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Abstract—Traditional wireless schedulers have been driven by
rate-based criteria, e.g., utility maximizing/proportionally fair,
and/or queue-based packet schedulers which do not directly re-
flect the Quality of Experience (QoE) associated with flow-based
transactions and services. This paper proposes, a Measurement-
Based Delay Optimal (MBDO) scheduler, which optimizes a
cost function of the mean flow delays in a multi-class system,
e.g,. web interactive, file downloads, etc. In this context the
cost function expresses desired trade-offs amongst traffic classes
reflecting heterogeneous QoE sensitivities which are nonlinear in
the flow delays and/or system loads. To achieve optimality, MBDO
scheduling uses measured system variables and knowledge (or
measurement) of class flow-size distributions to adapt a weighted
Gittins index scheduler. We show that under mild assumptions,
and in a stationary regime, that MBDO scheduling is indeed
asymptotically optimal. Perhaps more importantly, MBDO sched-
ulers can self-optimize by adapting to slowly varying traffic
loads, mixes and flow size distributions. Our extensive simulations
confirm the effectiveness at realizing trade-offs and performance
of the proposed approach.

I. INTRODUCTION

Next generation wireless networks will likely support an ev-

ermore heterogeneous collection of applications ranging across

mobile broadband, media, and machine-to-machine type com-

munications. The allocation of Base Station (BS) resources

among heterogeneous classes of service with possibly diverse

Quality of Experience (QoE) metrics remains a challenging

and central problem in wireless system design and is the focus

of this paper.

Traditional wireless schedulers have been driven by rate-

based criteria, e.g., utility maximization or proportionally fair

allocations, which balance the average1 rates allocated to

users and/or queue-based schedulers, which monitor packet

queue lengths and/or waiting times. In particular the utility of

user/application i is represented via a function ui (·) of the

user’s average rate ri. In the simplest and stationary instance

of this framework, scheduling is performed so as to solve the

following optimization problem:

max
r
{

n
∑

i=1

ui(ri) | r ∈ R}, (1)

where n is the number of active users, r = (r1, r2, . . . , rn)
T

and R is the achievable rate region. In this setting one often

This work is supported by Futurewei Technologies
1Averages may be computed in an exponentially weighted or moving

window ways and thus on different time scales.

assumes users always have data to transmit, i.e., so called full

buffer model, see e.g. [1]–[3]. This approach clearly does not

capture the dynamic nature of transaction/flow based traffic

wherein the number of active users changes over time, and

wherein QoE is driven by flow-based performance metrics and

only indirectly associated with mean rate and/or packet-level

delays.

Specifically we shall refer to a flow as the basic data unit

whose reception drives the user perceived QoE. In particular,

for interactive web browsing a flow could be the content of a

web page a user requested, or in the case of a file download

the associated with reception of the file. In the context of

modern stored video streaming, the video is partitioned into a

sequence of small files (video segment) each of which might

be considered a flow that should arrive in a timely manner.

Several studies have shown that users perceived QoE should

be modeled as a non-linear function of the flow-level delay,

see e.g., [4], [5]. This non-linearity gives us more flexibility

in scheduling users’ data. For example, for web browsing, it

has been shown that users do not perceive any degradation in

QoE if the flow delay is less than a certain threshold [4].

So, depending on the system loads, one may not need to

be aggressive in allocating resources to web browsing users,

possibly to the benefit of others.

In this paper we consider a stochastic model where flows

arrive to the system, each with a service requirement in terms

of the total amount of bits to be transmitted and they depart

after they have been served. We shall assume that there are

C classes of users corresponding to different application or

service types. Flows arrive at a rate λc for class c and we

let dc denote the mean delay experienced by class c flows.

We model the end user’s QoE through a cost which is an

increasing convex function of mean flow delay. The lower the

cost, the better the user’s QoE. The cost function may depend

on the application type allowing one to capture different

user/application QoE sensitivities to mean flow delays. The

cost function of class c will be denoted by fc (·). By contrast

with rate-based scheduling, we will consider the design of

a scheduling policy which solves the following optimization

problem:

OP1 : inf
dπ

{

C
∑

c=1

λcfc(dc) | d
π ∈ D } (2)

where dπ := (dπ1 , d
π
2 , . . . , d

π
C)

T
is the mean delay vector



realized by policy π and D is the set of achievable mean delay

vectors by all finite mean delay work conserving policies. Note

that a work conserving policy need not in general have finite

mean delay vector2. In OP1, we scale the cost function of a

class with its arrival rate. This is a natural way to represent

performance in a dynamic system where one should capture

not only high costs, but the number of flows that experience

high costs.

In addition to addressing drawbacks associated with the

conventional approaches, our model also addresses the need to

capture and realize trade-offs in how resources are allocated

amongst classes. Our premise is that network operators will

want to make QoE trade-offs among applications and that

these may be different depending on the system loads. In other

words, one should consider optimizing resource allocation for

systems not only for heavy loads where such trade-offs are

critical, but also for moderate to light loads. As mentioned

earlier the trade-offs to be realized can be quite different

depending on the load and mix of traffic the system is sup-

porting. For example, when the system is congested, it might

be better to give more resources to interactive applications vs

large file downloads, so that delay sensitive applications are

given priority. However, for lightly loaded systems, allocating

more resources to interactive applications will improve their

QoE only marginally, once the mean delay is less than a

threshold. Therefore, spare resources can be allocated to large

file downloads.

In our framework, trade-offs are captured by specifying cost

functions for each application. The delay sensitive applications

have ‘steeper’ cost functions after the tolerable delay, as

compared to delay tolerant applications. In general, as the

system load increases, the mean delays seen by all classes

of traffic increase. However, the delay sensitive applications

get higher priority because of their steeper cost functions.

