
Learning to Update Natural Language Comments
Based on Code Changes
Sheena Panthaplackel, Pengyu Nie, Milos Gligoric, Junyi Jessy Li, Raymond J. Mooney
The University of Texas at Austin

1

Source Code Comments

2

Developers communicate via
comments:
● Usage
● Implementation
● Error cases
● ...

Source Code Comments
● Code is constantly evolving
● Failure to update comments

upon code changes can
lead to confusion and bugs

3

Our Approach

4

Our Approach

5

Our Approach

6

Our Approach

7

Given (,) and , produce .

Our Approach

8

Given (,) and , produce .

To address this
task, we propose an
edit model.

Why Edits?
● When developers edit comments, they don’t delete the

existing comment and start from scratch
● They edit only parts of the comment that are relevant to the

code changes

9

Why Edits?
● When developers edit comments, they don’t delete the

existing comment and start from scratch
● They edit only parts of the comment that are relevant to the

code changes

10

Learn to edit -> rather than generate

Why Edits?
Comment edits
Implicitly learning these edits by directly generating using
 risks learning to copy, so we explicitly define NL edits.

Code edits
To better correlate code changes with NL edits and also prevent
having the model implicitly learn these changes them from
and , we explicitly define code edits.

11

Unifying and into a single diff sequence that explicitly
identifies code edits,

Representing Edits

12

Unifying and into a single diff sequence that explicitly
identifies code edits,

Unifying and into a single diff sequence that explicitly
identifies comment edits,

Representing Edits

13

Unifying and into a single diff sequence that explicitly
identifies code edits,

Step 1: Learn representation for
Step 2: Learn representation for code changes
Step 3: Predict NL edits
Step 4: Apply NL edits to existing comment
Step 5: Rerank + produce updated comment

14

Edit Model

15

Step 1: Learn representation for
Step 2: Learn representation for code changes
Step 3: Predict NL edits
Step 4: Apply NL edits to existing comment
Step 5: Rerank + produce updated comment

Edit Model

16

Step 1: Learn representation for
Step 2: Learn representation for code changes
Step 3: Predict NL edits
Step 4: Apply NL edits to existing comment
Step 5: Rerank + produce updated comment

Edit Model

17

Step 1: Learn representation for
Step 2: Learn representation for code changes
Step 3: Predict NL edits
Step 4: Apply NL edits to existing comment
Step 5: Rerank + produce updated comment

Edit Model

18

Step 3: Decoding

Generating , a sequence of NL edits, using a GRU decoder
At each decoding step:
(1) Identify edit locations in

19

Generating , a sequence of NL edits, using a GRU decoder
At each decoding step:
(1) Identify edit locations in

Attend to encoder hidden states

Step 3: Decoding

20

Generating , a sequence of NL edits, using a GRU decoder
At each decoding step:
(1) Identify edit locations in

Attend to encoder hidden states
(2) Determine parts of that pertain to making edits

Step 3: Decoding

21

Generating , a sequence of NL edits, using a GRU decoder
At each decoding step:
(1) Identify edit locations in

Attend to encoder hidden states
(2) Determine parts of that pertain to making edits

Attend to encoder hidden states

Step 3: Decoding

22

Generating , a sequence of NL edits, using a GRU decoder
At each decoding step:
(1) Identify edit locations in

Attend to encoder hidden states
(2) Determine parts of that pertain to making edits

Attend to encoder hidden states
(3) Apply updates at edit locations based on the relevant code edits:

Step 3: Decoding

23

Generating , a sequence of NL edits, using a GRU decoder
At each decoding step:
(1) Identify edit locations in

Attend to encoder hidden states
(2) Determine parts of that pertain to making edits

Attend to encoder hidden states
(3) Apply updates at edit locations based on the relevant code edits:

start/end action or continue by generating/copying comment token

Step 3: Decoding

Generating , a sequence of NL edits, using a GRU decoder
At each decoding step:
(1) Identify edit locations in

Attend to encoder hidden states
(2) Determine parts of that pertain to making edits

Attend to encoder hidden states
(3) Apply updates at edit locations based on the relevant code edits:

start/end action or continue by generating/copying comment token
Pointer network over and encoder hidden states

24Vinyals et al., 2015

Step 3: Decoding

25

Step 1: Learn representation for
Step 2: Learn representation for code changes
Step 3: Predict NL edits
Step 4: Apply NL edits to existing comment
Step 5: Rerank + produce updated comment

Edit Model

 : double the roll euler angle in degrees .

