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MANAGING CONGESTION IN DYNAMIC MATCHING MARKETS

NICK ARNOSTI, RAMESH JOHARI, AND YASH KANORIA

Abstract. We construct a model of a decentralized two-sided matching market in which agents
arrive and depart asynchronously. In our model, it is possible that an agent on one side of the
market (an “employer”) identifies an agent on the other side of the market (an “applicant”) who
is a suitable partner, only to find that the applicant is already matched. We find that equilibrium
is generically inefficient for both employers and applicants. Most notably, for a wide range of
parameter values, equilibrium employer welfare is driven to zero due to uncertainty about the
availability of applicants.

We consider a simple intervention available to the platform: limiting the visibility of applicants.
We find that this intervention can significantly improve the welfare of agents on both sides of the
market; applicants pay lower application costs, while employers are less likely to find that the ap-
plicants they screen have already matched. Somewhat counterintuitively, the benefits of showing
fewer applicants to each employer are greatest in markets in which there is a shortage of applicants.
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1. Introduction

Since the pioneering work of Diamond (1982a,b); Mortensen (1982a,b) and Pissarides (1984a,b)

a large and still-growing body of work has studied the efficiency (or lack thereof) of labor markets

in the presence of search frictions. 1 Search frictions are the costs that market participants incur

in trying to find suitable trading partners. Informally, in the settings we consider, participants are

divided into two sides of the market (e.g., “employers” and “applicants”), and the goal of each

participant is to find a suitable match (if any exists) on the other side of the market. Two common

forms of search friction are prevalent in such settings: application (or messaging) costs, which are

paid each time a participant communicates interest to the other side of the market; and screening

costs, which are paid each time a participant evaluates a prospective match on the other side of

the market.

In both the traditional labor market and in a range of online platform marketplaces (e.g., dating

markets, markets for lodging, online labor markets, etc.), information technology has progressively

N. Arnosti (narnosti@stanford.edu) and R. Johari (ramesh.johari@stanford.edu) are with the Department of
Management Science and Engineering, Stanford University; Y. Kanoria (ykanoria@gmail.com) is with Columbia
Business School.
1Other influential early work includes Hosios (1990) and Mortensen and Pissarides (1994). Later extensions have
studied the role of wages (Shimer, 1996; Moen, 1997; Acemoglu and Shimer, 1999), incomplete information (Guerrieri,
2008), on-the-job search (Shi, 2009), and adverse selection (Guerrieri et al., 2010). Rogerson et al. (2005) conduct a
helpful survey of the literature.
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lowered application costs. Intuitively, we might expect the reduction of search frictions to be

associated with greater market efficiency: when it is easier to reach participants on the other side,

in principle the set of potential matches is widened. The ideal outcome would be for this greater

feasible set of matches to lead to higher welfare.

However, in practice, this desired outcome is far from guaranteed. In particular, reduction of

search frictions in decentralized markets can lead to negative externalities that erase any potential

efficiency gains, and indeed lead to worse performance overall. A key example of this phenomenon is

congestion that arises as application costs are lowered; informally, in congested markets, participants

send more applications than is desirable. Typically congestion is studied in the context of its

effect on the applicants: as application costs are lowered, the increase in applications leads to the

situation that many applications that are sent are never even screened. This welfare loss arises

because each applicant imposes a negative externality on other applicants, and (in most markets)

this externality is not internalized. Recent literature has studied variants of this phenomenon in a

range of marketplaces (Halaburda and Piskorski, 2010; Coles et al., 2010; Lee et al., 2011).

By contrast, a key contribution of our paper is to study a novel source of inefficiency due to a

negative externality on employers in congested matching markets. Specifically, the phenomenon on

which we focus is that an agent on one side of the market (an “employer”) may identify a suitable

match on the opposite side (an “applicant”), only to later learn that this applicant is already

matched and therefore unavailable. As a result, welfare losses are felt by employers, who incur

excessive screening costs trying to match to applicants who are no longer available to match; this

effect becomes more pronounced as application costs fall (so that applicants send more applications).

Lack of information about availability is a common problem in a wide range of online matching

markets, and has significant welfare consequences. Fradkin (2013) notes that on AirBnB, employers

are uncertain about applicant availability because transactions take time to complete, and appli-

cants may not reliably update the calendars. On the online labor marketplace oDesk, potential

employers can directly invite workers to apply, but in practice, the best workers may prove to be

unavailable to the client. This fact typically has a strong negative effect on the employer’s satis-

faction on the site.2 For example, Horton (2014) finds using an instrumental variables approach

that a positive response to an invitation makes a client 40% more likely to fill their job opening.

2Indeed, the oDesk site publicly states that “when clients send out invitations and freelancers don’t reply, it’s a
frustrating experience that makes those clients less likely to hire anyone.” See https://support.odesk.com/entries/
23127826-What-is-responsiveness-.
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A key reason that availability affects client satisfaction is that the screening effort they expend in

determining whether to invite a worker is wasted if the invited worker turns out to be unavailable.

It is natural to ask whether the platform can do anything to improve the employer’s experience.

One obvious approach is to provide information about the likelihood that each individual will

respond when contacted, and many online marketplaces such as oDesk, AirBnB, and OkCupid

strive to do just that. However, these inferences are (at best) imperfect, as agent availability

may depend on a variety of factors that are unobservable to the platform and to other market

participants.3

We instead consider a simple yet powerful intervention that requires no special knowledge on

the part of the platform: limiting applications. This approach is employed in many platform

marketplaces; for example, on the dating site eHarmony, users are shown only 5 potential matches

per day, while on Coffee Meets Bagel, users are shown exactly one profile per day in the app. Online

labor markets such as oDesk and Elance both limit the number of applications workers are allowed

to send in a fixed period of time.

In our analysis, we comprehensively evaluate the welfare impact of congestion in a dynamic

matching market, and study the benefits that limiting applications can achieve. Our main findings

are as follows. First, without intervention, both of the negative consequences of congestion discussed

above are severe. In particular, the lack of availability information can drive equilibrium employer

welfare to zero. Second, limiting applications can yield significant welfare benefits for both sides of

the market. In particular, in cases where the employers obtain zero welfare without intervention,

an appropriately chosen application limit raises their welfare to a constrained efficient benchmark.

Further, we can deliver a large fraction of this surplus to employers at little or no cost to applicants.

We study the potential benefits of this intervention using a mathematical model of a dynamic

matching market, presented in Section 2. In the game we consider, employers and applicants arrive

over time, and live for (at most) a unit lifetime. Upon arrival, applicants apply to a subset of

employers present in the system, and incur a fixed cost per application sent. Upon departure,

employers screen the applications they receive for compatibility, i.e., fitness for a match; they pay

a fixed cost per applicant screened. If a compatible applicant is found the employer can make her

3As one example, on oDesk, Horton (2014) finds that workers have a wide distribution of hours worked per week (in
contrast to the offline labor market, where hours worked per week is strongly peaked at 40 hours/week). Thus it is
difficult to infer availability by simply examining the number of hours worked.
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an offer, and applicants accept the first offer they receive (if any). If an employer makes an offer

to an unavailable applicant, the offer fails and the employer continues to screen for a match.

Because there is a delay between when an application is sent (the “application time”) and when

the applicant is evaluated by the employer (the “screening time”), the state of the applicant can

change by the time she is screened. In particular, although the applicant may have been unmatched

at the application time, she may already be matched by the screening time. Unless the employer

knows this, he may waste effort screening her. The combination of costly screening and uncertain

availability is essential to our model.

In Section 3, we present a mean field analysis of our game. In particular, we assume that from

the point of view of an employer, applicants are independently available with some fixed probability

q; and from the point of view of an applicant, each application yields an offer independently with

probability p. Under these two assumptions, solving for the optimal strategies of employers and

applicants becomes straightforward. On the other hand, both p and q must satisfy consistency

checks that ensure they arise from the optimal decisions of employers and applicants. Taken

together, this pair of conditions—optimality and consistency—define a notion of equilibrium for

our mean field model that we call mean field equilibrium (MFE); several recent papers have used a

similar modeling approach.4

In Section 4, we prove that the mean field agent assumptions hold asymptotically in large markets.

The proof is a significant technical contribution of our work, as much of the existing search literature

relies on “large market” assumptions that are not formally stated or justified. Existing papers that

provide such justification (see for example Galenianos and Kircher (2012)) consider a static setting;

establishing similar results in our dynamic model presents a number of novel technical challenges.5

In Section 5, we study the welfare of employers and applicants in equilibrium, and the value of

intervention by the platform. First, we study the market without intervention. As expected, we find

a “tragedy of the commons” effect among applicants. Surprisingly, this effect remains severe even

if application costs become very low: the increase in applications more than offsets any reduction

in application costs.

One of our most striking conclusions is that without intervention, for a wide range of parameter

values, employer welfare is zero in equilibrium. The intuition behind this result is that if applicant

4See Weintraub et al. (2008); Iyer et al. (2013); Gummadi et al. (2013); Balseiro et al. (2013); Bodoh-Creed (2013).
5In addition, in our model each applicant will contact multiple firms, which Galenianos and Kircher acknowledge
presents many difficulties even in the static setting.
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applies to many positions, she might receive many offers, but can accept only one. Employers

whose offers are rejected have wasted any effort they devoted to evaluating her. If each applicant

expects many offers, this wasted effort can entirely offset the benefit that employers receive from

consummated matches.

Finally, we study the value of intervention. We demonstrate that for each side of the market, for

a wide range of parameter values, imposing an application limit can raise welfare to a constrained

efficient benchmark. Importantly, we show that these benefits need not come at the expense of

the other side of the market: we numerically demonstrate that using an application limit, we can

simultaneously obtain for both employers and applicants at least 3/4 of the best surplus attainable

when choosing the application limit optimally for each side of the market alone. We find that for

many parameter values, this ratio is close to one, suggesting that the tension between the two sides

of the market is minimal.

In Section 6, we interpret and discuss our results, and present several extensions and open

directions. In particular, we contrast our insights with those obtained in a typical static model

of a matching market. We observe that static models severely understate the impact of a lack

of availability information on welfare; this is a major motivation for our analysis of a dynamic

matching market.

2. The Model

In the market we consider, employers and applicants arrive over time, interact with each other,

and eventually depart. Informally, we aim to capture the following behavior:

(1) Employers arrive to the market, and post an opening.

(2) When applicants arrive, they apply to a subset of the employers currently in the market.

(3) Upon exit from the system, employers may screen candidates to learn whether they are

compatible with the job. They may make offers to compatible applicants.

(4) Whenever an applicant receives an offer, he chooses whether to accept it.

One could construct a static model in which the above stages happen sequentially, with every

applicant applying simultaneously, and every employer making offers simultaneously. Instead, we

model a dynamic and asynchronous market, the timing of which is described in more detail below.

In Section 6 an Appendix B, we explain how a static model where each stage occurs once does not

capture key features of such a market.
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2.1. Arrivals. Our market starts empty at t = 0. Our dynamic markets are parameterized by

n > 0, which describes the market size. Individual employers arrive at intervals of 1/n, and

applicants arrive at intervals of 1/(rn). Here r > 0 is a parameter that controls the relative

magnitude of the two sides of the market. Employers remain in the system for a unit lifetime.

Applicants depart the system according to a process that we describe below. We endow employers

and applicants with unique IDs, which convey no other information about the agent.

Upon arrival, employers post an opening. They do not make any decisions at this time. Upon

arrival, each applicant selects a value ma ∈ [0, n], and applies to each employer currently in the

system with probability ma/n. Note that for all t ≥ 1, there are exactly n employers in the system,

and thus the expected number of applications sent by an applicant who arrives after time t ≥ 1 is

ma.
6

2.2. Applicant departure. Applicants remain in the system for a maximum of one time unit.

If they receive and accept an offer from any employer (as described below), they depart from the

market at that time. Recall that (excluding application costs) an applicant earns a payoff of 1 as

long as she is matched, and zero otherwise. Thus, it is a dominant strategy for applicants to accept

the first offer they receive. We assume henceforth that applicants follow this strategy.

2.3. Employer departure. Each employer stays in the system for one time unit, and then departs.

Upon departure, employers see the set of applicants to their opening. Initially, they do not know

which of these applicants are compatible for their job, nor do they know which would accept the

job if offered it (i.e. which applicants remain in the system). The employer takes a sequence of

“screening” and “offer” actions, instantaneously learning the result of each, until they choose to

exit the market.

At each stage of the employer’s sequential decision process, she may screen any unscreened

applicant, thereby learning whether this applicant is compatible for the job. If the employer has

yet to match, she may also make an offer to any applicant whom she has found to be compatible

(the applicant responds immediately to the offer; as mentioned above, we assume that they accept

it if and only if it is the first offer that they receive). Employers are also allowed to exit the market

at any point.

6An alternate model might be that applicants directly choose the number of applications they send. We choose a
probabilistic specification primarily for technical convenience, to ease our later mean field analysis: in a setting where
applicants deterministically send a fixed number of applications, an additional dependency is introduced across the
employers.
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Note that before making an offer to any applicant, employers must screen this applicant and find

him compatible. (We provide microfoundations for this mechanical restriction in Appendix A.)

We assume that that each employer-applicant pair is compatible with probability β (independently

across all such pairs), and that this is common knowledge.7

2.4. Utility. If a compatible pair matches to each other, the employer earn v and the applicant

earns w. Without loss of generality, we normalize v = w = 1.8 Applicants pay a cost ca for each

application that they send, and employers pay a cost cs for each applicant that they screen. The

net utility to an agent will be the difference between value obtained from any match, and costs

incurred. Our agents are risk neutral; that is, they seek to maximize their expected utility.

Assumption 1. max(ca, cs) < β.

This assumption rules out the uninteresting case where costs are so high that no activity occurs

in the marketplace. If cs ≥ β, then regardless of applicant behavior, it would be optimal for

employers to exit the market rather than screening. Similarly, if ca ≥ β, then because employers

hire only compatible applicants, no applicant strategy can earn positive surplus.

For later reference, it will be useful to consider normalized versions of the screening and appli-

cation costs, given by

(1) c′s = cs/β, c′a = ca/β.

3. The large market: A stationary mean field model

In principle, the strategic choices facing an agent in the model described above may be quite

complicated. Consider the case of an employer who knows that he has only one competitor. If he

finds that his first applicant has already accepted another offer, he learns that every other applicant

is still looking for a job. Similar logic suggests that in thin markets, information revealed during

screening may induce significant shifts in the employer’s beliefs. This could conceivably cause

optimal employer behavior to be quite complex.

As the market thickens, however, one might expect that the correlations between agents on the

same side of the market become weak. In particular, employers screening a pool of applicants

7

8The assumption that v = w is without loss of generality because we never compare absolute welfare of agents on
opposite sides of the market.
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might reasonably assume that learning that one applicant has already accepted an offer does not

inform them about the availability of other applicants. Further, if the employer cannot distinguish

individual applicants, each one should appear to be available with equal probability. Similarly,

applicants who know nothing about individual employers may be justified in assuming that each

of their applications convert to offers independently and with equal probability p.

In this section we develop a formal stationary mean field model for our dynamic matching market,

and introduce a notion of game-theoretic equilibrium for this model; in particular, we study a model

that arises from a limiting regime where the market thickens.

In our formal model, agents make the following assumptions.

Mean Field Assumption 1 (Employer Mean Field Assumption). Each applicant in an employer’s

applicant set is available with probability q, and the availability of applicants in the applicant set is

independent.

Mean Field Assumption 2 (Applicant Mean Field Assumption). Each application yields an

offer with probability p, independently across applications to different openings.

Mean Field Assumption 3 (Large Market Assumption). The number of applications sent by an

applicant who chooses ma = m is Poisson distributed with mean m. If all applicants select ma = m,

the number of applications received by each employer is Poisson distributed with mean rm.

Under these assumptions, optimal agent behavior simplifies greatly. We describe optimal em-

ployer and applicant responses in Section 3.1. For applicants, we show that there exists a unique

optimal choice of m, given p; and for employers, we show that given q, their optimal response

is either to employ a simple sequential screening strategy or to exit immediately (they may also

randomize when indifferent between these options).

Of course p and q are not given exogenously, but rather arise endogenously from the choices

made by agents. In Section 3.2, we derive “consistency checks” that p and q should satisfy, if they

indeed arise from the conjectured employer and applicant strategies.

The work in Sections 3.1 and 3.2 allows us to define a mean field equilibrium (MFE) in Section

3.3. Informally, a mean field equilibrium consists of strategies for employers and applicants that

are best responses to the stationary market dynamics that they induce. We prove that there exists

a unique MFE. We conclude with Section 3.4, which discusses a simple intervention available to
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the market operator: placing a limit ` on the value ma chosen by each applicant. We show that

unique MFE continue to exist in this setting.

We emphasize that a key result of our paper is that our mean field model is in fact the correct

limit of our dynamic market as the thickness n grows. In particular, Theorems 3 and 4 in Section 4

justify our study of MFE: they state that the mean field assumptions hold as n approaches infinity,

and that as a consequence any MFE is an approximate equilibrium in the game with finite but

sufficiently large n.

3.1. Optimal decision rules. We first study how agents respond when confronted with a world

where the mean-field assumptions hold.

3.1.1. Applicants. As discussed in Section 2, it is a dominant strategy for applicants to accept

the first offer (if any) that they receive, and we assume applicants follow this rule. Therefore the

only decision an applicant a needs to make on arrival is her choice of ma, the expected number of

applications sent.

If an applicant a chooses ma = m, they incur an expected cost of ca ·m. If the applicant applies

to Poisson(m) employers, and each application independently yields an offer with probability p,

then at least one offer is received—i.e., the applicant matches to an employer—with probability

1 − e−mp. Thus, the expected payout of an applicant in the mean-field environment who selects

ma = m is 1 − e−mp − cam. Applicants choose m ≥ 0 to maximize this payoff. Because their

objective is strictly concave and decays to −∞ as m→∞, this problem possesses a unique optimal

solution identified by first-order conditions. If p ≤ ca, the optimal choice is m = 0. Otherwise,

applicants select m = 1
p log

(
p
ca

)
.We defineM to be the function that maps p to the unique optimal

value of m:

(2) M(p) =

 0, if p ≤ ca;
1
p log

(
p
ca

)
, if p > ca.

3.1.2. Employers. Next, we consider the optimal strategy for employers, when Mean Field As-

sumption 1 holds. We consider a simple strategy, which we denote φ1. A employer playing φ1

sequentially screens candidates in her applicant list. When she finds a compatible applicant, she

makes an offer to this candidate; otherwise, she considers the next candidate. This process repeats

until one applicant accepts or no more applicants remain.
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The optimal strategy for the employers is straightforward to characterize. First suppose an

employer has exactly one applicant. The employer will prefer to screen the applicant if βq− cs > 0,

i.e., if q > c′s; exit if q < c′s; and is indifferent if q = c′s. Now it is clear that if an employer has more

than one applicant in her list, since all applicants are ex ante homogeneous from the perspective

of the employer, the same reasoning holds: the employer will screen or exit immediately according

to whether q is larger or smaller than c′s, respectively. (Note the essential use of Mean Field

Assumption 1: if there is correlation in the availability of successive applicants in the employer’s

list, the preceding reasoning no longer holds.) The following proposition summarizes the preceding

discussion.

Proposition 1. Let φ1 be the strategy of sequentially screening applicants, offering them the job if

and only if they are qualified, until either an applicant is hired or no more applicants remain. Then

φ1 is uniquely optimal if and only if q > c′s, exiting immediately is uniquely optimal if and only if

q < c′s, and any mixture of these strategies is optimal if q = c′s.

Motivated by this proposition, we define φα to be the strategy that plays φ1 with probability α

and exits immediately otherwise. Define the correspondence A(q) by:

(3) A(q) =


{0} if q < c′s

[0, 1] if q = c′s

{1} if q > c′s.

This correspondence captures the optimal employer response, as described in Proposition 1, so that

A(q) = {α ∈ [0, 1] : φα is optimal for the employer, given q}.

3.2. Consistency. In the previous section, we discussed the best responses available to employers

and applicants when the mean field assumptions hold; that is, given p and q, we found the strategies

that agents would adopt. However, p and q are clearly determined by agent strategies. In this section

we identify consistency conditions that p and q must satisfy, given specified agent strategies.

We focus on strategies that could conceivably be optimal, as identified in the preceding section.

We assume that all applicants choose the same m ≥ 0, and that all employers play φα, i.e., they

play φ1 with probability α and exit immediately otherwise. From any m and α, we derive a unique

prediction for the pair (p, q).
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We emphasize at the outset that our analysis aims only to derive the correct consistency condi-

tions under the mean field assumptions. We provide rigorous justification for these assumptions via

the theorems in Section 4. As a consequence, those theorems also justify the consistency conditions

described below.

