
Deep Generation of Coq Lemma Names
Using Elaborated Terms

Pengyu Nie1, Karl Palmskog2,
Junyi Jessy Li1, and Milos Gligoric1

IJCAR 2020

1 The University of Texas at Austin 2 KTH Royal Institute of Technology



Motivation: Verification Projects Growing in Size

Proof assistants are increasingly used to formalize results in advanced
mathematics and develop large trustworthy software systems

Project Domain Assistant LOC

CompCert compiler Coq 120k+
MathComp math Coq 85k+
Verdi Raft k/v store Coq 50k+
seL4 kernel Isabelle/HOL 200k+
BilbyFS file system Isabelle/HOL 14k+

Verification projects face challenges similar to those in large software
projects: maintenance and enforcement of coding conventions

How to name lemmas?
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Motivation: Hard-coded Naming Conventions

CONTRIBUTIONS.md in MathComp, 50+ entries
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Motivation: Many Inconsistencies in Large Projects
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Motivation: Manually Checking and Enforcing
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Our Contributions

Roosterize: toolchain for learning and suggesting lemma names

Code review process
Interactive development
Batch mode

Novel generation models based on multi-input encoder-decoder
neural networks leveraging elaborated terms

A corpus of 164k LOC high quality Coq code

An extensive evaluation on our corpus via automated metrics

A qualitative case study on a project outside corpus
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Running Example: A Lemma from reglang Project

A lemma from a project on the theory of regular languages
Most general classifiers can be casted to equivalent languages

Lemma mg_eq_proof L1 L2 (N1 : mgClassifier L1) : L1 =i L2 -> nerode L2 N1.

Proof.

move=> eq_L u v.

split=> [/nerodeP eq_in w|eq_in].

- by rewrite -!eq_L.

- apply/nerodeP=> w.

by rewrite !eq_L.

Qed.
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Roosterize Toolchain

Lemma mg_eq_proof L1 L2 (N1 : mgClassifier L1) : L1 =i L2 -> nerode L2 N1.

Lemma statement

Syntax tree

1

parsing
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Model Input: Lemma Statement

Lemma mg_eq_proof L1 L2 (N1 : mgClassifier L1) : L1 =i L2 -> nerode L2 N1.

(Sentence((IDENT Lemma)(IDENT mg_eq_proof)(IDENT L1)(IDENT L2)

(KEYWORD"(")(IDENT N1)(KEYWORD :)(IDENT mgClassifier)

(IDENT L1)(KEYWORD")")(KEYWORD :)(IDENT L1)(KEYWORD =i)(IDENT L2)

(KEYWORD ->)(IDENT nerode)(IDENT L2)(IDENT N1)(KEYWORD .)))

In lexing phase
Surface syntax level information

8 / 28
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Model Input: Syntax Tree

Lemma mg_eq_proof L1 L2 (N1 : mgClassifier L1) : L1 =i L2 -> nerode L2 N1.

(VernacExpr()(VernacStartTheoremProof Lemma (Id mg_eq_proof)

(((CLocalAssum(Name(Id L1))(CLocalAssum(Name(Id L2)))

(CLocalAssum(Name(Id N1))(CApp(CRef(Ser_Qualid(DirPath())(Id mgClassifier)))

(CRef(Ser_Qualid(DirPath())(Id L1))))))

(CNotation(InConstrEntrySomeLevel"_ -> _")

(CNotation(InConstrEntrySomeLevel"_ =i _")

(CRef(Ser_Qualid(DirPath())(Id L1)))(CRef(Ser_Qualid(DirPath())(Id L2))))

(CApp(CRef(Ser_Qualid(DirPath())(Id nerode)))

(CRef(Ser_Qualid(DirPath())(Id L2)))(CRef(Ser_Qualid(DirPath())(Id N1))))))))

In parsing phase
Surface syntax level information
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Model Input: Kernel Tree

Lemma mg_eq_proof L1 L2 (N1 : mgClassifier L1) : L1 =i L2 -> nerode L2 N1.

(Prod (Name (Id char)) ... (Prod (Name (Id L1)) ...

(Prod (Name (Id L2)) ... (Prod (Name (Id N1)) ...

