariants are used in this paper. In particular, we
consider a subset of the invariants which involve a single program variable, in-
cluding comparisons with constants (e.g., x == K, x == K1 (mod K2), K1 <=
x <= K2, x != null), single-valuedness (e.g., x has only one value), and
value range (e.g., x one of {a,b}).

Given two invariant sets I and I ′, the invariant delta, I \ I ′, consists of all
invariants in I that are not implied by any invariant in I ′. Formally, I \ I ′ =
{i ∈ I|¬(∃i′ ∈ I ′ · i′ ⇒ i)}.

3.3 Changes and Change Histories

Based on the program representations used, either structured ASTs or un-
structured plain texts, we define the AST- and Line-based views of changes
and change histories.

3.3.1 AST-Based View

Let Γ be the set of all ASTs. Below we define changes, change sets and change
histories as AST transformation operations.

Definition 3 (Atomic Change). An atomic change operation δ : Γ 7→ Γ is a
partial function which transforms r ∈ Γ producing a new AST r′ such that
r′ = δ(r). An atomic change operation can be either an insert, delete or update
(see Figure 8). An insertion Ins((x, n, v), y) inserts a node x with an identifier
n and a value v as a child of a node y. A deletion Del(x) removes a node x
from the AST. An update Upd(x, v) replaces the value of a node x with v.

A change operation is applicable on an AST if its preconditions are met. For
example, an insertion Ins((x, n, v), y) is applicable on r if and only if y ∈ V (r).
Insertion of an existing node is treated the same as an update.

Precise Semantic History Slicing Through Dynamic Delta Refinement 15

y ∈ V (r)
Ins((x, n, v), y)

V (r′)← V (r) ∪ {x} Parent(x)← y

id(x)← n ν(x)← v

x ∈ V (r)
Del(x)

V (r′)← V (r) \ {x}
x ∈ V (r)

Upd(x, v)
ν(x)← v

Fig. 8 Types of atomic changes [12]. Refer to Section 3.1.2 for AST-related symbols.

Definition 4 (Change Set). Let r and r′ be two ASTs. A change set ∆ : Γ 7→
Γ is a sequence of atomic changes 〈δ1, . . . , δn〉 such that ∆(r) = (δn ◦ · · · ◦
δ1)(r) = r′, where ◦ is a standard function composition.

A.java

B A

y:int g()f(int)

A.java

B A

g()f(int)

INS(y:int, B)
UPD(A.g)

C

Fig. 9 Visualizing a change set C as a sequence of atomic changes applied on ASTs.

A change set ∆ = ∆−1 ◦ δ1 is applicable to r if δ1 is applicable to r and
∆−1 is applicable to δ1(r). Change sets between two ASTs can be computed
by tree differencing algorithms [5]. For instance, in Figure 9, the change set C
consists of an insertion of a new node y under B, followed by an update of the
node g.

Definition 5 (Change History). A history of changes is a sequence of change
sets, i.e., H = 〈∆1, . . . ,∆k〉.

Definition 6 (Sub-history). A sub-history is a sub-sequence of a history, i.e.,
a sequence derived by removing change sets from H without altering the or-
dering.

We writeH ′ ⊆ H indicatingH ′ is a sub-history ofH and refer to 〈∆i, . . . ,∆j〉
as Hi..j . The applicability of a history is defined similarly to that of change
sets. We use SH(H) to denote the set of all sub-histories of H.

3.3.2 Line-Based View

SCM tools represent changes using the line-based view. The smallest unit for
line-based changes is a hunk.

Definition 7 (Hunk). Let P be the set of all program texts. A hunk δ̂ : P 7→ P
is a partial function which transforms p ∈ P producing a new program text p′
such that p′ = δ̂(p).

16 Yi Li et al.

For example, Figure 10 shows a hunk of one line deletion and two line
insertions, marked by “-” and “+”, respectively. The context (the lines not
marked by “-” or “+” in Figure 10) that comes with a hunk is useful for
ensuring that the hunk can be applied at the correct location even when the
line numbers change for the target program texts.

// hunk deps

int g()

- {return 0;}

+ {return (new B()).y;}

}

class B {

+ int y = 0;

static int f(int x)

{return x - 1;}

Fig. 10 Line-based view of changes represented as a hunk.

A conflict happens if the context cannot be matched when applying a hunk.
In the current example, the maximum length of the contexts is four lines: up
to two lines before and after each change.

A commit is a collection of hunks, in no particular order, which takes
a program text p and transforms it to produce a new program text ∆̂(p).
Applying a commit is equivalent to composing its corresponding hunks, each
representing a set or line changes with an approximate locality. More formally,
a commit ∆̂ is defined as follows:

Definition 8 (Commit). Let p and p′ be two program texts. A commit ∆̂ :
P 7→ P is a set of hunks {δ̂0, . . . , δ̂n} such that ∆̂(p) = (δ̂0 ◦ · · · ◦ δ̂n)(p) = p′,
where ◦ is standard function composition.

Definition 9 (Commit History). A commit history is a sequence of commits,
i.e., H = 〈∆̂1, . . . , ∆̂k〉.

For simplicity, in the rest of this paper, we use the same notations for both
AST-based and text-based changes where the context is clear.

4 Definer: Dynamic Delta Refinement Algorithm

In this section, we give a detailed presentation of Definer– the dynamic delta
refinement algorithm for precise semantic history slicing.

4.1 Precise Semantics-preserving Slice

Consider a program p0 ∈ P and its k subsequent versions p1, . . . , pk such that
each pi is well-formed.

Precise Semantic History Slicing Through Dynamic Delta Refinement 17

H

T

Execute

H
+ I’

H
* I

H
- I \ I’

Learn

(H
+, H

-)

H
*
← H

+

I ← I’

I \ I’ ↓

: I \ I’ ↑

H*
!1 !2 !n-1 !n!i !i+1

… …

H
+ H

-Partition

!1 !2 !n-1 !n

…

I \ I’

signals

(+/-)

S

✔:

Fig. 11 Dynamic delta refinement overview.

Definition 10 (Semantics-preserving slice [33]). Let H be the original change
history from p0 to pk, i.e., H1..i(p0) = pi for all integers 0 ≤ i ≤ k. Let T be a
set of tests passed by pk, i.e., pk |= T . A semantics-preserving slice of history
H with respect to T , denoted by H∗ ⊆T H, is a sub-history H ′ ⊆ H such that
H ′(p0) |= T .

Of course, H is a semantics-preserving slice of itself. Shorter slicing results
are preferred over longer ones, and the optimal slice is the shortest sub-history
that satisfies the above properties. However, the optimality of the sliced history
cannot always be guaranteed by polynomial-time algorithms [33]: finding it
requires 2|H| − 1 tests in general.

Therefore, we aim at computing an approximation of the optimal solution
which still has good practical precision guarantees. We say that a sub-history
H∗ of H is a 1-minimal semantic slice if H∗ is semantics-preserving, and
reverting any single change in H∗ would break the semantic properties.

Definition 11 (1-Minimal Semantic Slice). Let H∗ be semantics-preserving,
i.e., H∗ ⊆T H. H∗ is a 1-minimal semantic slice of H if ∀δ ∈ H∗ ·(H∗ \{δ}) 6|=
T .

