
Pattern-Based Peephole Optimizations with Java JIT Tests
Zhiqiang Zang

The University of Texas at Austin
Austin, Texas, USA

zhiqiang.zang@utexas.edu

Aditya Thimmaiah
The University of Texas at Austin

Austin, Texas, USA
auditt@utexas.edu

Milos Gligoric
The University of Texas at Austin

Austin, Texas, USA
gligoric@utexas.edu

ABSTRACT

We present JOG, a framework that facilitates developing Java JIT
peephole optimizations alongside JIT tests. JOG enables developers
to write a pattern, in Java itself, that specifies desired code trans-
formations by writing code before and after the optimization, as
well as any necessary preconditions. Such patterns can be written
in the same way that tests of the optimization are already written
in OpenJDK. JOG translates each pattern into C/C++ code that
can be integrated as a JIT optimization pass. JOG also generates
Java tests for optimizations from patterns. Furthermore, JOG can
automatically detect possible shadow relation between a pair of
optimizations where the effect of the shadowed optimization is
overridden by another. Our evaluation shows that JOG makes it
easier to write readable JIT optimizations alongside tests without
decreasing the effectiveness of JIT optimizations. We wrote 162
patterns, including 68 existing optimizations in OpenJDK, 92 new
optimizations adapted from LLVM, and two new optimizations that
we proposed. We opened eight pull requests (PRs) for OpenJDK,
including six for new optimizations, one on removing shadowed
optimizations, and one for newly generated JIT tests; seven PRs
have already been integrated into the master branch of OpenJDK.

CCS CONCEPTS

• Software and its engineering→ Just-in-time compilers;Do-
main specific languages; Software testing and debugging; Formal
software verification; Source code generation.

KEYWORDS

Just-in-time compilers, code generation, peephole optimizations

ACM Reference Format:

Zhiqiang Zang, Aditya Thimmaiah, and Milos Gligoric. 2023. Pattern-Based
Peephole Optimizations with Java JIT Tests. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
’23), July 17–21, 2023, Seattle, WA, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3597926.3598038

1 INTRODUCTION

Peephole optimization [21, 24] is an optimization technique per-
formed on a small set of instructions (known as a window), e.g.,
A + A is transformed to A << 1. Popular compilers such as GCC,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ISSTA ’23, July 17–21, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0221-1/23/07.
https://doi.org/10.1145/3597926.3598038

1 @Test

2 @IR(failOn = {IRNode.ADD})

3 @IR(counts = {IRNode.SUB, "1"})

4 // Checks (a - b) + (c - a) => (c - b)

5 public long test8(long a, long b, long c) {

6 return (a - b) + (c - a);

7 }

Figure 1: An example JIT test available in OpenJDK.

LLVM, and Java JIT, include dozens if not hundreds of peephole
optimizations [3, 17, 29].

Traditionally, each peephole optimization is implemented as a
compiler pass. Each compiler pass detects windows, i.e., a sequence
of instructions that can be optimized, and replaces each window
with an equivalent, albeit more efficient, sequence of instructions.
These implementations are written in the language in which the
compiler is implemented (C/C++ for Java JIT) and they leverage
compiler infrastructure to detect instructions of interest. Repre-
sentation of these instructions inside the compiler infrastructure
is substantially different from code written in the programming
language itself [19]. This disconnect introduces a burden on com-
piler developers to perform proper reasoning to detect windows
of interest, to do the instruction mapping from high-level code
(what developers write) to low-level code, and to document their
intention. The process is tedious and error prone.

Alive [19] was an improvement over the traditional approach:
a developer writes patterns in a domain specific language (DSL)
over the intermediate representation (IR) of the program (LLVM
bitcode) which are then translated into compiler passes. The DSL
used in Alive is still very much disconnected from code written in
the programming language being optimized (C++). This disconnect
introduces a steep learning curve and lacks most of common soft-
ware tools, e.g., an IDE. Alive also focused on C++ intricacies and
undefined behavior.

Our insight is that many peephole optimizations can be expressed
in the programming language that is being optimized (e.g., Java).
We found the motivation in existing tests for Java JIT. Most tests
for JIT optimizations in OpenJDK are written in Java and some of
the tests contain Java code that follows specific patterns so as to
trigger the optimizations under test [28]. Figure 1 shows such a JIT
test from OpenJDK, which triggers the peephole optimization that
transforms (a - b) + (c - a) into c - b, by returning (a - b) + (c

- a) (line 6). Such a pattern expresses, in Java code, the window to
be recognized by a specific optimization. We propose to extend this
concept to use the patterns not only to write tests but to express the
entire optimization, including code before and after the optimization.

We present JOG, the first framework that enables developers to
write optimization patterns in a high-level language (Java). Namely,
using JOG, a Java JIT compiler developer writes optimization pat-
terns as Java statements. Patterns are type-checked (by the Java

https://doi.org/10.1145/3597926.3598038
https://doi.org/10.1145/3597926.3598038

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Zhiqiang Zang, Aditya Thimmaiah, and Milos Gligoric

compiler) and automatically translated into compiler passes (by
JOG). Additionally, Java tests for the optimizations can be automat-
ically generated from the patterns. Writing patterns in Java for the
Java JIT compiler ensures that sequences of statements are mean-
ingful, i.e., windows can indeed appear in programs (which is not
necessarily the case when matching intermediate representation or
compiler abstractions). Next, writing patterns in Java simplifies the
reasoning behind each peephole optimization: what used to be com-
ments documenting an optimization inside the Java JIT compiler
for dozens of lines of code, or what used to be a test that describes
how to trigger an optimization, becomes a self-documenting pat-
tern. Finally, while writing patterns in JOG, a developer can use
software engineering tools available for the language (e.g., IDE,
linter). Having patterns in Java also enables future application of
program equivalence checkers that work on either Java code or
bytecode (which can be easily obtained by compiling JOG patterns).

Furthermore, conciseness of patterns makes it easier to analyze
relations between optimizations. JOG automatically detects possible
shadow relation between a pair of optimizations where the effect
of the shadowed optimization is overridden by another. Consider
two optimizations 𝑋 and 𝑌 : 𝑋 transforms (a - b) + (c - d) into
(a + c) - (b + d) and 𝑌 transforms (a - b) + (b - c) into a -

c, where a, b, c, d are all free variables. Note that any expression
matching (a - b) + (b - c) (𝑋) also matches (a - b) + (c - d)

(𝑌), which means 𝑋 can be applied wherever 𝑌 can be applied, so
the effect of 𝑋 will shadow 𝑌 if 𝑋 is always applied before 𝑌 in a
compiler pass. JOG can automatically report the shadow relations.

Using JOG, we wrote a total of 162 optimization patterns, includ-
ing 68 existing optimizations in OpenJDK, 92 new optimizations
adapted from LLVM, and two new optimizations. Most of the pat-
terns that we extracted from OpenJDK were existing tests of the
optimizations, or they were hand-written as examples in the com-
ments documenting the C/C++ implementation. Our most complex
pattern has only 115 characters in contrast to the 462 characters of
its C/C++ counterpart. Our evaluation shows that generating code
from patterns using JOG does not reduce the effectiveness of JIT
optimizations. We also identified a bug in existing Java JIT as one
optimization was unreachable as a consequence of being shadowed
by another.

Recently, we have opened a group of eight pull requests (PRs) for
OpenJDK (six for new optimizations, one for fixing the aforemen-
tioned shadowed optimizations, and one for new JOG generated
JIT tests of existing optimizations). Seven of the PRs were already
accepted and integrated into the master branch; the remaining
PR is under review. We intend on opening PRs on the remaining
optimizations in the future.

The main contributions of this paper include the following:

• We present JOG, the first framework that allows developers to
specify a Java JIT peephole optimization as a pattern written in
Java itself, extending the existing approach to writing tests for
JIT. The pattern is automatically translated into C/C++ code as
a JIT optimization pass, and a Java test for the optimization is
generated from the pattern as needed.

• JIT optimizations written in JOG is easier to read and understand.
We translated 68 existing patterns in OpenJDK. The evaluation

shows a 64% reduction in characters of code and a 53% reduction
in the number of identifiers in code when writing optimizations
in JOG relative to existing hand-written code in OpenJDK.

• Code generated from JOG maintains the effectiveness of JIT opti-
mizations. The evaluation shows that the impact on performance
is minimal on replacing existing hand-written code in OpenJDK
with JOG generated code for existing patterns. We also wrote 92
new patterns adapted from LLVM. A total of six PRs on the new
patterns were opened, of which five PRs have been integrated
into the master branch of OpenJDK.

• We present an algorithm to determine if one optimization shad-
ows another written in patterns using JOG. We ran the algorithm
on all the translated patterns to detect shadows between patterns.
We opened one PR on removing shadowed patterns that has been
integrated into the master branch of OpenJDK.

• JIT tests generated from JOG complements existing test suites
in OpenJDK. We generated tests for existing optimizations in
OpenJDK and opened one PR to add 10 new tests for existing
untested optimizations in OpenJDK.

We believe that JOG enables developers to quickly write and evalu-
ate a large number of peephole optimizations by writing patterns
in a familiar programming language and very much similar to the
way the existing tests for JIT are written. JOG is publicly available
at https://github.com/EngineeringSoftware/jog.

2 EXAMPLE

The IR test, written in Java using IR test framework [30], is a recom-
mended approach in OpenJDK to testing JIT peephole optimizations.
We already showed such a test in Figure 1. While the test runs, the
method annotated by @Test (test8) is compiled by JIT, with the
expression (a - b) + (c - a) optimized to c - b. Then the IR shape
of the compiled method is checked against certain rules specified in
@IR (line 2–3). The rules verify that the optimization from (a - b)

+ (c - a) to c - b indeed happens, by checking that the compiled
method must not contain ADD node (line 2) and must have exactly
one SUB node (line 3).

Using JOG, developers can write the optimization under test in
the same way as in the already existing test. Figure 2a shows a
pattern written using JOG that expresses the optimization, which
is a Java method annotated with @Pattern. The parameters of the
method declare all the variables (line 2 in Figure 2a), a, b, and c, that
are used in the method body. Parameter type long indicates the data
type involved in the optimization. Two API calls inside the method
body, before((a - b) + (c - a)) (line 3 in Figure 2a) and after(c

- b) (line 4 in Figure 2a), specify the matched expression before the
optimization and the transformed expression after the optimization,
respectively. Both before and after API call are written in the same
way as the existing test is written. before((a - b) + (c - a))

directly uses existing test code from return (a - b) + (c - a);

(line 6 in Figure 1), and after(c - b) is extracted from the comment
// Check (a - b) + (c - a) => (c - b) (line 4 in Figure 1).