We start by deriving a consistency condition for q, given p and the strategy adopted by applicants.

Intuitively, q should be equal to the long-run fraction of offers that are accepted. Fix the value of

m chosen by applicants, and let X be the number of offers received by a single applicant. This

applicant will accept an offer if and only if X > 0, so the expected fraction of offers that are

accepted is P (X > 0)/E[X]. If Mean Field Assumptions 2 and 3 hold, then X is Poisson with

mean mp, so we should have

(4) q =
1− e−mp

mp
.

To derive a consistency condition for p, note that when employers follow φα, only compatible

applicants receive offers. Thus, p should equal β times the long-run fraction of qualified applications

that result in offers. Because an applicant’s availability does not influence whether they receive an

offer (as it is unobserved by prospective employers), this should be equal to β times the fraction

of applications by qualified available applicants that result in offers. Fix an employer playing φα,

and let Y be the number of qualified, available applicants received by this employer. This employer

successfully hires if and only if Y > 0 and she decides to screen. Thus, the fraction of qualified

available applicants who receive offers should be αP (Y > 0)/E[Y ]. We conclude that

(5) p = αβ
P (Y > 0)

E[Y ]
= αβ

1− e−rmβq

rmβq
,

where the final step comes from Mean Field Assumptions 1 and 3, which jointly imply that Y is

distributed as a Poisson random variable with mean rmβq.

The equations (4) and (5) are a system for p and q, given the values of m and α (as well as the

parameters r and β). The following Theorem states that the pair of consistency equations (4) and

(5) have a unique solution.

Theorem 1. For fixed m,α, r, and β, there exists a unique solution (p, q) to (4) and (5).

We refer to the unique pair (p, q) that solve (4) and (5) as a mean field steady state (MFSS). This

pair provides a prediction of how a large market should behave, given specific strategic choices of the
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agents. For later reference, given strategies m and α (and parameters r and β), let P(m,α; r, β) and

Q(m,α; r, β) denote the unique values of p and q guaranteed by Theorem 1, respectively. Because

our analysis is conducted with r and β fixed, we will omit the dependence on r and β in favor of

the more concise P(m,α) and Q(m,α).

3.3. Mean field equilibrium. In this section we define mean field equilibrium (MFE), a notion

of game theoretic equilibrium for our stationary mean field model. Informally, a MFE should be

a pair of strategies such that (1) agents play optimally given their beliefs about the marketplace,

i.e., the values p and q in the mean field assumptions; and (2) agent beliefs are consistent with the

strategies being played, i.e., (p, q) is an MFSS corresponding to the agents’ strategies. Section 3.1

addressed the first point; and Section 3.2 addressed the second. We define a mean field equilibrium

by composing the maps defined in those sections.

Definition 1. A mean field equilibrium (MFE) is a pair (m∗, α∗) such that m∗ =M(P(m∗, α∗))

and α∗ ∈ A(Q(m∗, α∗)).

In an MFE, m∗ and α∗ are optimal responses (under the mean field assumptions) to the steady-

state (p, q) that they induce. For future reference, we define p∗ = P(m∗, α∗) and q∗ = Q(m∗, α∗).

Our main theorem in this section establishes existence and uniqueness of MFE.

Theorem 2. Fix r, β, ca, cs, and suppose Assumption 1 holds. Then there exists a unique mean

field equilibrium (m∗, α∗).

3.4. A market intervention: application limits. As noted in the Introduction, we are inter-

ested in comparing the outcome of the market described above to the outcome when the platform

operator intervenes to try to improve the welfare of employers and/or applicants. We consider

a particular type of intervention: a limit on the number of applications that can be sent by any

individual.

In our model with application limits, agent payoffs are identical to before, as are the strategies

available to employers. Applicants, however, are restricted to selecting ma ≤ `. In the correspond-

ing mean field model, given p, applicants choose ma to maximize 1− e−map− cama (their expected

payoff), subject to ma ∈ [0, `]. The applicant objective is concave in ma, so this problem has a

unique solution given by

(6) M`(p) = min(`,M(p)).
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The consistency conditions are identical to those in Section 3.2. We define a mean field equilibrium

of the market with application limit ` as a pair (m∗` , α
∗
` ) solving the following pair of equations:

(7) m∗` =M`(P(m∗` , α
∗
` )), α∗` ∈ A(Q(m∗` , α

∗
` )).

The following proposition is an analog of Theorem 2 for the market with an application limit.

Proposition 2. Fix r, β, ca, cs such that Assumption 1 holds, and let (m∗, α∗) be the corresponding

MFE in the market with no application limit. Then for any ` ≥ 0 there exists a unique mean field

equilibrium in the market with application limit `. If m∗ ≤ `, then (m∗` , α
∗
` ) = (m∗, α∗). Otherwise,

m∗` = ` and α∗` is the unique solution to α∗` ∈ A(Q(`, α∗` )).

For future reference, we define p∗` = P(m∗` , α
∗
` ), q

∗
` = Q(m∗` , α

∗
` ).

4. Mean field approximation

In this section, we show that our mean field model is (in an appropriate sense) a reasonable

approximation to our finite system when the market grows large (i.e., when n→∞). Formally, we

show two results. First, we show that the mean field assumptions hold as n → ∞, as long as all

applicants a choose ma = m, and all employers choose αe = α. Note that once we fix m and α, we

have removed any strategic element from the evolution of the n-th system; these results are limit

theorems about a certain sequence of stochastic processes. Second, we use the preceding results to

show that any MFE is an approximate equilibrium in sufficiently large but finite markets.

We require the following notation. We let Binomial(n, p) denote the binomial distribution with

n trials and probability of success p, and let Binomial(n, p)k = P(Binomial(n, p) = k). We let

Poisson(a) denote the Poisson distribution with mean a, and let Poisson(a)k = P(Poisson(a) = k).

In the following theorem, we show that Mean Field Assumption 1 holds as n→∞. In the process,

we also show half of Mean Field Assumption 3: that in the limit the number of applications received

by an employer is Poisson distributed.

Theorem 3. Fix r, β, m, and α. Suppose that the n-th system is initialized in its steady state

distribution. Consider any employer e that arrives at tb ≥ 0. Let R
(n)
b denote the number of

applications received by employer e in the n-th system, and let A
(n)
b be the number of these applicants

that are still available when the employer screens.
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Then as n → ∞, the pair (R
(n)
b , A

(n)
b ) converges in total variation distance to (R,A), where

R ∼ Poisson(rm), and conditional on R, we let A ∼ Binomial(R, q).

Analogously, we have the following theorem, where we show that Mean Field Assumption 2 holds

as n → ∞. In the process, we also show the other half of Mean Field Assumption 3: that in the

limit the number of applications sent by an applicant is Poisson distributed.

Theorem 4. Fix r, β, m, and α and any m0 < ∞. Suppose that the n-th system is initialized

in its steady state distribution. Consider any applicant a arriving at time ts ≥ 0, denote the value

chosen by applicant a by ma (all other applicants are assumed to choose m, and all employers are

assumed to follow φα). Let T
(n)
s denote the number of applications sent by applicant a in the n-th

system, and let Q
(n)
s be the number of these applications that generate offers. Let T ∼ Poisson(ma),

and conditional on T , we let Q ∼ Binomial(T, p). Then

lim
n→∞

{
max

ma∈[0,m0]
dTV

(
(T (n)
s , Q(n)

s ), (T,Q)
)}

= 0 ,(8)

where dTV(X,Y ) denotes the total variation distance between the distributions of random variables

X and Y that take values in the same countable set.

In establishing these results, the fundamental result that we prove is that the evolution of the

“state” of the n-th system satisfies a stochastic contraction condition, and therefore remains “close”

to an appropriately defined fixed point for all time. This basic result allows us to establish that

the mean field assumptions hold asymptotically.

We conclude by using the preceding results to establish the following corollary, which establishes

(in an appropriate sense) that any MFE is an approximate equilibrium in sufficiently large finite

markets.

Corollary 1. Fix r, β, cs and ca. Let the MFE be (m∗, α∗). For any ε > 0, and any nonnegative

integer R0, there exists n0 such that for all n ≥ n0 the following hold:

(1) For all a, if all employers and applicants other than a follow the prescribed mean field

strategies, then applicant a can increase her expected payoff by no more than ε by deviating

to any m 6= m∗.

(2) For all e, if e receives no more than R0 applications, and if all employers and applicants

other than e follow the prescribed mean field strategies, then in any state in the corresponding
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dynamic optimization problem solved by employer e , employer e can increase her expected

payoff by no more than ε by deviating to any strategy other than φα
∗
.

The preceding result shows that for sufficiently large n, the mean field equilibrium is (essentially)

an ε-approximate equilibrium in the finite market of size n. The first statement in the result states

that applicants cannot appreciably gain by changing the number of applications they send. The

second statement in the result makes an analogous claim for employers. In particular, if employers

follow φα
∗
, they will either exit immediately; or sequentially screen and make offers to compatible

candidates until such an offer is accepted, or the applicant pool is exhausted. In doing so, they will

obtain information about the compatibility and availability of the subset of applicants they have

already screened. Our result states that at any stage in this dynamic optimization problem, the

employer cannot appreciably increase their payoff by deviating.

An apparent limitation of the second statement is that it applies only to employers who receive no

more than R applications. The fraction of employers who receive more than R applications scales

as exp(−Ω(R)); thus by choosing R large enough, this fraction can be made as small as desired.

Since we show that the n-th system satisfies an appropriate stochastic contraction condition, we

expect that in fact, for sufficiently large R, both statements in Corollary 1 hold even under arbitrary

behavior by employers who receive more than R applications. In the interest of brevity we choose

to omit this slightly stronger result.

5. Welfare analysis

One of the chief advantages of MFE is that they are amenable to analysis. In particular, we can

gain significant insight into employer and applicant welfare, and the potential value of intervention

for each side of the market. In this section, we study employer and applicant welfare in MFE, and

quantify the effects of limiting the number of applications sent by each applicant. We have two

main goals. First, by studying the equilibrium market outcome, we characterize the welfare losses

due to the two aspects of congestion described in the introduction: (1) many applications may

be sent that are never even screened; and (2) many applicants may be screened that prove to be

unavailable. The former leads to welfare losses for applicants; the latter leads to welfare losses for

employers. Second, we study the effect of market intervention, and show that limiting the number

of applications can lead to significant welfare gains for both sides of the market.

5.1. Welfare Benchmarks: Efficiency and Constrained Efficiency.
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Fix parameter values r, β, ca, and cs. For given agent strategies m and α, we let Πa(m,α) and

Πe(m,α) denote the mean field applicant and employer welfare, respectively (Formal expressions

for these payoffs can be found in Appendix E). We define Π∗a,Π
∗
e to be the expected applicant and

employer surplus in mean-field equilibrium, respectively. In other words,

(9) Π∗a = Πa(m
∗, α∗), Π∗e = Πe(m

∗, α∗),

Analogously, let Π`
a and Π`

e be expected applicant and employer payoffs in the equilibrium of the

market with application limit `. In other words,

(10) Π`
a = Πa(m

∗
` , α
∗
` ), Π`

e = Πe(m
∗
` , α
∗
` ).

When evaluating employer and applicant welfare in equilibrium, we need a point of comparison:

what constitutes “good” welfare for each side of the market? In the search literature, there are two

common comparison points: the “efficient” outcome and the “constrained efficient” outcome. In our

setting, the former corresponds to the hypothetical situation in which the platform directly observes

compatibility and costlessly matches individuals, so that applicants get min(1, 1/r) and employers

min(1, r). While platform operators often have information that they use to infer compatibility

and suggest matches, it is not reasonable to assume that they can costlessly and perfectly match

agents. This motivates the concept of constrained efficiency, where the designer is subject to

the informational constraints and costs of the decentralized market, but has the power to specify

application and screening strategies for each side. Motivated by this approach, we define

Πopt
e = sup

m,α
Πe(m,α); Πopt

a = sup
m,α

Πa(m,α).

It is clear that Πopt
e (resp., Πopt

a ) is an upper-bound for employer (resp., applicant) welfare in

equilibrium. These bounds are optimistic in at least two ways. First, Πopt
e is the best that the

social planner can obtain when optimizing for employers and Πopt
a is the best that the social planner

can obtain when optimizing for applicants; there is in general no reason to believe that the choices

of m and α that induce employer welfare of Πopt
e are the same strategies that yield a payoff of

Πopt
a for applicants. Second, the value Πopt

a does not incorporate the screening cost c′s. If this

cost is high, then the employer strategy required to produce applicant welfare of Πopt
a may not

be individually rational (and thus not attainable in practice). Similarly, the value Πopt
e does not
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depend on the application cost c′a, and it may be that no individually rational applicant strategy

can yield employer surplus of Πopt
e .

We employ Πopt
e and Πopt

a as our constrained efficient benchmarks.9 For most of this section,

we will discuss employer and applicant welfare in terms of the fraction of Πopt
e and Πopt

a earned

by employers and applicants, respectively. In Section 5.2 we focus on employer welfare, and turn

our attention to applicants in Section 5.3. In both cases, we conclude that equilibrium payouts

are (often substantially) below the constrained efficient benchmarks, and provide conditions under

which the simple intervention of employing an application limit can raise employer welfare to

Πopt
e or applicant welfare to Πopt

a . Although the employer-optimal and applicant-optimal limits

do not coincide, in Section 5.4 we provide conditions under which an application limit can deliver

Pareto improvements. Furthermore, we prove that for a wide range of parameters, the tradeoff

between optimizing for employers and for applicants is never too severe. Finally, in Section 5.5 we

consider the effect of an alternative intervention: raising the application cost ca. We show that

this intervention is equivalent to imposing an application limit from the perspective of employers,

but always reduces applicant welfare.

Before moving on, we note that although our model has four parameters (r, ca, cs, β), it turns

out that there is some redundancy, in that the quantities Π∗a, Π∗e, Πopt
a , Πopt

e , sup` Π`
a, and sup` Π`

e

depend only on r, c′a = ca/β, and c′s = cs/β. We characterize welfare in terms of this reduced

parameter set.

5.2. Welfare Analysis: Employers.

In this section, we prove several theorems regarding equilibrium employer welfare, and the wel-

fare that is attainable through the intervention of enforcing an application limit. We preview

our results using Figure 1, which displays Π∗e/Π
opt
e as r and c′s vary. The plot depicts a rather

sharp transition for employers: for most parameter values, they either do very well or quite poorly.

Furthermore, in the regions where equilibrium employer welfare is low, suitably limiting applica-

tions can substantially improve employer welfare. We formalize these observations in the following

proposition.

9One possible measure for the performance of the market is the aggregate welfare given by rΠa + Πe. However, note
that we have not imposed any constraints on the relative scale of employer and applicant payoffs; indeed, their units
may not even be comparable. By focusing on Πopt

a and Πopt
e individually, we provide welfare analysis that holds for

any relative weighting of employer and applicant welfare.
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Figure 1. Normalized employer welfare in equilibrium (Π∗e/Π
opt
e , left) and with an

employer-optimal application limit (sup` Π`
e/Π

opt
e , right). We fix the value c′a = 0.01,

and vary the values of log r (x-axis) and c′s (y-axis). Note that there are effectively
two regions: one in which employers do very well in equilibrium, and another in
which they do very poorly. In the latter case, intervention can substantially raise
employer surplus. See Proposition 3.

Proposition 3.

Employer welfare in equilibrium:

There exists a function f(r, c′a) ∈ (0, 1), increasing in both arguments, such that Π∗e = 0 if and

only if c′s ≥ f(r, c′a).

Employer welfare with an application limit:

If Π∗e = 0, there exists ` such that Π`
e = Πopt

e .

The preceding result partitions the parameter space into two regions, via the function f(r, c′a).

The region where c′s > f(r, c′a) corresponds to the red area in the left image in Figure 1. Here

employers obtain zero welfare in equilibrium, but intervention (in the form of an appropriate appli-

cation limit) can raise employer welfare all the way to the constrained efficient benchmark Πopt
e . We

note that equilibrium employer welfare may be zero even if the screening cost c′s is small. Indeed,

if r < 1, then f(r, c′a)→ 0 as c′a → 0, implying that regardless of c′s, employer welfare may be zero

if applicants send sufficiently many applications.

The intuition behind the proposition is as follows. When applicants send more applications,

the effects on employers are two-fold. First, each employer expects to receive a higher number of

qualified applicants, and is therefore more likely to match. However, each of these applicants is less

likely to be available, as they have applied to many other employers; this is precisely the congestion

effect (negative externality) on employers due to additional applicant applications. Thus, each
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employer pays a higher expected screening cost per successful hire. The proposition captures the

phenomenon that when this expected screening cost is too high, employers obtain zero welfare in

equilibrium.

The preceding discussion motivates the definition of the function f . In particular, as a thought

experiment, consider fixing the employer screening strategy to be φ1: i.e., suppose employers always

screen applicants before exiting. For fixed r and c′a, we can study the resulting market via a

“partial” equilibrium where applicants optimally choose m. Note that this partial equilibrium

does not depend on cs, since the employer strategy is already fixed. Let q̃ denote the applicant

availability in this partial equilibrium.10

The function f(r, c′a) is exactly the availability q̃ derived in the preceding partial equilibrium

analysis. Following Proposition 1, we see that if availability is high enough (i.e., if q̃ > c′s), then the

strategy φ1 is optimal for employers, and the partial equilibrium is in fact a general equilibrium;

thus when f(r, c′a) > c′s, employers receive positive welfare in equilibrium. On the other hand, if

availability is too low (i.e., if q̃ < c′s), then employers would strictly prefer to exit immediately, and

thus the partial equilibrium is not a general equilibrium. In this case, the market equilibrates just

to the point that employers are indifferent between exiting and screening. In other words, when

f(r, c′a) < c′s, the general equilibrium will involve employers receiving zero welfare, and mixing

between exiting and screening. This is exactly the dichotomy captured by Proposition 3.

We now provide intuition for the monotonicity of f . The larger the value of r, the more likely

it is that applicants are available. Thus, large values of r imply that employers become indifferent

about whether or not to screen only if c′s is also large. Meanwhile, when c′a is larger, applicants

send fewer applications and are therefore more likely to be available; hence, f is increasing in c′a.

Due to the search and screening costs c′a and c′s, agents on both sides of the market remain

unmatched in equilibrium.11 One way to interpret the preceding definition of f is in terms of

which cost (screening or application) constrains the equilibrium number of matches formed. If

c′s > f(r, c′a), then the market is screening-limited: a marginal decrease in c′s will increase the

number of matches formed in equilibrium, but a marginal change in c′a will have no effect on

the number of matches. This is because an increase in the number of applications sent (due to

10Formally, such a partial equilibrium can be defined as a solution to m = M(P(m, 1)). We show in Appendix C
that a unique solution m̃ exists to this fixed point equation; we then let q̃ = Q(m̃, 1).
11Indeed, one of the leading motivations behind the modeling of search frictions in labor markets is to explain the
simultaneous presence of vacancies and unemployed workers.
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Figure 2. Normalized applicant welfare in equilibrium (Π∗a/Π
opt
a , left) and with an

applicant-optimal application limit (sup` Π`
a/Π

opt
a , right). We fix the value c′a = 0.01,

and vary the values of log r (x-axis) and c′s (y-axis). Note that normalized equilib-
rium applicant welfare is low whenever c′s is high or r is large. In the latter case,
intervention can substantially raise applicant welfare. We formalize these statements
in Proposition 4.

lower application costs) is exactly offset by a reduction in screening by employers, such that the

availability q (and the total number of matches formed) remains the same. On the other hand, if

c′s < f(r, c′a), the market is application-limited: a marginal change in c′s will have no effect on the

number of matches formed, but a marginal decrease of c′a will increase the equilibrium number of

matches. This is because in this region employers receive positive welfare and never exit; reducing

the screening cost thus cannot improve the likelihood an employer hires successfully, but increasing

the number of applications can improve the likelihood of a match.

The fact that intervention ran raise employer welfare from zero to Πopt
e follows from Proposition

2, which states that whenever a limit ` < m∗ is enforced, applicants select m = ` in the equilibrium

of the resulting game. If Π∗e = 0, it follows that the employer-optimal choice of m is less than m∗,

and thus Πopt
e can be attained via appropriate intervention.

5.3. Welfare Analysis: Applicants.

In this section, we prove several theorems regarding equilibrium applicant welfare, and the welfare

that is attainable through the intervention of enforcing an application limit. We preview our results

using Figure 2, which displays Π∗a/Π
opt
a as r and c′s vary.