(Prod Anonymous (App (Ref (DirPath ((Id ssrbool) (Id ssr) (Id Coq))) (Id eq_mem)) ...

(Var (Id L1)) ... (Var (Id L2)))

(App (Ref (DirPath ((Id myhill_nerode) (Id RegLang))) (Id nerode)) ...

(Var (Id L2)) ... (Var (Id N1))))))))

In elaboration phase
Semantic level information

Add implicit terms
Translate operators to their kernel names
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Lemma Naming as a Transduction Task

Encoder-decoder neural network: specifically designed for transduction tasks
(e.g., machine translation, summarization, question answering)

Attention mechanism: decoder can “pay attention to” different parts of the
inputs at each time step

encoder

· · ·

i1 i2 im

input
lemma statement

syntax tree

kernel tree

state

decoder

· · ·

〈BOS〉

o1 o2 on 〈EOS〉
output

lemma name
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Multi-input Encoder-decoder Neural Network Architecture

encoders

lemma statement · · ·

L 1 .

syntax tree · · ·

(VernacExpr )

kernel tree · · ·

( Prod )

fully
connected

layer

lemma name

decoder

〈BOS〉

mg eq nerode 〈EOS〉

12 / 28

〈BOS〉: begin of sequence
〈EOS〉: end of sequence



Multi-input Encoder-decoder Neural Network Architecture

encoders

lemma statement · · ·

L 1 .

syntax tree · · ·

(VernacExpr )

kernel tree · · ·

( Prod )

fully
connected

layer

lemma name

decoder

〈BOS〉

mg eq nerode 〈EOS〉

12 / 28

〈BOS〉: begin of sequence
〈EOS〉: end of sequence



Multi-input Encoder-decoder Neural Network Architecture

encoders

lemma statement · · ·

L 1 .

syntax tree · · ·

(VernacExpr )

kernel tree · · ·

( Prod )

fully
connected

layer

lemma name

decoder

〈BOS〉

mg eq nerode 〈EOS〉

12 / 28

〈BOS〉: begin of sequence
〈EOS〉: end of sequence



Multi-input Encoder-decoder Neural Network Architecture

encoders

lemma statement · · ·

L 1 .

syntax tree · · ·

(VernacExpr )

kernel tree · · ·

( Prod )

fully
connected

layer

lemma name

decoder

〈BOS〉

mg eq nerode 〈EOS〉

12 / 28

〈BOS〉: begin of sequence
〈EOS〉: end of sequence



Multi-input Encoder-decoder Neural Network Architecture

encoders

lemma statement · · ·

L 1 .

syntax tree · · ·

(VernacExpr )

kernel tree · · ·

( Prod )

fully
connected

layer

lemma name

decoder

〈BOS〉

mg eq nerode 〈EOS〉

12 / 28

〈BOS〉: begin of sequence
〈EOS〉: end of sequence



Tree Chopping

encoders

lemma statement · · ·

L 1 .

chopped

syntax tree · · ·

(VernacExpr )

chopped

kernel tree · · ·

( Prod )

fully
connected

layer

lemma name

decoder

〈BOS〉

mg eq nerode 〈EOS〉

Syntax and kernel trees can be large, which prevents the
neural networks to learn effectively
Some parts are irrelevant for naming and can be “chopped”

Tree chopping heuristics:
1 Replace the fully qualified name sub-trees with only the last

component of the name
2 Remove the location information
3 Extract the singletons

13 / 28



Tree Chopping
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Example Tree Chopping

Before chopping

(Prod Anonymous (App (Ref (DirPath ((Id ssrbool) (Id ssr) (Id Coq))) (Id eq_mem))

... ((App (Ref ... ))) ... ))
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#1 prefixes in a fully-qualified name:
usually related to directory paths and likely not relevant

#3 singleton: unnecessarily increase tree size
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Sub-tokenization

encoders

lemma statement · · ·

L 1 .

chopped syntax tree · · ·

( Prod )

chopped kernel tree · · ·

( VernacExpr )

fully
connected

layer

lemma name

decoder

〈BOS〉

mg eq nerode 〈EOS〉

Coq names have multiple components (e.g., prefixes and
suffixes), making the vocabulary large and sparse