Because the pattern and the test are written in the same way, not
only does JOG provide an intuitive way to express an optimization,

https://github.com/EngineeringSoftware/jog

Pattern-Based Peephole Optimizations with Java JIT Tests ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

1 @Pattern

2 public void ADD8(long a, long b, long c) {

3 before((a - b) + (c - a));

4 after(c - b);

5 }

(a) Pattern written using JOG.

1 Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {...

2 Node* in1 = in(1);

3 Node* in2 = in(2);

4 int op1 = in1->Opcode();

5 int op2 = in2->Opcode();

6 if (op1 == Op_SubL) {...

7 // Convert "(a-b)+(c-a)" into "(c-b)"

8 - if (op2 == Op_SubL && in1->in(1) == in1->in(2)) {

9 + if (op2 == Op_SubL && in1->in(1) == in2->in(2)) {

10 return new SubLNode(in2->in(1), in1->in(2));

11 }

12 }...

13 }

(b) Hand-written code (with bug) in OpenJDK.

1 Node *AddLNode::Ideal(PhaseGVN *phase, bool can_reshape) {...

2 Node* _JOG_in1 = in(1);

3 Node* _JOG_in11 = _JOG_in1 != NULL && 1 < _JOG_in1->req() ?

4 _JOG_in1->in(1) : NULL;

5 Node* _JOG_in12 = _JOG_in1 != NULL && 2 < _JOG_in1->req() ?

6 _JOG_in1->in(2) : NULL;

7 Node* _JOG_in2 = in(2);

8 Node* _JOG_in21 = _JOG_in2 != NULL && 1 < _JOG_in2->req() ?

9 _JOG_in2->in(1) : NULL;

10 Node* _JOG_in22 = _JOG_in2 != NULL && 2 < _JOG_in2->req() ?

11 _JOG_in2->in(2) : NULL;

12 if (_JOG_in1->Opcode() == Op_SubL

13 && _JOG_in2->Opcode() == Op_SubL

14 && _JOG_in11 == _JOG_in22) {

15 return new SubLNode(_JOG_in21, _JOG_in12);

16 }...

17 }

(c) Code generated from JOG.

Figure 2: An example of a peephole optimization as imple-

mented in OpenJDK and JOG, and associated test.

without writing any extra code, but also it can automatically gener-
ate the test from the pattern. First the @Testmethod declares exactly
the same free variables as the pattern (long a, long b, long c), and
returns exactly before’s expression in the pattern (return (a - b) +

(c - a);). Next JOG analyzes before((a - b) + (c - a)) and after(c

- b) in the pattern, (1) to find in after the numbers of operators
(one SUB) and (2) to find which operators disappear from before to
after (ADD). JOG then maps the operators to the corresponding IR
node types used in IR tests and makes @IR annotations (@IR(counts
= IRNode.SUB, “1”) and @IR(failOn = IRNode.ADD)). Eventually the
exactly same test as shown in Figure 1 can be generated from the
JOG pattern.

More importantly, JOG automatically translates a pattern into
the C/C++ code that can be directly included in a JIT optimization
pass. Figure 2c shows the C/C++ code translated by JOG from the
pattern, and Figure 2b shows the hand-written code extracted from
OpenJDK, that implements the same JIT peephole optimization that

Pattern := MethodModifier* MethodHeader MethodBody

MethodHeader := "void" Identifier "(" FormalParameterList ")"

MethodBody := "{" Stmt* "}"

Stmt := BeforeStmt | AfterStmt | IfStmt | AssignStmt

BeforeStmt := before "(" expression ")" ;

AfterStmt := after "(" expression ")" ;

Figure 3: JOG Syntax. Thenon-terminals that are not defined

in the figure share the same definition as Java [11].

transforms (a - b) + (c - a) into c - b. The implementation
contains two steps: (A)match any expression that is of interest to the
optimization and (B) return a new optimized equivalent expression.
In this example, any matched expression satisfies the following four
conditions: (1) the expression is an addition expression (implicitly
line 1 in Figure 2b because the method works only inside an additive
expression); (2) the left operand (a - b) is a subtraction expression
(line 6 in Figure 2b); (3) the right operand (c - a) is also a subtraction
expression (line 9 in Figure 2b); (4) the left operand of the left
sub-expression (a) is equal to the right operand of the right sub-
expression (a again) (line 9 in Figure 2b). After a match is found, the
code constructs a new subtraction expression (c - b) using b and c,
and returns it. The transformation reduces the cost of evaluating
the expression by two operations, from two subtractions and one
addition to only one subtraction. Interestingly, this code has a bug
(in OpenJDK) because of wrong access to the right operand of the
right sub-expression, which is supposed to be in2->in(2) while
developers wrote it as in1->in(2). It took 13 years to discover and
fix the bug; line 8 was inserted in 2008 and had been not touched
until 2021 [41]. If the optimization had rather been implemented
using JOG, the bug could have been avoided.

JOG reads from before and after APIs the expressions to match
and return, respectively. JOG analyzes the expressions to infer the
conditions to check and to infer the new expression to construct,
and eventually assembles everything in C/C++ code as the output.
Figure 2c shows the code generated from the pattern in Figure 2a.
The generated code keeps the same functionality while avoiding
the bug in the hand-written code of Figure 2b.

3 JOG FRAMEWORK

This section describes the JOG framework in detail. We describe the
syntax for writing patterns, semantics of the statements, translation
details, and test generation from patterns.

3.1 Syntax

Figure 3 defines the syntax of JOG, which is a subset of Java (for non-
terminals that are not defined in the figure, please refer to the Java
grammar [11]). Every optimization is written as a method in Java,
which we call a pattern. The method body contains several state-
ments. Each statement can be BeforeStmt, AfterStmt, conditional
or assignment. We introduce BeforeStmt to specify the expression
that a pattern has to match, and we introduce AfterStmt to specify
the optimized expression as a result of applying the optimization.

3.2 Semantics

The parameters of the method declare the variables used in the pat-
tern. There are two types of variables: constant and free. A constant

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Zhiqiang Zang, Aditya Thimmaiah, and Milos Gligoric

variable represents a literal (e.g., 42); a free variable represents any
expression, including literals. A parameter declares a free variable
unless explicitly declared as a constant variable.

The semantics of a pattern is a peephole optimization that trans-
forms a certain set of instructions into another set of instructions.
Thus, a pattern must have one BeforeStmt and one AfterStmt. Both
statements contain an expression. The expression inside BeforeStmt
defines the set of instructions that can be transformed by the op-
timization, and the expression inside AfterStmt defines the set of
instructions as a result of the optimization. It is possible that the
optimization is supposed to be applied only under certain precondi-
tions. Any necessary precondition can be specified as the condition
of an IfStmt, and either BeforeStmt or AfterStmt can be included in
the “then” branch of such IfStmt. To ensure every pair of BeforeStmt
and AfterStmt match with each other, AfterStmt must be either a
sibling node of BeforeStmt after it (in sequential order) or a de-
scendant of such a sibling node, e.g., if ([COND]) {BeforeStmt}

AfterStmt is not a valid pattern because the AfterStmt is neither a
sibling node of BeforeStmt, nor a descendant of such a sibling node.

3.3 Translation

We implement JOG in the Java programming language and provide
twoAPI annotations, @Pattern and @Constant, and twoAPImethods,
void before(int expression) and void after(int expression) (int
can also be long), to express a pattern. We also reuse Java constructs
to make it easier to write a pattern, such as if statements and
assignments.

A pattern is recognized by a method annotated with @Pattern.
All variables used in the body of the method must be declared as
parameters of the method. A parameter can be annotated with
@Constant to indicate that the parameter represents a constant vari-
able rather than a free variable. A valid pattern requires a before

method call and an after method call in the method body and it
may contain if statements for preconditions or assignments for
local re-assignment of variables.

JOG starts translating a pattern by parsing the expression from
before API and constructing an eAST (extended abstract syntax
tree, which is strictly a directed acyclic graph) for the expression.
During the construction, JOG maintains a map from identifiers in
the expression, such as variables or number literals, to leaf nodes in
the eAST. This map is then used to construct the eAST for the ex-
pression from after API or any preconditions, because JOG reuses
the same node in before when seeing the same identifier in after

API or preconditions, to ensure the correct transformation from
before to after. Figure 4 shows the eASTs for the before’s and
after’s expression of pattern ADD8 (Figure 2a).

JOG next translates eASTs into C/C++ code that can be included
in a JIT optimization pass. As we have seen in Section 2, the gener-
ated C/C++ code consists of an if statement. The condition of the
if statement is the conjunction of all the conditions that have to
be satisfied for any expression to be matched by the pattern. The
then branch of the if statement ends with a return statement that
returns an optimized expression. JOG first traverses before’s eAST,
and for every node in the eAST JOG translates the path from the
root to the node into a pointer access chain in C/C++ (line 2–11
in Figure 2c). For example, node 𝑏 in Figure 4a can be accessed

+

- -

a b c

𝑟𝑏

𝑝 𝑞

𝑎 𝑏 𝑐

(a) eAST of before expression.

-

c b

𝑟𝑎

𝑐 𝑏

(b) eAST of after expression.

Figure 4: eASTs for pattern ADD8 in Figure 2a.

by in(1)->in(2). Note one node could be accessed in more than
one way, and JOG always picks the smallest one in lexicographic
order. Considering node 𝑎 in in Figure 4a, which is both the left
child of node 𝑝 (in(1)) and the right child of node 𝑞 (in(2)), this
node can be accessed by both in(1)->in(1) and in(2)->in(2), JOG
translates the node into in(1)->in(1). Next, JOG generates the con-
ditions. JOG traverses before’s eAST again to generate operator
check and possible constant check, for example, checking subtrac-
tion operators for node 𝑝 , _JOG_in1->Opcode() == Op_SubL (line 12
in Figure 2c), and 𝑞, _JOG_in2->Opcode() == Op_SubL (line 13 in
Figure 2c), where _JOG_in1 = in(1) and _JOG_in2 = in(2). Also,
JOG generates same-node check for any node that can be accessed
in more than one way from the root. For instance, node 𝑎 in Fig-
ure 4a results in the condition _JOG_in11 == _JOG_in22 (line 14
in Figure 2c), where _JOG_in11 = in(1)->in(1) and _JOG_in22 =

in(2)->in(2). Additionally, if the pattern provided contains any if

conditions, i.e., the specified optimization requires preconditions,
JOG translates the eASTs of the preconditions into conditions in
C/C++ code in the same way.

