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Transmission Capacity of Wireless Ad Hoc Networks
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Abstract—In this paper, upper and lower bounds on the trans-
mission capacity of spread-spectrum (SS) wireless ad hoc networks
are derived. We define transmission capacity as the product of the
maximum density of successful transmissions multiplied by their
data rate, given an outage constraint. Assuming that the nodes
are randomly distributed in space according to a Poisson point
process, we derive upper and lower bounds for frequency hopping
(FH-CDMA) and direct sequence (DS-CDMA) SS networks,
which incorporate traditional modulation types (no spreading)
as a special case. These bounds cleanly summarize how ad hoc
network capacity is affected by the outage probability, spreading
factor, transmission power, target signal-to-noise ratio (SNR), and
other system parameters. Using these bounds, it can be shown
that FH-CDMA obtains a higher transmission capacity than
DS-CDMA on the order of M 1_%, where M is the spreading
factor and o > 2 is the path loss exponent. A tangential con-
tribution is an (apparently) novel technique for obtaining tight
bounds on tail probabilities of additive functionals of homoge-
neous Poisson point processes.

Index Terms—Ad hoc networks, capacity, stochastic geometry.

1. INTRODUCTION

IRELESS ad hoc networks operate without the benefit

of fixed infrastructure, i.e., nodes are responsible for re-
laying data, as well as being sources and sinks of data. Given
these additional responsibilities, it is natural to inquire about
the capacity of such networks. Although analysis of ad hoc
networks goes back 30 years or more—in the earlier work the
term packet radio networks was used—closed-form and con-
crete expressions for ad hoc network capacity have only been
discovered recently. This is because ad hoc networks are gen-
erally difficult to analyze: all users interfere with each other in
a manner that is difficult to model, there is no natural duplex or
multiple-access scheme, and the distributed nature of the net-
work renders traditional analysis methodologies obsolete.
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Although recent research has made great strides toward
understanding wireless ad hoc network capacity, there are
still fundamental questions that remain at least partially unan-
swered. In particular, how does the capacity depend on various
system parameters including channel characteristics, choice of
physical layer, medium access control (MAC) scheduling, and
power consumption? In this paper, we approach this problem
by studying two representative models for SS ad hoc networks,
which incorporate traditional modulation types (no spreading)
as a special case. To consider the capacity, we first introduce
a useful notion termed the optimal contention density, which
corresponds to the maximum spatial density of nodes that
can contend for the channel subject to a constraint on the
typical outage probability. We then define our metric for ad
hoc network capacity, termed transmission capacity, to be
the area spectral efficiency of the successful transmissions
resulting from the optimal contention density. More formally,
if A° denotes the maximum contention density such that at
most a fraction e of the attempted transmissions are permitted
to fail, then the transmission capacity ¢¢ = A°b(1 — ¢) is the
area spectral efficiency of the successful transmissions, where
b bits per second per Hertz (b/s/Hz) is the average rate that a
typical successful user achieves. As we will discuss shortly,
the transmission capacity is a natural outgrowth of previous
results on ad hoc network capacity, allowing consideration for
a random distribution of nodes, their achievable data rate, and
a constraint on outage (or, equivalently, success) probability in
random channel access. A principal benefit of this approach
will be the derivation of simple expressions for upper and lower
bounds on transmission capacity, that clearly demonstrate the
dependence of ad hoc network capacity on key system design
parameters.

A simple path loss model for propagation is adopted, and al-
though multihop routing is not precluded in our framework, it is
not directly considered. The MAC protocol adopted in this paper
is also simple in the sense that all randomly distributed trans-
mitters are presumed to transmit in an ALOHA-type fashion
for a given network configuration [1]-[3]. A potential advan-
tage of this approach is that our system model is closer to a
practical distributed ad hoc network, unlike other recent work
[4], [5], in which scheduling is deterministic and no outages
are permitted. Instead, the randomness and MAC contention
in our model simply result in outages, which are included in
the analytical framework. Although more accurate and compli-
cated models for the channel, routing, and MAC are left as open
topics, the key dependencies of channel capacity are exposed by
the transmission capacity bounds derived in this paper.
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A. Background and Related Work

There have been some notable recent results on ad hoc
network capacity [4], [6], [7], [5]. Gupta and Kumar [4], for
example, established that the transport capacity of an ad hoc
network, defined as the number of bit-meters pumped over a
given time interval for a network of nodes occupying a unit
area, is O(V/\), where \ is the density of transmitting nodes.
Their “physical” model takes the form of a signal-to-interfer-
ence-noise ratio (SINR) requirement, i.e., the ratio of signal
power over interference plus noise power must exceed some
threshold, with powers measured at the receiver. However, their
analysis focuses on a deterministic SINR model, employs a
deterministic channel access scheme and, thereby, precludes
the occurrences of outages. By contrast, in order to accurately
model the behavior of a distributed ad hoc network at the
physical and MAC layer, our model includes a stochastic SINR
requirement coupled with random channel access. That is,
under a random distribution of transmitters, the probability of
the SINR being inadequate for successful reception must be
below some constant ¢, which we call the outage constraint.

Taking this a step further, more recent work [8]-[10] has
shown that the scaling of transport capacity depends on the
amount of attenuation in the channel. Roughly speaking, in the
low-attenuation regime with no channel absorption and small
path loss, the transport capacity can be unbounded even under
a fixed power constraint, by using coherent relaying and inter-
ference subtraction. On the other hand, in the high-attenuation
regime with channel absorption or high path loss, the transport
capacity is bounded by the total available power and thus scales
as ©(n) when the n nodes in the network are individually power
constrained, regardless of channel fading [11]. Our results will
also show that the capacity of code-division multiple-access
(CDMA) ad hoc networks is sensitive to the channel path loss,
but in fact the two modulation types behave quite differently.

SS transmission is considered due to its ability to grace-
fully cope with nontrivial levels of interference. Two different
types of SS modulation are considered. In direct-sequence
SS, also known as DS-CDMA, users’ signals are multiplied
by a “spreading sequence” that has a bandwidth M times
larger than than the original signal. This is the familiar type
of CDMA [12] that is used in IS-95 [13] and third generation
(3G) cellular networks [14], [15] and also in 802.11b wireless
local-area networks (LANs) [16], albeit in a slightly different
form. The other type of SS modulation is frequency hopping
(FH-CDMA), where the code sequence now controls a hopping
sequence for the user’s narrowband signal, causing it to hop,
typically in a pseudorandom fashion, to one of M narrowband
frequency slots on a periodic basis. These traditional types of
SS modulation and their properties are thoroughly discussed in
[17]. So, although the systems require the same total bandwidth,
they use it quite differently. One popular current FH-CDMA
adherent is the Bluetooth system for ad hoc networking.

