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Abstract— In this paper, upper and lower bounds on the
transmission capacity of direct-sequence CDMA wireless ad
hoc networks are derived. The transmission capacity is a
stochastic measure of the allowable number of transmissions
per unit area, and is a generalization of previous measures of
ad hoc network capacity. Successive interference cancellation
(SIC) is attractive for DS-CDMA ad hoc networks since the
dominant nearby interferers can be cancelled. Our closed-
form results cleanly summarize the dependence of ad hoc
network capacity on pathloss, spreading, outage probability,
and interference cancellation accuracy. Other multiple ac-
cess schemes such as CSMA and DS-CDMA without SIC
are special cases. Perfect interference cancellation increases
transmission capacity by nearly two orders of magnitude.
Furthermore, cancelling just the strongest interferer generally
gives the majority of the capacity gain, so the latency and
complexity cost of SIC should be negligible.

I. INTRODUCTION

Exploring the capacity of wireless ad hoc networks is
a current topic of great interest. Ad hoc networks are
distinguished by the absence of centralized wired infras-
tructure, and by the requirement that the nodes of the net-
work spontaneously route traffic from source to destination,
which often requires multiple hops. Since many nodes are
distributed spatially and wish to share the same frequency
spectrum, the choice of multiple access technique has a
large impact on the capacity. In this paper, we use stochastic
geometry [2], [3], [4] to study the transmission capacity
of ad hoc networks, defined as the maximum density of
simultaneous transmissions that the network can support
while ensuring that a certain target signal-to-interference-
plus-noise ratio (SINR) is maintained at each receiver (with
some specified outage probability).

In this paper, we derive upper and lower bounds on
the transmission capacity of direct sequence CDMA (DS-
CDMA) ad hoc networks with imperfect successive inter-
ference cancellation (SIC) at the receivers. The common
CSMA-type scenario is a special case of our analysis, where
the spreading factor is 1, and conventional DS-CDMA with-
out interference cancellation is also the special case where

the interference cancellation error is 100%. Closed-form ex-
pressions are provided in terms of important quantities such
as spreading factor, pathloss exponent, outage probability,
and interference cancellation proficiency. Although the re-
sults presented in this paper required some compromising
assumptions such as fixed transmission distances, and the
neglect of short and long-term fading as well as network-
level scheduling and routing, they still illuminate many of
the key dependencies of wireless network capacity. Future
research should be capable of generalizing the results to
more realistic propagation and network-level models.

II. RELATED WORK

Research on CDMA ad hoc networks was active in the
mid to late 1980s [9], [12], but was somewhat subdued in
the 1990s, before picking up again recently. Early work
by Pursley and Taipale [8] studied error probabilities for
spread spectrum ad hoc networks and found that frequency
hopping was generally preferable to direct sequence due
to the near-far effect, a result that will be reinforced in
this paper from a network capacity perspective. Spread
spectrum has often been considered a desirable means
of rejecting the inevitable interference experienced in ad
hoc networks [11], and recent results on capacity regions
[14] has suggested that SIC is a powerful technique in
wireless ad hoc networks. Our recent work has shown
that frequency hopped spread spectrum (FHSS) typically
has a large advantage over DS-CDMA in wireless ad hoc
networks due to the near-far effect [16]; SIC’s ability to
cancel strongly interfering nearby nodes is hence a major
motivation of this research.

More recently, Gupta and Kumar [6] established that the
transport capacity of an ad hoc network, defined as the
number of bit-meters pumped over a given time interval
for a network of nodes occupying a unit area, is O(

√
λ),

where λ is the density of transmitting nodes. Their physical
model takes the form of an SINR requirement, i.e., the
ratio of signal power over interference plus noise power
must not exceed some threshold, with powers measured at
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the receiver. Our model is a stochastic SINR requirement,
i.e., the probability of the SINR ratio being inadequate for
successful reception must be below some ε, which we call
the outage probability requirement.

The work by Baccelli et. al. [2] is similar in spirit and
scope to our approach. They use a stochastic geometric
model, as do we, to investigate MAC design for ad hoc
networks. In particular, their performance metric is the
mean spatial density of progress and is the product of the
number of simultaneously successful transmissions times
the average jump/hop distance per transmission. Their work
identifies the optimal medium access probability (MAP) for
a given transmission distance and the optimal transmission
distance for a given MAP. They place no limit on the outage
probability, whereas we impose such a limit as a means of
ensuring QoS. We briefly discuss the relationship between
our results and those in [2] and [6] in the conclusion.