To translate after’s eAST, JOG performs a Depth-First Search
(DFS). Every leaf node in after’s eAST is shared with before’s
eAST so JOG reuses the pointer access chain for the node, i.e.,
_JOG_in21 for node 𝑐 and _JOG_in22 for node 𝑏 in Figure 4b. For an
internal node in after’s eAST, JOG instantiates a new expression
according to the operator of the node. For example, node 𝑟𝑎 in
Figure 4b leads to new SubLNode(_JOG_in21, _JOG_in12) (line 15 in
Figure 2c). Finally JOG generates a return statement that returns the
instantiation generated for the root node as translation of after’s
eAST.

With before’s and preconditions’ eASTs translated into condi-
tions and after’s eAST translated into a return statement, JOG
encapsulates them in an if statement (line 12–16 in Figure 2c) and
prepend proper variable declarations (line 2–11 in Figure 2c). This
concludes the translation of one pattern. When there are multiple
patterns, JOG translate them in the order of the patterns written in
the file provided.

3.4 Test Generation

Writing the pattern in the same way that the existing test is written
allows JOG to generate an IR test from the pattern. We next de-
scribe the process of test generation using the example in Figure 1.
Although the test is an already existing IR test in OpenJDK, JOG
can generate exactly the same test from the pattern (Figure 2a).

The @Testmethod first declares exactly the same free variables as
the pattern (long a, long b, long c), and returns exactly before’s

Pattern-Based Peephole Optimizations with Java JIT Tests ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

+

- -

a b c d

𝑥1

𝑥2 𝑥5

𝑥3 𝑥4 𝑥6 𝑥7

+

- -

a b c

𝑦1

𝑦2 𝑦5

𝑦3 𝑦4 𝑦6

@Pattern

public void ADD2(int a, int b,

int c, int d) {

before((a - b) + (c - d));

after((a + c) - (b + d));

}

@Pattern

public void ADD7(int a, int b,

int c) {

before((a - b) + (b - c));

after(a - c);

}

𝐵𝑥 : (a - b) + (c - d) 𝐵𝑦 : (a - b) + (b - c)

Φ𝑥 (Constraints on
shape of eAST 𝐵𝑥):
𝑥1 = tree (+) 𝑥2 𝑥5
∧ 𝑥2 = tree (+) 𝑥3 𝑥4
∧ 𝑥5 = tree (+) 𝑥6 𝑥7

Φ𝑦 (Constraints on
shape of eAST 𝐵𝑦):
𝑦1 = tree (+) 𝑦2 𝑦5

∧ 𝑦2 = tree (+) 𝑦3 𝑦4

∧ 𝑦5 = tree (+) 𝑦4 𝑥6

Ψ (Equivalence between eAST 𝐵𝑥 and 𝐵𝑦):
𝑥1 = 𝑦1 ∧ 𝑥2 = 𝑦2 ∧ 𝑥3 = 𝑦3 ∧ 𝑥4 = 𝑦4 ∧ 𝑥5 = 𝑦5 ∧ 𝑥6 = 𝑦4 ∧ 𝑥7 = 𝑦6

𝐹 (Final SMT formula to specify the relation of 𝑋 shadowing 𝑌):
∀𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6 . Φ𝑦 ⇒ ∃𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7 . Φ𝑥 ∧ Ψ

Figure 5: Illustration of shadow detecting algorithmon patternADD2 (𝑋) shadowingADD7 (𝑌). Every eAST node is represented

by a variable, and the dashed lines connect equivalent nodes (e.g., 𝑥1 is equivalent to 𝑦1). The formula 𝐹 shows the final SMT

formula that specifies the shadow relation.

expression in the pattern (return (a - b) + (c - a);). One exception
is that when the pattern has a constant variable (Section 3.3), JOG
uses a random number to substitute the constant variable. Next JOG
analyzes before and after in the pattern. JOG searches in after’s
eAST (c - b) to count the number of operators (one SUB), and
compares before’s and after’s eASTs to obtain the operators that
exist in before but not in after (ADD). JOG then maps the operators
to the corresponding IR node types used in IR tests and makes
@IR annotations (@IR(counts = IRNode.SUB, “1”) and @IR(failOn =

IRNode.ADD)).
Our current implementation does not generate tests for the pat-

terns with preconditions that specify invariants between variables.
For example, a pattern rewritten from OpenJDK [39] that trans-
forms (x >>> C0) + C1 to (x + (C1 << C0)) >>> C0) requires a
precondition C0 < 5 && -5 < C1 && C1 < 0 && x >= -(y << C0).
A random integer number would not be a good test input for con-
stant variable C0 or C1 in the pattern because it cannot satisfy the
precondition so as to trigger the optimization. We plan to leverage
constraint solvers [8] to obtain valid test inputs for such tests in
future work.

4 SHADOWING OPTIMIZATIONS

Java JIT compilers contain a large number of peephole optimiza-
tions. The maintenance becomes difficult as new optimizations are
included. When developers want to add a new optimization, they
have to be careful that this optimization’s effect is not overridden
by some existing optimization. Consider two optimizations X and
Y in an optimization pass, which are sequentially placed, i.e., X
followed by Y. If the set of instructions that Y matches is a subset of
the set of instructions that X matches, then Y will never be invoked
because X is always invoked before Y for any matched instructions.
In this case, we say X shadows Y or Y is shadowed by X. For example,

1: Input: 𝑋 , 𝑌 : Pattern
2: Output: 𝑟𝑒𝑠 ∈ {YES,NO,UNKNOWN } if 𝑋 shadows 𝑌
3: function Determine(𝑋 , 𝑌)
4: 𝐵𝑥 ← before(𝑋)
5: 𝐵𝑦 ← before(𝑌)
6: if not SameShape(𝐵𝑥 , 𝐵𝑦) then
7: return NO
8: Define a recursive data type𝑇 with two constructors:

nil : int→ 𝑇

tree : opcode𝑇 𝑇 → 𝑇

9: 𝑉 𝑥 ,𝑀𝑥 ← CreateNewVariables(𝐵𝑥 ,𝑇)
10: 𝑉 𝑦 ,𝑀𝑦 ← CreateNewVariables(𝐵𝑦 ,𝑇)
11: Φ𝑥 ← ConstrainShape(𝐵𝑥 ,𝑀𝑥)
12: Φ𝑦 ← ConstrainShape(𝐵𝑦 ,𝑀𝑦)
13: Ψ← ConstrainEqivalence(𝐵𝑥 , 𝐵𝑦 ,𝑀𝑥 ,𝑀𝑦)
14: 𝐹 ←∀𝑣𝑦∈𝑉 𝑦 . Φ𝑦 ⇒ ∃𝑣𝑥 ∈𝑉𝑥 . Φ𝑥 ∧ Ψ
15: return Prove(𝐹)

Figure 6: Shadow determining algorithm.

Figure 5 shows such a pair of optimizations written in patterns,
where pattern ADD2 shadows pattern ADD7.

The shadow problem between two arbitrary optimizations writ-
ten in patterns X and Y can be rewritten as: for any expression
matched by Y, does X match the expression. JOG encodes the prob-
lem into an SMT formula and solves it using an SMT solver (Z3[8]).
Figure 6 shows the overall algorithm, which we explain using a
running example in Figure 5.

The algorithm first extracts before’s eASTs (𝐵𝑥 and 𝐵𝑦) from
pattern 𝑋 and 𝑌 , respectively (line 4–5), and then checks if 𝐵𝑥
and 𝐵𝑦 share the same shape (line 6). In the running example
from Figure 5, 𝐵𝑥 matches 𝐵𝑦 node-by-node, except node 𝑏 in
𝐵𝑦 corresponds to both nodes 𝑏 and 𝑐 in 𝐵𝑥 . Note that function
SameShape performs a weak instead of exact matching on node types,
which allows a leaf node to match with an internal node because a
leaf nodemay represent an expression aswell as a variable. Consider
an expression ((e + f) - b) + (c - d), pattern ((a - b) + (c - d)

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Zhiqiang Zang, Aditya Thimmaiah, and Milos Gligoric

=> (a + c) - (b + d)) can still match the expression if we replace
a with e + f.

If 𝐵𝑥 and 𝐵𝑦 have different shapes, the algorithm will immedi-
ately return NO for the final result (line 7), i.e, 𝑋 does not shadow
𝑌 . To have such a rough shape check helps the algorithm more
efficiently determine the shadow relation for two totally different
patterns, which is common in practice. However, having the same
shape does not necessarily mean 𝑋 shadows 𝑌 , i.e., any expression
matched by 𝐵𝑦 can also be matched by 𝐵𝑥 . Consider two patterns
𝑈 , a + a => · · · , and 𝑉 , a + b => · · · , 𝑈 and 𝑉 share the same
shape but𝑈 does not shadow 𝑉 . A counterexample is expression
1 + 2 which is matched by 𝑉 but not𝑈 .

To further solve the shadow problem, we describe it formally
as: for all expression 𝐸𝑦 matched by 𝑌 , can we always construct
another expression 𝐸𝑥 matched by 𝑋 and ensure that the two ex-
pressions are equivalent? If the answer is yes, then 𝑋 shadows 𝑌 ;
otherwise 𝑋 does not shadow 𝑌 . Note that we say two expressions
are equivalent iff they have exactly the same eAST. We make such
definition because JIT checks the structure of an expression, rather
than evaluate the expression, to determine if an optimization can be
applied on the expression. If two expressions are equivalent, they
are evaluated to the same value, but the converse does not hold. For
example, expression a + b and a + (b + 0) are always evaluated to
the same value but they are not equivalent in our definition. Thus,
with this definition of equivalence, the target SMT formula we want
to construct is:

∀𝐸𝑦 .
(
𝑌 matches 𝐸𝑦

)
⇒ ∃𝐸𝑥 . (𝑋 matches 𝐸𝑥) ∧

(
𝐸𝑥 = 𝐸𝑦

)
.