Research on CDMA ad hoc networks was very active in the
mid to late 1980s [18]-[21], but was somewhat subdued in the
1990s, before once again becoming an active area of research.
Early work by Pursley and Taipale [22] studied error probabil-
ities for SS ad hoc networks and found that frequency hopping
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was generally preferable to direct sequence due to the near—far
effect, a result that will be reinforced in this paper from a net-
work capacity perspective. Sousa and Silvester [23] focused on
choosing the optimal transmission range to optimize successful
relay progress per time slot, but their closed-form result requires
the path loss exponent to be 4. SS has often been considered a
desirable means of rejecting the inevitable interference experi-
enced in ad hoc networks [1], although it has not been clear that
the gain in robustness from SS techniques is worth the extra
bandwidth that is required. Although recent papers [24]-[26]
have utilized SS at the physical layer and focus on performance
of MAC layer designs, there have not been, prior to this paper,
analytical results that show how ad hoc network capacity is af-
fected by the spreading factor or other relevant factors, e.g., path
loss. See [27] for a discussion of how the physical layer affects
the MAC layer.

The work of Baccelli et al. [2] is similar in spirit and scope
to our approach. They use a stochastic geometric model, as do
we, to investigate MAC design for ad hoc networks. In par-
ticular, their performance metric is the mean spatial density of
progress and is the product of the number of simultaneously suc-
cessful transmissions times the average jump/hop distance per
transmission. Their work identifies the optimal medium access
probability (MAP) for a given transmission distance and the op-
timal transmission distance for a given MAP. They place no limit
on the outage probability, whereas we impose such a limit as a
means of ensuring quality of service (QoS) and reducing power
consumption. The findings in [2] include a guideline to selecting
the optimal density of transmitting nodes for a fixed transmis-
sion distance so as to maximize the spatial density of successful
transmissions. Their findings show that the probability of outage
under the contention density that maximizes the density of suc-
cessful transmissions is 1 — % ~ 63%. The high occurrence of
outages means that the scarce energy budget of most mobile de-
vices will be used on unsuccessful transmissions most of the
time. Our inclusion of the parameter ¢, bounding the acceptable
outage probability, ensures our capacity regions are not achieved
at this expense. Furthermore, our results are valid for general-
ized power levels, path loss exponents, and other system param-
eters, whereas the few prior analytical results typically relied on
special cases, such as an exponential distribution for transmit
power [2] or a path loss exponent of « = 4 [23].

B. Overview of Main Results

In this work, the transmission capacity is derived for two
models of a CDMA ad hoc network. Both models assume the
transmitters comprising the ad hoc network form a homoge-
neous Poisson point process on the plane. The first model as-
sumes all transmitting nodes use a fixed transmission power and
that all receivers are a fixed distance away from their transmit-
ters. The second model relaxes these assumptions and permits
a variable transmission power and a variable distance between
transmitter and receiver. As will be explained, we assume nodes
utilize pairwise power control, meaning that each transmitter
chooses its transmission power such that the signal power at
the transmitter’s intended receiver will be some designated con-
stant.
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For the bounds of both models, developed in the next two sec-
tions, respectively, some dominant trends can be observed. First,
for frequency hopping, the capacity scales roughly linearly with
allowable outage probability € for small € and linearly with the
spreading ratio M . On the other hand, for direct sequence, while
the capacity growth is still roughly linear with €, it grows only as
M= . Since o > 2 usually, this means that DS-CDMA capacity
does not grow fast enough to justify the bandwidth loss factor
of M. Additionally, it can be seen that the capacity advantage
of FH-CDMA relative to DS-CDMA is M!~%. This implies
that for ad hoc networking, frequency hopping is superior to di-
rect-sequence SS. In other words, it is preferable to try to avoid
interference than to try to simply suppress it in a linear fashion
using a matched filter with processing gain. Note that near—far
resistant multiuser receivers or interference cancellation tech-
niques should, in principle, improve upon the matched-filter re-
ceiver considered in this paper [28]. Additional interpretations
are given later in the paper.

An additional contribution is, to the best of our knowledge,
a novel technique of obtaining bounds on tail probabilities of
additive functionals of homogeneous Poisson point processes.
The essence of the approach is to divide the nodes comprising
the point process into “near nodes” and “far nodes,” bound the
tail probabilities for each set of nodes individually, then opti-
mize over all possible near—far boundaries.

The rest of the paper is organized as follows. Section II dis-
cusses the first transmission model with homogeneous transmis-
sion power and relay distance, and develops closed-form expres-
sions for the upper and lower bounds. Although this model is
not as realistic as the subsequent model, it is easier to follow
and useful from a pedagogical standpoint. Section III discusses
the second transmission model with heterogeneous transmission
power and relay distances, and using similar methodology ar-
rives more directly at the transmission capacity bounds. Section
IV provides some numerical and simulation results and interpre-
tations, with a comprehensive discussion of the merits of DS-
and FH-CDMA given in Section V. Section VI offers the cus-
tomary concluding remarks.

II. FIRST MODEL: UNIFORM TRANSMISSION POWER AND
RELAY DISTANCE

A. Modeling and Assumptions

For simplicity, we initially assume that all transmitters use
the same transmission power p, and all transmission distances
are over the same distance . These assumptions will be relaxed
in the subsequent model. Our channel model is also simple: we
consider only path-loss attenuation effects and ignore additional
channel effects such as shadowing and fast fading. In particular,
if the transmitted power is p and the path-loss exponentis o > 2,
then the received power at a distance d > 1 from the transmitter
is pd™.

Our interference model is as follows. For FH-CDMA we as-
sume the availability of sufficient bandwidth W that can be di-
vided into M subchannels, where % is required bandwidth per
channel. A receiver attempting to decode a signal from a trans-
mitter on subchannel m € {1,..., M} only sees interference
from other simultaneous transmissions on that subchannel. By
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contrast, on a DS-CDMA network, a receiver sees interference
from all transmitters, it uses the spreading factor to reduce the
minimum SINR required for successful reception. If the nom-
inal SINR requirement for FH-CDMA is 3, then DS-CDMA has
a reduced SINR requirement of %, assuming that the interfer-
ence is treated as wideband noise [29].