Therefore, for a range of system loads, a solution to OP1 will

achieve the necessary trade-offs. Next we discuss the related

work in flow-level scheduling.

A. Related Work

Flow-level scheduling has been extensively studied in the

literature, see [4], [6]–[13]. Some of the works focus only

on stability of the system and do not consider delay metrics,

see [6], [7]. Several other works target minimization of mean

flow delay [10]–[13]. However, as mentioned earlier the users’

QoE may not be a linear function of mean delays.

The works most closely related to our work are [4], [8],

and [14]. In [4], the authors show that the problem of

QoE optimization in wireless networks can be modeled as

a Linear Programming problem. However, solving the LP is

computationally expensive. Therefore, they develop a heuristic

which works well. This paper does not provide any analytical

performance results for the heuristic. In [8], the authors

develop scheduling policies to satisfy delay based deadlines for

2If the service time distribution has a finite mean but infinite second
moment, then an M/GI/1 queue served according to a non-preemptive work
conserving discipline has an infinite mean delay

various applications. Using simple policies, they achieve the

minimum possible deadline violation probability in systems

with large amounts of resources (bandwidth and time). The

cost functions which we use in our approach can be used

to approximate the deadlines and give us more flexibility in

allocating resources. In [14], the authors consider an approach

which uses cost functions based on delay, however, their work

is restricted to only non-pre-emptive scheduling. To the best

of our knowledge, this is the first work which considers the

minimization of cost functions of the mean delay for general

flow size distributions while considering both pre-emptive and

non-pre-emptive policies. However, we assume the knowledge

(perhaps measured) of flow size distributions which is not

assumed in [8], [14]. We deem this a strength since in principle

our approach can capture measurable and base station specific

characteristics of the offered loads.

Several works such as [6], [10], [11] consider wireless

channel models with fast fading. Such a channel model invites

the use of opportunistic scheduling policies based on the

instantaneous channel conditions. However, in this paper we

focus a time invariant channel model. This model is justified

when the users are relatively stationary as compared to the

time scale of flow dynamics and/or when there is a channel

hardening effect. Channel hardening occurs when many di-

verse paths between transmitter and receiver diminishes the

effect of fast fading, see [15]. In the sequel we will however

incorporate heterogeneous channel strengths as seen by users

that have very different channel characteristics due to their

different locations, e.g., far or close by, relative to a base

station.

B. Our Contributions

In this paper we introduce a Measurement-based Delay

Optimal (MBDO) scheduler which minimizes a non-linear

cost function of the mean delays experienced in a multi-

class system. Starting from a fairly general multi-class M/GI/1

queuing model for a base station we make the following

contributions.

1) Extension of Gittins index scheduler: We propose and

show a simple extension to the results in [16]. In partic-

ular, we show that a weighted Gittins index scheduler (w-

GITTINSSCHEDULER) will minimize a weighted linear com-

bination of mean delays in a multi-class system. This w-

GITTINSSCHEDULER scheduler, serves as the workhorse for

our MBDO scheduler.

2) MBDO scheduling: We propose the MBDO scheduler

which based on system measurements adapts to the sys-

tem characteristics so as to eventually optimize system per-

formance. In particular, at the end of each queue busy

cycle, the MBDO scheduler adapts the weights for a w-

GITTINSSCHEDULER based scheduler based on measure-

ments to date. Such measurements allow the scheduler to learn

the loads on the system, and possibly also to the flow size

statistics and optimize scheduling decisions to the specific

load and mix the base station is supporting. MBDO scheduler

can thus track slow variations in traffic characteristics which



might change on the time-scales of few hours in wireless

networks, see [17]. The scheduler can in principle also track

slow variations in flow size distributions, however, in this

paper we assume the knowledge of flow size distributions.

3) Optimality results : Under mild assumptions on flow size

distributions and the knowledge of the minimum of the fraction

of total traffic that might arrive to a class, we show that

the mean delay vector achieved by our MBDO scheduler

converges to the optimal solution of OP1 in probability.

Overall this approach is quite novel. We are not aware of

any proposed measurement-based wireless scheduler able to

optimize flow-level delays/trade-offs for a multi-class system.

In addition the possibility of tuning scheduling to the traffic

characteristics, e.g., flow-size distributions, which may depend

on usage patterns in given locations (e.g,, university vs finan-

cial district), is novel and intriguing.

C. Organization

This paper is organized as follows. In Section II, we present

a simple M/GI/1 queuing model where all flows are served at

unit rate. In Section III, we explain about MBDO in detail and

prove the asymptotic optimality of our proposed scheme. In

Section IV, we extend our scheme for a wireless BS, where

different users could have different channel rates. Performance

evaluation through simulations is given in Section V.

Notation: In the sequel we denote vectors by bold faced

letters and random variables by capital letters. All vectors

are column vectors of length C, the number of classes in the

system. The components of vectors are represented by normal

faced letters, for example, D denotes a random vector given

by (D1, D2, . . . , DC)
T

, where T is the transpose operator.

Continuous time random processes are written as a function of

time, for example, {D(t), t ≥ 0} is a continuous time vector-

valued random process. Discrete time random processes are

indexed as follows
{

D(k), k ∈ N
}

. The expectation operator

is denoted by E [·] and the probability of an event A is given

by P (A).

II. SYSTEM MODEL

Throughout this paper we will develop our scheduler based

on a basic multi-class M/GI/1 queuing model, but expect it

to be robust to the underlying assumptions. Poisson arrivals

are a reasonable model for flow-based transactions and even

interactive, i.e, on-off type web browsing, when viewed as

an aggregate of reasonably large population. The flow service

requirements are generally distributed and again it is reason-

able to assume independence amongst flows. We assume that

the system supports C classes of flows. Flows of class c
arrive as a Poisson process of rate λc. The flow sizes are

modeled as random variables which are i.i.d. for each class

and independent of the flow sizes of other classes. Flow sizes

for class c have a distribution function Gc(·) with a mean value

of mc bits. The scheduler does not have prior knowledge of

the size of individual flows, however, it does have knowledge

of the size distributions, and of the cumulative service each

flow has received. Initially we assume that all flows are served

at unit rate by the server, thus the stability of queue is assured

if ρ :=
∑C

c=1 λcmc < 1. This will subsequently be relaxed in

Section IV.