III. SYSTEM MODEL

The system model assumes that locations of nodes em-
ploying spread spectrum transmission are randomly dis-
tributed in space according to a homogeneous Poisson point
process (PPP) Π = {Xi} on the plane R

2. We assume
a simplified path loss model where the received power
Pr = ρr−α at a distance r from the transmitter, where ρ is
the transmit power (multiplied by some constant) and α is
the pathloss exponent. We make the simplifying assumption
that all transmissions are over a fixed distance rTX and use
a fixed transmission power ρ, so the received signal power
is ρr−α

TX . The total noise power in the system is assumed to
be Mη, where M is the spreading factor used.

The transmission capacity of the network is the maximum
intensity λ of the process Π such that the outage probability
po(λ) < ε, for 0 < ε � 1. An outage event occurs when
the post-despreading SINR is below some threshold, β.
Mathematically, for the case of a conventional DS-CDMA
receiver located at the origin, this requirement can be stated
as

p0(λ) ≡ P
0
( ρr−α

TX

Mη +
∑

i∈Π ρR−α
i

≤ β

M

)
≤ ε. (1)

Here, the distance of node i from the origin is Ri = |Xi|,
and we have conservatively assumed that the PN code cross-
correlation is 1/M [5] (sometimes 1/3M is used [7], which
would increase the capacity bounds given in Section IV-B
by 3α/2). As noted previously, more general channel models
are left for future work.

CDMA receivers can use successive interference cancel-
lation (SIC) to improve the system capacity. A simple SIC
receiver is shown in Fig. 1. SIC is especially promising for
ad hoc networks since it is well-suited to asynchronous sig-
nals of unequal powers [1]; furthermore, only the strongest
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Fig. 1. Successive interference cancellation

interfering users would need to be cancelled, reducing
the normal latency issue with SIC. We will consider four
different types of CDMA receivers, where ζ is the fractional
interference left after performing interference cancellation:

1) Conventional DS-CDMA, ζ = 1.
2) DS-CDMA with perfect interference cancellation of

the strongest K users, i.e. (K, ζ = 0).
3) DS-CDMA with imperfect cancellation of all users,

(K = ∞, ζ).
4) DS-CDMA with imperfect cancellation of the

strongest K users, (K, ζ).
The strongest K users in our simplified pathloss model
correspond simply to the K closest users, by virtue of the
fact that all users employ the same transmission power.
Instead of modeling SIC via the number of cancelled
users, K, it is more convenient analytically to model a
cancellation radius rSIC = r̄ with the understanding that
all interfering transmitting nodes within a distance rSIC of a
receiver may be cancelled by that receiver. We choose rSIC

so that the expected number of cancelled users is K. From
the properties of the PPP, it is straighforward to determine
that this corresponds to all users within a radius of size

r̄ =
√

K
πλ .

IV. TRANSMISSION CAPACITY ANALYSIS

In this, the main section of the paper, upper and lower
bounds on the transmission capacity λ in the form λl ≤ λ ≤
λu are presented. The lower bound λl is such that λ < λl

ensures po(λ) < ε, i.e., the outage probability requirement
is definitely met, and the upper bound λu is such that
λ > λu ensures po(λ) > ε, i.e., the outage requirement is
definitely violated. Due to space constraints, the majority
of the proofs are in a journal paper [17], which is presently
accessible as a technical report [15].

A. General Analysis

A general analytical framework is now developed that
can be used to determine upper and lower bounds on
transmission capacity for all the subcases of interest. Then,
in order to maintain the readability and brevity of the paper,
the results for each subcase will simply be given along with
a brief explanation.
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First, note that (1) may be rewritten as

P
0
(∑

i∈Π

(Ri)−α ≥ Mκ
)
≤ ε. (2)

for κ = r−α
T X

β − η
ρ . We assume throughout this paper that

Mκ < 1, which can be forced to be true by appropriately
choosing units (in metric units, rTX > M

β meters is
generally sufficient).

In order to bound the transmission capacity, we define
the following three events

F =
{

ω
∣∣∣

∑
i∈Π(ω)

R−α
i (ω) ≥ Mκ

}
(3)

Fu(s) =
{

ω
∣∣∣Π(ω) ∩ b(0, s) �= ∅

}
(4)

Fl(s) =
{

ω
∣∣∣

∑

i∈Π(ω)∩b̄(0,s)

R−α
i (ω) ≥ Mκ

}
(5)

which correspond, respectively, to not achieving the cutoff
SINR, to a realization of the PPP where there are one or
more nodes within a distance s of the origin, and to a
realization of the PPP where there is sufficient interference
from outside of the same distance s to cause an outage.