All inputs and outputs are sub-tokenized
(e.g., extprod mulgA → extprod, , mul, g, and A)

Reduces the sparsity of the vocabulary and improves the
performance of the model
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Corpus: MathComp Family of Projects

We constructed a corpus of four large Coq projects from the
MathComp family, totaling 164k lines of code

High quality and stringent adherence to coding conventions

LOC
Project SHA #Files #Lemmas #Toks

Spec. Proof
finmap 27642a8 4 940 78,449 4,260 2,191
fourcolor 0851d49 60 1,157 560,682 9,175 27,963
math-comp 748d716 89 8,802 1,076,096 38,243 46,470
odd-order ca602a4 34 367 519,855 11,882 24,243
Avg. N/A 46.75 2,816.50 558,770.50 15,890.00 25,216.75
Σ N/A 187 11,266 2,235,082 63,560 100,867

16 / 28



Evaluation: Setup

Randomly split corpus files into training, validation and testing
sets which contain 80%, 10%, 10% of the files, respectively

Name Lemma Statement#Files #Lemmas
#Char #SubToks #Char #SubToks

training 152 8,861 10.14 4.22 44.16 19.59
validation 18 1,085 9.20 4.20 38.28 17.30
testing 17 1,320 9.76 4.34 48.49 23.20

Train Roosterize using training and validation sets

Apply Roosterize on testing set, and evaluate generated
lemma names against the reference lemma names (as written
by developers)
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Evaluation: Automated Metrics

BLEU

: range 0–100, percentage of 1–4-grams overlap between the
characters of the generated name and the reference name

Fragment accuracy

: accuracy of generated names on the fragment level
(defined by splitting the name by “ ”)

Top-1 accuracy

: frequency of the reference name fully matches the
generated name

Top-5 accuracy

: frequency of the reference name is one of the top-5
generated names
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BLEU(card Syl dvd, card Syl dvd) = 100
BLEU(card Syl dvd, card dvd Syl) = 81.9
BLEU(card Syl dvd, card dvd) = 52.7
BLEU(card Syl dvd, Frattini arg) = 14.7
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Evaluation: Results

Key results: Roosterize significantly outperforms baselines

Ablation studies:

Tree chopping effectively improves performance
Roosterize’s tree chopping is better than variants
Using kernel trees in inputs effectively improves performance
(i.e., semantics information helps naming)

19 / 28



Evaluation: Key Results

Model BLEU Frag.Acc. Top-1 Top-5
Roosterize 47.2 24.9% 9.6% 18.0%
Baseline neural network based model 20.0 4.7% 0.1% 0.3%
Baseline retrieval-based model 28.3 10.0% 0.2% 0.3%

Baseline neural network based model: using only lemma
statement as input, w/o attention mechanism

Baseline retrieval-based model: details in the paper

Roosterize, using lemma statement and chopped kernel
tree as inputs, obtained the best performance

20+ points in BLEU better than baselines
statistically significantly better than all other model variants
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Ablation Study: Tree Chopping

Model BLEU Frag.Acc. Top-1 Top-5
ChopKnlTree+attn+copy 42.9 19.8% 5.0% 11.7%
KnlTree+attn+copy 37.0 14.2% 2.2% 8.4%
ChopSynTree+attn+copy 39.8 18.3% 6.8% 12.2%
SynTree+attn+copy 31.0 10.8% 2.8% 6.1%

Tree chopping improves performance by 6 points in BLEU
for kernel tree and 9 points in BLEU for syntax tree

The size of the original trees and a lot of irrelevant data in
those trees hurt the performance

21 / 28
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Ablation Study: Tree Chopping Variants

Model BLEU Frag.Acc. Top-1 Top-5
Roosterize Chopping 47.2 24.9% 9.6% 18.0%
Keep-category Chopping 46.8 25.3% 9.5% 19.0%
Rule-based Chopping 37.0 17.7% 5.9% 10.5%
Random Chopping 37.7 19.2% 6.7% 10.9%

