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Abstract

The transmission capacity of a wireless ad hoc network is defined as the max-
imum allowable spatial density of transmissions such that the outage probability
does not exceed some specified threshold. This work studies the improvement in
transmission capacity obtainable with successive interference cancellation (SIC), an
important receiver technique that has been shown to achieve the capacity of several
classes of multiuser channels, but has not been carefully evaluated in an uncentral-
ized wireless network. This paper develops closed-form bounds for the transmission
capacity of CDMA ad hoc networks with SIC receivers. Several design-relevant in-
sights are obtained: i) although the capacity gain from perfect SIC is very large,
any imperfections in the interference cancellation rapidly degrades its usefulness;
ii) only a few – often just one – interfering nodes need to be cancelled in order to
get the vast majority of the available performance gain.

1 Introduction

Our previous work [1] studied the spatial density of transmissions that could be sup-
ported in a wireless ad hoc network subject to a constraint on the fraction of attempted
transmissions permitted to fail due to excessive interference. More precisely, given a QoS
constraint ε ∈ (0, 1), the transmission capacity cε is defined as the maximum permissible
spatial density of attempted transmissions such that the probability of outage for a typ-
ical transmission attempt is at most ε. That work focused on the transmission capacity
for frequency hopping (FH) versus direct sequence (DS) CDMA and found that frequency
hopping offered superior transmission capacity scaling over direct sequence. In particu-
lar, our model predicts a performance improvement on the order of M1− 2

α , where M is
the spreading factor and α > 2 is the path loss exponent in the flat fading channel model.
The conclusion is that it is easier to avoid interference by frequency hopping rather than
trying to suppress it through spreading. Intuitively, most outages are a result of a single
interfering node being close to a receiver, and these occurrences are better handled by
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the receiver and interferer using different channels as opposed to the receiver trying to
suppress the interference.

If FH is superior to DS due to its superior ability to suppress “near-field” interference,
then this begs the question of how the transmission capacity can be improved through
the use of successive interference cancellation (SIC). Indeed, SIC is a mechanism that
works best on canceling interference from transmitters where the interference power from
that transmitter exceeds the signal power, i.e., near-field interference. This paper will
address the impact of SIC on the transmission capacity of wireless ad hoc networks. Our
primary findings include the following.

• Most of the performance improvement obtainable through SIC is gained by cancel-
ing the single transmitter with the largest interference level; canceling additional
transmitters may carry a negligible benefit.

• The performance improvement is very sensitive to the cancellation effectiveness,
especially for tight QoS constraints (small ε); improving cancellation effectiveness
may yield a significant benefit.

• The transmission capacity of DS with SIC versus that of FH depends upon the
spreading factor M ; DS with SIC is superior for small M while FH is superior for
large M . The crossover point depends upon the SIC effectiveness.

1.1 Successive interference cancellation

SIC is especially promising for ad hoc networks since it is well-suited to asynchronous
signals of unequal powers [2]; furthermore, only the strongest interfering users would need
to be cancelled, reducing the normal latency issue with SIC. We capture the performance
impact of an SIC-equipped receiver through a simple model: the interference power of up
to K of the nearest interfering nodes is reduced by a factor ζ provided the interference
power exceeds the signal power as measured at the receiver.

Direct incorporation of the (K, ζ) model into the stochastic geometric framework we
employ is problematic. Instead, we consider a model employing a cancellation radius:
the interference of all nodes within a radius rsic of the receiver is reduced by ζ. The
cancellation radius is chosen so that on average there are K interfering nodes within
the cancellation radius. The radius is also constrained to be no larger than the distance
from the signal transmitter to the receiver; this captures the effect that only interfering
nodes with high interference power are cancellable. This latter framework is much more
amenable to analysis, and as will be shown in our simulations, the two models are usually
statistically equivalent with respect to the performance metrics of interest.