The ambient noise density is denoted by IV,,. For FH-CDMA,
the total ambient noise power is IV, % =1, i.e., only the power
from the frequency subband corresponding to the active sub-
channel contributes noise at the receiver. For DS-CDMA, the
total ambient noise power is N,W = Mn, i.e., power from the
entire band W contributes noise at the receiver. Note that this
corresponds to the same postprocessing signal-to-noise (SNR)
(not SINR) for FH-CDMA, DS-CDMA, and for traditional nar-
rowband transmission (M = 1).

The model employs a homogeneous Poisson point process
= = {X;} on the plane to represent the locations of all nodes
transmitting at some time ¢. For the FH-CDMA case, we assume
each transmitter chooses its subchannel independently. We let
=, denote the set of transmitters which select subchannel m, for
,.-., M and they are independently sampled at random.
Because of the independent sampling assumption, each process
=m 1s a homogeneous Poisson point process with intensity %

To evaluate the outage probability, we will condition on a
typical transmitter at the origin resulting in what is known as
the Palm distribution for transmitters on the plane [30]. It fol-
lows by Slivnyak’s theorem [30] that this conditional distri-
bution also corresponds to a homogenous point process with
the same intensity and an additional point at the origin. Now
shifting this entire point process so that the receiver associated
with the typical transmitter lies at the origin, we have that the
conditional distribution of potential interferers is a homogenous
Poisson point process with the same intensity. We will denote
this process by II and denote probability and expectation with
respect to this distribution by P? and E°, respectively. Similarly,
for FH-CDMA, we denote the shifted locations of transmitters
in subchannel m by II,,,, which is still a homogeneous Poisson
point process with intensity % Also denote | X;| the distance
from node 7 € II to the origin.

B. Quantifying the Transmission Capacity

The outage constraint on A corresponds to ensuring that the
probability that the received SINR is below the appropriate
threshold, is less than e. For the above model these are given by

FH PO pr” <p)<e (1)
<77 + 2 iem,, PIXil=
" ;
DS P°< pr < L) )
M77+Zienp|Xi|7a - M)~

We let A€ denote the optimal contention density, i.e., the max-
imum density A for IT such that outage probability at a typical re-
ceiver is less than €, where € € (0,1). We will obtain upper and
lower bounds on A denoted by A5 PS, A% PS and AS FH A% FH
for the DS-CDMA and FH-CDMA cases, respectively. In the
context of the above outage constraints (1) and (2), b is the av-
erage rate that a typical user achieves given that the SINR con-
straint is met. For this work, we assume that the transmitted
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spectral efficiency is held constant at b for all users, which is
reasonable since the goal of SS techniques is to increase the
number of users relative to narrowband transmission for a fixed
data rate. In future work, it may be fruitful to allow different
users to have different rates, and hence, the typical achieved
data rate b could change. With these assumptions, the bounds
on transmission capacity c5; PS5, ¢y’ DS and ¢ FH| o FH Corre-
spond to bounds on the optimal contention density multiplied
by b(1 — €), where b = 1. These bounds and the transmission
capacity ratio of FH-CDMA over DS-CDMA are given in the

following theorem.

Theorem 1: Lete € (0,1),r = ’“; — 2, and h(a) = ol
The lower and upper bounds on the transmission capacity sub-
ject to the outage constraint ¢ for FH-CDMA when transmitters
employ a fixed transmission power p for receivers that are a fixed

distance r away are

=1 -, g = (1 —eag
where
AT > ha)=r% e+ O(?)
M
AoFH = —kae 4+ 0(e?)
™
ase — 0.

The lower and upper bounds on the transmission capacity
subject to the outage constraint ¢ for DS-CDMA when trans-
mitters employ a fixed transmission power p for receivers that
are a fixed distance r away are

R R e e LD
where
1 2
AP PS> h(a)=(Mr)=e + O()
™
1 2
Ao PS = —(Mg)=e+ 0(e2)
™
as e — 0.

Overview of the Proof of Theorem 1. Let us briefly consider
how these results are obtained. The outage constraints in (1) and
(2) can be rewritten as

FH P° (Z | X7 > lﬁ) <e 3)

€11,

DS P° (Z | X~ > M;-;) <e 4)
i€ll
which usefully shows that for any set of parameter selections
(encapsulated in k) outage can be thought of as simply deter-
mined by the positions of the interfering nodes. Since these ex-
pressions are complex functions of the contention density A we
will resort to obtaining careful bounds with regards to the pos-
sible positions of the interferers.
Consider the DS-CDMA case. Specifically, according to (4),
the outage event is given by

E() = {ZlXil_“ > Mn}-
iell

We will define events FE,(\,s) and E;(),s) such that

E.(\,s) C E(A) C Ej(A,s) and the probabilities of all
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Fig. 1. On the left, the outage event E, (), s) corresponds to the scenario
where just one interferer is close enough to cause an outage, i.e., it is within a
distance of 5. On the right, the outage event E (A, s) corresponds to an outage
caused by the accumulation of far-field interference; the aggregate interference
level is high enough to cause an outage even though there are no nodes inside of
b(0, s). Note that for DS-CDMA, s will usually be less than the transmission
range but for FH-CDMA and narrowband transmission, s will usually be larger
[31].

events E()\), Fi()\, s) and E, (], s) increase in A. Here s is a
parameter that will be discussed in the sequel. More intuitively,
these two events are represented and explained in Fig. 1.

If we solve for the largest possible A such that
PO(E.(),s)) < € we obtain an upper bound \$PS on the
optimal contention density, i.e., if A > A$DPS the outage
probability must exceed our outage constraint €. If we solve
for the smallest A such that PY(E;(),s)) > ¢, we obtain a
lower bound on the optimal contention density )\;’ DS, ie., if
A< A DS the outage probability must not exceed €, so we
definitely have a legal value for contention density.

In order to define E;()\, s) and F, (), s), we consider the
overall interference a receiver sees from both the “near field”
and “far field.” As shown in Fig. 1, the near and far fields are
the regions inside and outside a circle of radius s around the
typical receiver at the origin, denoted b(O, s) and b(O, s), re-
spectively; the use of these terms is similar to but distinct from
their use in antenna design and channel modeling. The radius
s is selected to be small enough such that one or more nodes
within distance s would cause an outage. According to (4), this
means s~ % > Mk, which limits s < (Mn)_%. In the sequel,
we shall consider optimizing over s subject to this constraint
so as to get the tightest bounds. The rationale for separating the
near- and far-field interference is that near-field nodes contribute
a major part of the interference, as will be shown later.

Proof of Theorem 1: We first consider the DS-CDMA
case. The outage events associated with the near- and far-field
interference are defined as follows.

Definition 1

Eu(),s) = {TINB(O, 5) # 0}

>

i€lINb(0,s)
Ei(A,s) = Eu(\, 5) UEf(As).