As mentioned in the introduction we associate a cost func-

tion fc (.) to each class c, which depends on mean flow-delay

dc experienced by flows in that class. We assume that fc is

strictly convex, continuous, and differentiable. Also, fc is non-

decreasing and bounded from below. Let dπc be the mean delay

of class c under a scheduling policy π. The overall mean delay

vector for policy π is denoted by dπ = (dπ1 , d
π
2 , . . . , d

π
C)

T
. Let

D be the set of mean delay vectors that can be achieved by

finite mean delay work conserving policies. We call this as the

set of feasible mean delays.

III. COST MINIMIZATION

We are interested in finding a scheduling policy π such that

dπ solves the following optimization problem.

OP1 : inf
d

{ f (d) :=

C
∑

c=1

λcfc(dc) | d ∈ D }. (3)

Note we will show that there is indeed a policy which achieves

the infimum.

To solve OP1, we first consider the following optimization

problem:

OP2 : inf
d

{

C
∑

c=1

λcwcdc | d ∈ D }, (4)

where the weights wc, c = 1, 2, . . . C are positive real num-

bers.

The following corollary, which is a natural consequence

of Theorem 5.6 in [16] shows that a Gittins’ index based

scheduler optimizes OP2. Below we state the result and then

detail the characteristics of such schedulers.

Corollary 3.1: A (w-GITTINSSCHEDULER) achieves the

optimal delays for OP2. In such a scheduler the Gittins index

of a flow is simply scaled by its class weight, and at each time

instant the flow with the highest weighted index is scheduled

for transmission.

Proof of this result is given in the Appendix A. Next introduce

w-GITTINSSCHEDULER and Gittins indices in detail.

w-GITTINSSCHEDULER: Let A(t) be the set of active flows

at time t. For each flow l ∈ A(t), we associate a positive real

number known as the Gittins index, which is a function of

the cumulative service the flow has received, in bits. For a

flow l, let its Gittins index be denoted by Gl (·). At each time

t, we scale the Gittins index of a flow by its class weight

wc. We shall refer to this as the weighted Gittins index. We

schedule the flow with the highest weighted Gittins index at all

times. If there are two or more flows with the highest weighted

Gittins index, we choose one of the flows at random. Note

that the w-GITTINSSCHEDULER with a given weight vector

w is same as the w-GITTINSSCHEDULER with weight vector

κw, where κ > 0. Only the relative weights across classes

matter in w-GITTINSSCHEDULER. Therefore, in this paper we



will assume that the weights are normalized to one for w-

GITTINSSCHEDULER. Next we review the Gittins indices for

such dynamic systems given in [16], [18].

Gittins index: Consider a flow which has received a bits

of cumulative service. Let G (·) and G (·) be the cumulative

density function (c.d.f.) and complementary c.d.f. of the flow,

respectively. For ∆ ≥ 0, we define the following

R(a,∆) :=
(

G (a)−G (a+∆)
)

/G (a) ,

C(a,∆) :=

(

∫ ∆

0

G (a+ t) dt

)

/G (a) ,

J (a,∆) :=
R(a,∆)

C(a,∆)
.

Here R(a,∆) and C(a,∆) correspond to probability that a

flow which has received a bits of service will complete, and

the expected time the flow would be busy if it were allocated ∆
seconds of service. Therefore, J (a,∆) is the ratio of expected

reward to the expected cost of allocating ∆ seconds to a flow

which has received a bits of service. The Gittins index for an

active flow in our queuing model as defined in [16] is given

by

G (a) = sup
∆≥0

J (a,∆) (5)

i.e., the best reward/cost trade-off over all time horizons ∆
Computing the Gittins index requires knowledge of flow size

distribution. In our setting, different classes of traffic may have

different flow size distributions depending on the applications

types in the network, and how they are grouped together into

classes. Such information can in principle be easily collected

by monitoring traffic on the network.

Next we discuss an approach to optimize OP1 based on

a w-GITTINSSCHEDULER. The following two lemmas show

that OP1 is a convex problem with a unique minimum which

can be realized via a w-GITTINSSCHEDULER with appropriate

weights.

Lemma 3.2: If ρ < 1, then the achievable delay region for

work conserving finite mean delay policies D is a non-empty

convex set.

Lemma 3.3: There exists an unique minimizer d∗ for the

optimization problem OP1 and it can be achieved by a

weighted Gittins index policy with suitable weights.

Proof: Proofs are given in Appendices B and C, respec-

tively.

In the next sub-section, we will describe our policy in detail.

A. Measurement-Based Delay Optimal (MBDO) Scheduler

The idea underlying MBDO scheduling is to learn an

optimal weights setting for w-GITTINSSCHEDULER such that

optimal delays for OP2 are also optimizing for OP1.

We shall decompose the system evolution based on its

renewal periods, where each period consists of an idle period

and a busy cycle. The weights for the w-GITTINSSCHEDULER

are fixed for each renewal period but adapted at the end of

each renewal cycle based on measurements seen to date. This

is exhibited in Figure 1.

Fig. 1. Sample path of MBDO scheduler

Algorithm 1 Measurement-Based Delay Optimal Scheduling

(MBDO)

Initialize: D
(0)

,λ
(0)

, T
(0)

,w(1) with some non-zero pos-

itive values.

Track the following:

• The amount of service given to each flow

• The number of active flows of class c at time t, say Nc(t).

for each renewal cycle k do

Run W-GITTINSSCHEDULER(w(k)).