1.2 Related work

There is a large and growing body of work on the capacity of ad hoc networks [3, 4, 5, 6,
7, 8, 9, 10, 11]. Rather than summarize that work, we will focus on the work specifically
dealing with the capacity under SIC.

In addition to its simplicity and amenability to implementation [12], SIC is well-
justified from a theoretical point of view. Simple successive interference cancellation im-
plementation with suboptimal coding was shown to nearly achieve the Shannon capacity
of multiuser AWGN channels, assuming accurate channel estimation and a large spread-
ing factor [13]. Other more recent work has proven that SIC with single-user decoding in



fact achieves the Shannon capacity region boundaries for both the broadcast (downlink)
and multiple access (uplink) multiuser channel scenarios [14, 15], as well-summarized in
[16]. Quantifying SIC’s benefit in ad hoc networks is naturally more problematic, but
initial evidence for its promise is given in [11]. Since it is well-suited to asynchronous
signals of unequal powers [17], and has much lower complexity than most other multiuser
receivers, it appears to be a natural fit for a wireless ad hoc networks from the standpoint
of both theory and practice.

Accurately modelling and analyzing SIC in ad hoc networks requires some nontrivial
extensions from centralized networks. For instance, it has been shown that a particu-
lar (unequal) distribution of received powers is needed for SIC systems to perform well,
especially when the interference cancellation is imperfect [18, 2]. Achieving such a dis-
tribution at each receiver in an ad hoc network is impossible due to the random spatial
characteristics of the network. Related to this, to be realistic it should be assumed that
only strong signals can be cancelled, hence at any given location in the network, only the
nearby interferers are cancellable. In order to accurately quantify SIC’s performance in
ad hoc networks, Section 2 will develop a realistic (but analytically tractable) model in
view of such considerations.

2 Mathematical model

2.1 Wireless ad hoc network

Our model employs a homogeneous Poisson point process (PPP) Π(λ) = {Xi, i ∈ N} on
the plane R2 to represent the locations of all nodes transmitting at some time t. The
parameter λ is the spatial intensity (density) of points on the plane so that E[Π(λ)∩A] =
λν(A), where ν(A) is the area of A. All transmissions employ a fixed transmission power
ρ and fixed transmission distance rtx.

Our channel model considers only path-loss attenuation effects and ignore additional
channel effects such as shadowing and fast-fading. In particular, if the transmitted power
is ρ and the path-loss exponent is α > 2 then the received power at a distance d > 1
from the transmitter is ρd−α. We denote the SINR threshold required for successful
transmission as β.

2.2 Transmission capacity without SIC

The above model is analyzed in [1] yielding the following upper and lower bounds on the
transmission capacity. Let nsic denote “no SIC”, meaning the receivers are not equipped
with any cancellation technology.

Definition 1 The optimal contention density without SIC, denoted λε,nsic, is the maxi-
mum spatial density of nodes that can contend for the channel subject to the constraint
that the typical outage probability is less than ε for some ε ∈ (0, 1):

λε,nsic = sup
{

λ : P0
( ρr−α

tx∑
i∈Π ρ|Xi|−α

≤ β
)
≤ ε

}
.

Definition 2 The transmission capacity without SIC, denoted cε,nsic, is the density of
successful transmissions resulting from the optimal contention density: cε,nsic = λε,nsic(1−
ε).



Theorem 1 As ε → 0, the lower and upper bounds on the transmission capacity subject
to the outage constraint ε when transmitters employ a fixed transmission power ρ for
receivers that are a fixed distance rtx away are: cε,nsic

l = (1−ε)λε,nsic
l , cε,nsic

u = (1−ε)λε,nsic
u ,

where the (Markov (M) and Chebychev (C)) lower and upper bounds on the optimal
contention density are:

λε,nsic
l,M =

(
1− 2

α

)
ε

π
(

β
1
α rtx

)2 + O(ε2), λε,nsic
l,C =

(
1− 1

α

)
ε

π
(

β
1
α rtx

)2 + O(ε2), λε,nsic
u = − ln(1−ε)

π
(

β
1
α rtx

)2 .