Ef()\,s): |Xi|_a > Mk

According to Definition 1, E,, (), s) consists of all outcomes
where there are one or more transmitters within distance s of the
origin O, and the event E;(\, s) consists of all outcomes where
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the set of transmitters outside the ball b(O, s) generate enough
interference power to cause an outage at the origin.

These events satisfy the following properties.

a) Fors < (Mk)™=, E,(\,s) C E(\) C Ey(\, ).

b) Each of PY(E())),PY(E.(), s)), and PO(Ef (), s)) in-

creases in A for fixed s.
¢) For fixed X, PY(E,(),s)) is increasing in s, while
PO(Ef(), s)) is decreasing in s.

d) E,(A,s)and E¢(A, s) are independent events.

To prove Property a), consider the following facts: i) If s <
(Mk)~= then even if there is only one node in b(O, s), and
even if that one node is as far away from the origin as possible,
ie., |X;| = s, then the normalized interference generated by
that node s~ > ((Mr)™#)~® = Ms , is still sufficient to
cause an outage. This proves that E,, (A, s) C E(A). i) Con-
sider an outage outcome w € E(\). Supposew € E(\) andw ¢
E, (A, s). Then w constitutes an outage but there are no nodes
in b(0, s). Then clearly the interference is caused by nodes in
b(O, s), which means w € E¢(\,s). Suppose w € E()) and
w & Ef(A, s). Then w constitutes an outage but the external in-
terference generated by nodes in b(O, s) is insufficient to cause
outage. Then this means there are one or more transmitters in
b(0, s), which means w € E, (), s). Thus, w € E()) implies
either w € E,(\,s) orw € Ef(),s), which is equivalent to
saying w € (Eyu(A, s) U Ef(A,s)). Properties b) and c) are
straightforward by considering the number of interfering trans-
mitters considered in each event. To prove Property d), recall
that E,, (), s) only depends upon the space b(O, s) and E¢ (A, s)
only depends upon the space b(O, s). The independence prop-
erty of the Poisson point process states that the number of points
N(A) and N(B) in disjoint regions A and B are independent
random variables, hence, E,(},s), Ef(),s) are independent
events.

The upper Bound ). We calculate P°(E, (), s)), set
it equal to €, and solve for A. Consider the probability that
there are no transmitters in (O, s), which is simply the void
probability for b(O, s) [30]. For a Poisson point process in the
plane with intensity A, the void probability for a set A C R? is
e~ () where v(-) denotes the area of the set contained in
the argument. Thus,

PO(E, (N s) =1—PYITNHO,s) =0) =1 — e (5)

for s € (0,(Mr)~=).
Now given the outage constraint P( E,, (), s)) < ¢, we obtain
the parameterized upper bound

€ 1 -2
AL (s) = s In(1 —¢)
forall s € (0,(Mr)~=) and all ¢ € (0,1). We further op-
timize this bound over s and find that the tightest (smallest)
upper bound is obtained by choosing the largest possible s =
(Mr)~ & . Thus, the final upper bound on the optimal contention
density is

1 2
A, = ——(Mk)~In(1 —¢)
o

(ME)* e+ O()

5=

foralle € (0,1).
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The Lower Bound )\{. We need to calculate PO(E;(), s)).
Because of Property d), we have

PU(E(X, 5)) = PO(Eu(X 5) U Ef(), 5))
=PO(Eu(),5)) + PO(Ef (), 5))
—PY(Bu(X, 5))PY(Ef (A, 5)).
)

The outage constraint PY(E;(), s)) < e then can be rewritten

as

PO(Bu(X5) e, PUEf(M5) < e (©)

for some ¢; and €5 such that €; + €5 — €165 = €. Given the
constants €; and €2, define the contention density imposed by
conditions in (6) to be

X (s) = sup{A| P(
X7 (5) = sup{A| P(

Eu(A;s)) < e}
Ef()\,s)) S 62}.

Thus, the lower bound of the optimal contention density can be
derived as

Aj = sup ){inf{/\zl(s),)\?(s)}} @)

s,(€e1,€2

for s € [0, (Mﬁ)_%] and (e1, €2) satisfying €1 + €2 — €162 = €.
To obtain the lower bound we will first consider A\ (s) and
A% (s) separately, then choose to maximize the minimum of
the two for all feasible s and choices of (e, €3) pairs. It can
be seen that if we increase PO(F, (), 5)) then PO(E; (), s)) de-
creases, i.e., changing s or (€1, €2) must increase one of A (s)
and A% (s) but decrease the other one at the same time. Thus,
according to (7), a condition for the optimized lower bound is
that the choice of s and (€1, €2) is such that A7 (s) = A (s) if
this is feasible.

Based on our calculation of the upper bound, we have that

Ag(s) = —1572 In(l—¢€)= 187261 +0(ef). ©®
™ ™

It is not possible to compute A% (s) directly; we resort to

finding a lower bound using Chebyshev’s inequality. Let

>

i€TING(0,s)

Y s) = X

denote the normalized far-field interference from transmitters
outside the circle (O, s). In Lemma 1, found in the Appendix,
we show that E[Y (), s)] = u(s)A and Var(Y (), s)) = a2(s)A,
and compute expressions for /i(s) and o%(s). The lower bound
on A (s) is obtained as follows:

A (s) = sup{A| PO(Ef (), 5)) < e}

=sup{A[P°( > |Xi| > Mk) < e}
i€TINb(0,s)

= sup{A[P*(Y (A, ) > Mr) < ez}

s Ly [po (1Y) = ()N )

o e (M 2 1) <o)

> a?(s)A

P{A\m
= XP(s).
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The first three equalities are by definition, the second inequality
is obtained by using the Chebyshev bound. Clearly, A% (s) is
achieved when

a2(s)\
(Mr = p(s)A))?

= €2.

By solving this equation for A and keeping the dominant term
under the condition that €5 is small, we obtain

o (Mk)?
Af (S) = O'2<S) €2 + 6(63)
_ 2
_ (a 17)r(Mm) 2=V, 1 9 (e2) )
as eo — 0.

We now focus on obtaining the lower bound Aj by solving
(7) using (8), (9). As stated earlier, for a given (1, €2) pair, the
optimal s is obtained by solving A{! (s) = A;?(s) for s, i.e., the
maximum of the minimum of two functions occurs at their point
of intersection, if any. Solving for s we obtain

o=

0= (2) -y (10)

€2

Substitute to find

€162 11 2 L1-1
A ":(a—l)a;(M&)aeélel o (11)

Finally, noting €2 = ¢ — ¢; + O(¢?) find

1= max

(€1,€2):€1+ea=¢€

€1,€621 __ _ & l_i}
{A }_021?22{0(6 €1)%6
(12)

forc = (@ —1)=1(Mr)=. The optima are ¢} = (1 — 1)e and

€5 = Le. Substituting this choice we obtain
1\ 1 :
Af = <1 — —) —(Mg)% e+ O(e?) (13)
(6] ™
ase — 0.