Figure 2 suggests that normalized applicant welfare in equilibrium is low whenever r is large.

Of course, when r > 1, the fraction of applicants who eventually match is at most 1/r. However,

we normalize applicant welfare by Πopt
a , which accounts for this fact. Applicants do badly relative
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to Πopt
a when r is large because in this case, they compete fiercely for the limited number of open

positions, and many of their applications are not even read. This is the more widely studied

congestion effect in matching markets: applicants find themselves in a “tragedy of the commons”

due to the negative externality their applications impose on each other.

Figure 2 also suggests that equilibrium normalized applicant welfare is low whenever c′s is large.

There are two reasons for this effect. First, high screening costs ensure that relatively few employers

screen and hire applicants (a fact that is not accounted for in the computation of Πopt
a ). Second,

because many employers leave the marketplace without screening, the “effective” market imbalance

(i.e. r/α∗) is large, so applicants again compete fiercely for limited spots. While enforcing an

application limit cannot cause more applicants to match, it can eliminate the wasteful competition

among applicants. For this reason, an appropriate application limit can always boost applicant

welfare.

We formalize these observations in Proposition 4, which roughly states that applicant welfare

is low whenever c′s is large or r is notably above one. Proposition 4 also states that whenever

employers all screen in equilibrium, intervention can boost applicant welfare to Πopt
a .

Proposition 4.

Applicant welfare in equilibrium:

(1) Let γ be the unique solution to (1− e−γ)/γ = c′s. Then Π∗a ≤ 1− (1 + γ)e−γ .

(2) If r > 1, then Π∗a ≤ 1
r

(
1− (r − 1) ln

(
r
r−1

))
(Trivially, Π∗a ≤ 1 for r ≤ 1.)

Applicant welfare with an application limit:

(1) There always exists ` such that Π`
a > Π∗a.

(2) If c′s ≤ f(r, c′a), there exists ` such that Π`
a = Πopt

a .

To illustrate the magnitude of this effect, we consider an example where r = 1.4 and application

costs are near-zero. In this case, Proposition 4 implies that Π∗a ≤ 1
2r , whereas an appropriate

application limit ` can ensure that applicants match at minimal costs, so that Π`
a ≈ 1

r . Thus, in

this case, intervention can roughly double applicant welfare (without notably changing the number

of matches that form). If r = 1.9, the same reasoning implies that intervention can triple applicant

welfare.

5.4. Pareto Improvements.
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The previous section separately addressed the employer and applicant welfare attainable through

intervention. One natural concern is that while there may exist choices of ` that result in high

employer welfare and choices of ` that result in high applicant welfare, these choices of ` might not

coincide. In this section, we address this concern.

Proposition 5 states that whenever the market is “screening-limited”, it is possible to choose a

single application limit such that both employers and applicants are better off than they would be

without any intervention. In such cases, we show that the tradeoff between optimizing for employers

and for applicants cannot be too severe. In particular, Proposition 1 shows that if c′s ≤ f(r, c′a),

there exists `′ such that Π`′
e ≥ 3

4 sup` Π`
e and Π`′

a ≥ 3
4 sup` Π`

a. These bounds are tight in the

limit where c′a → 0 and c′s → 1, but Figure 3 presents numerical results indicating that for many

parameter values, this bound is overly pessimistic.

Proposition 5. If c′s ≥ f(r, c′a), then there exists ` such that Π`
e > Π∗e and Π`

a > Π∗a.

One might wonder whether Pareto improvements are possible when the market is “application

limited” (i.e. c′s < f(r, c′a)). The answer turns out to be, “not always.” Indeed, if either r or c′a

is large enough, then availability never becomes a pressing concern to employers, and any binding

application limit lowers employer welfare.12 While one might conclude that enforcing an application

limit is undesirable in these cases, Figure 3 shows numerically that an application limit can often

substantially improve applicant welfare at little cost to employers.

In this figure, we plot the largest fraction δ such that there exists a single limit `′ where employers

earn an expected surplus of δ sup` Π`
e and applicants (simultaneously) earn an expected surplus of

δ sup` Π`
a. Observe that δ is reasonably high across the entire figure. Conjecture1 provides a formal

characterization of this observation: in particular, it states that δ ≥ 3/4.

Conjecture 1. For all r, c′a, c
′
s, there exists `′ such that min

(
Π`
′
a

sup` Π`a
, Π`

′
e

sup` Π`e

)
≥ 3

4 .

The intuition behind this conjecture is as follows. When the employer-optimal choice of m is

less than the applicant-optimal value, then decreasing c′a (thereby increasing the applicant-optimal

m) or increasing c′s (thereby decreasing the employer-optimal m) increases the tension between

the two sides and decreases δ. Conversely, when the employer-optimal choice of m exceeds the

applicant-optimal level, then increasing c′a lowers δ. We have proofs that lim
c′s→1

lim
c′a→0

δ = 3/4, and

12This holds, for example, if c′s < max {1− 1/r, c′a}.
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Figure 3. For c′a = 0.01 and varying values of c′s and r, this figure shows the
largest fraction δ such that there exists a single limit `′ for which employers earn
an expected surplus of δ sup` Π`

e and applicants (simultaneously) earn an expected
surplus of δ sup` Π`

a. We conjecture that for all parameter values, δ ≥ 3/4.

lim
c′a→1

δ = 2+r
1+r −

1
4

(
2+r
1+r

)2
≥ 3/4. The result that δ ≥ 3/4 for all parameter values remains a

conjecture because we lack a formal proof that these limiting cases are, in fact, worst cases (though

numerical methods indicate that they are).

5.5. An Alternate Intervention. For reasons not modeled in this paper, placing a limit on the

number of applications sent by each applicant may be impractical or undesirable. For example, this

limit may be unenforcable if applicants can easily create multiple anonymous accounts. Addition-

ally, a “one size fits all” limit may be too coarse if applicants vary in quality or in the number of

jobs that they wish to hold. These thoughts motivate a second type of intervention that reduces the

number of applications sent: raising the application cost.13 This intervention would dispense with

any incentive to create multiple accounts, and would allow for applicants to tailor their strategy to

their own characteristics.

From the perspective of the employer, limiting applications and raising application costs have

similar effects. To applicants, however, they look different. Although both interventions reduce the

amount of competition for each opening, raising the application cost also directly harms applicants.

A priori, it is not obvious which effect dominates. Proposition 6 shows that within our model,

13This is effectively a “tax” on the externality that applicants impose on employers. This tax could take the form
of an explicit monetary payment to the platform (presumably benefiting the platform, though we do not model
the operator as a strategic agent), or could simply be an additional form or questionnaire that the applicant must
complete for each employer contacted.
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raising application costs can only hurt applicants.14 Additionally, we formalize the idea that the

two interventions are equivalent from the perspective of employers.

Proposition 6. Fix values of r, cs, β satisfying cs < β, and let Π∗e(c) and Π∗a(c) be employer and

applicant welfare in the MFE when c′a = c. Then

• For each ` ∈ R+, there exists a unique c̃′a ≥ c′a such that Π`
e = Π∗e(c̃

′
a).

• For each c̃′a > c′a, there exists a unique ` ∈ R+ such that Π`
e = Π∗e(c̃

′
a).

• Π∗a(c) is a decreasing function.

Though we focus primarily on the intervention of imposing an application limit, Proposition 6

establishes that in cases where the intent of the intervention is to help employers, raising applica-

tion costs is a viable alternative approach. In practice, the relative merits of these two forms of

intervention depend on a number of considerations not modeled in this paper, and choice between

them should be determined by the operator’s objectives and capabilities.

6. Discussion

In this section we interpret our analytical results, and also discuss a range of observations,

extensions, and open directions related to our analysis. The following are our main insights.

(1) No intervention: Employer welfare can drop to zero. A major contribution of our paper is

to study the effect of a lack of availability information. In congested matching markets, our

results show this effect can be severe enough to drive employer welfare to zero. In particular,

Proposition 3 reveals that if either r is low or c′s is sufficiently high, then employers waste

so much screening effort trying to find an available applicant, that equilibrium welfare is

zero. Note that in particular, this effect is exacerbated when applicants are in short supply.

(2) No intervention: The applicants’ see a “tragedy of the commons”. Proposition 4 reveals

that applicant welfare is bounded away from min{1, 1/r}, regardless of application costs.

The loss of welfare is particularly severe when either r or c′s is large. This recovers the first

order effect of congestion among applicants in a matching market: they do not internalize

their competition externality on each other. This loss of welfare remains even as application

14We assume that the costs paid by applicants cannot be redistributed. This is reasonable if the increased cost is
not a monetary transfer, but instead an additional barrier to application (such as additional questions that each
applicant must answer). Even when the additional cost is monetary, redistribution may be logistically challenging,
create incentives for individuals to create multiple accounts, and may be undesirable from the point of view of the
platform operator.
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costs go to zero, because the increase in applications sent offsets the reduction in application

costs.

(3) The value of intervention: Constrained efficiency. If we are able to limit the number

of applicant applications, a dramatically different picture emerges. Whenever employer

welfare is zero in the market without intervention, we can use an application limit to

raise employer welfare to their constrained efficient benchmark (cf. Proposition 3). For

applicants, Proposition 4 reveals that application limits always help, and in appropriate

regimes can raise applicant welfare to their constrained efficient benchmark as well.

(4) Pareto improvements. In light of the preceding results, a natural question arises: how

does helping one side of the market affect the other? Proposition 5 shows that whenever

employer welfare is zero in the market without intervention, there exists a single choice of

application limit that is Pareto improving: both sides of the market are strictly better off.

In fact, we show numerically that a large fraction (3/4) of the constrained efficient bench-

mark can be obtained for both sides of the market at once. In other words, tradeoffs between

optimizing for employers and applicants are minimal.

We conclude the paper by discussing the implications of some of our modeling assumptions, as

well as some open directions for future work.

Dynamic vs. static models. Ours is not the first work to conclude that restricting visibility

may prove beneficial, but our dynamic model provides quantitative insights that differ substantially

from those of the static models that preceded it.15 One important distinction between this line

of work and our own is that in most existing work on availability, firms are uncertain about the

preferences of workers, and risk having their offers turned down by workers who prefer other firms.16

In our setting, buyers and sellers are ex-ante homogeneous, and this effect is absent. The uncertainty

facing buyers is one of timing; they know that their offer will be accepted, so long as the seller

is not already employed. Our work demonstrates that interventions similar to those proposed to

address preference-related frictions can also reduce timing-related frictions and enhance the welfare

of agents on both sides of the market.

15See, for example, Halaburda and Piskorski (2010). Further, Coles et al. (2010) discuss the recent introduction of a
signaling mechanism with limited messaging into the market for students graduating with PhDs in economics, and
empirically analyze its effects. Lee et al. (2011) study the benefits of a related intervention in the context of an online
dating market. Meanwhile, the idea of credible signaling mechanisms has been explored theoretically by Coles et al.
(2013) and Lee and Schwarz (2007).
16For example, in Coles et al. (2013), one driver of improved worker welfare is that when signals are used, workers
receive “better” offers.



26 NICK ARNOSTI, RAMESH JOHARI, AND YASH KANORIA

Even in the absence of preference heterogeneity, our conclusions are substantially different than

those obtained in a static setting. In particular, in some parameter regimes, we find a stark

dichotomy: our model concludes that lowering application costs can reduce employer welfare to

zero, while a static model would conclude that lowering application costs only improves employer

welfare. Here we briefly present a comparison to illustrate this point.

For concreteness, we consider a “one-shot” version of our dynamic model: applicants choose m,

and apply to (in expectation) m employers; employers screen applicants, and make at most one

offer; and applicants accept an offer at random among those received. A mean field analysis of this

model reveals that if c′s < e−1/r, then employer welfare is increasing in m; see Appendix B. This

suggests that minimizing search frictions (the costs ca, cs) is a reasonable proxy for maximizing

welfare. Our results contrast with this conclusion in a fundamental manner: whenever r ≤ 1,

employer welfare is unimodal in the number of applications sent by applicants, and becomes zero

if the number of applications is sufficiently large. Correspondingly, we conclude that reductions in

application costs can severely reduce the marketplace’s efficiency.

This dichotomy arises because static models, while admitting the possibility that employer offers

will be rejected, severely understate the likelihood of this event. Note that in the static model,

employers send at most one offer (regardless of the number of applications sent by applicants).

Because agents have limited ability to coordinate, unless there are far more employers than ap-

plicants, a large number of applicants will go unmatched. From the perspective of any particular

employer, if he makes an offer to a random applicant, there is a reasonable chance that she has no

other offers and therefore will accept.

In practice, many labor markets (and more generally, matching markets) operate asynchronously,

and it seems reasonable to expect that employers whose initial offers are turned down will make

an offer to a second candidate. Our model, because it is dynamic, allows for this possibility; as

discussed in Section 5, this effect imposes a negative externality on future employers who may

choose to screen the same applicant. Because employers pay a cost for each applicant screened,

this can dramatically lower employer welfare.17

17It’s worth noting that Kircher (2009) incorporates the idea of allowing employers to make multiple offers into a
static model by assuming that applicants send applications, and then a stable match is formed (so that in particular,
there is no employer-applicant pair (b, s) such that a applied to e and both remain unmatched). One key difference
between his model and ours is that he assumes that the stable match forms costlessly (viewed in our setting, he sets
cs = 0).
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Applicant behavior. Applicant behavior in our model has two features that can be relaxed,

though at the cost of significant additional technical complexity. First, in our model applicants

cannot directly choose the number of applications that they send; rather, they apply to each

employer independently with probability m/n. Our primary motivation for this choice was technical

convenience; allowing applicants to exactly select the number of employers to whom they apply

introduces an additional source of correlation that further complicates the proofs of Theorems 3

and 4. While allowing applicants to exactly select how many applications to send complicates the

approximate equilibrium result, the mean-field analysis for this alternative model remains quite

tractable: the key distinction is that while in our model the number of applications an applicant

sends is Poisson distributed with mean m, in the alternate model the number of applications an

applicant sends is exactly m. As a result, the probability an applicant receives an offer becomes

1− (1− p)m, instead of 1− e−mp. This does not substantively change our results.

Second, note that in our model applicants cannot condition on the number of other applicants

that apply to a given job. Again, this simplifies our technical arguments. If applicants do see the

number of other applicants on a given job, then in the mean field analysis each employer would

receive exactly rm applications (while in our model, the number of applications received by an

employer is Poisson distributed with mean rm). Analogous to our discussion above, the probability

that an employer matches in the alternate model is 1 − (1 − βq)rm, as opposed to 1 − e−rmβq in

our model. Again, this does not substantively change our results.

Heterogeneity. In our model, the probability of compatibility β is assumed to be constant

across employers and applicants. In practice, we expect that employers do not look identical to

applicants, and that applicants (or the platform) can direct applications to the most “promising”

openings; in this case an application limit encourages applicants to apply to the openings for

which they are the best fit. Under suitable assumptions, this could be captured in our model by

having β = β(m) being a decreasing function of m. In such a setting, smaller m would lead to a

larger β, leading to an additional improvement in welfare. It is somewhat surprising that limiting

visibility helps even when the platform has no agent-specific or match-specific information about

compatibility, and applications are sent randomly by uninformed agents; this only strengthens our

belief in the potential benefits of limiting applications.

Compatibility. In our model, we assume that each applicant is compatible with a given em-

ployer with probability β, i.i.d. across all employer-applicant pairs. In fact, we can relax this
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definition, and all our results hold if we only assume that conditional on applicant a having applied

to an employer e, applicant a is compatible with probability β, independent of other applicants to

employer e. In this description of the model, with a larger β, the compatibility “graph” is biased

so that a larger fraction of applicants to an employer are compatible with her.

With this view of compatibility in our model, β naturally captures the role of improved rec-

ommendation and/or search algorithms used by the platform. In other words, as β rises, we can

view the resulting application dynamics as capturing the notion that an employer receives a greater

number of applicants who are likely to be a good fit for her. In our paper we have not focused

on the role of compatibility, but given the central role of search and recommendations in online

matching platforms, it would be worthwhile to compare the potential welfare benefits of improved

compatibility with the benefits of application limits.

Symmetric behavior. In our model, the applicants make the applications and employers do

the screening. An important direction for future work is to instead consider a symmetric model

where any agent on either side of the market can initially submit applications as well as post her

availability, and later return to screen applicants if she does not receive any offers. While we

believe our current model is appropriate for a range of markets where asymmetric screening and

application behavior is inherent to the platform, a symmetric model may be more appropriate for

settings where no such constraint exists a priori.

Transfers. Our model does not capture the possibility of monetary transfers, e.g., wages.

Numerous papers (Moen, 1997; Acemoglu and Shimer, 1999; Kircher, 2009) have observed that

endogenously determined wages can guide the market towards efficiency. These results do not

extend to our setting directly. For example, Moen (1997) and Acemoglu and Shimer (1999) assume

that workers apply to a single firm, precluding the possibility that they might be unavailable.

Kircher (2009) allows workers to apply to multiple firms, but the efficiency of equilibrium crucially

relies on the assumption that firms can (costlessly) contact all applicants to find one who is available.

Nevertheless, we believe a model that also includes endogenously determined wages could prove to

be an illuminating direction for future work.

Observability of availability. Our model explores the implications of the fact that availabil-

ity is unobservable. This prompts a natural potential solution: the platform could just expose the

fact that the match has formed, and that the applicant is “unavailable.” One challenge with this

approach is that in many online platforms, properly detecting availability is a difficult problem.
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For example, on the online labor market oDesk, Horton (2014) shows that workers have an ex-

tremely wide distribution of hours worked per week on the platform, so that the amount of work a

freelancer wants to take on can be difficult to forecast. Similar issues arise in other examples such

as dating markets, where the platform has imperfect observability of availability. In particular, the

simple intervention studied in our paper—limiting applications—is often much more feasible than

a (potentially quite costly and imperfect) determination of the availability of an applicant.

Rather than trying to infer availability, the platform could solicit this information from its users.

While some sites (for example, AirBnB) do just that, this approach comes with its own challenges.

To encourage truthful reporting, there must be some form of punishment for those who turn down

offers after declaring themselves available. However, in markets with heterogeneous preferences,

punishing users who decline invitations may prove unpalatable.

Furthermore, even if availability is inferred by the platform (or self-reported by users), this

information may arrive too late to influence the screening process. Although our model represents

screening as happening instantaneously, this is largely a technical device; in practice of course,

screening takes time, and there may be several employers screening the same applicant at the

same time. In such a situation, the platform can’t inform other employers that an applicant is

unavailable, because a match has not yet been consummated. As a result, employers will expend

effort screening applicants who may ultimately be off the market. In our model, we capture this

phenomenon by ensuring that employers do not see their applicants’ arrival times, and must screen

(at some cost) before learning availability.

If instead we wanted to study a market where availability information is easily acquired, we

might consider a model where employers learn the arrival time of an applicant who has applied

to them, or even instantaneously learn when applicants have matched. Our focus in this paper is

instead on modeling the large range of practical situations where employers do not have reliable

information on availability at the time of screening. As noted through our discussion above, a lack

of availability information is a prevalent issue affecting a range of marketplaces; our work highlights

both the negative consequences of this issue in congested markets, as well as simple interventions

to alleviate these effects.
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Appendix A. A utility-theoretic model of employer screening

In the model presented in the paper, we have assumed that employers must screen a candidate

before they can make an offer to that applicant. This is a “mechanical” restriction, made because

it is plausible and simplifies the technical presentation of our results. Notably, it does not explicitly

model features of employer utility that lead to such behavior. In this section, we provide a utility-

theoretic model of employers, together with reasonable assumptions on employer utility, that ensure

that they would always screen before making an offer.

Let ch be the cost to the employer of hiring an applicant (irrespective of compatibility). Let u

be the benefit to an employer of hiring at least one compatible applicant. Then the net utility from

hiring a single compatible applicant (and not hiring anyone else) is v = u− ch, whereas the utility

of hiring an applicant who is not compatible is −ch.

Suppose employers can choose to make an offer without screening (at the risk of hiring someone

incompatible). We argue that an employer would never want to do this if βu < ch. Consider the

dynamic decision problem faced by an employer upon exit. The state of this problem consists of

the outcomes on all applicants a screened thus far: whether a was screened, and if so, whether a

was compatible; and whether a accepted or rejected an offer (if an offer was made). The employer

chooses whether to exit, or to skip, screen, or make an offer to the next applicant in her list.

Suppose the next applicant in the list is a′. We assume the continuation value of not exiting is

nonnegative; otherwise the result is vacuous. We argue that the myopic net utility from making an

offer to a′ without screening is negative; and further, the continuation value cannot be increased

by making an offer without screening.