Lemma 4.1: The following relationships hold among the
events Fu(s), Fl(s), F :

i) Fu(s) ⊂ F for all s ≤ (
Mκ

)− 1
α .

ii) Fl(s) ⊂ F for all s.
iii) F ⊂ (Fl(s) ∪ Fu(s)) for all s.
Proof: see appendix.

The probabilities of all three events, F, Fl(s), Fu(s) are
increasing in λ, so as we increase the transmission density
there are more and more outcomes which constitute outages
and more and more outcomes with one or more nodes in
b(0, s). These boundary conditions can be used to compute
exact upper and lower bounds on the transmission capacity,
noting that condition (i) corresponds to the upper bound on
capacity since an outage must occur in this case. Similarly,
condition (iii) allows a lower bound to be computed since an
outage cannot occur for the complement of this case, since
all outage events must be the union of Fl(s)andFu(s).

Events of the form Fu(s) are useful because they can
be computed exactly. That is, events of the form Fu(s) are
the only types of events we know of through which we can
obtain a lower bound on P

0(F ) and hence an upper bound
on λ. Note that a lower bound on P

0(F ) is needed so that
we can say: if λ > λu implies P

0(Fu(s)) > ε, then it also
implies P(F ) > ε since P

0(Fu(s)) < P
0(F ). In particular,

we can compute

P
0(Fu(s)) = 1 − P(Π ∩ b(0, s) = ∅) = 1 − e−λπs2

, (6)

using the void probabilities for a spatial Poisson point
process [13]. Solving 1 − e−λπs2

= ε for λ yields λu(s)

with the property that λ > λu(s) implies P
0(Fu(s)) > ε,

which in turn implies P
0(F ) > ε.

B. Upper and Lower Bounds

Define the function h(α) = 1
2(α − 1)

1
α . Note that

0.5 < h(α) < 0.7 for 2 ≤ α ≤ 6, which constitutes the
usual accepted range for path loss exponents [10]. Deriving
the upper and lower bounds for the transmission capacity,
which are presented in [17], [15] results in:

Conventional CDMA, (arbitraryK, ζ = 1):

λl = h(α)
1
π

(Mκ)
2
α ε (7)

λu =
1
π

(Mκ)
2
α ε (8)

Perfect Interference Cancellation, (K > 0, ζ = 0):

λl =
(2K

ε

)1− 1
α h(α)

1
π

(Mκ)
2
α ε (9)

λu = (1 +
K

ε
)
1
π

(Mκ)
2
α ε. (10)

Partial Cancellation of All Nodes, (K = ∞, ζ):

λl = ζ−
2
α h(α)

1
π

(Mκ)
2
α ε (11)

λu = ζ−
2
α

1
π

(Mκ)
2
α ε (12)

Partial Cancellation of Nearby Nodes (K > 0, ζ):

λl =
(
(1 − ζ2)

( ε

2K

)α−1 + ζ2
)− 1

α

h(α)
1
π

(Mκ)
2
α ε

λu = min
( 1 + K

ε

1 + ζ
2
α

, ζ−
2
α

) 1
π

(Mκ)
2
α ε (13)

Note that the bounds for the (K, ζ) case become the
bounds for the other three cases under the appropriate
substitutions. Hence, the last case can be considered to be
a generalized result for the transmission capacity of DS-
CDMA ad hoc networks.

V. DISCUSSION AND COMPARISONS

The most valuable aspect of the bounds derived in this
paper is the ease they allow in judging the impact of various
system parameters on the overall network capacity. Before
comparing the bounds derived in the preceding section, we
first review the result from [16] on the transmission capacity
of frequency-hopped (FH) spread spectrum:

λl = 1
2

εM
π κ

2
α λu = εM

π κ
2
α (14)

In order to see how the transmission capacity varies
across the different techniques (FH, DS, DS with SIC) and
also as parameters vary, four plots are presented, Fig. 2-5.
Unless otherwise noted, in these plots the received signal-
to-thermal-noise ratio is SNR = 20dB (this determines
η and ρ), the communication distance is r = 10m, the
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pathloss exponent is α = 4, the fractional cancellation error
is ζ = .1, the outage probability is ε = 0.1, and the number
of cancellable users is K = 3.