4.2 Algorithm Description

Given a history H and a test suite T , to compute a 1-minimal semantic slice
H∗, our algorithm iteratively goes through three phases: partition, execution
and learning, as shown in Figure 11. To implement each phase, the delta refine-
ment algorithm maintains three data structures: (1) H∗, the current minimal
semantics-preserving history slice, which is always an over-approximation of
the 1-minimal solution and can be returned as a sub-optimal solution if the

18 Yi Li et al.

Initialization:
Init(H,T)

H∗ ← H ∀δ ∈ H · S(δ)← 0 I ← Inv(H,T)

Partition:

|H∗| > 1
Par-Rand(H∗)

H+ 6= ∅ H− 6= ∅ H+ ∪H− = H∗

H+ ∩H− = ∅

∃δi, δj ∈ H∗ · S(δi) > S(δj) Par-Sig(H∗,S)
H+ ←

⋃
S(δ)≥S(δi) δ H− ← H∗ \H+

Execution and Learning:

H+ |= T I ′ = Inv(H+, T)
Pass((H+, H−), T)

(I \ I ′) ↓ H∗ ← H+ I ← I ′

H+ 6|= T I ′ = Inv(H+, T) |H−| = 1
Fail-1((H+, H−), T)

(I \ I ′) ↑ H∗ ← H∗ I ← I

H+ 6|= T |H−| > 1
Fail-2((H+, H−), T)

H∗ ← H∗ I ← I

Fig. 12 The dynamic delta refinement algorithm.

refinement process terminates prematurely; (2) I, the set of dynamic invari-
ants generated from the last successful test execution and updated after every
successful run; (3) S : ∆ → R, the change significance ranking – a function
from atomic changes to real numbers, updated according to the outcomes from
the execution phase. Multiple instantiations of the algorithm exist, depending
on which strategies are used at the partition and learning phases. To keep the
presentation general, the algorithm is shown in Figure 12 as a set of generic
rules specifying the minimal requirements for each phase. To apply each rule,
the conditions above the horizontal bar need to be satisfied. The expressions
below the bar are the corresponding consequences after the rules take effects.

Initialization. The Init rule executes tests on the final version H(p0) and
collects dynamic invariants I = Inv(H,T). It also initializes H∗ to be the
input history H, and initializes significance scores for all atomic changes in H
to zero.

Partition. This phase receives a history H and splits it into two non-empty
sub-histories, H+ and H−. The split can be either random or guided by a
significance ranking of atomic changes. The two rules for this phase, Par-
Rand and Par-Sig, govern the behaviors of two different partition schemes.

The random partition splits the current minimal semantic slice H∗ into
two non-empty sub-histories, H+ and H−, randomly, when the length of H∗
is greater than one. Then H+ is kept while H− is reverted. The relative sizes
of H+ and H− can be adjusted according to heuristics during the execution.

Precise Semantic History Slicing Through Dynamic Delta Refinement 19

For example, a smaller H+ can reduce a larger chunk of non-essential changes
if the tests pass, but it usually has a lower chance of success assuming that
essential changes are uniformly distributed. One effective heuristics we use is
to gradually increase the size of H+ when a test fails and decrease it otherwise.

The significance-guided partition scheme splits the history according to
significance ranking of changes, such that all changes in H+ have higher or
equal significance score than those in H−. With accurate significance ranking,
reverting non-essential changes can be very effective. In practice, we apply
Par-Sig first whenever possible, as it has a higher chance to produce more
accurate splits.

Execution. The execution phase receives a valid partition (H+, H−) and exe-
cutes tests T on H+(p0) (written as H+ afterwards). The dynamic invariants
I ′ generated from the execution are compared with I which is generated from
the last successful test run. An invariant delta I \ I ′ and a test signal (4 / 8)
are passed on to the learning phase.

Learning. The learning phase infers significance of individual atomic changes
according to the invariant deltas and the test signals. There are three rules for
this phase: Pass, Fail-1 and Fail-2, controlling how the significance ranking
is updated under different circumstances.

When H+ passes T , the Pass rule applies. We use the invariant deltas to
match each affected variable and program point involved with atomic changes
that might be the cause. This matching step is performed using a simple local
static change impact analysis [1]. For each affected method postcondition, we
collect all statements within the method body that have potential impacts on
the method return (e.g., changed value flows into the return). For instance,
using a simple backward data-flow analysis, the invariant “B.g()::return ==
3” in Figure 3 is matched to 4 which directly updates the returned variable z.
Similarly, for each method precondition, we consider every call site and collect
statements preceding the method invocation which potentially impacts the
corresponding input parameters. Finally, for invariants on fields, we analyze
all field access sites and perform a similar backward analysis. The significance
of each matched change is decreased. We update H∗ to H+ and recursively
apply partition rules on H∗.

When H+ fails T , either Fail-1 or Fail-2 applies, depending on the size
of H−. If |H−| > 1, the cause of test failure is not determined, as discussed
before. We do not infer change significance in this case (Fail-2). Otherwise,
we perform a similar analysis as in Pass and increase the significance scores
of the related changes (Fail-1).

Termination Condition. The algorithm should never attempt the same par-
tition (H+) twice and it terminates whenever H∗ becomes empty or the 1-
minimal condition (see Definition 11) is met – ∀δ ∈ H∗ · (H∗ \ {δ}) 6|= T .

20 Yi Li et al.

4.3 Soundness and Completeness

The following theorem states that the algorithm is sound.

Theorem 1 (Soundness). Given a history H and a test suite T , if the delta
refinement algorithm terminates, then H∗ is a 1-minimal semantics-preserving
slice of H with respect to T .

The soundness of the algorithm is straightforward. Since H∗ is only updated
when T is passed, H∗ is always a valid semantics-preserving slice. The termi-
nation condition guarantees that it is also 1-minimal.

As presented, the generic partition rules are non-deterministic. To ensure
termination, we impose a notion of fairness on partition schemes. A fair par-
tition scheme guarantees that a singleton partition for every atomic change
in H∗ is eventually reverted after very update of H∗. The following theorem
states completeness of the algorithm.

Theorem 2 (Completeness). Given a history H and a test suite T , the algo-
rithm using fair partition schemes always terminates with finitely many rule
applications.

We give a proof sketch of the theorem. Suppose the algorithm does not termi-
nate. SinceH∗ has finite number of changes initially and its length is monoton-
ically decreasing, |H∗| has to eventually stay constant. Because of the fairness
condition, every atomic change in H∗ is eventually reverted and tested. If none
of the tests pass, then the 1-minimal condition is met. If one of the tests passes,
then |H∗| should decrease. Both cases lead to contradictions. Therefore, the
algorithm always terminates.

5 History Slicing with File-Level Splitting

The history slicing techniques presented so far operate at the commit level.
Using commits as the smallest units for doing history slicing has the benefit of
preserving the original commit structure and traceability from the high level
semantic property to its corresponding commit-level meta information such
as authors, change dates, and log messages. This information can be useful in
supporting other downstream maintenance tasks.

In practice, commits usually contain changes to several files, classes and
methods, organized as hunks. Different hunks in the same commit are not nec-
essarily logically related or relevant to the same functionality. Thus, consider-
ing a commit as an atomic unit does not allow us to remove many unnecessary
changes for the target features.

As shown earlier in Section 2.4, granularity at which the history slicing
technique is applied has a significant impact on the final results. In the rest of
this section, we describe an optional enhancement to the history slicing tech-
nique presented in Section 4 with file-level splitting of commits. In essence,

Precise Semantic History Slicing Through Dynamic Delta Refinement 21

the enhancement is achieved by introducing a “split” operator which breaks a
commit into a set of smaller commits, called file-level commits, each including
changes to a single file. By splitting large commits carrying changes possi-
bly unrelated to each other, we can effectively reduce hunk dependencies and
achieve a much better precision in history slicing. The commit splitting is or-
thogonal to history slicing – existing history slicing techniques can be applied
on file-level commits directly without any modification.