Step 4: Parsing Edit Sequence
Aligning predicted edit sequence, , with and copying
unchanged tokens to form predicted

26

 : <InsertOldKeepBefore> angle
 <InsertNewKeepBefore> angle in degrees
 <InsertEnd>

 : double the roll euler angle .

27

Step 1: Learn representation for
Step 2: Learn representation for code changes
Step 3: Predict NL edits
Step 4: Apply NL edits to existing comment
Step 5: Rerank + produce updated comment

Edit Model

28

Step 5: Selecting Best Candidate
Reranking candidate predictions

(1) Accurately update with minimal
modifications

(2) Be suitable for
(3) Conform to comment style conventions

29

Reranking candidate predictions

(1) Accurately update with minimal
modifications

(2) Be suitable for
(3) Conform to comment style conventions

Decoder trained to generate edits, and so has
no notion of these global characteristics

Step 5: Selecting Best Candidate

30

Reranking candidate predictions

(1) Accurately update with minimal
modifications
Similarity to :

(2) Be suitable for
(3) Conform to comment style conventions

Step 5: Selecting Best Candidate

31

Reranking candidate predictions

(1) Accurately update with minimal
modifications
Similarity to :

(2) Be suitable for
(3) Conform to comment style conventions

Generation likelihood:

Step 5: Selecting Best Candidate

32

Reranking candidate predictions

(1) Accurately update with minimal
modifications
Similarity to :

(2) Be suitable for
(3) Conform to comment style conventions

Generation likelihood:

Step 5: Selecting Best Candidate

33

Step 1: Learn representation for
Step 2: Learn representation for code changes
Step 3: Predict NL edits
Step 4: Apply NL edits to existing comment
Step 5: Rerank + produce updated comment

Edit Model

Data Collection

34

Mining simultaneous updates to
(comment, method) pairs from
consecutive commits of open-source
Java projects on GitHub

Baselines
● Copy

 =
● Generation w/ reranking

Given , generate and rerank
● Rule-based

 .replace(RetType(), RetType()) + “or null if null”
 .replace(RetType(), RetType())

35

if null added to return statement or
if statement in ;
otherwise

 =

Automatic Evaluation Results

36

Editing

Generation

Automatic Evaluation Results

37

Despite being trained on more more data, the generation
baseline substantially underperforms the edit model.

Editing

Generation

Automatic Evaluation Results

38

Rule-based baseline achieves a slightly higher BLEU-4 score;
however the difference is NOT statistically significant.

Editing

Generation

Automatic Evaluation Results

39

Based on edit-specific metrics, our model
appears to be better at editing comments.

Editing

Generation

Human Evaluation
● Given and the diff of and :

– Select the most suitable from up to 3 suggestions:
■ Generation model w/ reranking
■ Rule-based baseline
■ Edit model

– Select None if all options are bad or if does not need to be
updated

● 10 participants w/ 2+ years Java experience
● Each participant annotated 50 examples
● Each example was annotated by 2 participants

40

500 evaluations
across 250 distinct
examples

Human Evaluation Results

41

Percentage of annotations for which users selected
comment suggestions produced by each model

Inter-annotator agreement: 0.64 (Krippendorff’s α with MASI distance)

Human Evaluation Results

42

Percentage of annotations for which users selected
comment suggestions produced by each model

Inter-annotator agreement: 0.64 (Krippendorff’s α with MASI distance)

The edit model outperforms the generation and
rule-based baselines.

Human Evaluation Results

43

Percentage of annotations for which users selected
comment suggestions produced by each model

Inter-annotator agreement: 0.64 (Krippendorff’s α with MASI distance)

We found many cases in which the comment did
not need to be updated.

Summary
● Formulated task of automatically updating comments based on code

changes
● Introduced architecture for this task:

(1) Generates a sequence of NL edits based on learned
representations of the existing comment and code edits

(2) Transforms this edit sequence into an updated comment by
parsing and reranking based on global heuristics

● Evaluated approach against rule-based and generation baselines with
automated metrics and a user study

44

Code and data available: https://github.com/panthap2/LearningToUpdateNLComments
Contact: Sheena Panthaplackel <spantha@cs.utexas.edu>

https://github.com/panthap2/LearningToUpdateNLComments