The plot captions describe the features of each plot. Key
results can be summarized as:

• Overall transmission capacity decreases as the spread-
ing factor M increases (since the available bandwidth
decreases by M ) for all techniques except frequency
hopping.

• Perfect SIC increases capacity by approximately two
orders of magnitude relative to conventional DS-
CDMA.

• SIC capacity is very sensitive to the interference
cancellation accuracy. As the residual interference ζ
increases, the near-far problem dominates the outage
events.

• Capacity decreases in severe propagation environments
(large α), except for FH.

• It is only necessary to cancel just a couple strong
nodes to get nearly all of the capacity gain from SIC.
Hence, the complexity and latency of adding SIC may
be negligible.

It should be mentioned that although the capacity of DS-
CDMA ad hoc networks decay as the spreading increases,
this does not mean that the best solution is to avoid spread-
ing. Indeed, straightforward capacity analysis of DS-CDMA
cellular systems reached similar conclusions, with imple-
mentation details such as frequency reuse and voice activity
eventually giving CDMA an advantage in cellular [5].
When considering delay constraints, robustness, security
(anti-jamming and low probability of detection/intercept),
and the need for strong error-correction codes, we suspect
that spread spectrum systems will prove very attractive for
wireless ad hoc networks.

VI. CONCLUSIONS

We conclude with a discussion of how our findings
relate to those in [6] and [2]. Using κ = r−α

T X

β − η
ρ , our

result that λ ∝ κ
2
α translates to λ ∝ r−2

TX . The transport
capacity of [6] is roughly the product of the density of
successful transmissions times the average distance per
transmission, which in our notation is λrTX . We conclude
that our transport capacity is λr ∝ √

λ, which recovers
the result in [6]. The contribution of our analysis are the
bounds on how capacity varies with a statistical guarantee
on outage probability, and the generalization to spread
spectrum systems.

The findings in [2] include a guideline to selecting the op-
timal density of transmitting nodes for a fixed transmission
distance so as to maximize the spatial density of successful
transmissions. Their findings show that the probability of
outage under the transmission density that maximizes the
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Fig. 2. Normalized transmission capacity vs. spreading factor. Since all
DS-CDMA systems lose capacity as the spreading factor increases, the
spreading factor should be chosen to be as small as possible while still
allowing interference averaging.
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Fig. 3. Transmission capacity vs. path loss exponent. Direct sequence
capacity reduces as the path loss becomes worse because much higher
transmit power levels must be used, which further cripples the nearby
nodes. In contrast, while frequency hopping nodes have the same
problem, they only have a 1/M chance of colliding with nearby nodes,
and meanwhile, the farther nodes now cause less interference than before.

density of successful transmissions is 1 − 1
e ≈ 63%. The

high occurrence of outages means that the scarce energy
budget of most mobile devices will be used on unsuccessful
transmissions most of the time. Our inclusion of a QoS
parameter, ε, bounding the acceptable outage probability,
ensures our capacity regions aren’t achieved at this expense.

APPENDIX

A. Proof of Lemma 4.1

(i) If s ≤ (
Mκ

)− 1
α then even if there is only one node

in b(0, s), and even if that one node is as far away from the
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Fig. 5. Transmission capacity vs. residual cancellation error. Capacity
degrades quite rapidly as interference cancellation error increases, with
nearly 2 orders of magnitude difference between perfect cancellation and
no cancellation (ζ = 1).

origin as possible, i.e., Ri = s, then the normalized interfer-

ence generated by that node, s−α ≥
((

Mκ
)− 1

α

)−α
= Mκ,

is still sufficient to cause an outage, thus proving the
statement.

(ii) This statement is obviously true since the set of
outcomes ω which constitute outages caused by nodes in
b̄(0, s) is clearly a subset of the set of outcomes which
constitute outages with no restriction on the node locations.

(iii) Suppose ω ∈ F and ω �∈ Fu(s). Then ω constitutes
an outage but there are no nodes in b(0, s). Then clearly the

interference is caused by nodes in b̄(0, s), which means ω ∈
Fl(s). Suppose ω ∈ F and ω �∈ Fl(s). Then ω constitutes
an outage but the external interference generated by nodes
in b̄(0, s) is insufficient to cause outage. Then this means
there are one or more nodes in b(0, s), which means ω ∈
Fu(s). Thus, ω ∈ F implies ω ∈ Fl(s) or ω ∈ Fu(s), or
ω ∈ (Fl(s) ∪ Fu(s)). �
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