• The myopic expected utility from hiring an applicant a′ without screening her is βu − ch,

if no compatible applicant has been hired yet (otherwise the utility is even smaller). Recall

that compatibility with the applicant is independent of everything else (including whether

the applicant will accept an offer), and only the employer can learn compatibility. It follows

that the myopic expected utility from making an offer to an applicant without screening is

negative if βu < ch, as long as there is non-zero likelihood that the offer will be accepted.

• Now consider the continuation value of making an offer to a without screening. We argue

that even if the employer were to learn the compatibility of a at no cost after the offer has

been made, the continuation value cannot increase. If a rejects the offer or is incompatible,

the continuation value (weakly) decreases since the employer now has one fewer applicant
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remaining; if a accepts the offer and is compatible, then the continuation value is zero,

which again means that it does not increase.

In the dynamic decision problem faced by the employer, therefore, it cannot be optimal to make an

offer without screening, since the resulting expected utility in the dynamic decision problem will

be less than the (optimal) continuation value at the current state.

This justifies our mechanical restriction that an employer must screen before making an offer to

an applicant, under the reasonable condition βu < ch. Informally, this condition will hold when

the cost of matching to an applicant is high. In particular, this cost is likely to be quite high when

the employer is only interested in matching to at most one applicant.

Appendix B. Static model

Consider a “one-shot” version of our dynamic model: applicants choose m, and apply to each

employer independently with probability m/n; employers screen applicants, and make at most one

offer; and applicants accept an offer at random among those received.

A mean field analysis of this model can be carried out as before. We make mean field assumptions

very similar to those in Section 3: Assumptions 2 and 3 are unchanged, and Assumption 1 is slightly

modified to “Each applicant in an employer’s applicant set will accept an offer from the employer

with probability q, independently across applicants in the applicant set.” Again assume that each

employer screens with probability α. The consistency condition for p is slightly modified to

p = αβg(rmβ) ,

where g(x) = (1−e−x)/x and the argument of g(·) now does not contain the term q since employers

do not screen for availability (the absence of q from this condition causes the static model to behave

very differently from our dynamic model, as we see below). The consistency condition for q remains

q = g(mp) ,

leading to

q = g(α(1− e−rmβ)/r) .
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Employer welfare, when α = 1 is

(1− e−rmβ)(q − c′s) = (1− e−rmβ)(g((1− e−rmβ)/r)− c′s) = r(1− e−(1−e−rmβ)/r)− c′s(1− e−rmβ)

= r(1− e−y/r)− c′sy ,

where y = 1−e−rmβ < 1. Note that y is monotone increasing in m. The derivative of the employer

welfare with respect to y is e−y/r − c′s > e−1/r − c′s. Thus, under the relatively mild condition

c′s < e−1/r, the employer welfare is monotone increasing with respect to y, and hence with respect

to m, for α = 1. (For values of m such that the employer welfare is negative with α = 1, the

equilibrium value of α will be less than 1 such that the resulting employer welfare is 0.) This is in

contrast with our dynamic model, where whenever r ≤ 1, employer welfare is unimodal in m, and

becomes zero if m is sufficiently large. Thus, the static model does not capture that reductions

in application costs can severely reduce the marketplace’s efficiency. See Section 6 for a further

discussion of this issue.

Appendix C. Proofs: Section 3

C.1. Section 3.2: Mean Field Steady States. In this appendix we study mean field steady

states (MFSS), i.e., solutions (p, q) to the equations (4) and (5). We prove Theorem 1, which states

that for any r, β,m, α, there exists a unique MFSS. We also show in Lemma 3 that the MFSS

values p and q are monotonic in m and α. This will be useful in proving results about mean field

equilibria in Section C.2.

For notational convenience, we define the function g as follows:

(11) g(0) = 1, g(x) =
1− e−x

x
for x > 0.

Lemma 1. The function g : [0,∞) → (0, 1] defined by (11) is continuous and strictly decreasing.

Further:

(1) g′(x) ≥ −g(x)/x and g′′(x)/g′(x) > −1 for x > 0;

(2) lim
x→0

g′(x) = −1/2, and lim
x→0

g′′(x) = 1/3;

(3) e−g
−1(c) ≤ c2 for 0 < c < 1.

Proof of Lemma 1. Note first that g is continuous at zero. Differentiating, for x > 0 we have

(12) g′(x) =
(1 + x)e−x − 1

x2
=
e−x − g(x)

x
.
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Monotonicity of g follows from applying the inequality 1 + x < ex for x > 0, which implies (on

rearranging terms) that e−x < g(x). Having established that the expressions in (12) are negative,

it follows that g′(x) > −g(x)/x for x > 0.

We now prove that g′′(x)/g′(x) > −1, which is equivalent to g′(x) + g′′(x) < 0 (the inequality

has reversed because g′ < 0). Basic algebra reveals that

−x(g′(x) + g′′(x)) = (g(x) + 2g′(x))(13)

=
1

x2

(
(2 + x)e−x + x− 2

)
(14)

Thus, g′(x) + g′′(x) < 0 if and only if (2 + x)e−x + x − 2 > 0. Differentiating this expression, we

see that
d

dx

(
(2 + x)e−x + x− 2

)
= 1− e−x(1 + x) ≥ 0,

so the expression is minimized at x = 0, when it takes the value zero.

If we apply L’Hospital’s rule to (12), we obtain

lim
x→0

g′(x) = lim
x→0

e−x − g(x)

x
= lim

x→0
−e−x − g′(x).

Rearranging, we see that 2 limx→0 g
′(x) = −1, implying that limx→0 g

′(x) = −1/2. Rearranging

(13) reveals that

(15) lim
x→0

g′′(x) = lim
x→0
−g′(x)− g(x) + 2g′(x)

x
=

1

2
− lim
x→0

(g′(x) + 2g′′(x)),

where we have used the fact that limx→0 g
′(x) = −1/2 and applied L’Hospital’s rule. Rearranging

(15), we see that 3 limx→0 g
′′(x) = 1.

Finally, by rearranging we observe that e−g
−1(c) ≤ c2 if and only if 1 − c2 + 2c log c ≥ 0. It is

straightforward to check that the expression 1− c2 + 2c log c is decreasing in c, and is equal to zero

at c = 1. �

Proof of Theorem 1. Recall from (4)-(5) that given r,m, β, α, we define a MFSS as any solution

(p, q) to

(16) p = αβg(rmβq), q = g(mp).
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Note that the preceding system trivially has a single solution when m = 0: namely, p = αβ and

q = 1. Therefore we focus on the case where m > 0. We proceed by showing that the preceding

system has a unique solution.

For this purpose it is useful to rewrite (16) as providing two functions that yield p in terms of

q. In particular, for m > 0, we note that (p, q) is an MFSS if and only if p = p1(q) = p2(q), where

p1, p2 : [g(m), 1]→ [0, 1] are defined by

(17) p1(x;m,α) = αβg(rmβx), p2(x;m) = g−1(x)/m.

Here the notation f(x; y) indicates that the function f is parameterized by y. The chosen lower

bound of g(m) for the domain arises from the fact that any mean-field steady-state (p, q) corre-

sponding to (m,α) must satisfy q = g(mp) ≥ g(m) (since g is strictly decreasing).

We show in Lemma 2 that for m > 0 and any r, β, α, there is a unique point where p1 and p2

intersect; this point is the unique MFSS. �

The following lemma, used in the preceding proof, also establishes some useful properties of

MFSS.

Lemma 2. Fix r, β, and α, and m > 0. Then there exists a unique pair (p, q) ∈ [0, αβ]× [g(m), 1)

such that p = p1(q;m,α) = p2(q;m).

Furthermore: (1) the functions p1 and p2 defined in (17) are monotonically decreasing in q; and

(2) for q′ < q, we have p < p1(q′;m,α) < p2(q′;m); and for q′ > q, we have p > p1(q′;m,α) >

p2(q′;m).

Proof. For the duration of the proof we suppress the dependence of p1 and p2 on α and m.

Note that on the domain [g(m), 1), p1 begins “below” p2 and finishes “above” it, i.e. (because

g(·) ≤ 1 by Lemma 1), we have p1(g(m)) ≤ αβ < 1 = p2(g(m)) and p1(1) > 0 = p2(1). Since

p1 and p2 are continuous, this implies that a mean-field steady-state exists. This is illustrated in

Figure 4.

Once we know that the intersection of p1 and p2 is unique, the final claim of the lemma follows

immediately. Thus, all that remains to show is that p1 and p2 have a unique intersection point.

Note that because g is decreasing by Lemma 1, so are both p1 and p2. To show uniqueness, we will

show that whenever p1 and p2 intersect, the curve p2 is decreasing more “steeply,” i.e. ∂p1

∂x > ∂p2

∂x .

Equivalently, we wish to show that whenever p1(q) = p2(q) = p, we have ∂p1

∂x (q)
/∂p2

∂x (q) < 1 (the
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Figure 4. A depiction of p1(q) and p2(q); we prove in Lemma 2 that they have a
unique intersection point.

inequality reverses because both partials are negative). But

∂p1

∂x
(q)
/∂p2

∂x
(q) =

(
αβrmβg′(rmβq)

) (
mg′(mp)

)
(18)

<

(
αβg(rmβq)

q

)(
g(mp)

p

)
.(19)

=

(
p

q

)(
q

p

)
= 1.(20)

The first line follows from implicit differentiation of p2; the second from the inequality |g′(x)| <

g(x)/x proven in Lemma 1; and the third from the fact that (p, q) is a mean-field steady-state, i.e.

p1(q) = p2(q) = p. �

Having established the existence of a unique mean-field steady-state, it will be useful when

proving later results to understand how P(m,α) and Q(m,α) vary with m and α. We require the

following identity, which can be easily derived by rearranging (4)-(5):

(21) α(1− e−rmβq) = r(1− e−mp)

There is a straightforward interpretation of this identity. Each employer matches if and only

if they screen (which they do with probability α), and they have a qualified available applicant

(which occurs with probability 1 − e−rmβq, because each applicant is available with probability q

and qualified with probability β). On the other hand, each applicant matches if and only if one of
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her applications receives an offer (which occurs with probability 1 − e−mp). Because the number

of employers and applicants who match must be equal, we conclude that if p and q are the MFSS

consistent with strategies m and α, then (21) must hold.

The following lemma provides some monotonicity properties of P(m,α) and Q(m,α).

Lemma 3. For (m,α) ∈ (0,∞)×(0, 1], the function P(m,α) is strictly decreasing in m and strictly

increasing in α, and Q(m,α) is striclty decreasing in m and in α. For α > 0,

lim
m→∞

P(m,α) = αβf2(α/r), P(0, α) = αβ.

lim
m→∞

Q(m,α) = f2(r/α), Q(0, α) = 1,

where f2 is defined by

(22) f2(x) =

 0 : x ≤ 1

g(log x
x−1) : x > 1.

Proof. Define the functions p1 and p2 as in (17). Recall from Lemma 2 that P(m,α) and Q(m,α)

are the unique solution (p, q) to p1(q;m,α) = p2(q;m) = p. For x < Q(m,α), we have p1(x) < p2(x)

and for x > Q(m,α), we have p1(x) > p2(x).

We first prove the statements about monotonicity in α. Suppose that α < α′. Then p2(Q(m,α);m) =

p1(Q(m,α);m,α) < p1(Q(m,α);m,α′). It follows immediately from Lemma 2 that Q(m,α) >

Q(m,α′). Furthermore, since P(m,α) = p2(Q(m,α);m) and P(m,α′) = p2(Q(m,α′);m) and p2 is

monotonically decreasing, this implies that P(m,α) > P(m,α′).

We now prove monotonicity with respect to m. It follows from (21) that for fixed r and α > 0,

(23) m′Q(m′, α) < mQ(m,α)⇔ m′P(m′, α) < mP(m,α).

Let m′ > m, and suppose that m′P(m′, α) < mP(m,α). It follows that

Q(m′, α) = g(m′P(m′, α)) > g(mP(m,α)) = Q(m,α),

which contradicts (23). Therefore, our supposition was incorrect; it must be that bothm′P(m′, α) >

mP(m,α) and m′Q(m′, α) > mQ(m,α). By definition (see (4) and (5)), we have Q(m,α) =

g(mP(m,α)) and P(m,α) = αβg(rβmQ(m,α)). Applying the fact that g is decreasing (see Lemma

1), we conclude that Q(m′, α) < Q(m,α) and P(m′, α) < P(m,α), as claimed.
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Having established monotonicity of P and Q, we move on to evaluating their limits as m→∞.

When r < α, (21) implies that 1− erβmQ(m,α) ≤ r/α, so mQ(m,α) is bounded above. This implies

both that Q(m,α) → 0 as m → ∞ and that P(m,α) = αβg(rβmQ(m,α)) is bounded away from

zero. It follows from (21) that

lim
m→∞

1− e−rβmQ(m,α) = lim
m→∞

r

α
(1− e−mP(m,α)) =

r

α
,

so rβmQ(m,α)→ − log(1− r
α) = log

(
α/r
α/r−1

)
and P(m,α) = αβg(rβmQ(m,α))→ αβf2(α/r).

Analogously, when r > α, (21) implies that 1− e−mP(m,α) ≤ α/r. This means that mP(m,α) is

bounded above, so P(m,α)→ 0 and Q(m,α) = g(mP(m,α)) is bounded away from zero. Applying

(21) we get that

lim
m→∞

1− e−mP(m,α) = lim
m→∞

α

r
(1− e−rmβQ(m,α)) =

α

r
,

so mP(m,α)→ log
(

r/α
r/α−1

)
and Q(m,α) = g(mP(m,α))→ f2(r/α).

Finally, when r = α, (21) implies that αβQ(m,α) = P(m,α) = αβg(rβmQ(m,α)). Since

g is strictly decreasing, g(rβmq) ≤ g(rβm), and g(rβm) → 0 as m → ∞. We conclude that

g(rβmq)→ 0 uniformly in q as m→∞; sinceQ(m,α) is the solution to q = g(rβmq), it follows that

Q(m,α) → 0 as well as m → ∞. Since P(m,α) = αβQ(m,α), this implies P(m,α) → 0 = f2(1),

completing the proof. �

C.2. Section 3.3: Mean Field Equilibrium. We now prove Theorem 2, which states that mean

field equilibria exist and are unique.

Proof of Theorem 2. We prove the theorem in two steps. First, we fix the employer strategy to be

φα, and allow applicants to respond optimally. We show in Proposition 4 that for any α ∈ [0, 1],

there exists a unique strategy m such that

(24) m =M(P(m,α)).

Let mα denote the unique choice of m satisfying (24).

Second, we endogenize the employer’s choice of α; Lemma 7 shows that there is exactly one value

of α such that α ∈ A(Q(mα, α)), i.e. such that (mα, α) is a mean field equilibrium. �

We start with the following lemma, regarding “partial” equilibrium among the applicants given

a fixed value of α.



40 NICK ARNOSTI, RAMESH JOHARI, AND YASH KANORIA

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

p

m

p that results when
applicants choose m
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in response to p

Figure 5. A visualization of Proposition 4. The value P(m,α) that results when
applicants choose m is the solution to (26). Proposition 4 states that this line
intersects with the applicant best response function M(p) at a unique point.

Lemma 4. Given α ∈ [0, 1], there exists a unique value mα satisfying:

(25) mα =M(P(mα, α)).

Furthermore: (1) mα = 0 if and only if α ≤ c′a; and (2) P(mα, α) is strictly increasing in α.

Proof. Refer to Figure 5. Any solution to (24) is equivalent to finding a solution to the following

system of equations:

p = P(m,α); m =M(p).

As discussed in Section 3.2, the value P(m,α) is the (unique) solution to

(26) P(m,α) = αβg(rmβg(mP(m,α))) = αβg(rβ(1− e−mP(m,α))/P(m,α)).

We now incorporate the fact that m should be optimally chosen by applicants. Because g(x) ≤ 1

(see Lemma 1), we have P(m,α) ≤ αβ. Thus, if α ≤ c′a = ca/β, then P(m,α) ≤ ca for all m, and

thus M(P(m,α)) = 0 for all m, so m = 0 is the unique solution to (24).

Thus, we can substitute (24) into (2) to obtain:

(27) p = αβg(rβ(1− βc′a/p)/p).
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It suffices to show that (27) has a unique solution p ∈ (0, αβ), as the desired (unique) mα is then

M(p).

To see this, multiply each side by r/(αp) and substitute x = βc′a/p to get

(28)
r

α
=

r

c′a
xg(rx(1− x)/c′a) =

1− e−(r/c′a)x(1−x)

(1− x)
.

By Lemma 5 (see below), the right side of (28) is strictly increasing in x, takes the value zero at

x = 0, and approaches r/c′a as x→ 1. Because α > c′a, this implies that there is a unique solution x

to (28) and therefore a unique solution p to (27). Furthermore, evaluating the right side of (28) at

x = c′a/α indicates that the solution x to (28) is greater than c′a/α and thus the solution p = βc′a/x

to (27) is less than αβ.

All that remains to show is that P(mα, α) is strictly increasing in α. For α ≤ c′a, we have mα = 0,

so P(mα, α) = P(0, α) = αβ, which is strictly increasing. When α > c′a, we have P(mα, α) =

βc′a/x(α), where x(α) is the solution to (28). Lemma 5 implies that the right side is strictly

increasing in x, so x(α) is strictly decreasing in α and thus P(mα, α) is strictly increasing. �

Our proof of Lemma 4 used the following fact.

Lemma 5. For any a > 0 the function y(x) = 1−e−ax(1−x)

1−x for x ∈ [0, 1) is strictly increasing in x,

taking the value 0 when x = 0 and approaching a as x→ 1.

Proof. Evaluating y(0) and lim
x→1

y(x) is straightforward, so we move on to proving that y(x) is

strictly increasing. Differentiating with respect to x and rearranging terms, we get

(29)
dy

dx
=
ae−ax(1−x)

(1− x)2

(
2x2 +

1

a
(eax(1−x) − 1)− 3x+ 1

)
.

We wish to show that this expression is positive for x ∈ (0, 1). The first term is clearly positive, so

let’s consider the second term. Since eax(1−x) ≥ 1 + ax(1− x), we have for x ∈ (0, 1):

(30)

(
2x2 +

1

a
(eax(1−x) − 1)− 3x+ 1

)
≥ 2x2 + x(1− x)− 3x+ 1 = (1− x)2 > 0.

�

Before proceeding, we require some properties of the solution mα to (25).

Lemma 6. Q(mα, α) is nonincreasing in α. If c′a < 1, Q(mα, α) = 1 for α ∈ [0, c′a] and is strictly

decreasing for α ∈ (c′a, 1]. If c′a ≥ 1, Q(mα, α) = 1 for all α ∈ [0, 1].
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Proof. From Lemma 4, we have that mα = 0 if and only if α ≤ c′a. When mα = 0, we have

Q(mα, α) = g(0) = 1. If c′a < 1, for α > c′a, Lemma 4 implies that mα > 0 and thus by (2) we

have:

(31) mαP(mα, α) = log

(
P(mα, α)

βc′a

)
.

Lemma 4 implies that the right hand side (and therefore the left hand side) is strictly increasing

in α. But

(32) Q(mα, α) = g(mαP(mα, α)).

Because g is a strictly decreasing function (see Lemma 1), this completes the proof. �

The following lemma completes the proof of Theorem 2, by endogenizing the employers’ choice

of α.

Lemma 7. Define mα to be the unique solution to (24). If c′s < 1, there is a unique value of

α ∈ [0, 1] such that

(33) α ∈ A(Q(mα, α)),

i.e. such that (mα, α) is a mean field equilibrium.

Proof. Our proof leverages the following intuition. Consider fixing the employers’ strategy to be φ1,

i.e., employers always enter and screen. If in that case the resulting applicant availability is high

enough (under the optimal seller response), then this will be an MFE. On the other hand, if the

resulting applicant availability is too low, some employers will choose to exit the market. The key

phenomenon that we exploit is that in this case, applicant availability is monotonically increasing

as employers leave the market, increasing until exactly the point where employers are indifferent

between entering and exiting. This indifference point is precisely where applicant availability q is

equal to the (scaled) screening cost c′s.

Formally, recall from Section 3.1.2 that

(34) A(q) =


{0}, if q < c′s;

[0, 1], if q = c′s;

{1}, if q > c′s.
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If Q(m1, 1) ≥ c′s, then α = 1 solves (33). For any α < 1, since c′s < 1, it follows by Lemma 6 that

regardless of the value of ca, we have Q(mα, α) > c′s. Thus, for any α < 1, α 6∈ A(Q(mα, α)) = {1},

so α = 1 is the unique solution to (33).