We now formalize the file-level split operator and use an example to demon-
strate its effect on Definer. A split operator transforms a commit into a se-
quence of (possibly smaller) commits which have equivalent overall effect on
programs. More formally,

Definition 12 (Split Operator). Let∆ = {δ0, . . . , δn} be a commit containing
a set of hunks. SP is a commit split operator if SP (∆) = {∆i, . . . ,∆j} is a
partition of ∆, where ∆i, . . . ,∆j are the new split commits.

Trivially, we also have for any program p, (∆i ◦ · · · ◦∆j)(p) = ∆(p). The
result of applying a split operator on a history is simply to apply it to each of
the commits within the history: SP (H) = 〈SP (∆1), . . . , SP (∆k)〉.

There is more than one way to implement a split operator. For instance,
this definition does not impose any constraints on the size of the split. In
theory, a history can be split into units as small as atomic changes. However,
this is often too difficult to implement on top of language-agnostic text-based
version control systems such as Git. The biggest challenge is that there may
not be a one-to-one mapping between atomic changes (which is defined over
ASTs) and hunks (which is the smallest unit in text-based version control
tools). For example, a hunk can contain several atomic changes, and there
is no easy way to split a hunk into smaller units without proper language-
specific support. Notably, at the file-level, a set of atomic changes within the
same file can be mapped to a set of hunks. Therefore, we argue that file-level
commits are natural units of change which align well with language-agnostic
version control systems and allow much easier integration with existing version
control tools such as Git.

For the above-mentioned reasons, we propose a file-level split operator –
SPfile, which partitions a commit according to the files modified in the com-
mit. In other words, SPfile(∆) is the set of equivalence classes induced by the
equivalence relation: δi ∼ δj : δi and δj changes the same file.

Figure 13 demonstrates Definer with file-level split on the Apache CSV
project, which is a popular open-source project for processing CSV files. The
feature identified by “CSV-159”, first requested on October 14th, 2015, enables
case insensitive matching of header names for CSV files. Figure 13 shows a
fragment of the change histories for the CSV project.

If we run Definer on Horig to perform history slicing for this feature, the
resulting slice consists of three commits, R1, R2 and R3, which are highlighted
in Figure 13. In the last commit (R3) of the slice, a developer made changes
in four different files: changes.xml, CSVFormat.java, CSVParser.java, and

22 Yi Li et al.

· · · · · ·

<body>
- <release version="1.2"...
+ <release version="1.3"...
+ <action issue="CSV-???"...
+ </release>
+ <release version="1.2"...

<action issue="CSV-145"...

<body>
<release version="1.3"...

- <action issue="CSV-???"...
+ <action issue="CSV-153"...

</release>
<release version="1.2"...

<action issue="CSV-145"...

<body>
<release version="1.3"...

<action issue="CSV-153"...
+ <action issue="CSV-159"...

</release>
<release version="1.2"...

<action issue="CSV-145"...

R1 R2 R3

e7ccb14d changes.xml 3b10c8f8 changes.xml d54b339c changes.xml

Horig

· · · · · ·
R1a R2a R2b R2c R3a R3b R3c R3d

chang
es.xm

l
chang

es.xm
l

CSVPr
inter

.java

CSVPr
inter

Test.
java

chang
es.xm

l

CSVFo
rmat.

java

CSVPa
rser.

java

CSVPa
rserT

est.j
ava

Hsplit

Fig. 13 An example illustrates how splitting technique helps definer do more precise slicing.

CSVParserTest.java. One of these changes, to changes.xml, has a hunk de-
pendency on a change introduced in the commit R2, which itself has a hunk
dependency on a change made in R1. The details of the changes to the file
changes.xml are shown in boxes (Figure 13).

In contrast, if we run Definer on the same feature of the split history
Hsplit, the resulting slice only consists of two (smaller) commits. First, the
file-level split operator produces a finer-grained software history, such that
each commit contains changes only to a single file. Figure 13 illustrates this
fine-grained history Hsplit with the smaller nodes representing the file-level
commits. Second, we run Definer on Hsplit, which returns two commits,
namely, R3b and R3c. These commits modify two files, (CSVFormat.java and
CSVParser.java), which are required for the tests to pass. Interestingly, both
R3b and R3c come from a single commit (R3) in the original software history.
Thus, the final history slice contains far fewer changes – one commit (R3)
instead of the three that would have been obtained by Definer without the
file-level split. This also implies that only changes made in the commit R3 are
relevant to the feature CSV-159.

6 Implementation and Optimizations

In this section, we describe our implementation of a semantic slicing tool based
on the dynamic delta refinement algorithm. Our tool, called Definer, targets
Java projects hosted in Git repositories. We describe the details of the imple-
mentation and several optimizations that make our tool more practical.

Precise Semantic History Slicing Through Dynamic Delta Refinement 23

p0 :

p1 :

p2 :

p3 :

A.f() A.g() B.h() B.g()

4: DEL

3: UPD

2: INS1: UPD

Fig. 14 Analyzing change dependencies.

6.1 Change Dependency Analysis

To avoid running into compilation errors, we perform a pre-analysis for each
version in the software history and compute direct dependencies for all changed
AST nodes. This analysis produces a multi-version change dependency graph,
which we illustrate with an example in Figure 14.

In this example, there are four program versions, i.e., p0, p1, p2 and p3, all of
which are well-formed (syntactically correct and compilable). There are three
changed nodes, i.e., methods A.f() and A.g(), which belong to class A, as well
as B.g(), which belongs to class B. There is also a node B.h() which stays
unchanged. Class B is a sub-class of A. Each node has a separate time-line on
which its changes are labeled. In particular, A.f() has an update between p1
and p2; A.g() is inserted between p1 and p2; and B.g() is updated after p0 but
deleted after p2. In Figure 14, solid arrows represent necessary dependencies
while empty arrows represent sufficient dependencies. For instance, a method
invocation of g() in B.h() makes B.h() necessarily depend on B.g() before p2.
But when g() is introduced in the super-class A in version p2, both definitions
of g() are sufficient dependencies of B.h(), i.e., existence of either one of them
would satisfy the compilation requirement due to method inheritance.

The change dependency graph is useful for detecting compilation failures
without actually compiling the program, as long as atomic changes for an AST
node are reverted sequentially. For example, 2 cannot be reverted from p3
alone because both A.f() and B.h() necessarily depend on it. But { 1 , 2 , 4 }
can be reverted together since A.f() no longer depends on A.g(), and the
reverted B.g() substitutes the dependency for B.h().

We build the multi-version dependency graph incrementally. A complete
dependency graph is first built by analyzing the base version. For subsequent
versions, it suffices to analyze only the changed classes and update the corre-
sponding dependency links.

24 Yi Li et al.

6.2 Git Adaptation

The generic algorithm discussed in Section 4 operates on the level of atomic
changes. To work with Git, we treat the set of atomic changes belonging to
the same commit as a bundled group. The partition algorithm is adjusted
such that changes in the same group always stay together, and the significance
score for a group is computed as the sum of the scores of its members. Apart
from dependencies between atomic changes, we also analyze hunk dependencies
between commits so that the history slices can be applied without causing a
Git merge conflict. History partitions which do not comply with the hunk
dependencies are discarded immediately without running any tests.

6.3 Implementing the Split Operator

Since we would like the slicing result to be compatible with Git, in practice,
we rely on the interactive staging [17] feature of Git to implement the split op-
erator. Interactive staging enables modifications of commits where individual
hunks within a commit can be selected and regrouped to form new commits.
It is also necessary to keep the mapping between the split and the original
commits, so that the traceability of historical meta-data can be restored.