Looking at (3) and (4), it is clear that the exact same analysis
for FH-CDMA holds provided we replace M A with A and M«
with &, 1.e., if

N

Mh(a)~ (M)

e+0(e?) < MASPS
T

1
< M=(Mg)& e+ 0(?)
T
holds for DS-CDMA, then,
Lor 2 2 eFH _ Ly, 2 2
h(a)=Mr=e+ O(e*) < X" < —Mk=e+ O(e%)
T T

holds for FH-CDMA. O
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C. Comparison of Transmission Capacity With Other Capacity
Metrics

There are a number of observations that can be made from
inspecting the upper and lower bounds derived in Theorem 1.
‘We will save the bulk of such discussion until Section IV, when
we will examine some plots of these expressions to enhance
intuition. Before continuing, however, we would like to note
some similarities between the preceding bounds on transmission
capacity and other possible metrics of ad hoc network capacity,
in particular transport capacity and network sum capacity.

In Theorem 1, we rediscover the scaling property between
capacity and transmission range 7 to be ©(r~2), the same as the
result of [2]. One can understand this scaling as packing as many
concurrent transmissions spatially as possible, with each occu-
pying an area O(r?). The spreading factor M allows for certain
relaxations on the overlapping among concurrent transmissions,
which is prohibited in narrowband systems, but eventually only
provides a constant gain on the number of concurrent transmis-
sions that can be scheduled. Thus qualitatively, the scaling of
transmission capacity in r is still ©(r~2). Relating this to trans-
portcapacity, the transport capacity (for a fixed bandwidth of 1 Hz
and a fixed area of 1 m?) of an ad hoc network is essentially the
maximum number of legal transmissions (i.e., n), multiplied by
the transmission range r, multiplied by the achieved spectral effi-
ciency of each transmission, b. In the best case, this was shown to
scale as ©(y/n) in [4]. In this paper, the number of legal transmis-
sions (i.e., have received SINR above ) is a stochastic measure A
which has been shown in Theorem 1 to be inversely proportional
to 2. Hence, it can be readily seen that our comparable metric
for the transport capacity is A - r — ©(y/n) since A < n. Thus,
transmission capacity recovers the basic scaling result of [4], but
also includes a stochastic notion of successful transmissions
and allows the computation bounds for nonasymptotic n.

Although up until this point the focus of the paper has been
on deriving the optimal contention density A, it is natural to
wonder how the transmission capacity or transport capacity
might relate to measurable network throughput, for example,
the area spectral efficiency or sum data rate over all the nodes.
The transmission capacity gives units of b/s/Hz/area, or area
spectral efficiency, but in this paper we have assumed for
convenience that the data rate of each transmission is fixed at
b = 1, so the area spectral efficiency is simply the number of
successful transmissions per unit area. This is sufficient for SS
techniques, since these techniques do not attempt to increase the
average data rate of each transmission b, but rather, the number
of allowable colocated transmissions. We leave quantitative
generalization for variable b to future work, while noting that
techniques such as adaptive modulation and multiple-antenna
transmission and reception may allow b to be substantially in-
creased for a fixed node density A and fixed outage probability
€. In summary, there is a direct relation between transmission
capacity and traditional information-theoretic measures of
network capacity, but it is easier to quantify the former.

III. SECOND MODEL: VARIABLE TRANSMISSION POWER AND
RELAY DISTANCE

In our second model, we remove the assumption that all trans-
mitters use the same transmission power and have associated re-
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ceivers at the same distance. In real ad hoc networks, transmis-
sion relay distances will be variable as will interference power
levels. This suggests transmitters should use power control since
if the signal power is too high it may cause unnecessary in-
terference and if it is too low the signal may not be success-
fully received. Finding a system-wide optimal set of transmis-
sion power levels is the subject of recent work [24], [32]-[34].
In this work, we take a simple distributed approach of assuming
that transmitters choose their transmission power as a function
of their distance from their intended receiver but independently
of the interference level at the receiver. We call this pairwise
power control since each transmitter and receiver pair determine
the transmission power independently of other pairs. Specifi-
cally, the transmitter chooses its transmission power such that
the signal power at the receiver will be some fixed level p. Thus,
if a transmitter and receiver are separated by a distance d then
the transmitter will employ a transmission power pd® so that the
received signal power is p. Note that p > 1 [ is required to keep
the received signal power above the noise floor.

Devices are assumed to have a maximum transmission power
of pmax. Solving pd® < ppax for d gives a maximum transmis-
sion distance of dypax = (%) . We assume that a transmitter
is uniformly likely to choose any of the receivers within dyax
as its intended receiver. This corresponds to a transmission dis-
tance distribution of

o d*-1
Cd2, -1

max

Fp(d) forl < d < dpax.

Formally, our second model consists of a marked homoge-
neous Poisson point process £ = {(X;, D;)} where the points
{X;} again denote the locations of interfering transmitters and
the marks {D;} denote the distance between transmitter ¢ and
its intended receiver. The marks are independent and identically
distributed random variables width distribution F'p, and are in-
dependent of the transmitter locations. We use | X;| to denote
the distance from node ¢ to the origin. Similar to the first model,
we evaluate the outage probability using the Palm distribution
PO for the marked point process ®, which is a shifted version
of =/ and places a typical receiver at the origin. Also similar
to the first model, we define the sampled subprocess ®,, as
a homogeneous marked Poisson point processes consisting of
all interfering transmitters in ® that are on subchannel m, for
m=1,...,M.

To evaluate the interference a typical receiver sees, we define
the function I(r, d) as giving the signal power level at a distance
r from the transmitter when the transmitter’s intended recipient
is at a distance d. Thus, [(r,d) = p(2)®. Note in particular
that [(d,d) = p, i.e., at the distance of the intended receiver
the signal power is the desired level. Note that the transmission
power is [(1,d) = pd™.

The appropriate outage constraints on A are now given by

PP ’ <pB)<e (14
(n—f_Z(Xi,Di)e@m I(|X;], D) )
ps P ’ <P <e a3
(Mn+Z(Xi,Di)e@lﬂXiLDi) M)
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We can use these to obtain upper and lower bounds for the
second model. These bounds on the transmission capacity of
FH-CDMA and DS-CDMA, are given in the following theorem.