Now suppose that Q(m1, 1) < c′s. By Lemma 6, for any α ≤ c′a, we have Q(mα, α) = 1 > c′s. By

continuity and monotonicity of Q (see Lemma 6), there exists exactly one value α′ ∈ (c′a, 1) such

that Q(mα′ , α
′) = c′s. Clearly, α′ ∈ A(Q(mα′ , α

′)) = A(c′s) = [0, 1], so α′ solves (33). Furthermore,

for any α < α′, we have Q(mα, α) > c′s and thus A(Q(mα, α)) = {1}. For any α > α′, we have

Q(mα, α) < c′s and thus A(Q(mα, α)) = {0}. Therefore, α′ is the unique solution to (33).

�

C.3. Section 3.4: The Regulated Market. In this section we prove Proposition 2, which states

that there is a unique equilibrium in the regulated market. It is the same as the equilibrium of the

unregulated market if the limit ` does not bind, and otherwise involves applicants selecting ma = `.

Our analysis requires a partial equilibrium characterization of the employers’ behavior given a

choice of m by applicants. In particular, for a fixed m, we show there exists a unique value αm

satisfying:

(35) αm ∈ A(Q(m,αm)),

where we recall from Section 3.1.2 that:

(36) A(q) =


{0}, if q < c′s;

[0, 1], if q = c′s;

{1}, if q > c′s.

We have the following lemma.

Lemma 8. For any fixed m, there exists a unique solution αm to (35).

Proof. If Q(m, 1) ≥ c′s, then αm = 1 solves (35). Furthermore, for any α < 1, Q(m,α) > Q(m, 1)

by Lemma 3, and thus α 6∈ A(Q(m,α)) = {1}.

If Q(m, 1) < c′s, then 1 6∈ A(Q(m, 1)) = {0}, and 0 6∈ A(Q(m, 0)) = A(1) = {1}. It follows that

any solution αm to (35) must satisfy 0 < αm < 1 , and thus must satisfy Q(m,αm) = c′s. Lemma

3 states that Q(m,α) strictly increases continuously to 1 as α decreases, implying that there is a

unique αm such that Q(m,αm) = c′s. �
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In addition, note that the pair (m,αm) is an MFE if and only if m ∈M(P(m,αm)). For m > 0,

from (2), this holds if and only if h(m) = − log c′a, where

(37) h(m) = mP(m,αm)− log (P(m,αm)/β) .

The following lemma gives some basic properties of the function h.

Lemma 9. The function h(m) given in (37) is strictly increasing. It takes the value zero at m = 0,

and increases without bound as m→∞.

Proof. Note that a mean-field equilibrium is exactly a pair (m,αm) such that m =M(P(m,αm)).

From the definition ofM it follows that the pair (m,αm) with m > 0 is an equilibrium if and only

if m = 1
P(m,αm) log

(
P(m,αm)

ca

)
, or equivalently

(38) mP(m,αm)− log(P(m,αm)/β) = − log c′a.

We already know from Theorem 2 that for any c′a < 1 and any β, there is a unique equilibrium

with m > 0, i.e. a unique solution to h(m) = − log c′a. This implies that h is invertible (if

h(m) = h(m′) for m 6= m′, then for some c′a, there would be multiple mean-field equilibria).

Because h is continuous, this also implies that h is monotonic. Furthermore, the existence of a

solution to h(m) = − log c′a for any c′a < 1 (by Theorem 2) implies that h(0) = 0 and that h is

unbounded. �

We now prove the desired result.

Proof of Proposition 2. Let (m∗, α∗) be the mean-field equilibrium in the original game, and let

(m∗` , α
∗
` ) be any equilibrium of the game with application limit `, meaning thatm∗` =M`(P(m∗` , α

∗
` )),

and α∗` ∈ A(Q(m∗` , α
∗
` )).

Immediately from (6) (which states that M`(p) = min(`,M(p))), we get that if there is an

equilibrium of the regulated market with m∗` < `, it must be that (m∗` , α
∗
` ) is an equilibrium in the

unregulated market and thus (m∗` , α
∗
` ) = (m∗, α∗). Therefore, the only candidate equilibria in the

game with application limit ` are (m∗, α∗) and (`, α`).

It is clear that (m∗, α∗) is an equilibrium of the game with application limit ` if and only if

m∗ ≤ `. To complete the proof of Proposition 2, we claim that the pair (`, α`) is an equilibrium of

the regulated market if and only if m∗ ≥ `.
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To prove this claim, first suppose that m∗ < `. Then − log c′a = h(m∗) < h(`) by Lemma 9.

Conversely, if m∗ ≥ `, then − log c′a = h(m∗) ≥ h(`). In other words, for c′a ≤ 1,

(39) m∗ ≥ `⇔ h(`) ≤ − log c′a.

Straightforward manipulation of the equation (37) defining h and an application of (2) reveals that

for ` > 0 and c′a ≤ 1,

(40) ` ≤M(P(`, α`))⇔ h(`) ≤ − log c′a.

Combining (39) and (40), we get that m∗ ≥ ` if and only if ` ≤ M(P(`, α`)). Furthermore,

` ≤M(P(`, α`)) impliesM`(P(`, α`)) = `, and conversely ` >M(P(`, α`)) impliesM`(P(`, α`)) =

M(P(`, α`)) (using M`(p) = min(`,M(p)) from (6)). Putting it all together, we get that

(41) m∗ ≥ `⇔ ` ≤M(P(`, α`))⇔ ` =M`(P(`, α`)).

In other words, m∗ ≥ ` if and only if (`, α`) is an equilibrium of the game with application limit

`. �

Appendix D. Proofs: Section 4

In this section we develop the technology required to prove the approximation theorems (Theo-

rems 3 and 4).

We begin by formalizing the stochastic process of interest, when m and α are fixed. Note

that in our original model, applicants decide where to apply when they arrive to the system;

however, for purposes of stochastic analysis, we obtain an equivalent system if we realize applicant

applications only when employers depart. In particular, we consider the following stochastic system

parameterized by n. Individual applicants arrive at intervals of length 1/rn, as before. Let S(t)

denote the number of applicants in the system at time t. In addition, we define Σ(t) as the

normalized number of applicants in the system:

(42) Σ(t) = S(t)/(rn);

note that Σ(t) ≤ 1 for any N(t) that can arise. At intervals of length 1/n (corresponding to

employer departures), there are opportunities for at most a single applicant in the system to depart



46 NICK ARNOSTI, RAMESH JOHARI, AND YASH KANORIA

early. At each such employer departure time t, the probability of a departure of an applicant is:

(43) α

(
1−

(
1− βm

n

)S(t)
)

= α(1− ρΣ(t)),

where we define ρ := (1−βm/n)rn. Note that ρ→ exp(−η) as n→∞, where we define η := rmβ.

The preceding equation (43) is derived as follows. As before, with probability α an employer

screens using strategy φ, and exits immediately otherwise (in which case no applicant departs

early). Every applicant that arrived in the last one time unit applied to the departing employer

with probability m/n. Any such applicant that has already departed cannot match to the given

employer. On the other hand, among the remaining employers, if even one of them is compatible

with the employer, then employer following φ is sure to find a match. Thus at least one departure

occurs as long as there is at least one available, compatible applicant that applied to the departing

employer. Note that under φ, each of the applicants in the system at time t is equally likely to

depart, so for each applicant the probability of departure is α(1− ρΣ(t))/(rnΣ(t)).

Note that to capture the state at time t, we must track the residual lifetimes of all applicants

in the system. To simplify this tracking, a key instrument in our analysis is a “binned” version

of the stochastic process S(t), defined as follows. Fix an integer k, and let Sj(t) be the number

of applicants that have been in the system for a time between j/k and (j + 1)/k units, for j =

0, 1, . . . , k − 1. Let Xj(t) = Sj(t)/(rn); note that Σ(t) =
∑k−1

j=0 Xj(t). Our fundamental result

proves a concentration result for the vector-valued stochastic process X(t).

What does X(t) concentrate around? To develop intuition, let’s think of the matching process

from the perspective of the applicants that arrive in a fixed interval of length 1/k. In the large

market limit, each of these applicants should match in successive intervals of length 1/k with

a constant probability; or equivalently, their survival probability is a constant γ in each such

interval. Looking back in time, then, in steady state we should expect that the vector X(t) satisfies

Xj(t) = γXj−1(t) for j = 1, . . . , k− 1, with X0(t) = 1/k. With this inspiration (and in an abuse of

notation), we define Σ(γ) as:

(44) Σ(γ) =
1

k

k−1∑
j=0

γj =
1− γk

k(1− γ)
.

(Note that Σ(1) = 1.)



MANAGING CONGESTION IN DYNAMIC MATCHING MARKETS 47

On the other hand, as in our mean field analysis, we can develop a “consistency check” that γ

must satisfy using (43). Assume that k ≥ η/r and define γ(Σ) as follows:

γ(Σ) = 1− α
(

1− e−ηΣ

rkΣ

)
,(45)

where we take γ(0) = 1 − αη/(rk) (this is the limit of the preceding quantity as Σ → 0). This

equation is an approximate version of (43): 1 − γ(Σ) represents an estimate of the probability

that an individual applicant in the system is matched in the next 1/k time units, if the current

(normalized) number of available applicants is Σ, and k and n are “large” (specifically k = ω(1)

and n = ω(k)).

The following two results are critical to our analysis: they establish the uniqueness of a solution

to the preceding two equations, and relate this solution to the unique MFSS (p, q) guaranteed by

Theorem 1. The proofs are in Section D.1.

Lemma 10. Suppose that k ≥ η/r. There is a unique pair of real numbers (γ∗,Σ∗) that simulta-

neously solve (44) and (45).

Lemma 11. Suppose that k ≥ η/r. Let (γ∗k ,Σ
∗
k) denote the unique solution to (44) and (45)

guaranteed by Lemma 10. Then as k →∞, k(1−γ∗k)→ mp, and Σ∗k → q, where (p, q) is the unique

MFSS guaranteed by Theorem 1.

The interpretation is as follows. Note that under the mean field assumptions, each applicant sends

a Poisson distributed number of applications, with mean m; and each application independently

succeeds with probability p. Since the applicant’s applications are independent to each employer,

it follows that in the mean field model the applicant’s lifetime in the system is an exponential

random variable of mean 1/mp truncated to be less than or equal to 1 (since applicants only live

for at most a unit lifetime). In other words, the rate of applicant departure is mp. On the other

hand, for fixed k the rate of departure is approximated by k(1−γ∗k), so we should expect the latter

quantity to approach mp. Similarly, observe that Σ∗ is meant to be an estimate of the steady

state (normalized) number of applicants in the system; we should expect that this approaches the

applicant availability q in the mean field model.

Let X∗ be the vector given by X∗j = (γ∗)j/k for j = 0, . . . , k − 1, so that Σ∗ =
∑k−1

j=0 X
∗
j from

Eq. (44). Our main result is the following theorem, that shows that X(t) concentrates around X∗.

Note that this is a very strong result, because it precludes drift of the X(t) process away from X∗
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as time grows. We achieve this result by using a stochastic concentration argument on the process

X(t).18

Theorem 5. Fix m0 ∈ [1,∞) and α ∈ [0, 1]. There exists C = C(r,m0, β, α) < ∞ such that for

any m ∈ [1/m0,m0], for any n > C, k = bn1/3c the following is true: For any t > C log n, and

any starting state at time 0, we have E[‖X(t)−X∗‖1] ≤ Cn−1/6. If the starting state at time 0 is

drawn from the steady state distribution, we have E[‖X(t)−X∗‖1] ≤ Cn−1/6 for all t ≥ 0.

We use this theorem to establish that the mean field assumptions hold asymptotically (Theorems

3 and 4).

The remainder of this section is organized as follows. In Section D.1, we prove Lemmas 10 and

11. In Section D.2, we prove our main Theorems 3 and 4. In Section D.3 we prove Corollary 1. In

Section D.4, we prove Theorem 5 (together with the supporting lemmas required).

D.1. Proofs of Lemmas 10 and 11.

Proof of Lemma 10. For α = 0 we immediately find that γ∗ = 1 and Σ∗ = 1 is the unique solution.

Assume α > 0. Rearranging (45), we get

(46) r =
α(1− e−ηΣ)

k(1− γ)Σ
=
α(1− e−ηΣ)

1− γk
,

where the final expression follows from substituting (44). Differentiate the expression on the right

with respect to γ, thinking of Σ as the function of γ specified by Eq. (44): the result is

(47)
α

(1− γk)2

(
kγk−1(1− e−ηΣ) + ηe−ηΣ(1− γk)dΣ

dγ

)
.

Since dΣ
dγ > 0 for Σ given by Eq. (44), the expression above is positive, so the right side of (46) is

increasing in γ. Further, since

(48) lim
γ→0

α(1− e−ηΣ)

1− γk
= α(1− e−η/k) < αη/k ≤ r <∞ = lim

γ→1

α(1− e−ηΣ)

1− γk
,

there is a unique solution γ∗ to (46), leading to a unique value Σ∗ from Eq. (44). �

Proof of Lemma 11. Note that 0 ≤ Σ∗k ≤ 1. Further:

(49) k(1− γ∗k) = α

(
1− e−ηΣ∗k

rΣ∗k

)
.

18Note that technically, the result only holds at rational time points t, given the definition of our process X(t).
However, we suppress this in the presentation for clarity.
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This remains bounded for all Σ∗k ∈ [0, 1]. Taking subsequences if necessary, therefore, we assume

without loss of generality that k(1− γ∗k)→ mp̂ and Σ∗k → q̂ as k →∞.

To establish the result, we show that (p̂, q̂) must satisfy (4) and (5). Rewriting and taking limits

in (44), we have:

Σ∗k =
1−

(
1− k(1−γ∗k)

k

)k
k(1− γ∗k)

→ 1− e−mp̂

mp̂
.

And similarly, taking limits in (49) and substituting for η we have:

mp̂ = α

(
1− e−rmβq̂

rq̂

)
.

Thus (p̂, q̂) satisfy (4) and (5), as required. �

D.2. Proofs of Theorems 3 and 4. We require the following lemma.

Lemma 12 (Le Cam’s inequality). Let X1, . . . , Xn be Bernoulli random variables with P(Xi =

1) = pi. Let Sn =
∑

j Xj, and λn =
∑

i pi. Then:

(50)
∑
j≥0

∣∣∣∣∣P(Sn = j)− e−λnλjn
j!

∣∣∣∣∣ ≤ 2
n∑
i=1

p2
i .

The preceding inequality is a concentration result for the Poisson approximation to the binomial

distribution; in particular it implies the following result.

Corollary 2. Fix ζ0 < ∞. For any ζ < ∞, as n → ∞, we have that Binomial(n, ζ/n) converges

in total variation distance to Poisson(ζ). Further, this convergence is uniform over ζ ∈ [0, ζ0].

Proof. Let pi = ζ/n for all i in Lemma 12; then (50) bounds the total variation distance between

Binomial(n, ζ/n) and Poisson(ζ) by ζ2/n ≤ ζ2
0/n→ 0 as n→∞. �
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Proof of Theorem 3. We proceed as follows:

∑
`,a

∣∣∣P(R
(n)
b = `, A

(n)
b = a)− P(R = `, A = a)

∣∣∣
=
∑
`,a

∣∣∣P(A
(n)
b = a|R(n)

b = `)P(R
(n)
b = `)− P(A = a|R = `)P(R = `)

∣∣∣
≤
∑
`,a

P(A
(n)
b = a|R(n)

b = `)
∣∣∣P(R

(n)
b = `)− P(R = `)

∣∣∣
+
∑
`,a

P(R = `)
∣∣∣P(A

(n)
b = a|R(n)

b = `)− P(A = a|R = `)
∣∣∣ .(51)

Since the system begins in steady state, any employer arriving to the system is visible to rn

applicants that each apply to the given employer with probability m/n; i.e., the number of appli-

cations R
(n)
b received by such an employer e follows a Binomial(rn,m/n) distribution. Thus R

(n)
b

converges in total variation distance to R by Corollary 2, so the first summation in (51) approaches

zero as n→∞ (since for every `,
∑

a P(A
(n)
b = a|R(n)

b = `) = 1).

We thus focus on the second summation in (51). Note that for all a such that 0 ≤ a ≤ `,

P(A = a|R = `) =
(
`
a

)
qa(1 − q)`−a. To simplify notation, let t = tb + 1 denote the exit time of

employer e.

Given ε > 0, let Cn(ε) be the event that ‖X(t) − X∗‖1 ≤ ε in the n-th system. Recall that

we realize the randomness as follows: at the time of exit, we independently determine whether

each applicant that arrived in the last time unit applied to this employer. Thus in particular the

number of applications that employer e receives is independent of the state X(t) at her exit time

t, and so we conclude that R
(n)
b is independent of Cn(ε). Letting k = bn1/3c, from Theorem 5, for

n sufficiently large it follows that:

P(Cn(ε)|R(n)
b = `) ≥ 1− C

εn1/6

for an appropriate constant C, by Markov’s inequality. Note that on Cn(ε) it follows that |Σ(t)−

Σ∗| ≤ ε as well, since Σ(t) = ‖X(t)‖1 and Σ∗ = ‖X∗‖1.

Now again, since we realize applications at the time of exit of the employer, note that conditional

on the value of S(t) as well as R
(n)
b = s, the employer receives exactly a applications from available
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applicants with the following probability:

(52) P(A
(n)
b = a|R(n)

b = `, S(t)) =

(
S(t)
a

)(rn−S(t)
`−a

)(
rn
`

) .

For the moment, assume that 0 < q < 1, and choose n large enough and ε small enough so that

0 < Σ∗−ε < Σ∗+ε < 1 (cf. Lemma 11). On the event Cn(ε), we know that Σ∗−ε < Σ(t) < Σ∗+ε;

since S(t) = rnΣ(t), we conclude that on Cn(ε) both S(t) and rn− S(t) are Θ(n). Thus for fixed

` and a, we can approximate the preceding probability with the equivalent calculation as if the

available and unavailable applicants were sampled with replacement. It follows that:∣∣∣∣P(A
(n)
b = a|R(n)

b = `, Cn(ε))−
(
`

a

)
(Σ∗)a(1− Σ∗)`−a

∣∣∣∣ ≤ f(ε),

where f(ε) → 0 as ε → 0. Finally, taking n large enough, we can assume that |Σ∗ − q| ≤ ε, from

which it follows that:∣∣∣∣P(A
(n)
b = a|R(n)

b = `, Cn(ε))−
(
`

a

)
qa(1− q)`−a

∣∣∣∣ ≤ f̂(ε),

where f̂(ε)→ 0 as ε→ 0. Putting the steps together, we find that:

|P(A
(n)
b = a|R(n)

b = `)− P(A = a|R = `)|

≤
∣∣∣∣P(A

(n)
b = a|R(n)

b = `, Cn(ε))−
(
`

a

)
qa(1− q)`−a

∣∣∣∣+ |P(Cn(ε)c|

≤ f̂(ε) +
C

εn1/6
.

Take n→∞, then ε→ 0 to conclude that:

lim
n→∞

∣∣∣P(A
(n)
b = a|R(n)

b = `)− P(A = a|R = `)
∣∣∣ = 0.

In the case where q = 0 or q = 1, a direct analysis of (52) can be used to establish the preceding

result; we omit the details.

Finally, to conclude the proof, note that for each `:

∑̀
a=0

|P(A
(n)
b = a|R(n)

b = `)− P(A = a|R = `)|
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converges to zero as n → ∞. Further, the preceding quantity is bounded above by ` + 1, which

is integrable against the Poisson(rm) distribution; so by the dominated convergence theorem we

conclude that the second term in (51) converges to zero as n→∞, as required. �

Proof of Theorem 4. The result is trivial for ma = 0 so we assume ma > 0 henceforth.

We start with a similar approach to the proof of Theorem 3, as follows:

∑
`,a

∣∣∣P(T (n)
a = `,Q(n)

a = a)− P(T = `,Q = a)
∣∣∣

≤
∑
`,a

P(Q(n)
a = a|T (n)

a = `)
∣∣∣P(T (n)

a = `)− P(T = `)
∣∣∣

+
∑
`,a

P(T = `)
∣∣∣P(Q(n)

a = a|T (n)
a = `)− P(Q = a|T = `)

∣∣∣ .(53)

Since the system begins in steady state, any arriving applicant will find n employers in the system

upon arrival, and applies to each of these employers independently with probability ma/n; i.e., the

number of applications T
(n)
a sent by such an applicant a follows a Binomial(n,ma/n) distribution.