Require: H 6= 〈〉
Ensure: Hsplit = SPfile(H)
1: procedure SplitHistory(H)
2: m,Hsplit ← ∅, 〈〉
3: for ∆i in H do
4: m(∆i)← SplitCommit(pi−1, pi,∆i)
5: Hsplit ← Hsplit,m(∆i)
6: end for
7: return (m,Hsplit)
8: end procedure

Require: ∆(p) = p′

Ensure: splits = SPfile(∆)
9: procedure SplitCommit(p, p′,∆)
10: splits← 〈〉
11: git checkout p′ . Checkout program version p′.
12: git reset p . Unstage all changes in the commit ∆.
13: while there is unstaged file do
14: git add -- f . Stage a single file “f”.
15: git commit -m “Origin: ∆” . Commit ∆f with log indicating origin.
16: splits← splits,∆f . Add ∆f at the back of splits.
17: end while
18: return splits
19: end procedure

Fig. 15 An algorithm implementing file-level split operator for Git history.

Figure 15 outlines the process of splitting an original history H into an
equivalent history Hsplit which contains only file-level commits (see the proce-

Precise Semantic History Slicing Through Dynamic Delta Refinement 25

dure SplitHistory). The procedure also returns a mappingm which indicates
the origins of the split commits in Hsplit. The procedure iterates through all
the input commits in order (Line 3 to 6) and calls a sub-routine SplitCommit.

The procedure SplitCommit splits a single commit into a sequence of file-
level commits each only containing hunks within a single file. To process the
target commit ∆, we first check out the version p′ right after it (Line 11). Then
we use “git reset” to unstage all changes in the commit ∆, which will move
those changes out of the staging area [16] and allow them to be reorganized
later (Line 12). The Git command “git add --” provides a way of staging
changes to individual files (Line 14), allowing them to be committed separately
(i.e., commit ∆f at Line 15). Finally, the sequence of file-level commit is
returned (Line 18).

For instance, when applying SplitCommit on the commit R3 (d54b339c)
in our example, the repository is first checked out to the version d54b339c.
Then the changes made in d54b339c get unstaged through the command git
reset 3b10c8f8, resulting in changes over four different files. The changes for
each file get added to the stagging area and committed individually using the
command git add -- changes.xml, etc.

6.4 Tooling

Definer is written in Java and yields fully-automated analysis of projects
built with Maven [38]. We use JGit [23], a Java implementation of Git, for
repository manipulation and commit-level hunk dependency analysis [30]. We
use a modified version of ChangeDistiller [13] for extracting AST-level atomic
changes from Git commits. We also use the Apache Byte Code Engineering Li-
brary (BCEL) [2] to analyze dependencies among atomic changes, Daikon [10]
for dynamic invariant detection, and Soot [49] for performing local change
impact analysis.

We created a baseline version Definer-Default which operates on the
original commits with all optimizations enabled, and an enhanced version
Definer-Split which has the exact same configuration but operates on the
file-level commits. To evaluate the effectiveness of various optimizations, we
also created Definer-Learn which disables compilation failure detection
based on change dependency analysis and Definer-Basic which also dis-
ables significance learning. The source code of Definer is available online at
the following URL: https://bitbucket.org/liyistc/gitslice.

7 Evaluation

We evaluate Definer w.r.t. both its precision and performance using a bench-
mark suite obtained from open source software repositories. The goal of our
empirical evaluation is to answer the following research questions:

26 Yi Li et al.

Table 1 Statistics of tested software projects.

Projects #Files LOC

compress 307 37,768
io 233 29,188
lang 326 74,479
net 270 27,845
csv 30 5,538

RQ1: How does the precision of history slices produced by Definer compare
to those produced by CSlicer?

RQ2: How effective are the change significance ranking and change depen-
dency analysis for guiding history partitions when compared with the
basic partition scheme used by delta debugging?

RQ3: How do different partition schemes affect the performance of Definer?
RQ4: How effective is the file-level commit splitting for improving the preci-

sion of Definer?

7.1 Subjects

We evaluated Definer on a benchmark consisting of 20 target functionalities
randomly selected from the DoSC dataset [55]. DoSC consists of 81 target
functionalities collected from repositories on GitHub.

Each item in DoSC is a high-level functionality identified with a unique
key, which refers to its corresponding issue key on the JIRA issue tracker [25].
Each functionality is accompanied by a test suite for it, where the code of func-
tionality and the test cases are committed together. DoSC labels the starting
version and ending version of the software history which determines the entire
life cycle of the development of a functionality.

In order to test the history slicing capabilities of Definer, all the exper-
iments require an original history segment (H) and a target test suite (T)
designated for certain high-level functionality. In DoSC, this information is
recorded in the YAML format [51], which is programmatically extractable and
can be directly fed into Definer. Thus, we ran Definer on the 20 selected
functionalities and collected the experimental data to answer our research
questions.

The selected functionalities were originally developed in five open source
projects, namely, Apache Commons Compress Library (compress) [6], Apache
Commons IO Library (io) [22], Apache Commons Lang Library (lang) [28],
Apache Commons Net Library (net) [39], and Apache Commons CSV Library
(csv) [7]. These projects are all written in Java and their software histories
are freely accessible online.

The selected projects are under active development and their sizes range
from 5 to 75 KLOC. Statistics about each project is shown in Table 1. Columns

Precise Semantic History Slicing Through Dynamic Delta Refinement 27

Table 2 Functionalities details and descriptions.

Projects ID Issue Key Functionality Descriptions End Version |H| |T | |H∗|

compress

C1 COMPRESS-327 Support in-memory processing for ZipFile b29395d 148 18 26
C2 COMPRESS-369 Allow archiver extensions through a standard JRE

ServiceLoader
b29395d 148 2 11

C3 COMPRESS-373 Support writing the "old" lzma format b29395d 148 1 14
C4 COMPRESS-374 Add support for writing lzma streams in 7z b29395d 148 8 16
C5 COMPRESS-375 Allow the clients of ParallelScatterZipCreator to

provide ZipArchiveEntryRequestSupplier
b29395d 148 2 1

io

I1 IO-173 FileUtils.listFiles() doesn’t return directories b1b9f1a 136 2 16
I2 IO-275 Add option to ignore line endings b1b9f1a 136 2 1
I3 IO-288 Supply a ReversedLinesFileReader b1b9f1a 136 18 2
I4 IO-290 Add read/readFully methods to IOUtils b1b9f1a 136 2 5
I5 IO-305 New copy() method in IOUtils that takes addi-

tional offset, length and buffersize arguments
b1b9f1a 136 10 26

lang

L1 LANG-883 Add StringUtils.containsAny(CharSequence,
CharSequence...) method

76cc69c 262 1 TO

L2 LANG-993 Add zero copy write method to StrBuilder 76cc69c 262 10 6
L3 LANG-1006 Add wrap (with String or char) to StringUtils 76cc69c 262 2 14
L4 LANG-1080 Add NoClassNameToStringStyle implementation of

ToStringStyle
76cc69c 262 8 TO

L5 LANG-1093 Add ClassUtils.getAbbreviatedName 76cc69c 262 2 TO

net
N1 NET-525 Added missing set methods on NTP class and in-

terface
abd6711 269 14 14

N2 NET-527 Add SimpleNTPServer as example and for testing abd6711 269 1 20

csv
S1 CSV-159 Add IgnoreCase option for accessing header names 7310e5c 79 1 3
S2 CSV-175 Support for ignoring trailing delimiter 7310e5c 79 11 14
S3 CSV-180 Add withHeader(Class<? extends Enum>) to

CSVFormat
7310e5c 79 2 16

Table 3 Average execution time: CSlicer vs. Definer-Default vs. Definer-Split.