D(k) ← DELAYESTIMATE(λ
(k−1)

, T
(k−1)

, {Nc(·)})
Updates:

D
(k)
← D

(k−1)
+ ǫk

(

D(k) −D
(k−1)

)

w(k+1) = γ
(

D
(k)
)

(

∂f1
∂d1

∣

∣

∣

D
(k)
1

,
∂f2
∂d2

∣

∣

∣

D
(k)
2

, . . .
∂fC
∂dC

∣

∣

∣

D
(k)
C

)T

λ
(k)

=
(k − 1)T

(k−1)

(k − 1)T
(k−1)

+ Tk

λ
(k−1)

+
1

(k − 1) T
(k−1)

+ Tk

N(k),

T
(k)

=
k − 1

k
T

(k−1)
+

1

k
Tk,

end for

procedure DELAYESTIMATE(λ
(k−1)

, T
(k−1)

, {Nc(·)})
return

D(k)
c = z

(

1

λc
(k−1)

T
(k−1)

)

∫

kth renewal cycle

Nc (t) dt

c = 1, 2, . . . , C

end procedure

procedure W-GITTINSSCHEDULER(w)

for Each time slot do

for Each flow in the system do

Compute Gittins index for each flow.

Scale the Gittins index by its class weight wc.

end for

Schedule the flow with highest wc.

end for

end procedure



TABLE I
VARIABLES USED IN MBDO

Name Description

D
(k)

Estimate of mean delay upto and including kth renewal cycle.

D(k) Estimate of mean delay for the policy used in kth renewal cycle.

λc
(k)

Estimate of mean arrival into class c rate upto and including kth renewal cycle.

T
(k)

Estimate of mean renewal cycle duration upto and including kth renewal cycle.

Nc(t) Number of active flows of class c at time t.

N
(k)
c Total number of flows that arrived to class c in kth renewal cycle.

w(k) Weights used by w-GITTINSSCHEDULER in kth renewal cycle.

Pseudo-code for our MBDO scheduler is given in the

Algorithm 1 panel. The variables used and their mean-

ings are summarized in Table III-A. The procedure W-

GITTINSSCHEDULER simply implements a weighted Gittins

index policy during a busy cycle. For simplicity we further

divide the time into slots and assume scheduling decisions

are made at the beginning of every slot. The slot duration is

assumed to be very small as compared to the flow transmission

times. The computations performed at the end of a renewal

cycle are discussed below.

(1) Delay measurement. We shall estimate the mean delay

seen by each class in the kth renewal cycle. it is denoted by

D(k). Further we let D
(k)

:=
(

D
(k)

1 , D
(k)

2 , . . . , D
(k)

C

)T

denote

the time-averaged delay vector averaged across renewal cycles

up to and including the kth one. Specifically D
(k)

at the end

of kth renewal cycle is updated using the new estimate D(k)

as follows:

D
(k)
← D

(k−1)
+ ǫk

(

D(k) −D
(k−1)

)

, (6)

where (ǫk | k ∈ N) is a non-increasing sequence of positive

real numbers such that

∑

k

ǫk =∞ and
∑

k

ǫ2k <∞. (7)

For technical reasons, the delay estimate D(k) is obtained

using the procedure DELAYESTIMATE, where the function

z (·) is defined as follows:

z (x) := min (x, λ/λc∗) , (8)

where λc∗ = min {λi|i = 1, 2, . . . , C}. The reasoning behind

the choice of this estimator is discussed in III-B and we

assume the knowledge of the minimum fraction of traffic

(λc∗/λ) that may arrive to any class.

(2) Updating λ
(k)

and T
(k)

. The estimate of mean ar-

rival rate vector up to and including kth cycle is given by

λ
(k)

:=
(

λ1
(k)

, λ2
(k)

, . . . , λC
(k)
)

. Similarly, the estimator for

the mean renewal cycle duration up to and including the kth

cycle is given T
(k)

. They are updated as follows:

λ
(k)

=
(k − 1)T

(k−1)

(k − 1)T
(k−1)

+ Tk

λ
(k−1)

(9)

+
1

(k − 1)T
(k−1)

+ Tk

N(k),

T
(k)

=
k − 1

k
T

(k−1)
+

1

k
Tk, (10)

where Tk is the random variable denoting the length of the

kth renewal cycle and N(k) :=
(

N
(k)
1 , N

(k)
2 , . . . , N

(k)
C

)

is

the random vector denoting the total number of flow arrivals

during that cycle for each class.

(3) Adaptation of weights: For the next (k + 1)th renewal

cycle, run w-GITTINSSCHEDULER with weights given by

w(k+1)
c = γ

(

D
(k)
) ∂fc
∂dc

∣

∣

∣

D
(k)
c

, for c = 1, 2, . . . , C,

where γ
(

D
(k)
)

is the normalizing factor so that w(k+1) has

unit norm.

The procedure DELAYESTIMATE is crucial to the optimality

of MBDO, so we shall discuss it in detail next.

B. Delay Estimates

In our model the duration of renewal periods Tk’s are i.i.d.

since arrivals are Poisson and service times are i.i.d. Further-

more, the distribution of Tk’s is independent of scheduling

policy because we are considering only work conserving

policies. Note that the delay estimator for class c in the kth

renewal period used in the procedure DELAYESTIMATE can

be re-written as

D(k)
c = U (k)

c +B(k)
c (11)

where

U (k)
c :=

∫

kthrenewal cycle
Nc (t) dt

λcE [Tk]
, (12)

B(k)
c :=

[

z

(

1

λc
(k−1)

T
(k−1)

)

−
1

λcE [Tk]

]

(13)

×

∫

kthrenewal cycle

Nc (t)dt. (14)



In Lemma 3.4, we prove that U
(k)
c is an unbiased estimator

for mean delay in kth renewal cycle. We also require that

this term have finite second moment to prove the convergence

results of MBDO. This is proved in Lemma 3.5.