Thus T
(n)
a converges in total variation distance to T by Corollary 2, so the first summation in (53)

approaches zero as n→∞, uniformly for all ma ∈ (0,m0].

As before, therefore, we focus our attention on the second summation in (53). Note that for all

a such that 0 ≤ a ≤ `, we have P(Q = a|T = `) =
(
`
a

)
pa(1− p)`−a.

First, we fix an upper bound L on the number of applications that we consider by applicant a.

In particular, note that we have:

∑
`>L,a

P(T = `)
∣∣∣P(Q(n)

a = a|T (n)
a = `)− P(Q = a|T = `)

∣∣∣ ≤∑
`≥L

(`+ 1)P(T = `),(54)

and the last expression does not depend on n and goes to zero as L→∞, uniformly for all ma ≤ m0.

Thus it suffices to show that for fixed L, the sum:

(55)
∑
`≤L,a

P(T = `)
∣∣∣P(Q(n)

a = a|T (n)
a = `)− P(Q = a|T = `)

∣∣∣
goes to zero as n→∞, uniformly for all ma ≤ m0.
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Let I(`) denote the set of all 2` possible outcome vectors I that are possible when the applicant

sends ` applications. Note that (55) is less than or equal to:

(56)
∑

`≤L,I∈I(`)

P(T = `)
∣∣∣P(I|T (n)

a = `)− p
∑
i Ii(1− p)`−

∑
i Ii
∣∣∣ ,

where we take advantage of the fact that Q is distributed as Binomial(`, p) when T = `. Since

` ≤ L, it suffices to show that for any ` and each I ∈ I(`), the quantity

(57)
∣∣∣P(I|T (n)

a = `)− p
∑
i Ii(1− p)`−

∑
i Ii
∣∣∣

goes to zero as n→∞. Now note that the preceding quantity is less than or equal to:

(58)

∫ ∣∣∣P(I|T (n)
a = `, t)− p

∑
i Ii(1− p)`−

∑
i Ii
∣∣∣ dPn(t|T (n)

a = `).

Here the integral is over all possible vectors of departure times for employers to whom the applicant

submitted an application. Note that t has an atomic distribution that varies with n, so the integral

reduces to a sum over feasible t. Note also that this quantity does not depend on ma at all (since

we are conditioning on applicant a making ` applications). In fact, it turns out that we do not

need to consider ma for the rest of the proof.

We argue as follows. Fix k = bn1/3c. When T
(n)
a = `, we use b1, . . . , b` to denote the employers

that a applied to, and without loss of generality we let t1 ≤ t2 ≤ · · · ≤ t` denote the departure

times of these employers, and let t denote the vector of departure times. We define “rounded”

departure times by rounding the true departure times up to the nearest multiple of 1/k; denote

these as t′i = dktie/k for i = 1, 2, . . . , `, and let t′ denote the vector of rounded departure times.

We use the rounded departure times so that we can apply Corollary 3; that result applies to the

“binned” process of available applicants, binned on time increments of length 1/k.

In our analysis, we make use of a coupled process of available applicants, but with a particular

employer bi and applicant a removed during (t′i−1, t
′
i] (with t′0 = 0). Let S−i(t) denote the state

of this process at time t for t ≤ t′i. We couple this process to the original process so that each

employer (besides bi) receives the same set of applications, and screens them in the same order (or

does not screen at all in both systems). So S−i(t) is identical to S(t) for t ≤ t′i−1, and further for

t ∈ (t′i−1, ti) except for the removal of a. The states are further nearly identical until t′i if none of

the applicants who applied to bi applied to another employer who departed in (ti, t
′
i) (the event
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En(i+ 1) defined below): in this case the systems can differ only on applicant a and any applicant

who received an offer from bi.

We also use Ii to denote the outcome on the i’th application; i.e., Ii = 1 if applicant a receives

an offer from employer bi, and Ii = 0 otherwise. Let I denote the vector of application outcomes.

Fix ε0, ε1, ε2, . . . ε` > 0. Let Cn(0) be the event that the t′ are all distinct. Let Dn(J) be the event

that no more than 2mrn/k distinct applicants apply to employers who depart during (tJ , t
′
J); this

will hold with high probability for large n. Define Cn(1) be the event that Cn(0) occurs; and in the

S−1(·) process, Dn(1) occurs and ‖X(t′1)−X∗‖1 ≤ ε1. Let Cn(J) for J > 1 be iteratively defined as

the event that Cn(J−1) occurs; and in the S−J(·) process, Dn(J) occurs, ‖X(t′J)−X∗‖1 ≤ εJ , and

no applicant applies to both bJ−1 and some other employer who departs in the interval (tJ−1, t
′
J−1].

We remark here that we consider the modified process S−i(·), and employ event Dn(J) in the

definition of Cn(J) for convenience; these can be viewed as minor technical details.

In what follows, to economize on notation for a vector x, we let xi:j = (xi, xi+1, . . . , xj).

We proceed as follows. First, we condition on I1:i−1 and Σ(ti), and consider the probability

employer bi makes applicant a an offer. Recall that the employer only learns compatibility but not

availability by screening; a receives an offer from bi if and only if she is screened by employer bi

and is also compatible.

Given that the employer follows φα, Σ(ti) and I1:i−1 form a sufficient statistic to determine

whether employer i screens a, as follows. Let d denote the number of competing applicants that

employer i receives. Applicant a receives an offer from employer bi if she is compatible with bi,

and no compatible, available applicant is screened by employer bi before a. The scaled number of

available applicants besides a at time ti is Σ(ti) (possibly with a O(1/n) adjustment if applicant a

is also available; we skip this minor detail). It follows that the probability a receives an offer is:

β

rnΣ(ti)∑
d=0

(
rnΣ(ti)

d

)(m
n

)d (
1− m

n

)rnΣ(ti)−d
 α

d+ 1

d∑
j=0

(1− β)j

 .

The expression in brackets simplifies to:

α

d+ 1
· 1− (1− β)d+1

β
,
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so the probability that a receives an offer becomes:

(59)

rnΣ(ti)∑
d=0

Binomial
(
rnΣ(ti),

m

n

)
d

{
α(1− (1− β)d+1)

d+ 1

}
.

At this point we recall the derivation of (5); from that calculation it follows that:

(60)
∞∑
d=0

Poisson(rmΣ)d ·
α(1− (1− β)d+1)

d+ 1
=
α(1− e−rmβΣ)

rmΣ
= αβg(rmβΣ),

where g(x) = (1 − e−x)/x. Further, observe that if Σ = q in the preceding expression, then (5)

implies the right hand side of the preceding expression is equal to p.

We proceed by showing that on Cn(i), (59) is well approximated by (60) with Σ = q. This

requires three steps: first, showing that the binomial distribution in (59) is well approximated by a

Poisson distribution; second, exploiting the fact that Σ(ti) is close to Σ∗; and third, taking n large

enough so that Σ∗ is close to q.

We proceed as follows. Let h(d) = α(1− (1− β)d+1)/(d+ 1). Note that 0 ≤ h(d) ≤ 1 for all d.

Further, note that we have:∣∣∣∣∣∣
rnΣ(ti)∑

d=0

h(d)Binomial
(
rnΣ(ti),

m

n

)
d

− p
∣∣∣∣∣∣

≤
∞∑
d=0

h(d)
∣∣∣Binomial

(
rnΣ(ti),

m

n

)
d
− Poisson(rmΣ(ti))d

∣∣∣
+

∣∣∣∣∣
∞∑
d=0

h(d) (Poisson(rmΣ(ti))d − Poisson(rmΣ∗)d)

∣∣∣∣∣
+

∣∣∣∣∣
∞∑
d=0

h(d) (Poisson(rmΣ∗)d − Poisson(rmq)d)

∣∣∣∣∣ .
By Lemma 12, the first summation on the right is bounded above by a K/n for some constant K.

We now use (60) to simplify the second and third summations. The second summation reduces to

|αβ(g(rmβΣ(ti)) − g(rmβΣ∗))|, which for large enough n on Cn(i), using that |Σ(ti) − Σ(t′i)| =

O(t′i − ti) = O(1/k), is bounded above by f(εi + 1/k) for some f such that f(x) → 0 as x → 0.

Finally, the third summation above reduces to |αβ(g(rmβΣ∗)− g(rmβq))|, which can be made less

than or equal to εi for n large enough. Summarizing then, by taking n large enough, we can ensure
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that on Cn(i) we have:∣∣∣∣∣∣
rnΣ(ti)∑

d=0

h(d)Binomial
(
rnΣ(ti),

m

n

)
d

− p
∣∣∣∣∣∣ ≤ f̂(εi + 1/k),

for some f̂ such that f̂(εi)→ 0 as εi → 0.

Analogously, in the case where employer i does not make an offer to applicant a, it immediately

follows that P(Ii = 0|T (n)
a = `, t, I1:i−1, Cn(i)) is well approximated by 1− p.

To simplify notation, let A
(n)
`,t be the event that T

(n)
a = ` and the vector of employer departure

times this applicant applied to is t. For now, consider only those A
(n)
`,t such that Cn(0) holds (this

occurs with high probability, cf. Eq. (68) below). To summarize then, we conclude that by taking

n large enough, we have:

(61)
∣∣∣P(Ii|A(n)

`,t , I1:i−1, Cn(i))− pIi(1− p)1−Ii
∣∣∣ ≤ f̂(εi + 1/k).

Next, we consider the conditional probability P(Cn(i)|A(n)
`,t , I1:i−1, Cn(i − 1)). As a preliminary

step, note that P(Dn(i)|A(n)
`,t , I1:i−1, Cn(i−1)) ≤ 1−exp(−Θ(n/k)) by the Chernoff bound, since each

of (1 + 1/k)rn applicants has, independently, applied to some employer who departs in (ti, t
′
i) with

probability no more than (m/n)(n/k) = m/k, so the likelihood that over 2mrn/k distinct applicants

have applied to this set of employers is exp(−Θ(n/k)). Also, let En(i) be the event that none of the

applicants who applied to an employer who departs in (ti−1, t
′
i−1) also applied to employer bi. By

the union bound, we have P(En(i)|A(n)
`,t , I1:i−1, Cn(i− 1), Dn(i)) ≤ (m/n)(2mrn/k) = 2m2/k under

Dn(i−1). It is straightforward to check that this bound remains O(1/k) even if we further condition

on Ii−1, because the conditional probability P(Ii−1|A(n)
`,t , I1:i−1, Cn(i − 1), Dn(i)) is bounded away

from zero and one for sufficiently large n.

We now rely on Corollary 3 to control P(Cn(i)|A(n)
`,t , I1:i−1, Cn(i − 1)). Now observe that on

Cn(i−1), we know that ‖X(t′i−1)−X∗‖1 ≤ εi−1 for the S−(i−1)(·) process. To iterate our argument

to the departure of the i’th employer, we need to control the state X(t′i) in the process S−i(·), i.e.,

for the system where employer bi and applicant a are removed during (t′i−1, t
′
i) (but employer bi−1 is

included). For this, we only need to make an adjustment to X(t′i−1) if employer bi−1 matched to an

applicant a′ other than a in the original system. If this indeed happened, then, on En(i), we only

need to adjust one coordinate of X(t′i−1) downward by 1/n corresponding to a′ being unavailable

in S−i(t′i−1), and this small adjustment will not affect our analysis (we omit this detail below). For
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n large, it follows that an analogous result to Corollary 3 holds for the evolution of X(t) between

t′i and t′i−1, from which we can conclude that for large enough n there holds:

E[‖X(t′i)−X∗‖1|A
(n)
`,t , I1:i−1, Cn(i− 1), En(i)]

≤ εi−1 +
C ′

κ′
1

n1/6
+O(1/n).

The first term follows from the contraction term in Corollary 3; the second term follows because

k = bn1/3c. By Markov’s inequality we obtain:

(62) P(‖X(t′i)−X∗‖1 < εi|A(n)
`,t , I1:i−1, Cn(i− 1), En(i)) ≥ 1− εi−1

εi
− 2C ′

κ′εi

1

n1/6
.

Combining, we obtain

P(Cn(i)|A(n)
`,t , I1:i−1, Cn(i− 1))

≥ P(Cn(i)|A(n)
`,t , I1:i−1, Cn(i− 1), En(i))(1− P(En(i)c))

≥ P(Cn(i)|A(n)
`,t , I1:i−1, Cn(i− 1), En(i))− P(En(i)c)

≥ 1− εi−1

εi
− 3C ′

κ′εi

1

n1/6
(63)

for large enough n. This bound applies for any i > 1. For i = 1—the first employer that applicant

a applies to—we can directly apply Theorem 5 together with Markov’s inequality to conclude that

for sufficiently large n, we have:

(64) P(Cn(1)|A(n)
`,t , Cn(0)) ≥ 1− 2

ε1n1/6
.

Observe that by the definition of conditional probability, together with the fact that Cn(i) ⊂

Cn(i− 1), we have:

P(Ii:`|A
(n)
`,t , I1:i−1, Cn(i− 1))

= P(Ii:`|A
(n)
`,t , I1:i−1, Cn(i)) · P(Cn(i)|A(n)

`,t , I1:i−1, Cn(i− 1))

+ P(Ii:`|A
(n)
`,t , I1:i−1, Cn(i)c, Cn(i− 1)) · P(Cn(i)c|A(n)

`,t , I1:i−1, Cn(i− 1)).(65)
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If we consider the first term in the expansion above, we have again by the definition of conditional

probability that:

P(Ii:`|A
(n)
`,t , I1:i−1, Cn(i))

= P(Ii+1:`|A
(n)
`,t , I1:i, Cn(i)) · P(Ii|A(n)

`,t , I1:i−1, Cn(i)).(66)

The last piece we need is the following simple bound on the difference of two products, where

0 ≤ ai, bi ≤ 1:

(67) |a1b1 − a2b2| ≤ |a1 − a2|+ |b1 − b2|.

We now return to our overall goal: namely, we wish to show that the absolute value

∣∣P(I|A(n)
`,t )− p

∑
i Ii(1− p)`−

∑
i Ii
∣∣

becomes small for A
(n)
`,t such that Cn(0) holds. To show this, we iterate and combine (61), (63),

(64), (65), (66), and (67). For example, after the first step of this iteration, we obtain that:

∣∣P(I|A(n)
`,t )− p

∑
i Ii(1− p)`−

∑
i Ii
∣∣ =

∣∣P(I|A(n)
`,t , Cn(1))P(Cn(1)|A(n)

`,t )

+ P(I|A(n)
`,t , Cn(1))P(Cn(1)c|A(n)

`,t )

− p
∑
i Ii(1− p)`−

∑
i Ii(P(Cn(1)|A(n)

`,t ) + P(Cn(1)c|A(n)
`,t ))

∣∣
≤
∣∣P(I2:`|A

(n)
`,t , I1, Cn(1))P(I1|A(n)

`,t , Cn(1))

− p
∑
i Ii(1− p)`−

∑
i Ii
∣∣+ P(Cn(1)c|A(n)

`,t )

≤
∣∣P(I2:`|A

(n)
`,t , I1, Cn(1))− p

∑
i>1 Ii(1− p)`−

∑
i>1 Ii

∣∣
+ f̂(ε1 + 1/n1/3) +O(n−1/6).

The first step follows by conditioning, i.e., (65); the second step follows by (66), together with the

fact that the absolute value of the difference of two probabilities is bounded above by one; and the

third step follows by applying (67) to the absolute value, and then using (61) and (64). Continuing
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in this manner, we obtain:

|P(I|T (n)
a = `, t s.t. Cn(0))− p

∑
i Ii(1− p)`−

∑
i Ii |

≤
∑
i

f̂(εi + 1/n1/3) +
∑̀
i=2

εi−1

εi
+O(n−1/6).

We know that

P(Cn(0)c|T (n)
a = `) ≤ L2/k = O(n−1/3)(68)

using an elementary union bound over events that two rounded departure times are identical. To

complete the proof, returning to (58), and recalling the integral is in fact a sum over feasible t, we

deduce that: ∫ ∣∣∣P(I|T (n)
a = `, t)− p

∑
i Ii(1− p)`−

∑
i Ii
∣∣∣ dPn(t|T (n)

a = ell)

≤
∑
i

f̂(εi + 1/n1/3) +
∑̀
i=2

εi−1

εi
+O(n−1/6) + P(Cn(0)c|T (n)

a = `)

=
∑
i

f̂(εi + 1/n1/3) +
∑̀
i=2

εi−1

εi
+O(n−1/6).

Note that ε1, . . . , ε` were arbitrary; thus if we first take n→∞, and then take εi → 0 in such a

way that every ratio εi−1/εi → 0 as well, then we conclude that the right hand side of the preceding

expression approaches zero as n→∞. Returning to (57), we conclude that for each ` and I ∈ I(`)

we have: ∣∣∣P(I|T (n)
a = `)− p

∑
i Ii(1− p)`−

∑
i Ii
∣∣∣→ 0

as n→∞, as required. �

D.3. Proof of Corollary 1. We give a proof of Corollary 1, using Theorems 3 and 4.

Proof of Corollary 1. We first prove the result for applicants. Consider an applicant a who can

choose the value of ma, while other agents play their prescribed mean field strategies. Clearly,

choosing ma = 0 leads to a utility of 0, whereas choosing ma > 1/ca leads to a negative expected

utility since the expected application cost exceeds 1. (In particular, note that m∗ < 1/ca.) Hence,

it suffices to show that:
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Claim 1. For large enough n, playing ma = m∗ is additively ε-optimal for applicant a among

ma ∈ [0, 1/ca].

(Since ma = 0 has greater utility than any ma > 1/ca, this will imply that ma = m∗ is additively

ε-optimal among ma ∈ [0,∞).)

We prove the claim using Theorem 4 with m0 = 1/ca. Now, the expected utility of applicant a

who chooses ma is

Pr(Applicant a gets at least one offer under ma)− cama .

Since m∗ is a best response under mean field assumptions, it follows that

1 · Pr(Q(ma) > 0)− cama ≤ Pr(Q(m∗) > 0)− cam∗(69)

for any ma. Theorem 4 implies that there exists n0 such that for any n > n0, we have

max
ma∈[0,m0]

dTV

(
(T (n)
a (ma), Q

(n)
a (ma)), (T (ma), Q(ma))

)
≤ ε/2 .

where we have made the dependence on ma explicit for convenience. It follows that

|Pr(Q(ma) > 0)− Pr(Q(n)
a (ma) > 0)| ≤ ε/2 ∀ma ∈ [0,m0] .

Combining with Eq. (69), we obtain that

Pr(Q(n)
a (ma) > 0)− cama ≤ Pr(Q(n)

a (m∗) > 0)− cam∗ + ε ∀ma ∈ [0,m0] ,

implying the claim.

We now prove the result for employers who receive no more than R0 applications. Think of

employer e as first selecting a uniformly random order among her applicants, and then screening

them (or not) in that order. With this order, denote the applicants by s1, s2, . . . , s` (here ` denotes

the number of applications) and let S denote the set of all applicants. Let I
(n)
b denote the applicant

availability vector at the time that e departs, with this order. (So I
(n)
b ∈ {0, 1}`, where a 1 represents

that the corresponding applicant is available.) Let I denote an analogously defined vector for a

hypothetical employer who receives R ∼ Poisson(rm) applications of which A ∼ Binomial(R, q) are

from applicants who are still available. It follows from Theorem 3, and the fact that applicants are

considered in a uniformly random order, that:
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Claim 2. (R
(n)
b , A

(n)
b , I

(n)
b ) converges in total variation distance to (R,A, I).

Let Si = {sj : j ≤ i}. Let S ′i denote the subset of Si that e makes offers to. (So, for i < `,

employer e does not screen si+1 if one of Si′ accepts an offer.) The next claim follows from Claim

2 above.

Claim 3. Fix ε′ > 0 and R0 < ∞. There exists n1 < ∞ such that the following holds. For any

non-negative integer ` ≤ R0, any i < ` and any subset S′i ⊆ Si with fixed indices in {1, 2, . . . , i} we

have

∣∣Pr
(
si+1 is available

∣∣ |S| = ` , S ′i = S′i , S ′i are not available
)
− q

∣∣ ≤ ε′ .(70)

The prescribed mean field strategy for employer e is φα
∗
. For α∗ < 1, we argue that not screening

at all is additively ε optimal (for large enough n): First, note that c′s ≥ βq, since not screening is a

best response under the employer mean field assumption. Then we know, from Claim 3, that each

time the employer chooses to screen an applicant, the net expected benefit is no more than βε′ ≤ ε′.