Theorem 2: Let ¢ € (0,1),6 = 5 — 2, and let g(a) =
T+ 1) (o — 1))=. Suppose
o d*-1
B dr2nax -1
The lower and upper bounds on the transmission capacity for
FH-CDMA when transmitters employ pairwise power control
are given by:

™M= (1A T = (1A

Fp(d) for 1 <d < dpax-

where

M % 2 —1 é
A 2 g0 M0 (gm0 el

T \dat® -1
4 M6&(d2, — 1
/\3 FH — ; (d4max )€+ @(62)
ase — 0.

The lower and upper bounds on the transmission capacity for
DS-CDMA when transmitters employ pairwise power control
are given by

C;’DS — (1 _ 6))\?1387 C;’ DS — (1 _ 6))\;’ DS
where
2 L
€, (M(S)ﬁ dIQnax -1 “
N2 gl = () et o)
Ao DS — — i e+ 0(e?)
ase — 0.

Proof of Theorem 2: The Proof of Theorem 2 is similar to
that of Theorem 1. The outage constraints (14) and (15) can be
written as

X\ 7
FH P° > <|D—|> >6]<e  (16)
(X;,D;)ePm ¢
DS P° Z <@>_0>M5 <e. (17
Di - -
(X:,D;)e®

Consider the FH-CDMA case. Let m € {1,..., M} denote
a particular subchannel used in FH-CDMA and let us define the
following events.

Definition 2

D; \*°
=1 > (ixp) >0
(X:,D;)ED,, *

Ey(\s) = {@m N (B(O, 5) X [$6% , duax) # w}
E, (A 5) = {®,, N (b(0, 5) x RT) # 0},

| > <Di>a1(Xieb(O7s))>5

(X:,D,)€®,, ||
E'l()\7 8) = Eh ()\, S) U Elz ()\, S).

Eu, (X, 5) =
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According to Definition 2, the event E(\) consists of all
outage outcomes. The event F,()\,s) consists of all out-
comes where there are one or more transmitters within s of
the origin with transmission distances exceeding sé . This
threshold is the smallest transmission distance such that even
one transmitter in b(O, s) with such a transmission distance
will cause an outage at the origin. The event Fy, (A, s) consists
of all outcomes with one or more transmitters in b(O, s); but
note that not all outcomes in Fj, (), s) will cause an outage.
Finally, the event Ej, (), s) consists of all outcomes where the
interference power at the origin caused by all the transmitters
outside b(0, s) is adequate to cause an outage at the origin.
Note that the events in Definition 2 have similar properties as
the Properties a)-d) mentioned in the Proof of Theorem 1. In
particular, for s < dyax0 -

E.(\s) CEN) CE(\s)=EL(As)UEpL(As)

and Fy, (X, s) and E, (A, s) are independent events.

The upper bound ){,. To obtain the upper bound, we need
to calculate P°(E, (), s)). Since the marks are independent of
the point locations, the points with certain marks form a thinned
process, where the thinning is proportional to the mark proba-
bility, i.e., the intensity of the thinned process is £ Fip(sé 7).
Thus, the probability of event E,, (), s) is given by

PO(E, (), s)) =1 — exp {—%FD (55%) 7r52}

for s € (0, dyaxd = ). We can derive the parameterized upper
bound A, (s)

Me
TFp(s6%)s?

)\Z(S):_]\/{ln(ll €) _
wFp(sb=)s?
forall e € (0,1).

To get the tightest upper bound, we need to optimize this
result over feasible s. Note that P°(E, (), s)) is not mono-
tone increasing in s as in the case of model 1. In particular,
PO(E, (), s)) is increasing in s for s small, and decreasing in
s as s approaches diaxd ™% Intuitively, for s small we can
accept any mark but the circle b(O, s) is small, while for s large
the circle b(O, s) is large enough but only the largest marks

may be admitted. Thus, A\¢ (s) is also not monotone in s: A¢ (s)
1

is large for s small and s near dyax6~ = .
For the assumed distance distribution Fp(d) = d{,i— _il
obtain the optimal s by taking derivative of A¢ (s) with respect

to s and setting it to 0. This yields the minimizer s}, = Amax
V2sa

+ 0(€%)

we

which give us the tightest upper bound
AM 6= (d?

max

4
7rdmax

A = — 1)€+®(€2)

foralle € (0,1).
The lower bound ;. Just as for the calculation of A;*(s) in
Theorem 1, we have

M
Mi(s) = —?8_2 In(1—€)

foralls > 0Oand e € (0,1).
We also need to bound P°(Ey, (), s)) and thus obtain lower
bound on A} (s). This is done in a similar way to what we did
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for the first model. Define the aggregate normalized far-field

1nterfel‘ence
< >

The mean and variance of Y’(), s) are obtained in Lemma 2,
see the Appendix. We apply Chebyshev’s inequality and obtain
the lower bound on A;? (s) as follows:

Y'(\,s5) =

>

i€®,,,Nb(O,s)

(= 1)(a + 1) M2 =1 (2

max 1)
Tr(drzfai2 -1

AZ(s) >
= Af} (s).
To obtain \j, we again need to optimize

sup  {min{A;!(s), A;7(s)}}

5>0,(e1,€2)

ez + O(e3)

X =

over s and (€1, €2) satisfying €; + €3 — €163 = €. As previ-
ously noted, in this model, PY(E;, (A, s)) is no longer the exact
outage probability caused by near-field interference, but only a
conservative estimation. Joint optimization over s and (eg, €2)
is very complicated; for simplicity we instead choose to set
€1 =€ =1—/1—¢€ =5+ O(c?) and then only optimize
over s to equalize A;'(s) and Aj?(s). Doing this we obtain

Al > g(a)

Mé= ([ d2,, —1\=
<d2(w+2 — 1) ¢+ 0(¢?)