First we construct the formulas for 𝑌 (𝑋) matching 𝐸𝑦 (𝐸𝑥). We
need to encode 𝐵𝑦 into a list of constraints that 𝐸𝑦 needs to satisfy
in order to be matched. We define a recursive data type 𝑇 with
two constructors: (1) terminal constructor nil with no argument,
and (2) non-terminal constructor tree with the opcode and all the
operands as arguments (line 8). We also create a variable with
type 𝑇 for every node in the eAST (line 9 and 10). In our example,
the nodes in eAST 𝐵𝑥 are represented by variables 𝑥1 to 𝑥7. Next,
we encode the shape of the eAST into several constraints (line 11
and 12). For example, the root node of 𝐵𝑥 and its two children in
Figure 5 satisfies the constraint 𝑥1 = tree (+) 𝑥2 𝑥5, where 𝑥1, 𝑥2,
𝑥5 is the variable mapped to the root node, the left child, and the
right child, respectively. We traverse the entire eAST to add one
such constraint for every internal node. Specifically, for a node
that represents a constant or number literals, we include an extra
constraint on the value contained using the terminal constructor
nil. Figure 5 lists the constraints encoded from eAST 𝐵𝑥 and 𝐵𝑦 ,
resulting in Φ𝑥 and Φ𝑦 , respectively.

Next, we encode equivalence between 𝐵𝑥 and 𝐵𝑦 into formulas
(line 13). We perform a DFS on both eASTs at the same time and
add one equivalence relation, in terms of the variables of type 𝑇
mapped, for every pair of nodes visited, e.g., that the root nodes of
𝐵𝑥 and 𝐵𝑦 are equivalent is encoded into 𝑥1 = 𝑦1. For our running
example, every dashed line in Figure 5 connects two equivalent
nodes, and Ψ conjoins all the equivalence constraints between 𝐵𝑥

and 𝐵𝑦 .
With all the constraints ready, we now assemble them into the

complete SMT formula (line 14). The final formula 𝐹 for our running

example is

∀𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6 . Φ𝑦 ⇒ ∃𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7 . Φ𝑥 ∧ Ψ,

where Φ𝑥 is

(𝑥1 = tree (+) 𝑥2 𝑥5)∧(𝑥2 = tree (+) 𝑥3 𝑥4)∧(𝑥5 = tree (+) 𝑥6 𝑥7) ,

Φ𝑦 is

(𝑦1 = tree (+) 𝑦2 𝑦5)∧(𝑦2 = tree (+) 𝑦3 𝑦4)∧(𝑦5 = tree (+) 𝑦4 𝑥6) ,

and Ψ is (𝑥1 = 𝑦1) ∧ (𝑥2 = 𝑦2) ∧ (𝑥3 = 𝑦3) ∧ (𝑥4 = 𝑦4) ∧ (𝑥5 = 𝑦5) ∧
(𝑥6 = 𝑦4) ∧ (𝑥7 = 𝑦6). Proving the formula then answers whether
𝑋 shadows 𝑌 (line 15). If the formula is valid, then function Prove

returns YES, i.e., 𝑋 shadows 𝑌 ; if the formula is not valid, then
Prove returns NO, i.e., 𝑋 does not shadow 𝑌 ; if the SMT solver
is not able to determine the outcome before timeout, then Prove

returns UNKNOWN. In our example, for any set of𝑦 variables, there
always exist a set of 𝑥 variables such that the entire formula holds,
e.g., 𝑥1 ← 𝑦1, 𝑥2 ← 𝑦2, 𝑥3 ← 𝑦3, 𝑥4 ← 𝑦4, 𝑥5 ← 𝑦5, 𝑥6 ← 𝑦4,
𝑥7 ← 𝑦6. Thus, the formula 𝐹 is proven, so 𝑌𝐸𝑆 is returned, i.e., 𝑋
shadows 𝑌 .

Neither 𝑋 nor 𝑌 has any preconditions in the example from
Figure 5, but JOG can solve the shadow problem for patterns with
preconditions. We encode eASTs of preconditions in the same way
as eASTs of before. Preconditions may contain equivalence on
values as well as shapes (e.g., a pattern to match 0 - (x + C) with
precondition C != 0 where C is a constant [40]), so we introduce
another set of variables to encode constraints on values. Then we
encode both shape and value constraints, and both shape and value
equivalence. We construct a target SMT formula involved with both
shape and value constraints and equivalence.

5 EVALUATION

We describe the setup of our experiments, quantify code complexity
of patterns written using JOG, show performance comparison with
hand-written optimizations, and describe test generation and our
contributions to OpenJDK.

5.1 Setup

Table 1 is the summary of our work to write 162 patterns us-
ing JOG. For the first category of patterns from OpenJDK, we se-
lected addnode.cpp, subnode.cpp and mulnode.cpp in src/hotspot/-
share/opto/ and we studied Ideal methods defined in these files.
The Idealmethod reshapes the IR graph rooted at this node and re-
turns the reshaped node as an optimized node. Every Idealmethod
may containmany peephole optimizations.We identified and rewrote
68 optimizations into patterns using JOG. For the second cate-
gory of patterns, we studied LLVM’s InstCombine pass that per-
forms numerous algebraic simplifications that improve efficiency,
referring to Alive’s approach [19]. We translated 92 patterns from
InstCombineAddSub.cpp, InstCombineAndOrXor.cpp in llvm/lib/Tra-
nsforms/InstCombine/. When we studied optimizations from source
code files in OpenJDK and LLVM, we followed the order in which
optimizations appear in the files to rewrite them in patterns using
JOG, such that the generated C/C++ code from these patterns will
be in a proper order. Additionally, we proposed two optimizations
and we wrote them as patterns.

Pattern-Based Peephole Optimizations with Java JIT Tests ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

Table 1: Summary of patterns that we wrote in JOG.

#Patterns #OpenJDK #LLVM #Original #PRs

162 68 92 2 7

We ran all experiments on a 64-bit Ubuntu 18.04.1 desktop with
an Intel(R) Core(TM) i7-8700 CPU @3.20GHz and 64GB RAM. The
SHA of OpenJDK repository [42] we used is b334d96 and the SHA
of LLVM repository [18] is 103e1d9.

We evaluate JOG by answering the following research questions:

RQ1: How does JOG compare to hand-written optimizations in
terms of code complexity?

RQ2: How does the code generated from JOG compare in perfor-
mance to existing hand-written code in OpenJDK?

RQ3: How effective is JOG at detecting shadows between patterns?

RQ4: How is JOG used to generate tests from patterns and how
does it contribute to OpenJDK?

We address RQ1 as to better understand the benefit of using JOG to
write optimizations for Java JIT compilers; we use code reduction
(in terms of the number of characters and identifiers) as a proxy
when answering this question. We address RQ2 to understand the
performance of JOG’s generated code compared to hand-written
code; namely, we wanted to understand the impact on the effective-
ness of JIT optimizations. We address RQ3 to study the effectiveness
of JOG for detecting shadowing optimizations. We address RQ4
to evaluate JOG’s test generation from patterns and describe pull
requests we opened for OpenJDK.

5.2 Code Complexity

We select two code features, number of characters and number
of identifiers, as a metric to quantify code complexity of patterns
written using JOG [6]. We count the number of characters and
the number of identifiers for every pattern written using JOG and
its counterpart hand-written in OpenJDK. We exclude any white-
spaces or newlines when counting characters. We exclude any
reserved words in Java or C/C++ languages when counting identi-
fiers, and Figure 7 illustrates the way we count the identifiers using
an earlier example (see section 2). Table 2 compares these numbers
between hand-written C/C++ code in OpenJDK and corresponding
patterns written using JOG. Namely, “Hand-written” means the
hand-written C/C++ code in OpenJDK, and “JOG Pattern” means
Java code in JOG. The columns of “Reduction (%)” show the per-
centage of characters and identifiers reduction from hand-written
C/C++ code to JOG patterns. Additionally, we provide characters
and identifiers of generated C/C++ code from JOG as a reference,
which is shown in the columns of “JOG Generated”.

Using JOG to write patterns instead of directly writing C/C++
code, the total characters written is decreased from 11,000 to 3,987,
and the total identifiers written is decreased from 1,462 to 692. The
characters of hand-written C/C++ code is an underestimate of actual
numbers because in most cases we do not include the additional
lines for declarations of variables due to inconvenience of counting.
Due to the same reason, the identifiers of hand-written C/C++

long a, long b, long c {

1 2 3
before((a - b) + (c - a));

4 5 6 7 8
after(c - b); }

9 10 11

(a) Pattern code written using JOG (Figure 2a).

Node* in1 = in(1);

1 2 3
Node* in2 = in(2);

4 5 6

int op1 = in1->Opcode();

7 8 9
int op2 = in2->Opcode();

10 11 12

if (op1 == Op_SubL) {

13 14
if (op2 == Op_SubL && in1->in(1) == in2->in(2) {

15 16 17 18 19 20

return new SubLNode(in2->in(1), in1->in(2)); } } }

21 22 23 24 25

(b) Hand-written code in OpenJDK (Figure 2b).

Figure 7: Example of identifier counting.

code shown in Table 2 is also an underestimate of actual numbers.
However, using JOG towrite patterns still shows a significant 63.75%
savings in terms of the number of characters and 52.67% savings in
terms of the number of identifiers.

There are few groups of optimizations where we write more
characters and/or identifiers of code to express them in patterns
using JOG. For example, LSHIFT2 is an optimization that transforms
(x >> C0) << C0 into x & -(1 << C0), and LSHIFT3 is a very similar
optimization that transforms (x >>> C0) << C0 into the same result.
In OpenJDK these two optimizations are implemented together by
including both >> and >>> operators, but we write two separate
patterns using JOG, in more lines of code. However, JOG still saves
27.88% characters. We leave how to express the same simplification
as in OpenJDK using JOG as future work.

We also count the number of characters and identifiers of gener-
ated C/C++ code from JOG (see columns of “JOG Generated”). It is
unsurprising that the generated code has much higher numbers of
characters and identifiers than hand-written code, because JOG’s
design of C/C++ code generation prefers consistency to flexibility
of coding style, which will benefit future maintenance. For exam-
ple, is_int() and isa_int() are used interchangeably in OpenJDK
to check if a type is of int, but JOG sticks to isa_int(), which is
recommended, because it returns NULL instead of throwing an asser-
tion failure when the checked type is not int. After all, as long as
generated code keeps the effectiveness of optimizations, it is always
preferred to increase maintainability. We will compare performance
of generated code and hand-written code in Section 5.3.

5.3 Performance

Our objective with RQ2 is to demonstrate that the performance of
JIT does not substantially change when replacing the hand-written
code in OpenJDK with code generated from patterns.