Lemma 3.4: Let U
(k)
c =

∫
kthrenewal cycle

Nc(t)dt

λcE[Tk]
, c =

1, 2, . . . , C, then U
(k)
c is an unbiased estimator for the

mean delay seen by a typical flow in cth class for the

scheduling policy in the kth renewal cycle.

Proof: The proof is given in Appendix D.

Lemma 3.5: Let the fourth moment of flow size distribution

for class c be denoted by hc. If hc <∞, c = 1, 2, . . . , C, then

E

[

(

U
(k)
c

)2
]

<∞, c = 1, 2, . . . , C.

Proof: The proof is given in Appendix E.

The term B
(k)
c in (11) represents the bias in the estimator.

The function z (·) truncates the value of 1/(λ
(k−1)

T
(k−1)

)

to λ/λc∗ which ensures that the term B
(k)
c has a finite first

moment. We have chosen the value λ/λc∗ for truncation

to obtain asymptotic unbiased estimates as indicated in the

following lemma.

Lemma 3.6: If hc < ∞ and z (·) is as defined in (8), then

limk→∞ E

[∣

∣

∣
B

(k)
c

∣

∣

∣

]

→ 0.

The above lemma shows that B
(k)
c converges to zero in expec-

tation. The main idea is to show the almost sure convergence

of the sequence
(
∣

∣

∣
B

(k)
c

∣

∣

∣
|k ∈ N

)

to 0 as well as its uniformly

integrability. Proof is given in Appendix 3.6. This result is

necessary for the convergence result given in the next section.

C. Optimality Results

In this sub-section, we will show the asymptotic optimality

of MBDO scheduling and the main result of this paper.

Theorem 3.7: Assuming flow size distributions for all

classes have finite fourth moments and (ǫk | k ∈ N) satis-

fies (7), then the MBDO scheduler is such that D
(k)

converges

to d∗ in probability, i.e., for any ǫ > 0

lim
k→∞

P
(
∣

∣

∣
D

(k)
− d∗

∣

∣

∣
> ǫ
)

= 0. (15)

where d∗ is the unique minimizer of OP1.

Let us outline the key steps of the proof of this theorem, an

leave the details to appendix. Consider the piece-wise constant

random process D(t) which is defined as:

D(t) =

{

D
(k)

if t ∈
[

∑k−1
i=1 ǫi,

∑k
i=1 ǫi

)

0 if t < 0.
(16)

The key ideas come from stochastic approximation algorithms

wherein as ǫk become small, i.e., for large t, the trajectories

of the sequence D(t) can be approximated by the trajectories

of an associated differential equation for a variable x(t) given

by

dx(t)

dt
= g∗ (x(t))− x(t), (17)

where g∗ (x) := argmin
d∈D

∇f (x)
T
d and

∇f (x) :=

(

λ1
∂f1
∂d1

∣

∣

∣

x1

, λ2
∂f2
∂d2

∣

∣

∣

x2

, . . . , λC
∂fC
∂dC

∣

∣

∣

xC

)T

.

This can be seen noting that the update equation (6) can be

re-arranged as

D
(k)
−D

(k−1)

ǫk
= D(k) −D

(k−1)
. (18)

In the above equation, the L.H.S. approximates
dD(t)
dt when

ǫk is small. The term D(k) should be viewed as an asymptot-

ically unbiased estimate of g∗
(

D
(k−1)

)

. Indeed this follows

observing that:

1) It follows from Lemmas 3.4 and 3.6, we have shown

that D(k) is an asymptotically unbiased estimate of mean

delay under the policy used in kth renewal cycle.

2) Our choice of weights for kth renewal cycle is such that

it minimizes argmin:
d∈D

∇f
(

D
(k−1)

)T

d in kth renewal

cycle.

Therefore, for small ǫk we can approximate (18) by (17).

One can then show that the differential equation (17) is

globally asymptotically stable and its trajectories converge to

the optimal point of OP1. This follows from the following

lemma.

Lemma 3.8: The differential equation given by (17) is glob-

ally asymptotically stable and its asymptotically stable point

is d∗.

Proof: Proof is given in the Appendix G.

Finally one can use Theorem 2.1 in Chapter 7, [19] to con-

clude the convergence of D
(k)

to d∗. The conditions necessary

for the theorem are satisfied as a result of Lemmas 3.4, 3.5, 3.6,

and 3.8

IV. MODIFICATIONS TO MODEL WIRELESS NETWORKS

In the previous section, we considered a multi-class M/GI/1

queue and assumed all flows were served at unit rate. In

a wireless network flows destined to different users may

experience different service rates due to the heterogeneity in

channel conditions they see. For simplicity in this paper we

assume (mean) service rates may be heterogenous but are

fixed for the duration of a flow. Further modifications can be

considered to address opportunism and/or user mobility.

For systems with heterogeneous service rates, one can show

that the Gittins index for a flow f need only be scaled by its

mean service rate rf , see [13]. If a flow f has received a

cumulative service of x bits and the service rate for the flow

is rf , then its Gittins index Gf (·) is given by:

Gf (x) = rfG (x) . (19)

where G (x) is the Gittins index of the flow if it is served at

unit rate in a queue. In summary then, the effective weight

for a flow would be the product of its class weight wc and its

service rate.



V. PERFORMANCE EVALUATION

In this section, we study the performance of MBDO

scheduling through discrete event simulation.

Simulation setup: We consider an M/GI/1 queue with three

idealized traffic classes, so as to best understand how MDBO

scheduling is performing. We will assume the total service rate

is normalized to one bit/second so flow sizes are given in terms

of required service time (in seconds). The service rate and the

service requirements can be scaled appropriately to study other

scenarios too. The three service classes are described in detail

below.