™ max

where g(a) = 1((a — 1)(a + 1))=.
Looking at (16) and (17), it is clear that the exact same anal-
ysis for DS-CDMA holds provided we replace A with M A and

6 with M6, i.e., if

e, FH Mé% drgnax -1 é
A > g(a) - Patz ] e+ 0(e?)

max

AM6= (d2, — 1)

max

4
deax

G FH _ €+ @(62)

holds for FH-CDMA, then

1

Masa ([ d2, —1
ACPS > g(a) M0 (d

dzﬁf} 1) e+ 0(e%)

™ max =~

4 Masa(d2,, —1)

max
4
Q dmax

AP = €+ 0(e)

holds for DS-CDMA. O

Theorem 2 shows how the transmission capacity scales in
the fundamental system parameters, e.g., transmission distance,
spreading factor, and outage constraint. We see that the scaling
is the same as Theorem 1 for both DS-CDMA and FH-CDMA.
Power control in cellular networks solves the ‘“near—far”
problem by equalizing receiving powers at the central base
station. The pairwise power control scheme in ad hoc networks
cannot fully solve the “near—far” problem since transmitters
have different intended receivers, but it offers a simple and
distributed means by which to mitigate the interference across
concurrent transmissions.
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TABLE 1
SIMULATION PARAMETERS (UNLESS OTHERWISE NOTED)
Symbol | Description Value
M Spreading factor 16
T Transmission radius 10m
€ Target outage probability 0.1
B Target SINR 3 =4.77dB
P Transmit Power 1
« Path loss exponent 3
TABLE 1I
TRANSMISSION CAPACITY SCALINGS
FH-CDMA | DS-CDMA | Narrowband
Spreading factor (M) M Mo 1
Target SINR (8) R < L
B B B
Outage Constraint (€) € € €
Transmission range (r) r—2 r=2 r=2

IV. NUMERICAL RESULTS AND INTERPRETATIONS

The derived transmission capacity results are evaluated in
this section for some typical parameters in order to show how
ad hocnetwork capacity can be expected to scale with path loss
and spreading, and to compare frequency hopping and direct
sequence SS. Additionally, a simulated ad hoc network where
nodes are spatially distributed according to a Poisson point
process is used to show how the derived bounds perform relative
to simulated performance. The simulations are carried out using
the parameter values enumerated in Table 1. All simulation
results shown in the plots are confidence intervals, although the
intervals are too small to be visually distinguished from a point.
Note that we only show the numerical results for our first model
with fixed transmission power and relay distance because the
numerical results of the second model is basically the same as
the first one. For reference, we also include Table II that shows
analytically how transmission capacity scales for FH, DS, and
narrowband (M = 1) modulation, and it can be noted that they
only differ in terms of their scaling with regards to M.

A. Outage Probability Versus Transmission Density

The first investigation is to study the outage probability
po(AN) = P°(E())) versus the transmission density A. The
outage lower bound P°(E, (), s)) is given by (5). Let

>

i€TINB(O,s)

Y s) = X

denote the normalized far-field interference from transmitters
outside the circle (O, s), as shown in Fig. 1. Let y = & for
FH-CDMA and y = Mk for DS-CDMA denote the normal-
ized SINR requirement as expressed in (3) and (4), respectively.
We obtain an upper bound of the outage probability by applying
the same technique used in the proof of the lower bound in
Theorem 1

PY(E(),5)) = PY(E, (A, 5) U Ef(), s))
<PYEu(A 5) +PY(Ef(N, 5))
=PY(E.(\, ) +PY(Y(A,5) > 9)

where PY(E, (), 5)) is the same as above and P°(Y (A, s) > v)
can be upper-bounded using the Chebyshev inequality.
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Fig. 2. Numerical and simulation results for the probability of outage p,(\)

versus the transmission density A. The numerical bounds are the upper and lower
bounds on p,(A). The simulation results (with confidence intervals) are seen to
fall between the lower and upper bounds.
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Fig. 3. Numerical and simulation results for the transmission capacity c¢
versus the path loss exponent «v. The upper bound appears relatively tight
relative to the simulation results. The decay in transmission capacity as
a — 3.5 is a consequence of the received power approaching the ambient
noise floor.

Fig. 2 plots numerical and simulation results of p, () versus
A; the simulated outage probability falls between the lower and
upper bounds as predicted. The plot illustrates that the lower
bound is reasonably tight with respect to the simulated perfor-
mance, and that as expected from our analytical expressions in
Theorem 1, outage probability increases about linearly in the
transmission density in the low outage regime.

B. Transmission Capacity Versus Path Loss Exponent

Fig. 3 shows the transmission capacity ¢ = A°b(1—¢) versus
the path loss exponent « for both FH-CDMA and DS-CDMA
systems, with b = 1. The bounds given in Theorem 1 are plotted
along with the simulation results, and as expected, the simulated
transmission density falls between the lower and upper bounds.
The plot illustrates that the upper bound is fairly tight. Recall
that the lower and upper bounds are given up to an asymptotic
order ©(e?). Here these expressions are plotted assuming that
this constant is zero. So, the tightness of the upper bound is due
partly to the neglect of this small term, and also due to the fact
the close-in interfering nodes—which are what determine the
upper bound—appear to dominate the transmission capacity.
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Fig. 4. Numerical and simulation results for the transmission capacity ¢ /M
versus the spreading factor M. Frequency hopping’s advantage over direct
sequence is increased as M increases.

As can be seen in this plot, frequency hopping is increasingly
superior to direct sequence as the path loss becomes worse.
The interpretation for this is that as the path loss worsens,
dramatically more power is needed to reach the desired
transmitter, so dramatically more interference is caused to
neighbors. FH-CDMA systems typically avoid the interference
by hopping with an occasional collision, so their performance
is improved by this effect since now the aggregate interference
from far-away nodes in the utilized frequency slot is decreased.
On the other hand, DS-CDMA receivers, which must suppress
with interference from other transmitters that are closer to it
than the desired transmitter, are at a distinct disadvantage since
the desired power decreases more quickly than the interference
power of close-in nodes as the path loss exponent increases.

The decay in transmission capacity as &« — 5.5 is a conse-
quence of the SNR (absent any interference) being below the
SINR requirement: solving % = ( for a yields « = 5.5
for the parameters given in Table I. This is the value of « such
that even absent any interference, the SNR ratio at the receiver
is below the SINR requirement (. In other words, the received
power is very close to or below the noise floor.

C. Transmission Capacity Versus Spreading Factor

The final investigation studies the transmission capacity
c® versus the spreading factor M for both FH-CDMA and
DS-CDMA systems. Fig. 4 plots the numerical and simulation
results, with the simulated random network falling between
the lower and upper bounds as predicted, with again the upper
bound relatively accurately approximating the actual transmis-
sion capacity. Note that we plot % versus M. The transmission
capacity is normalized by M to account for the fact that in-
creasing M requires a commensurate increase in bandwidth.
Thus, ¢¢/M is a rough measure of the spectral efficiency.