Comments on Theorem 1. Several points are noteworthy:

• As discussed in [1], this model may be specialized to the cases of frequency hopping
(FH) and direct sequence (DS) spread spectrum. In order to obtain bounds for FH
it suffices to multiply the bounds by M ; in order to obtain bounds for DS it suffices
to replace β by β/M .

• The quantity β
1
α rtx is a minimum interference-free radius in the sense that a nec-

essary condition for a reception to be successful is that there be no receivers in
the ball b(O, β

1
α rtx). The bounds illustrate that transmission capacity has a strong

connection with sphere packing: π
(
β

1
α rtx

)2
is the area of the disk corresponding

to the interference-free radius. Note that improving β, e.g., through DS spreading,
reduces the interference-free radius, thereby permitting a larger number of spheres
to be packed into the space.

2.3 Successive interference cancellation model

As presented in the introduction, an SIC-equipped receiver is capable of reducing by
ζ the interference power of the K nearest interfering nodes located no farther than rtx

from the receiver. It is difficult to work with this model in our mathematical framework.
Instead, we present a secondary SIC model more amenable to analysis. In particular,
define the cancellation radius, denoted rsic, such that the receiver is capable of eliminating
the interference power of any and all transmitters located within distance rsic of it. The
cancellation radius is chosen so that there are K interfering nodes falling within the
radius on average.

Definition 3 A (K, ζ)-SIC receiver operating in a network with a transmission density
of λ is capable of reducing by ζ the interference power for all interfering nodes within

distance rsic = rtx ∧
√

K
πλ

of the receiver.

Definition 4 The optimal contention density for a network of (K, ζ)-SIC receivers, de-
noted λε,sic, is the maximum spatial density of nodes that can contend for the channel
subject to the constraint that the typical outage probability is less than ε for some
ε ∈ (0, 1):

λε,sic = sup
{

λ : P0
( ρr−α

ζ
∑

i∈Π∩b(O,rsic)
ρ|Xi|−α +

∑
i∈Π∩b̄(O,rsic)

ρ|Xi|−α
≤ β

)
≤ ε

}
.



3 Performance improvement obtainable through SIC

The major result is a set of closed form expressions for lower and upper bounds on the
transmission capacity.

Theorem 2 Let ε ∈ (0, 1). As ε → 0, the lower and upper bounds on the transmission
capacity when receivers are equipped with imperfect SIC (ζ ∈ (0, 1)) are:

cε,sic
l = (1− ε)λε,sic

l , cε,sic
u = (1− ε)λε,sic

u . (1)

The upper bound on the optimal contention density is:

λε,sic
u =



− ln(1−ε)

ζ
2
α π

(
β

1
α rtx

)2 ε ≤ 1− e−Kζ
2
α

K−ln(1−ε)

(1+ζ
2
α )π

(
β

1
α rtx

)2 else

− ln(1−ε)

π
(

β
1
α rtx

)2 ε ≥ 1− e−Kζ−
2
α

(2)

The Markov (M) lower bound on the optimal contention density is:

λε,sic
l,M ≥ sup

(εu,εf ):εu+εf=ε

{
λεu,sic

u ∧ λ
εf ,sic

f,M

}
, (3)

where

λε,sic
f,M =


α−2

2
β

2
α

(1−ζ)β+ζβ
2
α

ε

π
(

β
1
α rtx

)2 , ε ≤ εsic
c,M

see below, εsic
c,M ≤ ε < εsic

k,M
α−2

2
ε

π
(

β
1
α rtx

)2 , ε > εsic
k,M

(4)

and λε,sic
f,M for εsic

c,M ≤ ε < εsic
k,M is the unique solution for λ satisfying equation:

2πλβ

(α− 2)r−α
tx

[
(1− ζ)

( K

πλ

)1−α
2

+ ζr2−α
tx β

2
α
−1

]
= ε. (5)