1) Small flows: Flow sizes for this class are uniformly dis-

tributed between 0.1 and 0.3 seconds. The cost function

for this class is given by f1(d1) =
1
2d

2
1. This might model

web traffic or other interactive applications which are

delay sensitive. However, for mean delays upto 1 second,

the cost is low.

2) Medium sized flows: Flow sizes are uniformly distributed

between 0.3 and 0.5 seconds. The cost function used is

given by f2(d2) =
1
3

(

d2

0.6

)3
, i.e., the delay cost increases

steeply after 0.6 seconds. This class represents medium

sized flows with tight delay constraints. This could model

the segments in a HTTP adaptive video streaming service.

3) Large files: Flow sizes have a Pareto distribution with

c.c.d.f G (x) =
(

4
x+4

)5

, x ≥ 0. They have a mean

service time of 1 second. The Pareto distribution is a

heavy-tailed thus this class includes a mix of small and

large flows. This could be used to model a variety of file

downloads. This class has a cost function f3(d3) = 0.1d3.

This class is the least sensitive to delay, i.e., most elastic

or delay-adaptive.

There are closed form expression for the Gittins index of

Uniform and Pareto distributions. For Uniform distribution,

the Gittins index is the inverse of the mean residual service

time, see [18]. If the flow size is uniformly distributed in the

interval [p, q], we have

GU (a) =

{

2
p+q−2a if 0 ≤ a ≤ p,
2

q−a if p < a < q.
(20)

For Pareto distribution, the Gittins index is equal to its hazard

rate, where hazard rate is the ratio of p.d.f. to c.c.d.f., see [18].

Therefore, for our setting, the Gittins index is given by

GP (a) =
5

a+ 4
. (21)

In order to see how MBDO realizes trade-offs, we shall

fix the arrival rates of two classes and sweep increase that

of the third class. Therefore, we study three different cases

based on the class for which we sweep the arrival rate. All

simulations statistics were obtained based on 4 × 105 flows

have been served to completion, giving trends with negligible

confidence intervals. In Fig. 2, we have shown the convergence

of weights in MBDO for. After about 100 busy cycles, the

weights converge. We have used the sequence ǫk = 1/k, k ≥ 1
to average the delay in MBDO.
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Fig. 2. Weights for all classes as a function of the number of busy cycles
for λ1 = 0.5, when λ2 = 1 and λ3 = 0.2 flows/sec.
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Fig. 3. Mean delays for classes 1 and 2 as a function of λ1, when λ2 = 1

and λ3 = 0.1.

We shall mainly compare our scheduler with a mean delay

Gittins index scheduler, i.e., w-GITTINSSCHEDULER with

equal weights. The w-GITTINSSCHEDULER with equal

weights is known as Gittins index scheduler in the literature

and we will use the same terminology in the sequel. We have

also compared our scheduler with the Processor Sharing (PS)

scheduler. Note that PS is similar to Proportional Fair when the

channels do not change much. However the delay performance

for PS (a rate based scheduler) is much worse than MBDO,

since it is not geared towards minimizing delays of flow

and hence, we cannot illustrate the trade-offs in resource

allocation achieved by MBDO when we compare it to PF.

The comparison with PS for sweeping the arrival rates of small

flows is given in Fig. 4.

1) Sweep arrival rate of small flows: In this scenario, we

fix the arrival rates of Classes 2 and 3 (λ2 and λ3) at 1 and

0.1 flows/second, respectively. We sweep the arrival rate of

Class 1 (λ1) from 0.1 to 2.2 flows/second. We have plotted

the mean delays of Classes 1 and 2 vs λ1 in Fig. 3. We have

not shown the delay performance for the third class in this
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Fig.3 because the delay of third class is much larger in both

the cases and finer details will be missed. The plot with all

three classes is shown in 5. The two key observations obtained

from Fig. 3 are as follows:

1) The mean delay for Class 1 flows in MBDO increases

much more with λ1 than for the Gittins index scheduler.

2) The mean delay for Class 2 flows in MBDO stays close

to 0.55 sec. even with increasing λ1, whereas for the

Gittins index scheduler it increases by a factor of four on

increasing λ1 from 0.1 to 2.2 flows/sec.

Note that the Gittins index scheduler minimizes the overall

mean delay of a typical arrival, i.e., solves OP2 with equal

weights. In other words, by Little’s law, it minimizes the

mean number of flows in the system. Thus the Gittins index

scheduler gives priority to the shorter Class 1 flows at the

expense of Class 2 and Class 3 flows. However, for the MBDO

scheduler, Class 2 traffic has a very steep cost function after

the mean delay of 0.6. As more Class 1 flows arrive into the

system, the steep cost function of Class 2 will ensure that the

class 2 traffic will get more priority over the Class 1 traffic.
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Fig. 6. Mean delays for classes 1 and 2 as a function of λ2, when λ1 = 1

and λ3 = 0.1.

Note that the Class 1 traffic can tolerate a mean delay up

to 1 sec. without paying too much penalty. Hence, the mean

delay of Class 2 does not vary much with λ1 under MBDO

scheduling. Class 3 has lower priority than both Class 1 and

2 as it has the least sensitivity to delay. Therefore, the MBDO

is able to protect the most delay sensitive Class 2 traffic from

both Class 1 and Class 3 traffic.