A total of 68 optimizations in OpenJDK are replaced using code
generated from JOG. To evaluate their performance, we use the Re-
naissance benchmark suite [43] which is a benchmark suite for JVM
consisting of 27 individual benchmarks. Some of these benchmarks
(neo4j-analytics) are incompatible with Java 18 (Java version used
in this paper) and are discarded from the experiment. Furthermore,
some benchmarks exhibit large variance in their execution times
across multiple runs. Since such large variances can lead to inac-
curacies in performance evaluation, these benchmarks need to be

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Zhiqiang Zang, Aditya Thimmaiah, and Milos Gligoric

Table 2: Comparison of number of characters and number

of identifiers between hand-written C/C++ code in OpenJDK

and corresponding patterns written using JOG.

Names
Hand-written JOG Generated JOG Pattern Reduction (%)

#Chars #Ids #Chars #Ids #Chars #Ids #Chars #Ids

SUB1 167 24 171 21 47 9 71.86 62.50
SUB2 264 38 412 43 88 17 66.67 55.26
SUB3 340 48 421 45 89 17 73.82 64.58
SUB4 134 20 280 29 38 8 71.64 60.00
SUB5 134 20 280 29 38 8 71.64 60.00
SUB6 134 20 280 29 38 8 71.64 60.00
SUB7 200 31 333 36 48 9 76.00 70.97
SUB8 213 32 395 44 66 10 69.01 68.75
SUB9 169 27 443 45 47 11 72.19 59.26
SUB10 169 27 443 45 47 11 72.19 59.26
SUB11 169 27 443 45 47 11 72.19 59.26
SUB12 169 27 443 45 47 11 72.19 59.26
SUB13 179 26 319 32 71 15 60.34 42.31

SUB14

611 87 1,942 196 188 48 69.23 44.83SUB15
SUB16
SUB17

SUB18 338 48 344 36 38 5 88.76 89.58
ADD1 284 40 443 50 83 13 70.77 67.50
ADD2 290 38 503 51 60 14 79.31 63.16

ADD3 173 25 888 90 94 22 45.66 12.00ADD4

ADD5 173 25 888 90 94 22 45.66 12.00ADD6

ADD7 173 25 443 45 47 11 72.83 56.00
ADD8 173 25 443 45 47 11 72.83 56.00
ADD9 141 21 290 31 38 8 73.05 61.90
ADD10 141 21 290 31 38 8 73.05 61.90
ADD11 462 67 563 65 115 22 75.11 67.16

ADD12

609 85 1,942 196 188 48 69.13 43.53ADD13
ADD14
ADD15

ADD16 710 78 1,530 152 416 44 41.41 43.59ADD17

ADD18 204 29 338 37 34 5 83.33 82.76

OR1 360 38 1,594 157 371 44 -3.06 -15.79OR3

OR2 351 38 1,598 157 375 44 -6.84 -15.79OR4

MIN1 160 25 292 30 83 19 48.12 24.00
AND1 182 25 327 36 33 5 81.87 80.00
LSHIFT1 326 38 490 54 106 15 67.48 60.53

LSHIFT2 165 19 743 80 119 20 27.88 -5.26LSHIFT3

LSHIFT4 279 34 1,059 104 139 26 50.18 23.53LSHIFT5

LSHIFT6 264 28 484 52 92 14 65.15 50.00
RSHIFT1 353 42 479 53 97 14 72.52 66.67
URSHIFT1 303 32 470 55 90 17 70.30 46.88
URSHIFT2 455 55 677 69 90 16 80.22 70.91
URSHIFT3 339 41 472 53 83 14 75.52 65.85
URSHIFT4 246 27 412 44 64 10 73.98 62.96
URSHIFT5 294 39 334 34 54 8 81.63 79.49∑

11,000 1,462 24,941 2,581 3,987 692 63.75 52.67

discarded. To identify these benchmarks, we built a “vanilla” ver-
sion of OpenJDK termed as baseline. Each benchmark is executed

on the baseline build of OpenJDK five times with each execution
consisting of 100 iterations to warm up the JVM and consequently
trigger the JIT optimizations. We then compute the coefficient of
variance (CV) [4] for each benchmark across the five runs by only
considering the last 10 iterations of each run, when JVM is fully
warmed up. Benchmarks with CV exceeding 10% are discarded from
the experiment. Following these two filtering stages, we excluded
17 more benchmarks and the remaining suitable benchmarks used
in the experiment are log-regression, als, page-rank, finagle-http,
scala-kmeans, fj-kmeans, gauss-mix, par-mnemonics and dec-tree.

We now describe the approach used to evaluate the performance
of an optimization. The previously identified benchmarks are exe-
cuted 5 times each on the baseline build with each run once again
consisting of 100 iterations. The baseline execution time for a bench-
mark is then computed by averaging the last 10 iterations over the
5 runs. This procedure is then repeated for each optimization, by
replacing the hand-written code in the baseline source with the
JOG generated code for the corresponding optimization, to yield
the execution time of the benchmarks for that optimization build. A
relative difference measure as shown below is then used to evaluate
the performance of an optimization (JOG generated) relative to
baseline (hand-written):

timehand-written − timegenerated
timehand-written

����
benchmark

where timehand-written/timegenerated is the average execution time
of a benchmark based on bootstrap re-sampling [9] from 50 total exe-
cutions, i.e., last 10 iterations over 5 runs, of hand-written/generated
code. Figure 8 shows the percentage speedup of JOG generated
code relative to hand-written code for every group of optimizations
in Table 2 and the filtered subset of benchmarks. A positive speedup
of generated code relative to hand-written code is marked with an
up arrow and a negative speedup (slowdown) with a down arrow.
Based on the results of significant difference testing using boot-
strap re-sampling, those without statistically significant difference
(𝑝 = 0.05) between JOG generated and hand-written are marked
with circles. From Figure 8, most of benchmarks show no signifi-
cant difference or small differences within the range of 5%. Some
benchmarks, e.g., fj-kmeans and gauss-mix, show more differences.
We investigated the benchmarks and found such differences even
existed when comparing results of baselines between two exper-
iments, which indicates such benchmarks are more sensitive to
noise. Overall, the execution times of OpenJDK build for the Renais-
sance suite with JOG generated code is comparable in performance
to that with hand-written code.

5.4 Shadow between Patterns

Recall that JOG is able to check if one pattern shadows another pat-
tern (Section 4). We check each pair of patterns (total 162 patterns)
to evaluate JOG’s effectiveness on detecting shadows between pat-
terns. We set a timeout with 2 seconds for every check of two
patterns and all checks finish within the given time and return
definite results (YES or NO, without UNKNOWN as defined in Fig-
ure 6). Table 3 enumerates all 9 pairs of patterns where one shadows
the other (JOG returned YES). In every row, “Shadowing” pattern
shadows “Shadowed” pattern. The column of “Before” shows the ex-
pression in beforeAPI, which is the expression to be matched in the

Pattern-Based Peephole Optimizations with Java JIT Tests ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

lo
g-

re
gr

es
si
on

 (
3

▴,
 3

 ▾
, 3

5
∙)

al
s
(0

 ▴
, 1

0
▾,
 3

1
∙)

pa
ge

-r
an

k
(1

7
▴,
 3

 ▾
, 2

1
∙)

fin
ag

le
-h

tt
p

(1
2

▴,
 6

 ▾
, 2

3
∙)

sc
al
a-

km
ea

ns
 (
12

 ▴
, 9

 ▾
, 2

0
∙)

fj-
km

ea
ns

 (
0

▴,
 2

9
▾,
 1

2
∙)

ga
us

s-
m

ix
 (
0

▴,
 3

3
▾,
 8

 ∙
)

pa
r-
m

ne
m

on
ic
s
(1

9
▴,
 7

 ▾
, 1

5
∙)

de
c-

tr
ee

 (
0

▴,
 9

 ▾
, 3

2
∙)

SUB1 (1 ▴, 3 ▾, 5 ∙)

SUB2 (2 ▴, 6 ▾, 1 ∙)

SUB3 (2 ▴, 5 ▾, 2 ∙)

SUB4 (2 ▴, 2 ▾, 5 ∙)

SUB5 (2 ▴, 3 ▾, 4 ∙)

SUB6 (1 ▴, 4 ▾, 4 ∙)

SUB7 (2 ▴, 2 ▾, 5 ∙)

SUB8 (2 ▴, 3 ▾, 4 ∙)

SUB9 (2 ▴, 1 ▾, 6 ∙)

SUB10 (1 ▴, 3 ▾, 5 ∙)

SUB11 (1 ▴, 3 ▾, 5 ∙)

SUB12 (2 ▴, 3 ▾, 4 ∙)

SUB13 (2 ▴, 1 ▾, 6 ∙)

SUB14, SUB15, SUB16, SUB17 (0 ▴, 5 ▾, 4 ∙)

SUB18 (1 ▴, 2 ▾, 6 ∙)

ADD1 (2 ▴, 3 ▾, 4 ∙)

ADD2 (1 ▴, 3 ▾, 5 ∙)

ADD3, ADD4 (1 ▴, 3 ▾, 5 ∙)

ADD5, ADD6 (4 ▴, 3 ▾, 2 ∙)

ADD7 (1 ▴, 3 ▾, 5 ∙)

ADD8 (0 ▴, 4 ▾, 5 ∙)

ADD9 (1 ▴, 1 ▾, 7 ∙)

ADD10 (2 ▴, 1 ▾, 6 ∙)

ADD11 (2 ▴, 3 ▾, 4 ∙)

ADD12, ADD13, ADD14, ADD15 (1 ▴, 2 ▾, 6 ∙)

ADD16, ADD17 (2 ▴, 1 ▾, 6 ∙)

ADD18 (2 ▴, 0 ▾, 7 ∙)

OR1, OR3 (1 ▴, 3 ▾, 5 ∙)

OR2, OR4 (2 ▴, 3 ▾, 4 ∙)

MIN1 (3 ▴, 2 ▾, 4 ∙)

AND1 (0 ▴, 2 ▾, 7 ∙)

LSHIFT1 (1 ▴, 1 ▾, 7 ∙)

LSHIFT2, LSHIFT3 (0 ▴, 2 ▾, 7 ∙)

LSHIFT4, LSHIFT5 (1 ▴, 4 ▾, 4 ∙)

LSHIFT6 (1 ▴, 3 ▾, 5 ∙)

RSHIFT1 (3 ▴, 0 ▾, 6 ∙)

URSHIFT1 (2 ▴, 3 ▾, 4 ∙)

URSHIFT2 (1 ▴, 4 ▾, 4 ∙)

URSHIFT3 (2 ▴, 3 ▾, 4 ∙)

URSHIFT4 (3 ▴, 3 ▾, 3 ∙)

URSHIFT5 (1 ▴, 3 ▾, 5 ∙)

[-10%, -5%)

[-5%, -2%)

not significantly different

[-2%, 0%)

[0%, 2%)

[2%, 5%)

[5%, 10%)

Figure 8: Performance comparison of generated code rela-

tive to hand-written code of OpenJDK optimizations on Re-
naissance benchmarks.

pattern, and the column of “Precondition” shows the precondition
of the pattern, where ⊤ means no precondition.