The constants are given by:

εsic
c,M =

[
(1− ζ)β + ζβ

2
α

]
2K
α−2

, εsic
k,M = 2K

α−2
(6)

Comments on Theorem 2. Several points are noteworthy:

• The performance improvement due to SIC is very sensitive to the cancellation ef-
fectiveness parameter ζ as ζ → 0, especially for small ε. Looking at the upper
bound, for example, we see that for small ε: d

dζ
λε,sic

u ∝ −ζ−(1+ 2
α

), which means

limζ→0
d
dζ

λε,sic
u = −∞. Thus our model suggests that technology improvements

which improve cancellation effectiveness may yield large increases in the transmis-
sion capacity.



Table 1: Simulation Parameters (unless otherwise noted)
Symbol Description Value

α Path loss exponent 4
M Spreading factor 16

β = 3
M

Target SINR (DS-CDMA) 3
16

rtx Transmission radius 10m
K Max. no. cancelable nodes 10
ζ Cancellation effectiveness 1

10

ε Target outage probability 0.1

• For small ε it is straightforward to show that the bounds are reasonably tight. In
particular,

λε,sic
l,M =

(α− 2)β
2
α

2(1− ζ)β + (2ζ + α− 2)β
2
α

ε

π
(
β

1
α rtx

)2 + O(ε2),

with a corresponding bound ratio of

λε,sic
l,M

λε,sic
u

=
(α− 2)

(
βζ

) 2
α

2(1− ζ)β + (2ζ + α− 2)β
2
α

+ O(ε2).

Note that as ζ → 1 we recover the bound ratios for the nsic case, while as ζ → 0
the bound ratios go to zero.

• The above expressions also demonstrate that for small ε the lower bounds are
independent of K. Recall our SIC model: up to K interfering nodes within rtx are
cancelled. For small ε the transmission capacities supporting that QoS are such
that it is unlikely for more than 1 interfering node to be within rtx in the first
place. Thus increasing K may not have any effect. Of course in regimes with high
transmission densities having a higher K will be of great value, but this regime will
not support a small ε QoS level.

4 Numerical and simulation results

In this section we present some numerical and simulation results. Two types of simu-
lations were performed: one where up to the first K nodes within rtx are cancelled by
a factor of 1 − ζ and one where all nodes within rsic are cancelled by a factor of 1 − ζ.
The former aims to approximate the actual SIC system, while the latter is our stochastic
geometric approximate model of the SIC system. The terms Simulation (actual) and
Simulation (model) are used to differentiate the results from these two simulators. Both
have 90% confidence intervals.

Table 1 lists the nominal values used for the numerical and simulation results, which
are based as closely as possible on realistic parameters for a typical indoor wireless ad
hoc network. The target SINR of 3 ≈ 5dB assumes the existence of error correction
codes. For conciseness, we restrict our attention to comparing performance of three
representative scenarios: i) no SIC (K = 0 and ζ = 1), ii) perfect SIC with K = 10
(ζ = 0), and iii) imperfect SIC with K = 10 and ζ = 1

10
.
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Figure 1: Optimal contention density λε versus the outage constraint ε for the no SIC,
imperfect SIC, and perfect SIC scenarios.

4.1 Optimal contention density versus outage constraint

Figure 1 shows the optimal contention density λε versus the outage constraint ε for the no
SIC, imperfect SIC, and perfect SIC scenarios. For each scenario we show the Chebychev
lower bound, the actual simulation results, and the upper bound. The dramatic difference
between perfect SIC and imperfect SIC are apparent, again highlighting the sensitivity
of the optimal contention density to the cancellation effectiveness parameter ζ. Also
apparent is the fact that the no SIC and imperfect SIC bounds are tight while the
perfect SIC bounds are loose. Finally, we see that the optimal contention density is
linear in the outage constraint ε over a wide range of values of ε, thus validating our
linear approximations for small ε.