2) Sweep arrival rate of medium-sized flows: In this sce-

nario, we keep the arrival rates of Classes 1 and 3 fixed at

1 and 0.1 flows/sec., respectively and the arrival rate of Class

2 is swept from 0.1 to 1.6 flows/sec. We show the mean delays

for Classes 1 and 2 vs λ2 in Fig. 6. An interesting observation

is that the mean delay for Class 1 first decreases and then

increases on increasing λ2 in MBDO scheduler. Recall the

objective function of OP1. The overall cost function f(·)
increases with λ2 due to increase in λ2f2(·). If the mean delay

for Class 2 is less than 0.6 seconds, then value of f2 does

not change much. The only way MBDO can compensate for

increasing λ2 is to decrease the cost of a traffic class, i.e.,

decrease the mean delay for Class 1. Note that decreasing the

mean delay of Class 3 does not help much as it is not so

sensitive to delay. Once the mean delay for Class 2 is close

to 0.6 seconds, then it dominates the total cost and MBDO

stabilizes its delay at the expense of Class 1 traffic. This is

in sharp contrast to the Gittins index scheduler which always

gives lower mean delays to small flows. Therefore, the mean

delay for highly delay sensitive Class 2 traffic is made robust

to the changes in its arrival rate in MBDO scheduler.

3) Sweep arrival rate of large flows: Here λ1 and λ2 are

fixed at 0.5 and 1 flows/sec., respectively, while λ3 is swept

from 0.01 to 0.45 flows/sec. We exhibit the mean delay for

classes 1 and 2 vs λ3 in Fig. 7 and the mean delay for class 3
vs λ3 in Fig. 8. Note that the mean delays of classes 1 and 2
are not affected by increase in λ3. There are two reasons for

this.

1) For the Pareto distribution, the Gittins index decreases

with the cumulative service given to the flow, whereas,
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Fig. 8. Mean delays for class 3 as a function of λ3, when λ1 = 0.5 and
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for Uniform distribution it increases. For the parameters

which we have used for the Pareto and Uniform distribu-

tions, GU (0) > GP (0). Therefore, Classes 1 and 2 always

have higher Gittins indices than class 3. This ensures that

Classes 1 and 2 get absolute pre-emptive priority over

class 3. Hence, the mean delays of Classes 1 and 2 are

not affected by class 3 in Gittins index scheduler.

2) In MBDO, in addition to the Gittins index, we also have

the weights associated with the classes. Due to the fact

that class 3 is least sensitive to delay, the weights used for

classes 1 and 2 are higher than class 3. This along with

the characteristics of Gittins indices ensure that classes 1
and 2 get absolute pre-emptive priority over class 3 and

hence, they are not affected by class 3.

Due the above mentioned effects, the class 3 always has the

least priority in Gittins and MBDO schedulers and therefore,

has the same mean delay in both these schedulers. Even

though mean delays for classes 1 and 2 are unaffected by

class 3 under the Gittins index and MBDO schedulers, they

differ in their treatment of Classes 1 and 2. This is because

of the effect of cost functions in MBDO which tolerates

higher delays for class 1 traffic. Therefore, delay sensitive

applications are protected from the changing loads of a delay

insensitive application.

VI. CONCLUSIONS

In this paper we have proposed a novel delay based

approach for QoE optimization in wireless networks. Our

proposed scheme MBDO is measurement based and can adapt

to slowly varying traffic statistics at the BS. It also achieves

optimal trade-offs in resource allocation between application

types at various system loads based on their sensitivities to

mean delay. Through simulations we have shown that MBDO

performs better than mean delay optimal Gittins index and

Processor Sharing schedulers.

APPENDIX

A. Proof of Corollary 3.1

It is shown in Theorem 5.6, [16] that the weighted Gittins

index scheduler minimizes the mean expected weighted flow

delay in a busy cycle. Using Renewal Reward Theorem

(RRT)(see [20]) and the fact that the renewal cycles are

identical for all work conserving policies, it can be shown

that minimizing the expected weighted flow time in a busy

cycle with weights wc, c = 1, 2, . . . , C is same as OP2.

B. Proof of Lemma 3.2

First we will show that the region is convex. Let d1 and d2

be the two mean delay vectors achieved by the two finite mean

delay policies π1 and π2, respectively. To achieve the mean

delay vector φd1 + (1− φ)d2, φ > 0, use the policy π1 with

probability φ and π2 with probability 1−φ, i.i.d. across busy

cycles. The set of achievable finite delay vectors is non-empty

because the mean delay for a Processor Sharing discipline is

finite as long as the first moments of the service times exist

and the load ρ is less than one. See [20] for the proof.

C. Proof of Lemma 3.3

For brevity, we define

∇f (d) :=

(

λ1
∂f1(d1)

∂d1
, λ2

∂f2(d2)

∂d2
, . . . , λC

∂fC(dC)

∂dC

)T

.

In OP1 we take infimum of a continuous, differentiable,

strictly convex, lower bounded, increasing (in all coordinates)

function over a convex set D which is a subset of the positive

orthant of R
C . Therefore, the objective function of OP1 has

an infimum and it is uniquely achieved by a vector. Let this

infimum achieving vector be denoted by d
∗
. Next we show

that there exists a work conserving policy which has its mean

delay vector same as d
∗
.

The vector d
∗

is the optimal solution to OP1 if and only

if the following condition is satisfied.

∇f
(

d
∗
)T (

d− d
∗
)

≥ 0, ∀d ∈ D. (22)



We have to show that the delay vector d
∗

can be achieved,

i.e. it is in D. We have shown in Corollary 3.1 that we

can minimize the linear combination of the delays using

weighted Gittins index scheduler. Hence, we can minimize

∇f
(

d
∗
)T

d using weighted Gittins index scheduler using

weights as ∇f
(

d
∗
)

. From (22), we know that this is a

necessary and sufficient condition for optimality. This proves

that d
∗

is in D.