The key insight from this plot is that FH-CDMA capacity is
unaffected by the spreading gain, whereas DS-CDMA capacity
grows steadily worse as more spreading is employed. The in-
terpretation is that the amount of interference that can be sup-
pressed with the spreading factor does not compensate for the
fact the bandwidth had to be increased (or the data rate de-
creased) by a factor of M.
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Fig. 5. [Illustration of the near—far problem in ad hoc networks. Transmission
B destroys reception of A and C unless an enormous spreading factor is used,
or the interference is avoided altogether by frequency hopping or scheduling.

V. FREQUENCY HOPPING VERSUS DIRECT SEQUENCE
VERSUS NARROWBAND

A recurring theme throughout the discussion thus far has been
the apparent superiority of FH-CDMA to DS-CDMA, when-
ever the path loss exponent o > 2, as can be directly observed
from the bounds in Theorems 1 and 2. In this section, we discuss
the significance and meaning behind this result. First, we note
that although in some environments (notably indoor or urban
canyons) the path loss exponent is sometimes modeled to be
less than 2 due to reflections, these environments usually have
significant shadowing and fading, bringing the “effective” path
loss exponent to much greater than 2 if all these effects were
lumped into just the path loss model. So, in general, it is rea-
sonable to assume that the effective « > 2, and the common
assumption in terrestrial environments of o = 4 results in both
FH-CDMA and narrowband having a higher normalized trans-
mission capacity than DS-CDMA by a factor of v/M.

Those experienced with CDMA may recall that FH and DS
perform identically or within a small constant of each other as-
suming perfect power control [17], [35] in a cellular environ-
ment, with no dependence on the spreading factor. So why is
FH-CDMA better than DS-CDMA by such a wide margin in ad
hoc networks? The reason is that “perfect” power control is im-
possible to achieve in an ad hoc network due to the random loca-
tions of the transmitters and receivers, so the near—far problem
is impossible to reconcile with power control. As a result, it is
better to avoid interference than to attempt to suppress inter-
ference. As a simple example, consider three transmit—receive
pairs shown in Fig. 5. In DS-CDMA, transmission B will con-
tinually overwhelm the receivers for transmissions A and C un-
less an enormous spreading factor is employed. By contrast, in
FH-CDMA this situation is only a problem when transmission
B is in the same frequency slot as A or C, each of which occurs
only with probability 1/M.

Other readers may have noted that throughout this paper we
have assumed a CDMA matched-filter (MF) receiver, which is
known to be highly suboptimal in the multiuser CDMA envi-
ronment, particularly when receive powers are widely varied.
We have made the MF assumption since this is still the pre-
dominant CDMA receiver used in practice, and also the easiest
to analyze, since the interference suppression is simply 1/M
(or similar, depending on the exact codes used). However, there
is no question that interference-aware CDMA receivers will, at
least in theory, significantly outperform the MF. An enormous
number of such receivers have been proposed over the past



WEBER et al.: TRANSMISSION CAPACITY OF WIRELESS AD HOC NETWORKS WITH OUTAGE CONSTRAINTS

20 years, ranging from the maximum-likelihood detector (best
performance, highest complexity) to linear multiuser detectors
(lowest complexity, but questionable robustness), as described
in [28], [36], [37], and the references therein. The transmission
capacity framework can be adapted to analyze the improve-
ment resulting from such receivers, and we leave this as a
subject for future work. One such analysis has been under-
taken in [38] for successive interference cancellation (SIC),
with the conclusion that ideal SIC has large gains over DS
and even FH, but more realistic SIC has far more modest
gains, and might not exceed the capacity of FH in many cases.
We specifically would like to caution readers that idealistic
assumptions like perfect interference cancellation/suppression
are especially dubious in ad hoc networks, since even a small
fraction of residual interference from nearby nodes can con-
stitute a very large amount of interference in the absence of
centralized power control.

Finally, we would like to close our discussion by acknowl-
edging that this paper has focused on just the physical layer
of network design, and assumed a trivial MAC (ALOHA, es-
sentially). In practice, a more sophisticated MAC and various
scheduling techniques can be employed, which may change the
overall calculus of network utility considerably. Additionally,
SS (both DS and FH) is expected to have a number of impor-
tant advantages over narrowband transmission from the point
of view of security, end-to-end delay, and energy efficiency
[39]. In future ad hoc networks, physical layer capacity is just
one of a large number of metrics that designers will need to
consider.

VI. CONCLUSION

The overall contribution of this paper is a new framework,
coined “transmission capacity,” for analyzing the capacity of
outage-constrained ad hoc networks. A specific contribution
is closed-form asymptotic upper and lower bounds on the
transmission capacity for a simple network model. Even though
the model is simple, these bounds provide new quantitative
insights into the dependence of transmission capacity on the
fundamental parameters of the network, for example, path loss
exponent, spreading factor, outage requirement, and so on.
As argued in the Introduction, understanding the impact of
outage constraints on transmission density is valuable since
outage constraints permit efficient energy utilization and low
medium access contention delays. An important insight ob-
tained from the transmission capacity bounds for FH-CDMA
versus DS-CDMA is that FH-CDMA offers an increased ca-
pacity (for path loss exponent « > 2) on the order of M ==
The intuition is that the primary contributors to interference are
nearby transmitting nodes and FH-CDMA is more efficient in
mitigating this hindrance than is DS-CDMA. Put another way,
due to the geographical properties of ad hoc networks, it is
more effective to attempt to avoid interference than to suppress
it, since the interference is generally too strong to suppress.

APPENDIX

Lemma 1: Assume the transmitters’ locations are modeled
by a homogeneous Poisson point process II with intensity A and
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transmissions are using fixed transmission power to a distance
d. Let

Y(As) = x|

>

iEHﬂE(O,S)

denote the normalized far-field interference from transmitters
outside the circle b(O, s). The mean and variance of Y (), s)
are

2w
a—2

E[Y () s)] = $270N = p(s)A

Var(Y (A, s)) = 217N = 52(5)A.

a—1

Proof of Lemma 1: Recall we assume o > 2. We com-
pute the mean and variance using Campbell’s theorem [30] as
follows:

Bl X

| X :27r/\/ r~ %rdr

i€TINb(O,s) ]
2
= =T _g2-ay,
a—2
Var Z | X7 ] =27\ / =% dr
i€IINb(0,s) wE
S —C Y O
a—1
Lemma 2: 1In the pairwise power control model let

Y'(\5) =

>

i€®,,Nb(0,s)

(%)

| X

denote the normalized far field interference. The mean and vari-
ance of the random variable Y’(), s) are

T a+2 82—(31
EDV/O08)] = g A = )

max

7r(d2a+2 _ 1)82(1704)
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Proof of Lemma 2: Recall we assume o > 2. We compute
the mean and variance using Campbell’s theorem as follows:
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