4.2 Optimal contention density versus number of cancelable in-
terferers

Figure 2 shows the optimal contention density λε versus the number of cancelable nodes
K for the no SIC, imperfect SIC, and perfect SIC scenarios. Of course the no SIC scenario
is independent of K, but also apparent is the insensitivity for the imperfect SIC scenario.
Recall that K is the maximum number of cancelable interferers; the insensitivity can be
explained by the fact that fewer than K nodes typically lie in the disk b(O, rtx) around
a receiver at the optimal contention density. Note that the perfect SIC results highlight
how loose the bounds are for this scenario, and that the optimal contention density
levels out first for K ≈ 5. Finally, note that the imperfect SIC case demonstrates an
improvement over no SIC by a factor of about 3.

4.3 Optimal contention density versus cancellation effectiveness

Figure 3 shows the optimal contention density λε versus the cancellation effectiveness
parameter ζ for the no SIC, imperfect SIC, and perfect SIC scenarios. Of course the
no SIC and perfect SIC results are independent of ζ: they are shown to confirm that
these results are in fact special cases of the imperfect SIC model for ζ = 1 and ζ = 0
respectively. The plot is significant because it demonstrates the great sensitivity of the
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Figure 3: Optimal contention density λε versus the cancellation effectiveness parameter
ζ for the no SIC, imperfect SIC, and perfect SIC scenarios.

optimal contention density to ζ for small ζ. This sensitivity is why there is such a
difference between the perfect SIC (K = 10, ζ = 0) results and the imperfect SIC results
with similar parameters (K = 10, ζ = 1

10
). This sensitivity suggests that SIC receiver

designers might find significant performance improvements by focusing their efforts on
improving the cancellation effectiveness.

4.4 Spectral efficiency versus spreading factor

Figure 4 shows a plot of the spectral efficiency λε/M versus the spreading factor M .
Note that the optimal contention density λε is increasing in M but this increase comes
at the cost of increased resource (spectrum) utilization, hence normalizing by M gives
an indication of the efficiency measured in terms of the spatial density per Hz. Four
scenarios are shown: the three DS-CDMA scenarios used above, i.e., no SIC, imperfect
SIC, and perfect SIC, and a FH-CDMA scenario. Note that, by Theorem 1, FH-CDMA
is linear in M and hence the spectral efficiency is constant in M . Also, DS-CDMA
with no SIC is sub-linear in M and hence the spectral efficiency is decreasing in M .
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Figure 4: Spectral efficiency λε/M versus the spreading factor M for four scenarios: DS-
CDMA with no SIC, DS-CDMA with imperfect SIC, DS-CDMA with perfect SIC, and
FH-CDMA.

These results are discussed at more length in [1]. As expected the use of imperfect or
perfect SIC increases the optimal contention density, and hence the spectral efficiency
above that of DS-CDMA with no SIC. Perhaps surprising is the fact that imperfect SIC
offers improvements in spectral efficiency above FH-CDMA only for small M , in this case
M ≤ 10. The perfect SIC DS-CDMA offers improvement above FH-CDMA for all values
of M shown. The plots indicate that the cancellation effectiveness parameter can be
very significant in determining whether DS-CDMA with SIC will over or under perform
FH-CDMA.

5 Conclusion

The primary contribution of this work is a tractable framework for analyzing the perfor-
mance improvement obtainable through the use of successive interference cancellation in
wireless ad hoc networks. Through the use of stochastic geometric models and analysis
we are able to obtain (in most cases) reasonably tight closed form expressions for the
transmission capacity in terms of the fundamental SIC parameters, i.e., the number of
cancelable nodes K and the cancellation effectiveness ζ. Our analysis and simulation
results support the claims that i) performance is highly sensitive to the cancellation ef-
fectiveness parameter but less sensitive to the number of cancelable nodes, and ii) the
spectral efficiency of DS-CDMA with SIC is always higher than DS-CDMA without SIC,
but may not always exceed that of FH-CDMA.
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