D. Proof of Lemma 3.4

Assume that a given scheduling policy π is used in all busy

cycles. Let Nc(t) be the number of flows of class c present

in the system at time t. Let Nc be the random variable which

denotes the number of customer in class c when the system

is stationary. If time instants t1 and t2 belong to different

busy cycles, then Nc(t1) is independent of Nc(t2) because of

the independent increment property of Poisson arrivals and the

assumption that flow sizes are i.i.d. Therefore we can consider

renewal cycles which consist of the idle period and the busy

cycle. From the Reward-Renewal theorem, we get that

lim
τ→∞

1

τ

∫ τ

0

Ni(t)dt =
E

[

∫

busy cycle
Ni(t)dt

]

E [T ]
w.p.1, (23)

where T is a random variable denoting the renewal duration

for a typical cycle. Note that the mean renewal cycle duration

is same irrespective of the scheduling policy, as long as the

policy is work conserving. For stationary queues, we have

lim
τ→∞

1

τ

∫ τ

0

Ni(t)dt = E [Ni] w.p.1. (24)

Using Little’s law, we get E [Ni] = λiE [Di], where Di is

the random variable which denotes the stationary mean delay

seen by a typical arriving customer. Substituting this in (23),

we get that

E [Di] =
E

[

∫ T

0 Ni(t)dt
]

λiE [T ]
. (25)

If we define Di :=
∫

T

0
Ni(t)dt

λiE[T ] , then from the above expression

Di is an unbiased estimator for the delay of class i flows under

the policy used in the given renewal cycle.

E. Proof of Lemma 3.5

Let us look at kth busy cycle. Let N (k) be the total number

of jobs that arrived in the busy cycle. Then

E

[

[
∫

kth busy cycle

Ni(t)dt

]2
]

≤ E

[

(

N (k)Tk

)2
]

. (26)

From CauchySchwarz inequality, we get that

E

[

(

N (k)Tk

)2
]

≤

√

E

[

(

N (k)
)4
]

E [T 4
k ]. (27)

Based on the analysis of the distribution of busy cycle duration

in Chapter 27, [20], it can be shown that E

[

(

N (k)
)4
]

and

E
[

T 4
k

]

are finite when hc <∞, c = 1, 2, . . . , C and ρ < 1.

F. Proof of Lemma 3.6

From the definition of λc
(k)

and T
(k)

in (9) it is true that

lim
k→∞

λc
(k)

= λc, w.p.1. (28)

lim
k→∞

T
(k)

= E [T ] w.p.1. (29)

Since the function 1/x is continuous when x > 0, the above

results would ensure that

lim
k→∞

∣

∣

∣

∣

∣

1

λc
(k)

T
(k)
−

1

λcE [T ]

∣

∣

∣

∣

∣

= 0 w.p.1., (30)

However, to prove that the above term converges to zero

in expectation, we have to show uniform integrability of

the sequence
{∣

∣

∣

1

λc

(k)
T

(k) −
1

λcE[T ]

∣

∣

∣
| k ∈ N

}

. Therefore, we

introduce the thresholding function z (·).

Let us consider a threshold θ > 0 and define z (·) as follows

z (x) := min (θ, x) , x ≥ 0. (31)

If the value of θ is such that θ ≥

max
{

1
λcE[T ] | c = 1, 2, . . . , C

}

, then we have that

lim
k→∞

∣

∣

∣

∣

∣

z

(

1

λc
(k)

T
(k)

)

−
1

λcE [T ]

∣

∣

∣

∣

∣

= 0 ∀c w.p.1. (32)

This is because we have chosen θ such that z
(

1
λcE[T ]

)

=

1
λcE[T ]∀c. Since

∣

∣

∣
z
(

1

λc

(k)
T

(k)

)

− 1
λcE[T ]

∣

∣

∣
is bounded for all k,

there exists a constant B <∞ such that

E





∣

∣

∣

∣

∣

z

(

1

λc
(k)

T
(k)

)

−
1

λcE [T ]

∣

∣

∣

∣

∣

2


 < B ∀k. (33)

This is a sufficient condition for uniform integrability of the

sequence.

Next we will show that θ = λ/λ∗
c is a

good choice for the threshold. We require that

θ ≥ max
{

1
λcE[T ] | c = 1, 2, . . . , C

}

. This is ensured

if

θ ≥
1

λc∗E [T ]
. (34)

From [20], we know that

E [T ] = 1/λ+
ρ/λ

1− ρ
. (35)

Substituting the above expression into the inequality (34), and

using the fact that
ρ/λ
1−ρ ≥ 0, we get that

θ ≥ λ/λc∗ . (36)



G. Proof of Lemma 3.8

A differential equation is globally asymptotically stable

if for any initial condition, eventually it converges to the

equilibrium point. Here the equilibrium point is the place

where
dx(t)
dt = 0 . From (17), the equilibrium point x∗ satisfies:

g∗ (x∗) = x∗. (37)

From the definition of g∗ (·), this implies that

∇f (x∗)
T
x∗ ≤ ∇f (x∗)

T
d ∀d ∈ D. (38)

From (22), this implies that x∗ is the optimal solution for

OP1, which we proved is unique.

To prove that the differential equation (17) is globally

asymptotically stable, it is enough to show that we can

construct a Lyapunov function L (d) which has a negative

drift. Let L (d) := f (d)− f (x∗) .

dL (d)

dt
=

df (d)

dt
, (39)

= ∇f (d)
T dd

dt
, (40)

= ∇f (d)
T
g∗ (d)−∇f (d)

T
d, (41)

≤ 0. (42)

The last inequality follows from the definition of g∗ (·). How-

ever, we have to show a strict negative drift for the Lyapunov

function. In the RHS of (41), ∇f (d) > 0, ∀d ∈ D. This

is because of the assumption of strict convex and increasing

cost functions. Therefore, for the R.H.S. of (41) to be zero,

the only possibility is g∗ (d) = d. This happens only at the

equilibrium point x∗, which is same as the unique solution

to OP1. Hence, the drift is strictly negative when the delay

vector d is away from the equilibrium point.
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