In order to see if the reported shadow causes any real world issue,
we then manually inspected if any shadowed pattern is placed after
shadowing pattern (in execution order) in OpenJDK if both patterns
are implemented in OpenJDK, because in this case the shadowed
pattern would be entirely shadowed and thus never be reached in
the optimization pass (see Section 4). We found that pattern (a -

Table 3: Shadow between patterns. Constants are in upper-

case and free variables are in lower-case.

Shadowing Shadowed

Before Precondition Before Precondition

x - (y + C0)
okToConvert(
y + C0, x)

C0 - (x + C1)
okToConvert(
x + C1, C0)

(a - b) + (c - d) ⊤
(a - b) + (b - c) ⊤
(a - b) + (c - a) ⊤
(0 - a) + (0 - b) ⊤

x + (0 - y) ⊤ (0 - a) + (0 - b) ⊤
(0 - y) + x ⊤ (0 - a) + (0 - b) ⊤

(x + CON) + y ⊤

(x + CON1) + CON2 ⊤
(((z | C2) ^ C1) + 1) + rhs C2 == ~C1
(((z & C2) ^ C1) + 1) + rhs C2 == C1

(x + 1) + (y ^ -1) ⊤
(a + C1) + (C2 - b) ⊤

x + (y + CON) ⊤ (y ^ -1) + (x + 1) ⊤
(x ^ -1) + C ⊤ (x ^ -1) + 1 ⊤

x + (CON - y) ⊤
x + (0 - y) ⊤

(0 - a) + (0 - b) ⊤
(a + C1) + (C2 - b) ⊤

(CON - y) + x ⊤
(CON1 - x) + CON2 ⊤

(0 - y) + x ⊤
(0 - a) + (0 - b) ⊤

b) + (c - d) shadows both pattern (a - b) + (c - a) and
pattern (0 - a) + (0 - b) while both shadowed patterns are
put after the shadowing patterns in OpenJDK. We reported this to
OpenJDK developers and they confirmed this issue and accepted
our pull request to reorder the patterns. We discuss more details
for the pull requests in the next section.

5.5 Test Generation & Pull Requests

We use JOG to generate IR tests for all 68 patterns adapted from ex-
isting optimizations in OpenJDK (so that we can run those tests with
OpenJDK). Excluding the patterns with preconditions for which
JOG does not support generating tests, we successfully generate 45
tests. We also generate 8 test classes each of which wraps all the
tests for patterns with the same operator, e.g., class TestSubNode

includes testSUB1, testSUB2, etc. Next we put the test classes in
test/hotspot/jtreg/compiler/c2/irTests/, and build and run the
tests with OpenJDK. All the 45 tests pass. During our testing, we
found 10 tests were missing in OpenJDK; in other words the cor-
responding optimizations were not tested in OpenJDK. Thus we
opened one pull request [38] to add those generated 10 tests to ex-
isting test suites of OpenJDK. This pull request has been integrated
into the master branch of OpenJDK.

We opened seven more pull requests for OpenJDK, so far. The
first category of six pull requests was introducing new JIT optimiza-
tions. Figure 9a–9g shows the JOG patterns for new optimizations
that we contributed as PRs; we contributed the C/C++ code gen-
erated by JOG (and not the patterns). Also, we contributed the IR
tests generated by JOG for the patterns. Note that one pull request
could contain more than one pattern/optimization. We adapted
pattern SUB30 (Figure 9a) from LLVM. We then added generated
C/C++ code from the pattern to SubNode::Ideal method of Open-
JDK, and opened a pull request [31] for the changes. Similarly, we

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Zhiqiang Zang, Aditya Thimmaiah, and Milos Gligoric

opened another three pull requests [32, 34, 37] that added gener-
ated C/C++ code from pattern ADD30 (Figure 9b), pattern ADD31
(Figure 9c), pattern ADD41 (Figure 9d) and pattern ADD42 (Fig-
ure 9e) to AddNode::Idealmethod. Note pattern ADD41 and pattern
ADD42 are included in a single pull request. We also opened one
pull request [35] for pattern SUB23 (Figure 9f). All the five pull
requests have been integrated into the master branch of OpenJDK.
We opened one pull request [36] for pattern SUB24 (Figure 9g) and
this pull request is under review.

The second category of pull requests we opened was reorder-
ing existing JIT optimizations. Figure 9h–9j shows the associated
optimizations as patterns. As we mentioned in Section 5.4, pat-
tern ADD2 shadows both pattern ADD7 and pattern ADD8, which
means any expression matched by either of pattern ADD7 or pat-
tern ADD8 must be matched by pattern ADD2. Meanwhile in
AddNode::Idealmethod the C/C++ code implementing patternADD7
and ADD8 are located after the code for pattern ADD2 (in execution
order). Therefore pattern ADD7 or ADD8 would not be reached
unless they were moved before pattern ADD2. We reported this
issue to OpenJDK developers and initially proposed reordering in
our pull request [33]. OpenJDK developers confirmed the issue
and then they realized the effects of the two patterns have been
done by applying two other optimizations sequentially and thus it
is no longer necessary to have these two patterns. Pattern ADD7
and pattern ADD8 were removed from OpenJDK when the pull
request was integrated. As future work, we plan to extend our
shadow determining algorithm to detect duplicate optimization
sequences [12].

6 LIMITATIONS

Internal validity. Our experiments on comparing performance of
generated and hand-written optimizations may suffer the threat
from noise. To mitigate the threat, we did five end-to-end runs and
selected only last 10 fully warmed-up repetitions for measurement.
We filtered stable benchmarks by coefficient of variance and we did
significant difference test using bootstrap re-sampling for time from
all 50 repetitions measured. Although we tried to find the numbers
of repetitions and end-to-end runs which are large enough to min-
imize noise but remains practical for our experiments, choosing
different numbers could impact the experimental results.
Construct validity. We used the number of characters and num-
ber of identifiers as a metric to quantify code complexity of patterns
written using JOG compared to hand-written implementation of op-
timizations. This metric may or may not reflect complexity for every
developer and thus may impact our conclusion on code complexity
of optimizations written using JOG.
External validity. We used only Renaissance benchmark suites to
evaluate performance of optimizations. Although Renaissance is
the state-of-the-art benchmarks for JVM, to the best of our knowl-
edge, it may still not reflect all use cases of optimizations in real
world. Also, the patterns we wrote for evaluation cannot cover all
the peephole optimizations. Despite our efforts to increase vari-
ety of patterns, such as different compilers, different operations,
etc., we cannot ensure the results can be generalized to all peep-
hole optimizations. Last, JOG is designed and developed for Java
JIT peephole optimizations in OpenJDK (HotSpot). Thus, JOG will

require major changes to be directly generalized to other imple-
mentations of Java JIT, e.g., OpenJ9, or other compilers, e.g., LLVM.
However, the proposed algorithm of detecting shadow relations
between optimizations can be easily implemented for other compil-
ers.
Implementation. Our current implementation of JOG does not
generate tests for the patterns with preconditions that specify in-
variants between variables. For example, one of the patterns written
from OpenJDK that transforms (x >>> C0) + C1 to (x + (C1 <<

C0)) >>> C0) requires a precondition C0 < 5 && -5 < C1 && C1 < 0

&& x >= -(y << C0) [39]. We plan to leverage constraint solvers to
obtain valid test inputs for such tests in our future work.

7 RELATEDWORK

We describe related work on (1) DSLs for optimizations, (2) re-
lation between optimizations, (3) finding new optimizations and
(4) benchmarking Java JIT.
DSLs for optimizations. A notable area of research addressing
the ease of implementing compiler optimizations is in the appli-
cation of domain specific languages (DSL) for specifying peep-
hole optimizations. One of the first projects [48] introduced a DSL
called Gospel for specifying compiler optimizations. Cobalt [14]
and Rhodium [15] are frameworks to specify peephole optimiza-
tions and dataflow analyses, and PEC [13] extends to support loop
optimizations. More recently, GCC’s Match and Simplify [45] in-
troduces a DSL to write expression simplifications from which
code targeting GIMPLE and GENERIC is auto-generated. Similarly,
Alive [19] is a DSL that can be used for specifying peephole op-
timizations targeting LLVM. Alive can also be used to generate
C/C++ code that can be directly included into LLVM’s optimization
passes. CompCert [16] is a formalized and verified C compiler in
Coq. There is research on verifying SSA-based middle-end opti-
mizer [2], peephole optimizations [25], polyhedral model-based
optimizations [7]. Both Alive-FP [23] and LifeJacket [27] prove cor-
rectness of floating-point optimizations. The aforementioned tools
are designed to verify correctness of optimizations over intermedi-
ate representation and introduced DSLs work on the intermediate
representation level, while JOG focuses on developers productiv-
ity and allows developers to write optimizations in a high-level
language (Java), using the existing approach that tests for opti-
mizations are written. Although JOG does not verify optimizations
as aforementioned tools, JOG presents an approach to detecting
shadow relations between optimizations and JOG can generate IR
tests from optimizations specified in patterns.

There has been research that does not focus on verifying opti-
mizations. CAnDL [10] is a DSL for LLVM analysis and it supports
use cases beyond peephole optimizations, such as control flows.
However, CAnDL requires developers to write constraints to specify
optimizations, which is more complicated than high-level expres-
sions JOG takes; also the generated compiler pass is independent
to existing code structure in LLVM and thus more difficult to be
integrated. COpt [47] is a high-level DSL that allows compiler de-
velopers to specify a set of ten high-level optimizations. In contrast
to JOG that applies to peephole optimizations, COpt applies on
high-level optimizations such as global value numbering, common
subexpression elimination, function inlining, etc.

Pattern-Based Peephole Optimizations with Java JIT Tests ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

1 @Pattern

2 public void SUB30(int x, @Constant int c0, @Constant int c1) {

3 before(c0 - (x + c1));

4 if (Lib.okToConvert(x + c1, c0)) {

5 after((c0 - c1) - x); } }

(a) Pattern SUB30.

1 @Pattern

2 public void ADD30(int x) {

3 before(x + x);

4 after(x << 1); }

(b) Pattern ADD30.

1 @Pattern

2 public void ADD31(int x,

3 @Constant int c) {

4 before((x ^ -1) + c);

5 after((c - 1) - x); }

(c) Pattern ADD31.

1 @Pattern

2 public void ADD41(int x, int y,

3 @Constant int con) {

4 before(x + (con - y));

5 after((x - y) + con); }

(d) Pattern ADD41.

1 @Pattern

2 public void ADD42(int x, int y,

3 @Constant int con) {

4 before((con - y) + x);

5 after((x - y) + con); }

(e) Pattern ADD42.

1 @Pattern

2 public void SUB23(int x,

3 @Constant int c) {

4 before(c - (x ^ -1));

5 after(x + (c + 1)); }

(f) Pattern SUB23.

1 @Pattern

2 public void SUB24(int x,

3 int y) {

4 before((x | y) - (x ^ y));

5 after(x & y); }

(g) Pattern SUB24.

1 @Pattern

2 public void ADD2(int a, int b, int c, int d) {

3 before((a - b) + (c - d));

4 after((a + c) - (b + d)); }

(h) Pattern ADD2.

1 @Pattern

2 public void ADD7(int a, int b, int c) {

3 before((a - b) + (b - c));

4 after(a - c); }

(i) Pattern ADD7.

1 @Pattern

2 public void ADD8(int a, int b, int c) {

3 before((a - b) + (c - a));

4 after(c - b); }

(j) Pattern ADD8.

Figure 9: Associated patterns in pull requests.

Relation between optimizations. There is research [22, 26] on
detecting non-termination bugs due to a suite of peephole opti-
mizations applied repeatedly. Termination checking involves de-
termining whether two optimizations can be composited, which is
a quantifier-free problem, while the shadow determining problem
JOG solves involves with universal quantifiers. Lopes et al. [20]
advocated implementation of solver-based tools for finding groups
of optimizations that subsume each other to improve existing peep-
hole optimizations. JOG addresses that problem and we plan to
explore more relations between optimizations in future work, e.g.,
duplicate optimizations check.
Finding new optimizations. Optgen [5] exhaustively generates
all local optimization rules up to a given cost limit. Barany [1]
and Theodoridis et al.’s [46] work compare different compilers’
output to find missed optimizations. Unlike them, JOG does not
automatically find new optimizations but provides developers a
way to easily develop optimizations.
Benchmarking Java JIT. Renaissance [43] is recent benchmark
suites for JVM, which shows more significant performance differ-
ences on evaluating impacts of JIT compiler optimizations than
older benchmarks such as DaCapo [4] and SPECjvm2008 [44]; there-
fore we used Renaissance to evaluate performance of generated
optimization passes from JOG.

8 CONCLUSION

Writing peephole optimizations requires substantial effort. The cur-
rent approach of hand-written implementation in Java JIT is not
scalable and it is prone to bugs. We presented JOG, a framework
that facilitates developing Java JIT peephole optimizations. Com-
piler developers can write patterns in the same language as the
compiler (i.e., Java), using the existing approach for writing tests for
peephole optimizations. JOG translates every pattern into C/C++
code that can be integrated as a JIT optimization pass, and gener-
ates tests from the pattern as needed. We wrote 162 patterns for
optimizations found in OpenJDK, LLVM, as well as some that we

designed. Our evaluation shows that JOG reduces the code size and
code complexity when compared to hand-written implementation
of optimizations while maintaining the effectiveness of optimiza-
tions. JOG can also automatically detect possible shadow relations
between pairs of optimizations. We utilized this to find a bug in Java
JIT as two optimizations could never be triggered as a consequence
of being shadowed by another. We opened eight pull requests for
OpenJDK, including six on new optimizations, one on removing of
shadowed optimizations, and one on new tests of existing untested
optimizations, of which seven PRs have been integrated into the
master branch of OpenJDK, so far. We believe that JOG will have
significant impact in further developments of Java JIT compilers.

ACKNOWLEDGMENTS

We thank Nader Al Awar, Yu Liu, Pengyu Nie, August Shi, Jiyang
Zhang, and the anonymous reviewers for their comments and feed-
back. This work is partially supported by a Google Faculty Research
Award, a grant from the Army Research Office, and the US National
Science Foundation under Grant Nos. CCF-1652517, CCF-2107291,
CCF-2217696.

REFERENCES

[1] Gergö Barany. 2018. Finding Missed Compiler Optimizations by Differential
Testing. In International Conference on Compiler Construction. ACM, 82–92. https:
//doi.org/10.1145/3178372.3179521

[2] Gilles Barthe, Delphine Demange, and David Pichardie. 2014. Formal Verification
of an SSA-Based Middle-End for CompCert. In Programming Language Design
and Implementation. Association for Computing Machinery, 4:1–4:35. https:
//doi.org/10.1145/2579080

[3] Richard Biener and Prathamesh Kulkarni. 2022. gcc/match.pd at master - gcc-
mirror/gcc. https://github.com/gcc-mirror/gcc/blob/dcb4bd0/gcc/match.pd.

[4] StephenM. Blackburn, Robin Garner, Chris Hoffmann, AsjadM. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B.
Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von
Dincklage, and Ben Wiedermann. 2006. The DaCapo Benchmarks: Java Bench-
marking Development and Analysis. In International Conference on Object-
Oriented Programming, Systems, Languages, and Applications. ACM, 169–190.
https://doi.org/10.1145/1167473.1167488

https://doi.org/10.1145/3178372.3179521
https://doi.org/10.1145/3178372.3179521
https://doi.org/10.1145/2579080
https://doi.org/10.1145/2579080
https://github.com/gcc-mirror/gcc/blob/dcb4bd0/gcc/match.pd
https://doi.org/10.1145/1167473.1167488

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Zhiqiang Zang, Aditya Thimmaiah, and Milos Gligoric

[5] Sebastian Buchwald. 2015. Optgen: A Generator for Local Optimizations. In
International Conference on Compiler Construction. Springer, Berlin, Heidelberg,
171–189. https://doi.org/10.1007/978-3-662-46663-6_9

[6] Raymond P.L. Buse and Westley R. Weimer. 2010. Learning a Metric for Code
Readability. IEEE Transactions on Software Engineering 36, 4 (2010), 546–558.
https://doi.org/10.1109/TSE.2009.70

[7] Nathanaël Courant and Xavier Leroy. 2021. Verified Code Generation for the
Polyhedral Model. In Symposium on Principles of Programming Languages. ACM,
40:1–40:24. https://doi.org/10.1145/3434321

[8] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340. https://doi.org/10.1007/978-3-540-78800-3_24

[9] Bradley Efron and Robert J. Tibshirani. 1994. An Introduction to the Bootstrap.
CRC Press. https://books.google.com/books?id=MWC1DwAAQBAJ

[10] Philip Ginsbach, Lewis Crawford, and Michael F. P. O’Boyle. 2018. CAnDL: A
Domain Specific Language for Compiler Analysis. In International Conference on
Compiler Construction. ACM, 151–162. https://doi.org/10.1145/3178372.3179515

[11] James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, Daniel Smith,
and Gavin Bierman. 2021. The Java® Language Specification. https://docs.oracle.
com/javase/specs/jls/se17/jls17.pdf.

[12] He Jiang, Zhide Zhou, Zhilei Ren, Jingxuan Zhang, and Xiaochen Li. 2022. CTOS:
Compiler Testing for Optimization Sequences of LLVM. IEEE Transactions on
Software Engineering 48, 7 (2022), 2339–2358. https://doi.org/10.1109/TSE.2021.
3058671

[13] Sudipta Kundu, Zachary Tatlock, and Sorin Lerner. 2009. Proving Optimizations
Correct Using Parameterized Program Equivalence. In Programming Language
Design and Implementation. ACM, 327–337. https://doi.org/10.1145/1542476.
1542513

[14] Sorin Lerner, Todd Millstein, and Craig Chambers. 2003. Automatically Proving
the Correctness of Compiler Optimizations. In Programming Language Design
and Implementation. ACM, 220–231. https://doi.org/10.1145/781131.781156

[15] Sorin Lerner, Todd Millstein, Erika Rice, and Craig Chambers. 2005. Automated
Soundness Proofs for Dataflow Analyses and Transformations via Local Rules.
In Symposium on Principles of Programming Languages. ACM, 364–377. https:
//doi.org/10.1145/1040305.1040335

[16] Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Commun. ACM
52, 7 (2009), 107–115. https://doi.org/10.1145/1538788.1538814

[17] LLVM Project. 2022. llvm-project/llvm/lib/Transforms/InstCombine at main -
llvm/llvm-project. https://github.com/llvm/llvm-project/tree/b26e44e/llvm/lib/
Transforms/InstCombine/InstCombineAddSub.cpp.

[18] LLVM Project. 2023. llvm/llvm-project: The LLVM Project is a collection of mod-
ular and reusable compiler and toolchain technologies. Note: the repository does
not accept github pull requests at this moment. Please submit your patches at
http://reviews.llvm.org. https://github.com/llvm/llvm-project.

[19] Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. 2015.
Provably Correct Peephole Optimizations with Alive. In Programming Lan-
guage Design and Implementation. ACM, 22–32. https://doi.org/10.1145/2737924.
2737965

[20] Nuno P. Lopes and John Regehr. 2018. Future Directions for Optimizing Compilers.
https://doi.org/10.48550/ARXIV.1809.02161

[21] W. M. McKeeman. 1965. Peephole Optimization. Commun. ACM 8, 7 (1965),
443–444. https://doi.org/10.1145/364995.365000

[22] David Menendez and Santosh Nagarakatte. 2016. Termination-Checking for
LLVM Peephole Optimizations. In International Conference on Software Engineer-
ing. ACM, 191–202. https://doi.org/10.1145/2884781.2884809

[23] David Menendez, Santosh Nagarakatte, and Aarti Gupta. 2016. Alive-FP: Auto-
mated Verification of Floating Point Based Peephole Optimizations in LLVM. In
Static Analysis. Springer, 317–337. https://doi.org/10.1007/978-3-662-53413-7_16

[24] Steven S.Muchnick. 1997. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers.