Keep-category chopping = Roosterize chopping, but keeps
the category of referenced name in kernel trees, since that
semantic information could be relevant for naming

Rule-based chopping chops all nodes after depth 10, similar
to the proof kernel tree processing heuristics used in ML4PG

Random chopping chops random 91.4% nodes from the
kernel tree to match the average number of nodes of
Roosterize chopped trees, as the “dumb” baseline
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Ablation Study: Inputs

Inputs Combinations BLEU Frag.Acc. Top-1 Top-5
Stmt+ChopKnlTree+ChopSynTree+attn+copy 45.4 22.2% 7.5% 16.5%
Stmt+ChopKnlTree+attn+copy 47.2 24.9% 9.6% 18.0%
Stmt+ChopSynTree+attn+copy 37.7 18.1% 6.1% 10.6%
ChopKnlTree+ChopSynTree+attn+copy 45.4 22.9% 7.6% 15.3%
ChopKnlTree+attn+copy 42.9 19.8% 5.0% 11.7%
ChopSynTree+attn+copy 39.8 18.3% 6.8% 12.2%
Stmt+attn+copy 38.9 19.4% 6.9% 11.6%

The inputs combination of lemma statement and chopped kernel
tree works the best

Lemma statement and syntax tree do not work well together because
the two representations contain mostly the same information
Multiple inputs ≥ single input most of the times
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Case Study: Setup

Motivation: generated lemma names may not match the manually
written ones in the corpus, but can still be semantically valid, which is
not reflected in our automated evaluation metrics

Apply Roosterize to a project outside of our corpus: the PCM library
(#Files = 12, #Lemmas = 690)

Automated evaluation metrics: BLEU = 36.3, fragment accuracy = 17%,
Top-1 accuracy = 5% (i.e., 36 lemmas match exactly)

We asked the maintainer of the PCM library to evaluate the remaining
654 lemma names that do not match exactly and send us feedback
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Case Study: Findings

The maintainer provided comments on 150 suggested names

20% were of good quality, out of which more than half were of high quality
recall the analysis was of top-1 suggestions excluding exact matches

Other suggested names tend to be “too generic”

Unsuitable suggestions may contain useful parts
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Case Study: Examples

Lemma statement: g e k v f : path ord k (supp f) ->

foldfmap g e (ins k v f) = g (k, v) (foldfmap g e f)

Hand-written: foldf_ins

Roosterize: foldfmap_ins

Comment: The whole function name is used in the suggested name.

Lemma statement: : transitive (@ord T)

Hand-written: trans

Roosterize: ord_trans

Comment: Useful to add the ord prefix to the name.

Lemma statement: p1 p2 s : kfilter (predI p1 p2) s =

kfilter p1 (kfilter p2 s)

Hand-written: kfilter_predI

Roosterize: eq_kfilter

Comment: The suggested name is too generic.
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More Details in Our Paper

Using copy mechanism to increase generalibility of models

Using repetition prevention for decoder

Implementation details of Roosterize toolchain

Ablation study of more variants of Roosterize

Expanded corpus of 21 MathComp family projects

Generalizability case study: applying Roosterize on an
out-of-corpus project with additional training
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Conclusions

Roosterize: toolchain for learning and suggesting Coq lemma names,
based on multi-input encoder-decoder neural networks

Kernel trees provides important semantics context for lemma naming

Tree chopping helps our models to effectively handle long inputs

Evaluated on a corpus of 164k LOC high quality Coq code

Case study shows Roosterize can provide useful suggestions in practice
for a project outside our corpus

Roosterize: https://github.com/EngineeringSoftware/roosterize

MathComp corpus: https://github.com/EngineeringSoftware/math-comp-corpus

Pengyu Nie
pynie@utexas.edu
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Ablation Study: Copy Mechanism

Model BLEU Frag.Acc. Top-1 Top-5
Stmt+ChopKnlTree+attn+copy 47.2 24.9% 9.6% 18.0%
Stmt+ChopKnlTree+attn 25.6 8.5% 0.9% 1.7%

Copy mechanism improves performance by 22 points in BLEU
Many sub-tokens are specific to the file context and do not appear
in the fixed vocabulary of the training set
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