Using an elementary martingale stopping argument, it follows that the overall net utility of any

other strategy (relative to the utility of 0 obtained by not screening) is no more than E[R̄ε′] ≤ R0ε
′,

where R̄ is the number of applicants screened under φ1, using R̄ ≤ ` ≤ R0. Choosing ε′ ≤ ε/R0 we

obtain the desired result.

Similarly for α∗ > 0, we argue that φ1 (keep screening until you hire or run out of applicants)

is additively ε-optimal (for large enough n): First, note that c′s ≤ βq, since screening is a best

response under the employer mean field assumption. Then we know, from Claim 3, that each time

the employer chooses to screen the next applicant, the net expected benefit is at least −βε′ ≥ −ε′,

irrespective of the realization of S ′i (all these applicants rejected their offers). Any other strategy

can be better than φ1 by at most ε′ in expectation for each applicant screened under φ1 but not

under the alternative strategy Using an elementary martingale stopping argument, it follows that

φ1 is additively E[R]ε′ ≤ R0ε
′ optimal, where R is the number of applicants screened under φ1, but

not under the alternative strategy. Choosing ε′ ≤ ε/R0 we obtain the desired result.

Finally, since φ0 is ε-optimal for α∗ < 1 and φ1 is ε-optimal for α∗ > 0, we conclude that φα
∗

is

ε-optimal, irrespective of the value of α∗, for large enough n. �
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D.4. Proof of Theorem 5. Throughout our proof of Theorem 5, we think of the state of the

system at t as being the subset of applicants who are still available at t (with their arrival times)

from among the applicants who arrived during the last 1 time unit. The applications to a specific

employer are ‘revealed’ just before the employer exits. If at time 0, the set of applications by

applicants in the system has been revealed, we simply need to move forward 1 time unit before we

can use our above description of the state. Thus, our analysis holds for times t ≥ 1.

In order to prove Theorem 5, we use the following lemma.

Lemma 13. Fix m0 ∈ [1,∞) and α ∈ [0, 1]. There exists κ′ = κ′(r,m0, β, α) > 0 and C ′ =

C ′(r,m0, β) <∞ such that for any n > C ′, for any k, any m ∈ [1/m0,m0], and any starting state,

using k = bn1/3c we have

(71) E‖X(t+ 1/k)−X∗‖1 ≤ (1− κ′/k)‖X(t)−X∗‖1 + C ′
(

1√
n

+
1

k3/2

)
.

The following corollary is immediate.

Corollary 3. Fix m0 ∈ [1,∞) and α ∈ [0, 1]. There exists κ′ = κ′(r,m0, β, α) > 0 and C ′ =

C ′(r,m0, β) <∞ such that for any n > C ′, for any k, any m ∈ [1/m0,m0], and any starting state,

(72) E‖X(t+ i/k)−X∗‖1 ≤ (1− κ′/k)i‖X(t)−X∗‖1 + C ′
(

1√
n

+
1

k3/2

)
k/κ′.

With these results in hand, we are ready to prove Theorem 5.

Proof of Theorem 5. Note that ‖X(t0) −X∗‖1 ≤ ‖X(t0)‖1 + ‖X∗‖1 = Σ(X(t0)) + Σ(X∗) ≤ 2 for

any t0. Use Corollary 3 to track the evolution from t0 = t − i/k to t where i = bkC log nc. For

C = (1 + 2C ′)/κ′ and using (1− κ′/k)i‖X(t0)−X∗‖1 ≤ exp(−Cκ′ log n) · 2 ≤ 1/n, we have

E[‖X(t)−X∗‖1] ≤ Cn−1/6 ,(73)

yielding the first part of the theorem.

Now consider the second part of the theorem. For any starting state, the system reaches steady

state as t→∞. Let Xss be the steady state distribution of X. Then we have limt→∞X(t) = Xss. It

follows from the dominated convergence theorem that E[‖Xss−X∗‖1] = limt→∞ E[‖X(t)−X∗‖1] ≤

Cn−1/6 using (73). The second part of the theorem follows immediately since if the starting state

is distributed as per the steady state distribution, the state at time t is also distributed as per the

steady state distribution, so the same bound holds for all t ≥ 0. �
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D.4.1. Proof of Lemma 13. All that remains is to prove Lemma 13. Define X̂(t+ 1/k) by X̂0(t+

1/k) = 1/k, and for 0 ≤ j ≤ k − 1, X̂j+1(t+ 1/k) = γXj(t), where γ is given by (45), i.e.,

(74) γ = 1− α(1− e−η‖X(t)‖1)

rk‖X(t)‖1
.

We use the following two lemmas to prove Lemma 13.

Lemma 14. Fix m0 ∈ [1,∞). There exists κ = κ(r,m0, β) > 0 such that for any k, any α ∈ [0, 1],

any m ∈ [1/m0,m0], and any X(t) we have

(75) ‖X̂(t+ 1/k)−X∗‖1 ≤ (1− ακ/k)‖X(t)−X∗‖.

Lemma 15. Fix m0 <∞. There exists C ′ = C ′(m0, r, β) <∞ such that for n > C ′, any m ≤ m0,

any k, any α ∈ [0, 1], and any starting state, we have

(76) E‖X(t+ 1/k)− X̂(t+ 1/k)‖1 ≤ C ′(n−1/2 + k−3/2).

Proof of Lemma 13. Using triangle inequality, we have

(77) E‖X(t+ 1/k)−X∗‖1 ≤ ‖X̂(t+ 1/k)−X∗‖1 + E‖X(t+ 1/k)− X̂(t+ 1/k)‖1 .

Lemma 13 now follows immediately from Lemmas 14 and 15 with κ′ = ακ. �

To prove Lemmas 14 and 15, we use the following facts about Eq. (74).

Lemma 16. Let h(Σ) = (1− e−ηΣ)/Σ, so that γ = 1− αh(Σ)/(rk). Then

(1) We have −η2 ≤ dh
dx ≤ 0.

(2) We have 0 ≤ dγ
dΣ ≤

αη2

rk .

(3) We have α(1−e−η)
rk ≤ 1− γ ≤ αη

rk

(4) We have d
dΣ(1− γ)Σ ≥ αηe−η

rk .

Proof. Note that dh
dx = (1+ηx)e−ηx−1

x2 . The first inequality in item 1 comes from substituting e−ηx ≥

1−ηx, the second from substituting 1+ηx ≤ eηx. Item 2 follows from the fact that γ = 1− α
rkh(Σ).

The third item comes from the fact that (1 − γ) is monotone in Σ (from item 2), and Σ ∈ [0, 1].

The final item comes from the fact that d
dΣ(1 − γ)Σ = d

dΣ
α(1−e−ηΣ)

rk = αηe−ηΣ

rk , which is decreasing

in Σ (and Σ ≤ 1). �

Lemma 17. Recall ρ = (1−mβ/n)rn. Let h̃(Σ) = (1− ρΣ)/Σ. Then we have (log ρ)2 ≤ dh̃
dx ≤ 0.
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Proof. Analogous to the proof of Lemma 16 item 1. �

D.4.2. Proof of Lemma 14. In this subsection we prove Lemma 14; we prove Lemma 15 in the next

subsection.

Proof of Lemma 14. For simplicity, we use X to denote X(t), X̂ for X(t+ 1/k), Σ for Σ(X), and

γ for γ(Σ).

We first prove Lemma 14 for the case Σ ≥ Σ∗. By Lemma 16.2, this implies γ ≥ γ∗. Note that

(78) |a− b| = (b− a) + 2[a− b]+ ,

which we use to get that

(79) ‖X −X∗‖1 =
k−1∑
j=0

(Xj −X∗j ) + 2[X∗j −Xj ]+ = Σ− Σ∗ + 2
k−1∑
j=0

[X∗j −Xj ]+ .

Recall that X̂0 = X∗0 = 1/k. It follows that

‖X̂ −X∗‖1 =

k−1∑
j=1

∣∣∣X∗j − X̂j

∣∣∣ =

k−2∑
j=0

∣∣γ∗X∗j − γXj

∣∣
=

k−2∑
j=0

γXj − γ∗X∗j + 2[γ∗X∗j − γXj ]+

= γΣ− γXk−1 − γ∗Σ∗ + γ∗X∗k−1 + 2
k−2∑
j=0

[γ∗X∗j − γXj ]+

= γΣ− γ∗Σ∗ −
∣∣γ∗X∗k−1 − γXk−1

∣∣+ 2
k−1∑
j=0

[γ∗X∗j − γXj ]+ ,(80)

where both the first and last lines use (78). Now, by Lemma 16, item 4,

γΣ− γ∗Σ∗ = Σ− Σ∗ + [(1− γ∗)Σ∗ − (1− γ)Σ]

≤ (Σ− Σ∗)

(
1− αηe−η

rk

)
.(81)
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Also, using γ ≥ γ∗ and the upper bound on γ∗ from Lemma 16, item 3, we have

[X∗j+1 − X̂j+1]+ = [γ∗X∗j − γXj ]+

≤ [γ∗X∗j − γ∗Xj ]+ = γ∗[X∗j −Xj ]+

≤
(

1− α(1− e−η)
rk

)
[X∗j −Xj ]+ .(82)

If we define κ = minm∈[1/m0,m0]
1
r min(ηe−η, 1 − e−η) > 0, then substituting (81) and (82) into

(80) yields

‖X̂ −X∗‖1 ≤ (1− ακ/k)(Σ− Σ∗)− |γ∗X∗k−1 − γXk−1|+ 2(1− ακ/k)

k−1∑
j=0

[X∗j −Xj ]+

≤ (1− ακ/k)‖X −X∗‖1,(83)

where the second line follows from dropping the absolute value term and applying (79).

The proof for the complementary case Σ ≤ Σ∗ is analogous. �

D.4.3. Proof of Lemma 15. Note that

(84) E
∣∣∣Xj − X̂j

∣∣∣ ≤ ∣∣∣E[Xj ]− X̂j

∣∣∣+ E
∣∣∣Xj − E[Xj ]

∣∣∣ ≤ ∣∣∣E[Xj ]− X̂j

∣∣∣+
√

Var(Xj),

where we have applied the triangle inequality and Jensen’s inequality in turn. Sum over j to get

(85) E‖X(t+ 1/k)− X̂(t+ 1/k)‖1 ≤ ‖E[X(t+ 1/k)]− X̂(t+ 1/k)‖1 +

k−1∑
j=0

√
Var(Xj(t+ 1/k)).

Fix an applicant a who is in the system at time t and has arrived within the last 1 − 1/k time

units. Let Ia be the indicator that a is matched in the next 1/k time units, and let γ̃ = E[1− Ia]

be the probability that this applicant is still in the system at time t+ 1/k. To prove Lemma 15 we

use the following lemma.

Lemma 18. Fix m0 < ∞. There exists C = C(m0, r, β) < ∞ such that for n > C, any m ≤ m0,

any k, any α ∈ [0, 1], and any starting state, the following hold:

|γ̃ − γ| ≤ C/k2(86)
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For applicants a and a′ who arrived between t− 1 + 1/k and t+ 1/k we have

Var(Ia) ≤ C/k(87)

|Cov(Ia, Ia′)| ≤ 1/k3 for a 6= a′(88)

We defer the proof of Lemma 18 below.

We use Lemma 18 to prove the following lemma.

Lemma 19. Fix m0 < ∞. There exists C = C(m0, r, β) < ∞ such that for n > C, any m ≤ m0,

any k, any α ∈ [0, 1], and any starting state, the following hold

(89) ‖E[X(t+ 1/k)]− X̂(t+ 1/k)‖1 ≤ (C + η/r)/k2 ≤ (C + η/r)k−3/2,

and

(90)
k−1∑
j=0

√
Var(Xj(t+ 1/k)) ≤

√
C/r n−1/2 + k−3/2.

Here C is the same as in Lemma 18.

Proof of Lemma 15. Note that Lemma 19 implies that

(91) ‖E[X(t+ 1/k)]− X̂(t+ 1/k)‖1 +

k−1∑
j=0

√
Var(Xj(t+ 1/k)) ≤

√
C/r n−1/2 + (η/r + C + 1)k−3/2,

using Lemma 18. If we take C ′ = max(
√
C/r, η/r + C + 1), then (85) and (91) imply Lemma

15. �

Proof of Lemma 19. To establish (89), note that for j = 0, 1, . . . , k − 1

(92)
∣∣∣E[Xj(t+ 1/k)]− X̂j(t+ 1/k)

∣∣∣ = |γ̃ − γ|Xj−1(t) ≤ |γ̃ − γ| /k ≤ C/k3,

with the final inequality coming from Lemma 18 Eq. (86). Meanwhile, using the fact that newly

arrived applicants are matched with probability no greater than αη/(rk) in time (1/k), we have

that

(93)
∣∣∣E[X0(t+ 1/k)]− X̂0(t+ 1/k)

∣∣∣ ≤ (1/k) max(αη/(rk), 1− γ) = αη/(rk2),

where we used Lemma 16 item 2. Summing (92) over j and combining it with (93) yields (89).
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We now turn our attention to the variance term, i.e. (90). For j ≥ 1,

Var(Xj(t+ 1/k)) =
1

(rn)2
Var

( ∑
s∈Nj−1(t)

Ia

)

=
1

(rn)2

(
|Nj−1(t)|Var(Ia) + 2

(
|Nj−1(t)|

2

)
Cov(Ia, Ia′)

)
≤ Xj−1(t)Var(Ia)/rn+Xj−1(t)2Cov(Ia, Ia′).

≤ C

rnk2
+

1

k5
,(94)

where the final line comes from the fact that Xj−1(t) ≤ 1/k and Lemma 18 Eqs. (87) and (88). By

the concavity of the square root function, this implies

(95)
√

Var(Xj(t+ 1/k)) ≤
√
C/(k

√
rn) + 1/k5/2

Summing (95) over j yields (90). �

Proof of Lemma 18. Note that for all t′ ∈ (t, t+ 1/k), we have

(96) Σ(t)− 1/(rk) ≤ Σ(t′) ≤ Σ(t) + 1/k ,

since the number of new arrivals in the system is rn/k, the number of “match” departures is at

most n/k, and Σ(t′) = N(t′)/(rn).

Fix a, and suppose that there are rnΣ available applicants when an employer possibly screens and

exits. The probability that a exits at this opportunity is h̃(Σ)/(rn) = α(1−ρΣ)
rnΣ and this is a monotone

decreasing function of Σ by Lemma 17 item 1. For convenience we define h̃(x) = α · (− log ρ)/rn

for x ≤ 0. Since there are n/k opportunities to depart, Eq. (96) implies

(97)
(

1− α

rn
h̃(Σ(t) + 1/k)

)n/k
≤ E[1− Ia] = γ̃ ≤

(
1− α

rn
h̃(Σ(t)− 1/(rk))

)n/k
Recall that limn→∞ ρ = exp(−η). By Lemma 17 item 1 we have that

h̃(Σ(t)− 1/rk) ≤ h̃(Σ(t)) +
2η2

rk
, and(98)

h̃(Σ(t) + 1/k) ≥ h̃(Σ(t))− 2η2

k
.(99)
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for large enough n. It follows by substitution into (97) that(
1− 1

rn
h̃(Σ(t))− 2η2

rnk

)n/k
≤ γ̃ ≤

(
1− 1

rn
h̃(Σ(t)) +

2η2

r2nk

)n/k
.(100)

Using the inequality

1−mε ≤ (1− ε)m ≤ 1−mε+
1

2
m2ε2,(101)

we get

1− α

rk
h̃(Σ(t))− 2αη2

rk2
≤ γ̃ ≤ 1− α

rk
h̃(Σ(t)) +

2αη2

r2k2
+

1

2

( α
rk

)2
h̃(Σ(t))2.(102)

for large enough k. Now ρ = exp(−η) + O(1/n). Also, |∂h̃/∂ρ| = ρΣ−1 ≤ 1/ρ ≤ 2 exp(η) for all

Σ ∈ [0, 1], for large enough n. It follows that

h̃(Σ) = h(Σ) +O(1/n) .(103)

Since we have γ = 1− 1−e−ηΣ

rkΣ = 1− 1
rkh(Σ), combining Eqs. (102) and (103), we obtain |γ̃ − γ| is

O(α/k2), establishing (86) in Lemma 18.

Note that

Var(Ia) = γ̃(1− γ̃) ≤ 1− γ̃.(104)

Using Eq. (102) and h̃(Σ(t)) ≤ h̃(0) = − log(ρ) = η +O(1/n) from Lemma 17, we have

1− γ̃ ≤ αη

rk
+O(α/k2) ,

which proves (87) from Lemma 18 for applicants that arrived between t− 1 + 1/k and t, and were

available at t. For any applicant a that arrived after t, the probability of still being available at

t + 1/k is even larger than γ̃, i.e., this probability is in [γ̃, 1], leading to Var(Ia) ≤ γ̃(1 − γ̃) since

γ̃ ≥ 1/2 leading to (87) for a.

Finally, we bound Cov(Ia, Ia′). We define a bipartite ‘interaction’ graph G = (VS , VB, E) whose

vertex sets are VS = S(t) ∪ S(t + 1/k), i.e., the applicants who arrive between t − 1 and t + 1/k,

and VB = B(t+ 1/k)\B(t), i.e., the set of employers who arrive between t and t+ 1/k. For s ∈ VS

and b ∈ VB, we decide on the presence of edge (s, b) as follows: Let τ denote the time of arrival of

a. Then if b ∈ B(τ), i.e., e is in the system when a arrives, we set I((s, b) ∈ E) = I(s ∈ Mb), i.e.,
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we include edge (s, b) if applicant a applies to employer e. If b /∈ B(τ), i.e., e is not in the system

when a arrives, we draw I((s, b) ∈ E) ∼ Bernoulli(m/n), independent of everything else.

Note that the interaction graph G as defined above is a bipartite Erdos-Renyi graph with rn(1+

1/k) vertices on one side, n/k vertices on the other, and edge probability m/n independently

between vertices on the two sides. The following fact is immediate (see, e.g., Janson et al. (2011)) :

Fact 1. Fix k such that r(1 + 1/k)(1/k)m < 1. There exists C <∞ such that the following occurs.

For any ε > 0 there exists n0 < ∞ such that for all n > n0, with probability at least 1 − ε, no

connected component in G has more than C log n vertices.

Here the threshold for existence of a giant component is r(1 + 1/k)(1/k)m = 1. Thus it is

sufficient to ensure that r(1 + 1/k)(1/k)m ≤ 2rm/k < 1. In fact, fixing k, Fact 1 holds uniformly

for all m < m0 = k/(2r), since the size of the largest connected component is monotone in the edge

probability.

Clearly, Ia depends only on the connected component Ca containing a and similarly for Ia′ .

Choose arbitrary ε > 0. Let E1 be the event that no connected component has size more than

C log n. Fact 1 tells us that P(Ec1) ≤ ε. Let E2 be the event that a′ /∈ Ca. Clearly, P(Ec2|E1) ≤

C log n/(rn) ≤ ε for large enough n. We deduce that

P(Ec1 ∪ Ec2) = P(Ec1) + P(Ec2 ∩ E1) ≤ P(Ec1) + P(Ec2|E1) ≤ 2ε(105)

Reveal Ca. If |Ca| ≥ C log n or a′ ∈ Ca, declare ‘failure’. Here |Ca| denotes the number of vertices

in Ca. Suppose failure does not occur.

Let Cs = C be the revealed connected component. Since failure has not occurred we know that

C contains no more than C log n nodes and does not contain a′. Now consider the conditional

distribution of Ca′ given Cs = C.

Claim 4. Consider any candidate connected component C′, containing a′ and not overlapping with

C. We have

P(Ca′ = C′) = P(Ca′ = C′|Cs = C)(1−m/n)|C
′|a|C|b+|C′|b|C|a ,

where |C|a denotes the number of applicants in component C, and |C|b denotes the number of em-

ployers in component C.
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Proof. The distribution of the rest of G conditioned on Cs = C has edge (s, b) present iid with

probability m/n if both a and e are not in C, and not present if one of a or e is present in C. The

result follows from a standard revelation argument on Ca′ . �

We have

E(Ia′) =
∑
C′3a′

P(Ca′ = C′)E(Ia′ |Ca′ = C′) ,(106)

and

E[Ia′ |Ia = 1] =
∑

C3s,C′3a′
P(Ca = C|Ia = 1)P(Ca′ = C′|Ca = C)E[Ia′ |Ca′ = C′](107)

using the fact that Ia— Ca— Ca′— Ia′ form a Markov chain. Below we argue that the sum in

Eq. (107) is very close to the sum in Eq. (106).