Mode Time (s)

CSlicer 26
Definer-Default 754
Definer-Split 1,556

“#Files” and “LOC” show the number of Java files and the total lines of code,
respectively; these numbers are for the latest version.

The details about each functionality are given in Table 2. Column “ID”
lists subject identifiers. Column “Issue Key” lists the corresponding issue key
of the functionality on JIRA. Column “End Version” shows the target commits
which correspond to the final version in our history segment. Columns “|H|”
and “|T |” show the length of the original history segments and the sizes of
the target test suites, respectively. Column “|H∗|” shows the length of the
manually verified 1-minimal history slice.

For all of the experiments, we set a two-hour time limit for running De-
finer on each functionality. On three examples, L1, L4, and L5, Definer did
not terminate within this time limit on any configuration for any experiment.
We excluded these from further consideration.

All the experiments were conducted on a 4-core Intel i7-6700 CPU @
3.40GHz machine with 16GB of RAM, running Ubuntu 17.04.

28 Yi Li et al.

C1 C2 C3 C4 C5 I1 I2 I3 I4 I5 L2 L3 N1 N2 S1 S2 S3

0

10

20

30

40

50

R
el
at
iv
e
sl
ic
e
si
ze
s
(%

)

CSlicer

Definer-Default

Definer-Split

Fig. 16 Lengths of slices: CSlicer vs. Definer-Default vs. Definer-Split.

7.2 RQ1: How Does the Precision of History Slices Produced by Definer
Compare to Those Produced by CSlicer?

The first experiment aims to compare Definer with CSlicer in terms of the
precision of the produced history slices. We use the default configuration of
Definer (Definer-Default) which adopts a simple partition scheme that
first reverts commits with negative significance scores. The relative history slice
length for each subject is computed as the length of the produced history slice
divided by the original history length, i.e., |H∗|/|H|. The results are shown in
Figure 16. As an example, consider the subject I1. The length of the history
slice computed by Definer-Default is 11.76% of the original history, while
the length of the history slice computed by CSlicer is 47.06% of the original
history.

In fact, the history slices found by Definer-Default are always shorter or
equal to those computed by CSlicer (79% shorter on average). Furthermore,
all history slices produced by Definer-Default are manually verified to be
1-minimal while CSlicer does not guarantee minimality. For example, out of
148 commits from the subject C1, Definer-Default finds a slice of length
26 which is shorter than the one of length 69 reported by CSlicer.

Table 3 shows the comparison of execution time of CSlicer and Definer-
Default (we discuss the last row later in the document). On average, CSlicer
took 26s to obtain the history slice, while Definer-Default took 754s.

In summary, Definer substantially outperforms CSlicer in terms of pre-
cision: history slices obtained by Definer-Default are 79% shorter on av-
erage than history slices obtained by CSlicer. Although Definer-Default
takes more time, on average, we consider this performance overhead to be rea-
sonable, because history slicing is often performed as an off-line maintenance
task [33,34].

Precise Semantic History Slicing Through Dynamic Delta Refinement 29

35 70 105 140
0

30

60

90

120

150

C1
35 70 105 140

0

30

60

90

120

150

C2
40 80 120 160

0

30

60

90

120

150

C3

40 80 120 160
0

30

60

90

120

150

C4
10 20 30 40 50

0

30

60

90

120

150

C5
20 40 60 80 100

0

35

70

105

140

I1

2 4 6 8 10
0

35

70

105

140

I2
4 8 12 16 20

0

35

70

105

140

I3
5 10 15 20 25

0

35

70

105

140

I4

40 80 120 160 200 240
0

35

70

105

140

I5
15 30 45 60 75

0

45

90

135

180

225

270

L2
30 60 90 120

0

45

90

135

180

225

270

L3

25 50 75 100 125
0

45

90

135

180

225

270

N1
33 66 99 132 165

0

45

90

135

180

225

270

N2
7 14 21 28 35

0

20

40

60

80

S1

26 52 78 104 130
0

20

40

60

80

S2
30 60 90 120 150

0

20

40

60

80

S3

Definer-Basic Definer-Learn Definer-Default

Fig. 17 History reduction per test run.

7.3 RQ2: How Effective are the Change Significance Ranking and Change
Dependency Analyses for Guiding History Partitions when Compared with
the Basic Partition Scheme Used by Delta Debugging?

The second experiment evaluates the effectiveness of using change significance
ranking and change dependency analyses in speeding up the delta refinement
loop. We compared three configurations of Definer in terms of the number
of test runs needed to find 1-minimal history slices: (1) Definer-Default as
described earlier, (2) Definer-Learn which disables compilation failure de-
tection based on change dependency analyses, and (3) Definer-Basic which
also disables significance learning and thus is effectively equivalent to delta

30 Yi Li et al.

debugging which applies the basic (random) partition scheme.1 All configu-
rations still apply hunk dependency analyses which detect Git merge failures
without actually applying the commits.

The results of the comparisons are shown in Figure 17 where the length
of H∗ (y-axis) is plotted as a function of the number of test runs (x-axis).
In general, Definer-Default and Definer-Learn require fewer test runs
than Definer-Basic to reach the minimal solution. In most of the cases,
the advantage of significance learning is obvious, especially for cases such as
C5, L2 and S2 where Definer-Learn requires on average only about 71.39%
of test runs compared with Definer-Basic. In addition, change dependency
analyses which prevent test runs on non-compilable programs helped extend
this advantage further – it only takes about 33.87% of test runs.

There are some cases where Definer-Default and Definer-Learn show
no (or small) advantage over the Definer-Basic configuration, such as C2,
C3, C4, and N2. By inspecting these cases, we determined that they were
caused by non-Java commits, i.e., commits that change only non-Java files,
e.g., XML files, but are important for the success of building/testing of the
functionality. As an example, there is a commit (4379a681) in the original
history of N2, which only modifies pom.xml to fix an incorrect XML snippet.
Without this commit, the project cannot be built, so this commit must be
kept in the history slice. However, Definer only computes significance scores
for atomic changes defined on Java code entities. As a result, for this particu-
lar example, even though Definer discovers that dropping this commit will
lead to build failure, this information does not help in guiding the subsequent
partitions. Even worse, any commit dropped together with this commit will
be ranked higher by Definer due to the fact that dropping them fails the
build, which means Definer learns false signals in such scenarios.

In summary, we find that change significance ranking may lead to sub-
stantial savings in the number of executed tests. For those subjects where the
change significance ranking does not help, this happens because our approach
does not compute significance scores of changes for non-Java files; we plan to
address this in our future work.

7.4 RQ3: How Do Different Partition Schemes Affect the Performance of
Definer?

We also experimented with three different partition schemes, namely, Neg,
NonPos, Low-3, and their combination, Combined (Combined is used in
the previous experiments). All schemes follow the general steps described in
Section 2.3 with different partition priorities at the beginning of each iteration.
The Neg scheme only reverts commits which have negative scores. It is the
most conservative one among the three. NonPos is the most aggressive one
which reverts all commits with non-positive scores. Low-3 always reverts the

1 We could not directly compare with the original implementation in [52], which does not
work with Git repositories.

Precise Semantic History Slicing Through Dynamic Delta Refinement 31

Table 4 Comparisons of different partition schemes in terms of the number of test runs.

ID Neg NonPos Low-3 Combined
C1 116 116 116 27
C2 122 121 122 114
C3 143 146 143 143
C4 156 157 156 147
C5 27 27 27 27
I1 86 87 86 18
I2 8 8 9 8
I3 17 17 19 17
I4 20 20 19 9
I5 206 222 206 32
L2 52 53 52 15
L3 109 113 109 23
N1 109 110 109 41
N2 159 159 159 159
S1 27 27 23 10
S2 101 103 101 30
S3 125 126 125 126

lowest one third of the commits according to their significance ranking. Us-
ing Combined, Definer attempts all three partitions at each partition phase
according to the three different schemes, in the order of first Neg, then Non-
Pos, and finally Low-3. If any one of the partitions succeeds at the execution
phase, we move on to the next iteration.

The results of this experiment are shown in Table 4, where each column
lists the number of test runs required to reach the minimal solution and the
best configurations for each row are in bold. All four partition schemes perform
well on at least one subject. For example, Low-3 required the smallest number
of test runs for C3, C5, N2, and S3. All partition schemes perform equally well
on two examples, namely, C5 and N2. These correspond to the cases where
change significance ranking is not as effective (see Section 7.3).

In summary, the choice of a partition scheme can impact the performance of
Definer. We find that each scheme performs the best on at least one subject.
This opens an interesting research direction: predicting what scheme to use for
a given subject. Meanwhile, we suggest that the default configuration should
use the Combined strategy, which achieved the best performance in 16 out of
17 examples.

7.5 RQ4: How Effective is the File-level Commit Splitting for Improving the
Precision of Definer?

We performed an experiment comparing Definer-Default with Definer-
Split. We compared these two approaches in terms of the precision of their
outcomes and their execution time. Figure 16 illustrates the effectiveness of
the file-level splitting operator for reducing the length of the resulting history

32 Yi Li et al.

slices. The history slices computed by Definer-Split are shorter than those
done by Definer-Default on most of subjects (15 out of 17 subjects). On
two out of 17 subjects Definer-Default and Definer-Split obtained the
same length of history slices. On average, the results of Definer-Split are
60% shorter than those of Definer-Default.

Regarding the execution time, as shown in Table 3, on average, Definer-
Split took 1,556s to finish. Recall that Definer-Default took, on average,
754s. The extra cost of Definer-Split is likely acceptable for most users
considering that the average history length reduction is as high as 60%.

In summary, file-level commit splitting is an effective approach for improv-
ing precision of Definer. If a user can afford extra execution time and loss of
information from the original software history (Section 6.3), file-level commit
splitting should be enabled by default.

7.6 Summary

To summarize, we evaluated the precision and performance of Definer em-
pirically on a benchmark set of real-world software projects. We demonstrated
that Definer produces more precise history slices than existing state-of-the-
art techniques such as CSlicer, although Definer exhibits longer execution
times. We consider the performance losses acceptable for the achieved preci-
sion gain. Moreover, in the majority of cases, Definer outperforms the basic
partition scheme used by delta debugging, which is attributed to the change
significance ranking learned during the refinement process. With the Com-
bined partition scheme applied, Definer achieves precise slicing results in an
efficient manner. Hunk dependencies significantly affect the precision of De-
finer. By performing file-level splitting of the history and running Definer
on the resulting split history, the precision of history slicing gets improved
further.

7.7 Threats to Validity

Our experiments are subject to common threats to validity.

7.7.1 External

Subjects used in our evaluation may not be representative. To mitigate this
threat, we used subjects used in prior research on history slicing; these subjects
are taken from large open-source projects covering diverse domains.

We ran all the experiments on a single machine, and our findings related to
execution time might differ on another machine. During the implementation of
our tool, we have used several machines and observed similar trends on these
machines.

Precise Semantic History Slicing Through Dynamic Delta Refinement 33

7.7.2 Internal

Our implementation of Definer (and all of its variants), as well as our scripts
for running the experiments, may contain bugs. Two of the authors worked
closely on the implementation of the tool and frequently reviewed code to-
gether. We have also checked for various outliers in our results that indeed
discovered a couple of bugs, which have been fixed since then.

7.7.3 Construct

Our primary evaluation metric was the length of the history slice, assuming
that a user would be willing to pay higher execution time. However, for com-
pleteness, we do compare various techniques in terms of the execution time
(or the number of test runs), so that the user can choose the most appropriate
configuration for their context.

8 Related Work

Our work intersects with different areas of research. In this section, we compare
our dynamic delta refinement algorithm with related work.

8.1 History Understanding and Manipulation

There is a large body of work on analyzing and understanding software histo-
ries. The basic research goals are retrieving useful information from change his-
tories to help understand development practices [4,36,37,47], localize bugs [52,
53], and support predictions [20,56].

In our earlier work [30,33], we defined the problem of semantic history slic-
ing and proposed an algorithm CSlicer which conservatively computes a sub-
history that preserves the desired test properties. The advantage of CSlicer
is its efficiency – it only executes the tests once and assumes all code enti-
ties touched by the tests can potentially affect the test results. Our algorithm
has stronger guarantees than CSlicer on slice quality and always returns 1-
minimal solutions within a reasonable amount of time. In fact, CSlicer and
Definer can be combined so that the output from CSlicer is used as an
input to Definer to achieve both precision and efficiency [31].

Another interesting take on history analysis is history transformation [19,
36]. Muşlu et al. [36] introduced a concept ofmulti-grained development history
views. Instead of using a fixed representation of the change history, the authors
propose a more flexible framework which can transform version histories into
different representations at various levels of granularity to better facilitate the
tasks at hand. Such transformation operators can be combined with seman-
tic history slicing to build a history view which clusters semantically related
changes as high-level logical groups. This semantics summarization view [36]

34 Yi Li et al.

is much more meaningful than the original commit-based representations for
history understanding and analysis.

8.2 Change Impact Analysis

Change Impact Analysis [1] aims to determine the effects of source code mod-
ifications. This usually means selecting a subset of tests from a regression
test suite that might be affected by the given change, or, given a test failure,
deciding which changes might be causing it.

Research on impact analysis can be roughly divided into three categories:
the static [1, 27], dynamic [29] and combined [43, 54] approaches. The latter
category is most closely related to our work. Ren et al. [43] introduced a tool,
Chianti, for change impact analysis of Java programs. Chianti takes two ver-
sions of a Java program and a set of tests as the input. First, it builds dynamic
call graphs for both versions, before and after the changes, through test ex-
ecution. Then it compares the classified changes with the old call graph to
predict the affected tests, and it uses the new call graph to select the affecting
changes that might cause the test failures. FaultTracer [54] improved Chianti
by extending the standard dynamic call graph with field access information.

The invariant deltas we used for locating precise impacts of changes can be
viewed as a dynamic impact analysis technique. In fact, we are not limited to
using Daikon for this purpose. The performance of Definer may be further
improved with a custom lighter-weight runtime tracing technique. Moreover,
the local backward analysis which matches affected program points to other
related changes belongs to the static impact analysis category. A whole range
of static analyses with different levels of precision can be integrated into our
algorithm to improve ranking accuracy and performance.

8.3 Dynamic Behavioral Analysis

Through program instrumentation and execution tracing, dynamic analysis
techniques [18, 40, 42] allow the comparison of precise runtime program be-
haviors. Daikon [10] is one example of such techniques which discover likely
program invariants from runtime executions. Daikon instruments the target
program, traces variables of interest, and infers likely invariants for them. It
has been widely used for many software developing tasks, including debug-
ging [3, 8], regression testing [41,50], bug prevention [9] and more.

DIDUCE [18] is another tool for dynamic invariant detection. It trains a
model for the target program by formulating hypotheses of invariants obeyed
by the program and refining hypotheses dynamically through “presumably-
good” runs. The produced model can be used to check for potential errors in
other test runs. We use a similar idea of forming and updating hypotheses
dynamically with multiple test executions. The key difference is that our goal
is to infer change significance rather than program invariants. Therefore, we

Precise Semantic History Slicing Through Dynamic Delta Refinement 35

can exploit useful information from both passing and failing runs to improve
the accuracy of our significance model.

Our work is also related to behavioral regression testing [24, 40] with re-
spect to the usage of test executions for exposing behavioral differences across
program versions. In our analysis, we perform behavioral comparisons with a
different goal: behavioral regression testing reports the results of behavioral
comparison to users in order to help them complete and improve the qual-
ity of existing regression test suites [24, 40], whereas our goal is to speed up
history slicing by identifying significant changes with the guidance from the
behavioral differences.

8.4 Fault Localization

Delta debugging [52] uses divide-and-conquer-style iterative test executions to
narrow down the causes of software failures. Delta debugging has been applied
to minimize the set of changes which cause regression test failures. This prob-
lem can be considered as finding minimal semantic history slices with respect
to the failure-inducing properties. In contrast to Definer which extracts se-
mantic information from test results to guide its subsequent partition, delta
debugging does not exploit this information, and its partition scheme is fixed.
Regarding slice quality, Zeller and Hildebrandt [53] consider an approximated
version of minimality, i.e., 1-minimalily, which guarantees that removing any
single change set breaks the target properties. This trade-off on solution qual-
ity enables the authors to use an efficient divide-and-conquer search method.

Selective bisection debugging [46] is an enhancement over the traditional
bisection debugging approaches based on binary search over software version
history (e.g., Git-bisect [14]). Bisection debugging is widely used in practice
to identify bug introducing commits, but it can be expensive due to costly
compilation and test execution process. Selective bisection debugging uses test
selection and commit selection to reduce the number of tests to run and the
number of commits to consider. In particular, commit selection uses test cover-
age information to predict whether a certain commit in a bisection step does
not lead to failing any tests and thus can be skipped to save time. This is
similar to Definer as they both rely on test signals to make predictions in
the hope to reduce overall computational costs. Conceptually, though, there
is a difference: selective bisection debugging tries to find which commits cause
the test to fail, while Definer looks for commits that cause the test to pass.
Another difference is that bisection debugging tries to locate a certain version
while Definer attempts to find a 1-minimal history slice, which is a more
difficult problem (O(logn) vs. O(n2)).

9 Conclusion and Future Work

We proposed the dynamic delta refinement algorithm for finding minimal se-
mantic history slices. It relies on change-significance learning techniques that

36 Yi Li et al.

are shown to be effective in speeding up the slicing process when applied to
real-world software projects. We also introduced the commit splitting opera-
tor which further improves the precision of history slicing by splitting commits
from the original change histories into several finer-grained commits. We have
implemented the algorithms as a prototype tool, Definer, which operates
on Java projects hosted in Git. Definer greatly improves the precision of the
history slices over state-of-the-art techniques, although at the cost of increased
execution time.

For future work, we would like to explore the possibility of applying delta
refinement to debugging and fault localization. We also see room for improve-
ment in terms of performance by combining different slicing approaches and
parallelizing test executions as much as possible.

Acknowledgements This research is partly supported by the Singapore Ministry of Edu-
cation Academic Research Fund Tier 1 (award No. 2018-T1-002-069).

References

1. Arnold, R.S.: Software Change Impact Analysis. IEEE Computer Society Press, Los
Alamitos, CA, USA (1996)

2. Apache Commons Byte Code Engineering Library. https://commons.apache.org/
proper/commons-bcel (2015)

3. Brun, Y., Ernst, M.D.: Finding Latent Code Errors via Machine Learning over Pro-
gram Executions. In: Proceedings of the 26th International Conference on Software
Engineering, pp. 480–490. IEEE Computer Society, Washington, DC, USA (2004)

4. Brun, Y., Holmes, R., Ernst, M.D., Notkin, D.: Early Detection of Collaboration Con-
flicts and Risks. IEEE Transactions on Software Engineering 39(10), 1358–1375 (2013)

5. Chawathe, S.S., Rajaraman, A., Garcia-Molina, H., Widom, J.: Change Detection in
Hierarchically Structured Information. In: Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data, pp. 493–504 (1996)

6. Apache Commons Compress Library. https://commons.apache.org/proper/
commons-compress (2018)

7. Apache Commons CSV Library. https://commons.apache.org/proper/commons-csv
(2017)

8. Dodoo, N., Lin, L., Ernst, M.D.: Selecting, Refining, and Evaluating Predicates for Pro-
gram Analysis. Tech. Rep. MIT-LCS-TR-914, MIT Laboratory for Computer Science,
Cambridge, MA (2003)

9. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically Discovering Likely
Program Invariants to Support Program Evolution. In: Proceedings of the 21st Inter-
national Conference on Software Engineering, pp. 213–224. ACM, New York, NY, USA
(1999). DOI 10.1145/302405.302467

10. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,
Xiao, C.: The Daikon System for Dynamic Detection of Likely Invariants. Science of
Computer Programming 69(1-3), 35–45 (2007)

11. Ferzund, J., Ahsan, S.N., Wotawa, F.: Empirical Evaluation of Hunk Metrics as Bug
Predictors. In: Proceedings of the International Conferences on Software Process and
Product Measurement, pp. 242–254. Springer-Verlag, Berlin, Heidelberg (2009). DOI
10.1007/978-3-642-05415-0_18

12. Fluri, B., Gall, H.C.: Classifying Change Types for Qualifying Change Couplings. In:
Proceedings of the 14th IEEE International Conference on Program Comprehension,
pp. 35–45. IEEE (2006)

Precise Semantic History Slicing Through Dynamic Delta Refinement 37

13. Fluri, B., Wuersch, M., Pinzger, M., Gall, H.: Change Distilling: Tree Differencing for
Fine-Grained Source Code Change Extraction. IEEE Transactions on Software Engi-
neering 33(11), 725–743 (2007)

14. Git: git-bisect Documentation. http://git-scm.com/docs/git-bisect (2016)
15. Git Version Control System. https://git-scm.com (2016)
16. Git - Git Basics. https://git-scm.com/book/en/v2/Getting-Started-Git-Basics

(2018)
17. Git Tools - Interactive Staging. https://git-scm.com/book/en/v2/

Git-Tools-Interactive-Staging (2018)
18. Hangal, S., Lam, M.S.: Tracking Down Software Bugs Using Automatic Anomaly De-

tection. In: Proceedings of the 24th International Conference on Software Engineering,
pp. 291–301. ACM, New York, NY, USA (2002). DOI 10.1145/581339.581377

19. Hayashi, S., Omori, T., Zenmyo, T., Maruyama, K., Saeki, M.: Refactoring Edit History
of Source Code. In: Proceedings of the 28th IEEE International Conference on Software
Maintenance, pp. 617–620. IEEE (2012)

20. Herzig, K., Zeller, A.: The Impact of Tangled Code Changes. In: Proceedings of the
10th Working Conference on Mining Software Repositories, pp. 121–130. IEEE Press,
Piscataway, NJ, USA (2013)

21. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: A Minimal Core Calculus
for Java and GJ. ACM Transactions on Programming Languages and Systems 23(3),
396–450 (2001)

22. Apache Commons IO Library. https://commons.apache.org/proper/commons-io
(2017)

23. JGit: A Lightweight, Pure Java Library Implementing the Git Version Control System.
https://eclipse.org/jgit (2016)

24. Jin, W., Orso, A., Xie, T.: Automated Behavioral Regression Testing. In: Proceedings of
the 2010 3rd International Conference on Software Testing, Verification and Validation,
pp. 137–146. IEEE Computer Society, Washington, DC, USA (2010). DOI 10.1109/
ICST.2010.64

25. JIRA Software. https://www.atlassian.com/software/jira (2017)
26. Kästner, C., Apel, S.: Type-Checking Software Product Lines - a Formal Approach. In:

Proceedings of the 23rd IEEE/ACM International Conference on Automated Software
Engineering, pp. 258–267. IEEE Computer Society, Washington, DC, USA (2008)

27. Kung, D.C., Gao, J., Hsia, P., Wen, F., Toyoshima, Y., Chen, C.: Change Impact Identi-
fication in Object Oriented Software Maintenance. In: Proceedings of the International
Conference on Software Maintenance, pp. 202–211. IEEE Computer Society, Washing-
ton, DC, USA (1994)

28. Apache Commons Lang Library. https://commons.apache.org/proper/commons-lang
(2018)

29. Law, J., Rothermel, G.: Whole Program Path-Based Dynamic Impact Analysis. In:
Proceedings of the 25th International Conference on Software Engineering, pp. 308–
318. IEEE (2003)

30. Li, Y., Rubin, J., Chechik, M.: Semantic Slicing of Software Version Histories. In:
Proceedings of the 30th IEEE/ACM International Conference on Automated Software
Engineering, pp. 686–696. Lincoln, NE, USA (2015)

31. Li, Y., Zhu, C., Gligoric, M., Rubin, J., Chechik, M.: Towards Generalized Semantic
History Slicing. Tech. rep., Nanyang Technological University (2019)

32. Li, Y., Zhu, C., Rubin, J., Chechik, M.: Precise Semantic History Slicing through Dy-
namic Delta Refinement. In: Proceedings of the 31 IEEE/ACM International Conference
on Automated Software Engineering, pp. 495–506 (2016)

33. Li, Y., Zhu, C., Rubin, J., Chechik, M.: Semantic Slicing of Software Version Histories.
IEEE Transactions on Software Engineering 44(2), 182–201 (2017)

34. Li, Y., Zhu, C., Rubin, J., Chechik, M.: CSlicerCloud: A Web-Based Semantic History
Slicing Framework. In: Proceedings of the 40th International Conference on Software
Engineering (2018)

35. Mercurial Source Control Management System. http://mercurial.selenic.com (2016)
36. Muşlu, K., Swart, L., Brun, Y., Ernst, M.D.: Development History Granularity Trans-

formations. In: Proceedings of the 30th IEEE/ACM International Conference on Auto-
mated Software Engineering, pp. 697–702. Lincoln, NE, USA (2015)

38 Yi Li et al.

37. Murphy-Hill, E., Parnin, C., Black, A.P.: How We Refactor, and How We Know It.
IEEE Transactions on Software Engineering 38(1), 5–18 (2012)

38. Apache Maven Project. https://maven.apache.org (2015)
39. Apache Commons Net Library. https://commons.apache.org/proper/commons-net

(2017)
40. Orso, A., Xie, T.: BERT: BEhavioral Regression Testing. In: Proceedings of the 2008

International Workshop on Dynamic Analysis: Held in Conjunction with the ACM SIG-
SOFT International Symposium on Software Testing and Analysis, pp. 36–42. New York,
NY, USA (2008)

41. Pastore, F., Mariani, L., Hyvärinen, A.E.J., Fedyukovich, G., Sharygina, N., Sehestedt,
S., Muhammad, A.: Verification-Aided Regression Testing. In: Proceedings of the 2014
International Symposium on Software Testing and Analysis, pp. 37–48. ACM, New
York, NY, USA (2014). DOI 10.1145/2610384.2610387

42. Perkins, J.H., Ernst, M.D.: Efficient Incremental Algorithms for Dynamic Detection of
Likely Invariants. In: Proceedings of the 12th ACM SIGSOFT Twelfth International
Symposium on Foundations of Software Engineering, pp. 23–32. ACM, New York, NY,
USA (2004). DOI 10.1145/1029894.1029901

43. Ren, X., Shah, F., Tip, F., Ryder, B.G., Chesley, O.: Chianti: A Tool for Change Impact
Analysis of Java Programs. In: Proceedings of the 19th aAnual ACM SIGPLAN con-
ference on Object-oriented Programming, Systems, Languages, and Applications, pp.
432–448. ACM, New York, NY, USA (2004)

44. Rothermel, G., Harrold, M.J.: Analyzing Regression Test Selection Techniques. IEEE
Transactions on Software Engineering 22(8), 529–551 (1996). DOI 10.1109/32.536955

45. Rubin, J., Kirshin, A., Botterweck, G., Chechik, M.: Managing Forked Product Variants.
In: Proceedings of the 16th International Software Product Line Conference, vol. 1, pp.
156–160. ACM, New York, NY, USA (2012)

46. Saha, R., Gligoric, M.: Selective Bisection Debugging. In: Proceedings of the 20th
International Conference on Fundamental Approaches to Software Engineering, pp.
60–77. Springer-Verlag New York, Inc., New York, NY, USA (2017). DOI 10.1007/
978-3-662-54494-5_4

47. Servant, F., Jones, J.A.: History slicing. In: Proceedings of the 26th IEEE/ACM Inter-
national Conference on Automated Software Engineering, pp. 452–455 (2011)

48. Apache Subversion (SVN) Version Control System. http://subversion.apache.org
(2016)

49. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.: Soot - a
Java Bytecode Optimization Framework. In: Proceedings of the 1999 Conference of the
Centre for Advanced Studies on Collaborative Research, pp. 125–135. IBM Press (1999)

50. Xie, T., Notkin, D.: Checking inside the Black Box: Regression Testing by Comparing
Value Spectra. IEEE Transactions on Software Engineering 31(10), 869–883 (2005)

51. YAML Ain’t Markup Language. http://www.yaml.org/ (2017)
52. Zeller, A.: Yesterday, My Program Worked. Today, It Does Not. Why? In: Proceedings

of the 7th European Software Engineering Conference Held Jointly with the 7th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pp. 253–
267. Springer-Verlag, London, UK, UK (1999)

53. Zeller, A., Hildebrandt, R.: Simplifying and Isolating Failure-Inducing Input. IEEE
Transactions on Software Engineering 28(2), 183–200 (2002)

54. Zhang, L., Kim, M., Khurshid, S.: Localizing Failure-Inducing Program Edits Based on
Spectrum Information. In: Proceedings of the 27th International Conference on Software
Maintenance, pp. 23–32. IEEE (2011)

55. Zhu, C., Li, Y., Rubin, J., Chechik, M.: A Dataset for Dynamic Discovery of Semantic
Changes in Version Controlled Software Histories. In: Proceedings of the 14th Interna-
tional Conference on Mining Software Repositories, pp. 523–526. IEEE Press, Piscat-
away, NJ, USA (2017). DOI 10.1109/MSR.2017.49

56. Zimmermann, T., Weißgerber, P., Diehl, S., Zeller, A.: Mining Version Histories to Guide
Software Changes. In: Proceedings of the 26th International Conference on Software
Engineering, pp. 563–572. IEEE Computer Society, Washington, DC, USA (2004)