[25] Eric Mullen, Daryl Zuniga, Zachary Tatlock, and Dan Grossman. 2016. Verified
Peephole Optimizations for CompCert. In Programming Language Design and
Implementation. ACM, 448–461. https://doi.org/10.1145/2908080.2908109

[26] Naoki Nishida and SarahWinkler. 2018. Loop Detection by Logically Constrained
Term Rewriting. In Verified Software. Theories, Tools, and Experiments. Springer,
309–321. https://doi.org/10.1007/978-3-030-03592-1_18

[27] Andres Nötzli and Fraser Brown. 2016. LifeJacket: Verifying Precise Floating-
Point Optimizations in LLVM. In International Workshop on State Of the Art in

Program Analysis. ACM, 24–29. https://doi.org/10.1145/2931021.2931024
[28] Oracle and/or its affiliates. 2022. jdk/AddINodeIdealizationTests.java at master -

openjdk/jdk - GitHub. https://github.com/openjdk/jdk/blob/master/test/hotspot/
jtreg/compiler/c2/irTests/AddINodeIdealizationTests.java.

[29] Oracle and/or its affiliates. 2022. jdk/subnode.cpp at b334d96 - openjdk/jdk -
GitHub. https://github.com/openjdk/jdk/blob/b334d96/src/hotspot/share/opto/
subnode.cpp#L163.

[30] Oracle and/or its affiliates. 2022. jdk/test/hotspot/jtreg/compiler/lib/ir_framework
at master - openjdk/jdk - GitHub. https://github.com/openjdk/jdk/tree/master/
test/hotspot/jtreg/compiler/lib/ir_framework.

[31] Oracle and/or its affiliates. 2023. 8277882: New subnode ideal optimization:
converting "c0 - (x + c1)" into "(c0 - c1) - x" - Pull Request #6441 - openjdk/jdk.
https://github.com/openjdk/jdk/pull/6441.

[32] Oracle and/or its affiliates. 2023. 8278114: New addnode ideal optimization:
converting "x + x" into "x << 1" - Pull Request #6675 - openjdk/jdk. https:
//github.com/openjdk/jdk/pull/6675.

[33] Oracle and/or its affiliates. 2023. 8278471: Remove unreached rules in
AddNode::IdealIL - Pull Request #6752 - openjdk/jdk. https://github.com/openjdk/
jdk/pull/6752.

[34] Oracle and/or its affiliates. 2023. 8279607: Existing optimization "~x+1" -> "-
x" can be generalized to "~x+c" -> "(c-1)-x". - Pull Request #6858 - openjdk/jdk.
https://github.com/openjdk/jdk/pull/6858.

[35] Oracle and/or its affiliates. 2023. 8281453: New optimization: convert ~x into -1-x
when ~x is used in an arithmetic expression - Pull Request #7376 - openjdk/jdk.
https://github.com/openjdk/jdk/pull/7376.

[36] Oracle and/or its affiliates. 2023. 8281518: New optimization: convert "(x|y)-(x^y)"
into "x&y" - Pull Request #7395 - openjdk/jdk. https://github.com/openjdk/jdk/
pull/7395.

[37] Oracle and/or its affiliates. 2023. 8283094: Add Ideal transformation: x + (con - y)
-> (x - y) + con - Pull Request #7795 - openjdk/jdk. https://github.com/openjdk/
jdk/pull/7795.

[38] Oracle and/or its affiliates. 2023. 8297384: Add IR tests for existing idealizations
of arithmetic nodes by CptGit - Pull Request #11049 - openjdk/jdk. https://github.
com/openjdk/jdk/pull/11049.

[39] Oracle and/or its affiliates. 2023. jdk/addnode.cpp at b334d96 - openjdk/jdk -
GitHub. https://github.com/openjdk/jdk/blob/b334d96/src/hotspot/share/opto/
addnode.cpp#L358.

[40] Oracle and/or its affiliates. 2023. jdk/subnode.cpp at b334d96 - openjdk/jdk -
GitHub. https://github.com/openjdk/jdk/blob/b334d96/src/hotspot/share/opto/
subnode.cpp#L243.

[41] Oracle Corporation and/or its affiliates. 2023. JDK Bug System. https://bugs.
openjdk.java.net/browse/JDK-8266601.

[42] Oracle Corporation and/or its affiliates. 2023. openjdk/jdk: JDK main-line devel-
opment. https://github.com/openjdk/jdk.

[43] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr
Tůma, Martin Studener, Lubomír Bulej, Yudi Zheng, Alex Villazón, Doug Simon,
Thomas Würthinger, and Walter Binder. 2019. Renaissance: Benchmarking Suite
for Parallel Applications on the JVM. In Programming Language Design and
Implementation. ACM, 31–47. https://doi.org/10.1145/3314221.3314637

[44] Standard Performance Evaluation Corporation. 2022. SPECjvm2008. https:
//www.spec.org/jvm2008/.

[45] the GCC Developer Community. 2022. Match and Simplify. https://gcc.gnu.org/
onlinedocs/gccint/match-and-simplify.html.

[46] Theodoros Theodoridis, Manuel Rigger, and Zhendong Su. 2022. Finding Missed
Optimizations through the Lens of Dead Code Elimination. In International
Conference on Architectural Support for Programming Languages and Operating
Systems. ACM, 697–709. https://doi.org/10.1145/3503222.3507764

[47] Sruthi Venkat and Preet Kanwal. 2018. COpt: A High Level Domain-Specific Lan-
guage to Generate Compiler Optimizers. In International Conference on Advanced
Computation and Telecommunication. IEEE, 1–6. https://doi.org/10.1109/ICACAT.
2018.8933593

[48] Deborah L. Whitfield and Mary Lou Soffa. 1997. An Approach for Exploring
Code Improving Transformations. ACM Trans. Program. Lang. Syst. 19, 6 (1997),
1053–1084. https://doi.org/10.1145/267959.267960

Received 2023-02-16; accepted 2023-05-03

https://doi.org/10.1007/978-3-662-46663-6_9
https://doi.org/10.1109/TSE.2009.70
https://doi.org/10.1145/3434321
https://doi.org/10.1007/978-3-540-78800-3_24
https://books.google.com/books?id=MWC1DwAAQBAJ
https://doi.org/10.1145/3178372.3179515
https://docs.oracle.com/javase/specs/jls/se17/jls17.pdf
https://docs.oracle.com/javase/specs/jls/se17/jls17.pdf
https://doi.org/10.1109/TSE.2021.3058671
https://doi.org/10.1109/TSE.2021.3058671
https://doi.org/10.1145/1542476.1542513
https://doi.org/10.1145/1542476.1542513
https://doi.org/10.1145/781131.781156
https://doi.org/10.1145/1040305.1040335
https://doi.org/10.1145/1040305.1040335
https://doi.org/10.1145/1538788.1538814
https://github.com/llvm/llvm-project/tree/b26e44e/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
https://github.com/llvm/llvm-project/tree/b26e44e/llvm/lib/Transforms/InstCombine/InstCombineAddSub.cpp
https://github.com/llvm/llvm-project
https://doi.org/10.1145/2737924.2737965
https://doi.org/10.1145/2737924.2737965
https://doi.org/10.48550/ARXIV.1809.02161
https://doi.org/10.1145/364995.365000
https://doi.org/10.1145/2884781.2884809
https://doi.org/10.1007/978-3-662-53413-7_16
https://doi.org/10.1145/2908080.2908109
https://doi.org/10.1007/978-3-030-03592-1_18
https://doi.org/10.1145/2931021.2931024
https://github.com/openjdk/jdk/blob/master/test/hotspot/jtreg/compiler/c2/irTests/AddINodeIdealizationTests.java
https://github.com/openjdk/jdk/blob/master/test/hotspot/jtreg/compiler/c2/irTests/AddINodeIdealizationTests.java
https://github.com/openjdk/jdk/blob/b334d96/src/hotspot/share/opto/subnode.cpp#L163
https://github.com/openjdk/jdk/blob/b334d96/src/hotspot/share/opto/subnode.cpp#L163
https://github.com/openjdk/jdk/tree/master/test/hotspot/jtreg/compiler/lib/ir_framework
https://github.com/openjdk/jdk/tree/master/test/hotspot/jtreg/compiler/lib/ir_framework
https://github.com/openjdk/jdk/pull/6441
https://github.com/openjdk/jdk/pull/6675
https://github.com/openjdk/jdk/pull/6675
https://github.com/openjdk/jdk/pull/6752
https://github.com/openjdk/jdk/pull/6752
https://github.com/openjdk/jdk/pull/6858
https://github.com/openjdk/jdk/pull/7376
https://github.com/openjdk/jdk/pull/7395
https://github.com/openjdk/jdk/pull/7395
https://github.com/openjdk/jdk/pull/7795
https://github.com/openjdk/jdk/pull/7795
https://github.com/openjdk/jdk/pull/11049
https://github.com/openjdk/jdk/pull/11049
https://github.com/openjdk/jdk/blob/b334d96/src/hotspot/share/opto/addnode.cpp#L358
https://github.com/openjdk/jdk/blob/b334d96/src/hotspot/share/opto/addnode.cpp#L358
https://github.com/openjdk/jdk/blob/b334d96/src/hotspot/share/opto/subnode.cpp#L243
https://github.com/openjdk/jdk/blob/b334d96/src/hotspot/share/opto/subnode.cpp#L243
https://bugs.openjdk.java.net/browse/JDK-8266601
https://bugs.openjdk.java.net/browse/JDK-8266601
https://github.com/openjdk/jdk
https://doi.org/10.1145/3314221.3314637
https://www.spec.org/jvm2008/
https://www.spec.org/jvm2008/
https://gcc.gnu.org/onlinedocs/gccint/match-and-simplify.html
https://gcc.gnu.org/onlinedocs/gccint/match-and-simplify.html
https://doi.org/10.1145/3503222.3507764
https://doi.org/10.1109/ICACAT.2018.8933593
https://doi.org/10.1109/ICACAT.2018.8933593
https://doi.org/10.1145/267959.267960

	Abstract
	1 Introduction
	2 Example
	3 JOG Framework
	3.1 Syntax
	3.2 Semantics
	3.3 Translation
	3.4 Test Generation

	4 Shadowing Optimizations
	5 Evaluation
	5.1 Setup
	5.2 Code Complexity
	5.3 Performance
	5.4 Shadow between Patterns
	5.5 Test Generation & Pull Requests

	6 Limitations
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