Let π ≡ E[Ia] = E[Ia′ ]. If π = 0, which might occur for instance if a arrives just before t+ 1/k,

we immediately have Cov(Ia, Ia′) = 0. As such, we assume π > 0 in what follows. We deduce from

Eq. (105) that

P(Ec1 ∪ Ec2|Is = 1) ≤ 2ε/π(108)

It follows from Eqs. (107) and (108) that

E[Ia′ |Ia = 1] =
∑

C3s,C′3a′ s.t. C∩C′=Φ,
|C|≤C logn,|C′|≤C logn

P(Ca = C|Ia = 1)P(Ca′ = C′|Ca = C)E[Ia′ |Ca′ = C′]

+ δ1 ,(109)

where 0 ≤ δ1 ≤ P(Ec1 ∪ Ec2|Ia) ≤ 2ε/π. Now using Claim 4, we know that for such (C, C′) we have

P(Ca′ = C′|Ca = C) = P(Ca′ = C′)(1 + δC,C′) ,

where 0 ≤ δC,C′ ≤ ε for large enough n. It follows that

∑
C′3a′ s.t. C∩C′=Φ,
|C′|≤C logn

P(Ca′ = C′|Ca = C)E[Ia′ |Ca′ = C′]

= (1 + δ2)
∑

C′3a′ s.t. C∩C′=Φ,
|C′|≤C logn

P(Ca′ = C′)E[Ia′ |Ca′ = C′](110)
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for some 0 ≤ δ2 ≤ ε. Now,

P(|Ca′ | ≥ C log n) ≤ ε(111)

and

P(v ∈ Ca′ | |Ca′ | ≤ C log n) ≤ C log n/(kn)

for any agent v, whether employer or applicant, hence for any C s.t. a′ /∈ C and |C| ≤ C log n we

have

P(C ∩ Ca′ 6= Φ| |Ca′ | ≤ C log n) ≤ (C log n)2/(kn) ≤ ε(112)

for large enough n. Combining Eqs. (111) and (112), we obtain

P
(
(|Ca′ | ≥ C log n) ∪ (C ∩ Ca′ 6= Φ)

)
≤ 2ε .(113)

Plugging in to Eq. (110) we obtain

∑
C′3a′ s.t. C∩C′=Φ,
|C′|≤C logn

P(Ca′ = C′|Ca = C)E[Ia′ |Ca′ = C′]

= (1 + δ2)

(
−δ3 +

∑
C′3a′

P(Ca′ = C′)E[Ia′ |Ca′ = C′]

)

= δ4 +
∑
C′3a′

P(Ca′ = C′)E[Ia′ |Ca′ = C′](114)

for some 0 ≤ δ3 ≤ 2ε, leading to 3ε ≤ −2ε(1 + ε) ≤ δ4 ≤ ε. Plugging Eq. (114) back into Eq. (107),

we obtain

E[Ia′ |Ia = 1] =
∑
C3s s.t.
|C|≤C logn

P(Ca = C|Ia = 1)

(
δ4 +

∑
C′3a′

P(Ca′ = C′)E[Ia′ |Ca′ = C′]

)

= δ5 +

( ∑
C′3a′

P(Ca′ = C′)E[Ia′ |Ca′ = C′]
)( ∑

C3s s.t.
|C|≤C logn

P(Ca = C|Ia = 1)

)
(115)

where |δ5| ≤ |δ4| ≤ 3ε. The first term in the product is simply π′ ≡ P(Ia′ = 1) = E[Ia′ ], as noted in

Eq. (106). The second term in the product is P(|Ca| ≤ C log n|Ia = 1) ≥ 1−P(E1|Ia = 1) ≥ 1−ε/π,
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where again π = P(Ia = 1) ≥ 1/(C1k). We deduce that

E[Ia′ |Ia = 1] = δ6 + π′(116)

where |δ6| ≤ ε(3 + 1/π) for large enough n. We have

Cov(Ia, Ia′) = E[IaIa′ ]− E[Ia]E[Ia′ ]

= E[Ia]E[Ia′ |Ia = 1]− ππ′

= π(π′ + δ6)− ππ′ = πδ6

Hence

|Cov(Ia, Ia′)| ≤ ε(3π + 1) ≤ 4ε

Choosing ε = 1/(4k3) yields the desired result. �

Appendix E. Proofs: Section 5

Consider an applicant in the mean field environment, where each application yields an offer with

probability p. If the applicant chooses to send an average of m applications, they match with

probability 1− e−mp and incur expected application costs of cam. Thus, we define

(117) Πa(m,α) = 1− e−mP(m,α) − cam.

Similarly, we can consider an employer in the mean field environment, where each applicant is

available with probability q. If this employer chooses to screen, they match if and only if they

have a qualified available applicant (which occurs with probability 1 − e−rmβq). We claim that

the expected number of applicants screened is equal to the probability that the employer matches,

divided by qβ. 19 Thus, we define

(118) Πe(m,α) = α(1− e−rmβQ(m,α))(1− c′s/Q(m,α)).

19To see this, let X be geometric with parameter βq (this represents the number of applicants that would need to
be screened before matching), and let Y be Poisson with parameter rm (this represents the number of applications
received). Then employers who choose to screen expect to screen E[min{X,Y }] = E[X] − E[(X − Y )1X>Y ] =
E[X](1 − P(X > Y )) applicants, where we use the memoryless property of the geometric distribution in the second
equality. But 1− P(X > Y ) is the probability that a match is found (conditioned on deciding to screen).
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Note that in the expression for Πa, both m and mP(m,α) appear. In the expression for Πe,

both Q(m,α) and mQ(m,α) appear. Because P(m,α) and Q(m,α) have no closed form, directly

analyzing the expressions in (117) and (118) is difficult. For this reason, in Proposition 7, we

re-express Πa and Πe as functions of only the model parameters (r, c′a, c
′
s), the value α selected by

employers, and the quantity mP(m,α).

Proposition 7. For any m and α, we have

Πa(m,α) = 1− e−mP(m,α) − c′amP(m,α)/(αg(− log(1− r

α
(1− e−mP(m,α)))))(119)

Πe(m,α) = r(1− e−mP(m,α) − c′smP(m,α)).(120)

Furthermore,

Π∗a = 1− (1 +m∗p∗)e−m
∗p∗ .(121)

Π∗e = r(1− e−m∗p∗ − c′sm∗p∗).(122)

Proof. Recall that the mean field equations (4) and (5) imply that P(m,α) and Q(m,α) solve the

following equations

(123) rmP(m,α)Q(m,α) = α(1− e−rmβQ(m,α)) = r(1− e−mP(m,α)).

Applying this to (118) yields (120), from which (122) follows immediately.

To get to (119), we note that cam = (αβ)c′am/α. The mean-field equation (5) for P(m,α)

implies that

αβ = P(m,α)/g(rmβQ(m,α)) = P(m,α)/g(− log(1− r

α
(1− e−mP(m,α)))),

where the final equality follows from solving (123) for rmβQ(m,α). Combining these facts and

substituting into (117) yields (119). We obtain (121) by applying (2) (which gives the applicant’s

best response as a function of p) to (119). �

From Proposition 7, we have the following corollary.

Proposition 8. For any α < 1 and any m > 0, there exists m′ < m such that Πa(m
′, 1) > Πa(m,α)

and Πe(m
′, 1) = Πe(m,α).
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Proof. Note that by Lemma 3, Q(m, 1) < Q(m,α) ≤ Q(0, α) = 1, and furthermore Q(·, 1) is

continuously decreasing. It follows that for some m′ < m, Q(m′, 1) = Q(m,α). Because the mean-

field consistency equation (4) states that Q = g(mP), it follows that m′P(m′, 1) = mP(m,α). This

fact, combined with (120) from Proposition 7, implies that Πe(m
′, 1) = Πe(m,α). Furthermore,

applying (117) from Proposition 7, we see that

Πa(m
′, 1) = 1− e−m′P(m′,1) − cam′ = 1− e−mP(m,α) − c′am′ > 1− e−mP(m,α) − cam = Πa(m,α).

�

Proposition 8 states that the Pareto frontier of (Πe,Πa) consists only of points where α = 1.

When α = 1, Proposition 7 gives Πa and Πe as functions of only r, c′a, c
′
s and the quantity mP(m, 1).

Motivated by this, for fixed r, c′a, c
′
s we define

SW (x) = 1− e−x − c′ax/g(− log(1− r(1− e−x)))(124)

BW (x) = r(1− e−x − c′sx)(125)

Note that Πa(m, 1) = SW (mP(m, 1)), and Πe(m, 1) = BW (mP(m, 1)). Thus, we have reduced

the problem of optimizing Πa and Πe to that of optimizing SW and BW over the set of values that

the quantity mP(m, 1) may attain.20

Lemma 20. For any r, c′a, c
′
s, the functions Πa(·, 1), Πe(·, 1), SW (·), and BW (·) are unimodal.

Πa and SW have a unique local maximum, and Πe and BW either have a unique local maximum

or are strictly increasing.

Proof. Proposition 7 establishes that Πe(m, 1) = BW (mP(m, 1)), and Πa(m, 1) = SW (mP(m, 1)).

Lemma 3 states that Q(m, 1) = g(mP(m, 1)) is decreasing in m, implying that mP(m, 1) is in-

creasing in m (since g(·) is decreasing). Thus, the unimodality of Πa and Πe follows from the

unimodality of SW and BW .

It is straightforward to show that BW is concave. Thus, all that remains is to prove that

for all r > 0 and c′a ∈ (0, 1), SW is unimodal. Because SW has a continuous first derivative,

SW ′(0) = 1− c′a > 0, and SW is negative for sufficiently large x, it suffices to show that there is a

unique solution to SW ′(x) = 0.

20Lemma 3 implies that if r ≤ 1, mP(m, 1) is onto [0,∞); if r > 1, mP(m, 1) is onto [0, log r
r−1

).
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For the purposes of this proof, for fixed r we define h(x) = − log(1− r(1− e−x)), b(x) = g(h(x)),

and u(x) = x/b(x), so that SW (x) = 1− e−x − c′au(x). Then

(126) SW ′(x) = e−x − c′au′(x) = 0⇔ u′(x)ex = 1/c′a.

Note that

(127) u′(x) =
1

b(x)
− x b

′(x)

b(x)2
,

so u′(0)e0 = 1. It follows from (126) that SW ′(x) = 0 has a unique solution for all c′a ∈ (0, 1) if

and only if u′(x)ex is (strictly) increasing and unbounded. We see that

d

dx
u′(x)ex = ex(u′(x) + u′′(x)).

To show that u′(x)ex is increasing and unbounded, we will show that u′(x) + u′′(x) > 1.

By differentiating (127), we see that

u′(x) + u′′(x) =
1

b(x)

(
1− xb′

b
− xb′′

b
+ 2x

(
b′

b

)2

− 2
b′

b

)
.

Note that b′(x) = g′(h(x))h′(x) < 0, so every term in the above sum except −x b′′b is clearly

positive. Since b(x) ≤ 1, to show that u′(x) + u′′(x) > 1, it suffices to show that −xb′

b −
xb′′

b > 0, or

equivalently, b′(x) + b′′(x) < 0, or equivalently

(128)
b′′(x)

b′(x)
> −1.

We note (omitting the algebra) that

b′(x) = g′(h(x))h′(x)(129)

b′′(x) = g′′(h(x))h′(x)2 + g′(h(x))h′′(x).(130)

h′(x) = reh(x)−x(131)

h′′(x) =
r − 1

r
exh′(x)2 = (r − 1)eh(x)h′(x)(132)
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We apply (129), (130), followed by (132), to conclude that

b′′(x)

b′(x)
= h′(x)

g′′(h(x))

g′(h(x))
+
h′′(x)

h′(x)
(133)

= h′(x)
g′′(h(x))

g′(h(x))
+ (r − 1)eh(x).(134)

Note that h′(x) > 0, and by Lemma 1, g′′(h)/g′(h) > −1. Hence,

b′′(x)

b′(x)
> −h′(x) + (r − 1)eh(x).

Now apply (131) and rearrange to get that

−h′(x) + (r − 1)eh(x) = −eh(x)(1− r(1− e−x)) = −1,

completing the proof of (128).

�

Motivated by Lemma 20, we define

(135) ma ∈ arg max
m

Πa(m, 1), me ∈ arg max
m

Πe(m, 1).

Note that Lemma 20 implies that there is a unique value of m that maximizes Πa(m, 1). However,

in some cases, arg max
m

Πe(m, 1) may be empty.21 In this case, we define me = ∞ and Πe(∞, 1) =

limm→∞Πe(m, 1).

We are now prepared to prove the Propositions from Section 5.

Proof of Proposition 3. For fixed r, c′a, define f(r, c′a) = Q(m1, 1) (recall that m1 is the value of m

chosen by applicants when they respond optimally to employers playing α = 1). If Q(m1, 1) ≥ c′s,

then 1 ∈ A(Q(m1, 1)) and thus (m∗, α∗) = (m1, 1). By Proposition 7,

(136) Πe(m1, 1) = rm1P(m1, 1)(Q(m1, 1)− c′s),

where we have applied the mean-field consistency equation (4) : Q(m1, 1) = g(m1P(m1, 1)). It

follows that Π∗e > 0 if and only ifQ(m1, 1) > c′s. IfQ(m1, 1) < c′s, then (m1, 1) is not an equilibrium,

and thus α∗ < 1. This implies that employers are indifferent between screening and exiting, so we

must have Π∗e = 0.

21This is precisely when the maximizer of BW , given by x = − log c′s, is outside of the domain of BW , as established
by Lemma 3.
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We now turn to proving the monotonicity of f(r, c′a) = Q(m1, 1). So long as c′a < 1, then

m1 > 0, so the applicant best response function (2) implies that m1P(m1, 1) = − log(ca/P(m1, 1)).

Combining this with the consistency equation (4), we see that

(137) f(r, c′a) = Q(m1, 1) = g(− log(c′aβ/P(m1, 1))).

Making use of (28) from Proposition 4, c′aβ/P(m1, 1) is the solution y to

(138) c′a = yg(ry(1− y)/c′a),

or equivalently (after rearrangement),

(139) r =
1− e−

r
c′a
y(1−y)

1− y
.

Because g is decreasing (Lemma 1), (137) implies that in order to prove that f(r, c′a) is increasing

in r, it suffices to show that the solution y to (138) is increasing in r. This follows because (by

Lemma 5) the right side of (138) is increasing in y (for any r), and decreasing in r (for fixed y).

Similarly, to prove that f(r, c′a) is increasing in c′a, it suffices to show that the solution y to (139)

is increasing in c′a. This follows because the right side of (139) is increasing in y (Lemma 5) and

decreasing in c′a (for fixed y).

All that remains is to show that whenever Π∗e = 0, a suitably chosen limit ` can attain the

employer-optimal outcome. By Proposition 2, we know that whenever me < m∗, this can be

accomplished by setting ` = me. Furthermore, by (136), Π∗e = 0 implies Q(m∗, 1) ≤ c′s (whereas

Q(me, 1) > c′s by the definition of me). Using the fact that Q(m, 1) is decreasing in m (Lemma 3),

we deduce that me < m∗.

�

Proof of Proposition 4. We begin by noting that the expression for Π∗a given by (121) is increasing

in m∗p∗. Thus, to derive upper-bounds on Π∗a, it suffices to provide upper-bounds on m∗p∗.

Our first bound comes from the fact that in any equilibrium, g(m∗p∗) = q∗ ≥ c′s (otherwise,

employers would select α = 0, implying q = 1). It follows that m∗p∗ ≤ g−1(c′s) = γ, and therefore

(121) implies that Π∗a ≤ 1− (1 + γ)e−γ .
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Our second bound comes from Lemma 3, which states that when r > 1, mP(m,α) ≤ log r
r−1 for

all m and α.22

The statements about applicant welfare in the regulated market are proven in Lemma 21. �

Proof of Proposition 5. This proposition is restated and proven in Lemma 21. �

Lemma 21.

(1) If c′s > f(r, c′a), then there exists ` such that Π`
a > Π∗a and Π`

e > Π∗e.

(2) If c′s ≤ f(r, c′a), then there exists ` such that Π`
a = Πopt

a > Π∗a.

Proof. As established in Proposition 3, if c′s ≤ f(r, c′a), then α∗ = 1 and q∗ = g(m∗P(m∗, 1)) ≥ c′s.

Note that for any application limit `, we have m∗` ≤ m∗, and thus g(`P(`, 1)) ≥ g(m∗P(m∗, 1)) ≥ c′s,

so α∗` = 1 for all `. Furthermore,

d

dm
Πa(m, 1)

∣∣
m=m∗

=
d

dm
(1− e−mP(m,1) − c′amβ)

∣∣
m=m∗

<
d

dm
(1− e−mp∗ − c′amβ)

∣∣
m=m∗

= 0.

The inequality follows because d
dmmP(m, 1) = P(m, 1) + m d

dmP(m, 1) < P(m, 1) (by Lemma 3),

and the final equality follows because m∗ is optimally chosen by applicants, who take p∗ as given.

Because Πa(·, 1) is unimodal (Lemma 20), it follows that ma < m∗. By Theorem 2, if we set limit

` = ma, then we obtain Πopt
a for applicants.

By Proposition 3, if c′s > f(r, c′a), then α∗ < 1 and Π∗e = 0. It follows (from (120) in Proposition

7) that g(m∗p∗) = q∗ = c′s, and thus g−1(c′s) = m∗P(m∗, α∗) < m∗P(m∗, 1) (the inequality follows

from Lemma 3). Since `P(`, 1) is increasing in ` (Lemma 3), there exists ` < m∗ such that

`P(`, 1) = g−1(c′s). Then 1 ∈ A(P(`, 1)), and thus α∗` = 1. It follows from the definition of Πa in

(117) that

Π`
a = Πa(`, 1) = 1− e−`P(`,1) − ca` = 1− e−m∗p∗ − ca` > 1− e−m∗p∗ − cam∗ = Π∗a.

By continuity, for all sufficiently small ε > 0, Π`−ε
a > Π∗a. For any such ε, q∗`−ε = g((` − ε)P(` −

ε, 1)) > c′s, so by (120), Π`−ε
e > 0 = Π∗e. �

22This has a simple interpretation. Of course, when r > 1, applicants match with probability at most 1/r. But the

proportion of applicants who match is 1− e−mP(m,α). From this, we conclude that r(1− e−mP(m,α)) ≤ 1, which can
be rearranged to give mP(m,α) ≤ log r

r−1
.



MANAGING CONGESTION IN DYNAMIC MATCHING MARKETS 79

Lemma 22. Fix r, c′s, and consider m∗ and p∗ as functions of c′a. The quantity m∗ is strictly

decreasing in c′a, with m∗(1) = 0 and lim
c′a→0

m∗(c′a) =∞. The quantity m∗p∗ is weakly decreasing in

c′a.

Proof. We know that m∗ is the unique solution to h(m∗) = − log c′a. Recall that by Lemma 9, the

function h : [0,∞)→ [0,∞) defined in (37) (which does not depend on c′a) satisfies h(0) = 0 and is

strictly increasing. From this, the statements about m∗ follow.

We know from Propositions 3 and 7 that if c′s ≥ f(r, c′a), then g(m∗p∗) = c′s, so m∗p∗ is constant

on the set {c′a : c′s ≥ f(r, c′a)}. For c′a such that c′s < f(r, c′a), we know that α∗ = 1, and (making

use of (28) from Proposition 4) that c′aβ/p
∗ is the solution y to

(140) r =
1− e−

r
c′a
y(1−y)

1− y
.

Furthermore, the applicant best-response function M given by (2) implies that e−m
∗p∗ = c′aβ/p

∗.

Thus, to show that m∗p∗ is decreasing in c′a, it is enough to show that c′aβ/p
∗ is increasing in c′a.

This holds because the right side of (140) is decreasing in c′a (for fixed y > 0), and increasing in y

for fixed c′a (Lemma 5). �

Proof of Proposition 6. The proof is straightforward. For a fixed applicant strategy, the value of

c′a is irrelevant for employers. Thus, it suffices to show that for each ` ≤ m∗(c′a), there exists

c̃′a ∈ [c′a, 1] such that m∗(c̃′a) = m∗` ; and for each c̃′a > c′a, there exists a unique ` ≤ m∗(c′a) such

that m∗(c̃′a) = m∗` .

This follows because Proposition 2 implies that for ` ≤ m∗, m∗` = `, and Lemma 22 implies that

for any desired application level ` ∈ [0,m∗], there exists a unique c̃′a ≥ c′a, such that m∗(c̃′a) = `.

As for applicant welfare, by Proposition 7, Π∗a = 1 − (1 + m∗p∗)e−m
∗p∗ , which is increasing in

m∗p∗. Lemma 22 states that m∗p∗ is decreasing in c′a, implying that Π∗a is, as well. �


