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Thomas Bonald · Céline Comte · Virag Shah ·
Gustavo de Veciana

Received: date / Accepted: date

Abstract We consider a system of processor-sharing queues with state-dependent
service rates. These are allocated according to balanced fairness within a polymatroid
capacity set. Balanced fairness is known to be both insensitive and Pareto-efficient in
such systems, which ensures that the performance metrics, when computable, will
provide robust insights into the real performance of the system considered. We first
show that these performance metrics can be evaluated with a complexity that is poly-
nomial in the system size if the system is partitioned into a finite number of parts,
so that queues are exchangeable within each part and asymmetric across different
parts. This in turn allows us to derive stochastic bounds for a larger class of sys-
tems which satisfy less restrictive symmetry assumptions. These results are applied
to practical examples of tree data networks, such as backhaul networks of Internet
service providers, and computer clusters.

Keywords Processor-sharing queueing systems · performance · balanced fairness ·
poly-symmetry

Mathematics Subject Classification (2000) 60K25 Queueing theory · 68M20
Performance evaluation; queueing; scheduling · 90B15 Network models, stochastic

T. Bonald, C. Comte and V. Shah are members of LINCS, see http://www.lincs.fr

T. Bonald · C. Comte
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1 Introduction

Systems of processor-sharing queues with state-dependent service rates have been
extensively used to model a large variety of real communication and computation
systems like content delivery systems [17,18], computer clusters [2,11] and data
networks [8,14]. They are natural models for such real systems as they capture the
complex interactions between different jobs and also have a promise of analytical
tractability of user performance when subject to stochastic loads. Indeed, in the past
two decades researchers have been able to obtain explicit performance expressions
and bounds for several such systems, see [4,5,6,7,12,13,14,17,18].

However, few performance results scale well with the system size. Those that do
rely on restrictive assumptions related to the topology or the symmetry of the system
[14,18]. One of the main goals of this paper is to provide scalable performance results
for a class of processor-sharing systems which find applications in bandwidth-sharing
networks and computer clusters.

One of the key features of processor-sharing systems is the allocation of the ser-
vice rates per queue in each state. A particular class of resource allocations which
is more tractable for performance analysis is characterized by the balance property
which constraints the relative gain in the service rate at one queue when we remove a
job from another queue. Processor-sharing systems where the resource allocation sat-
isfies this property are called Whittle networks [16]. In particular, if the service rates
are constrained by some capacity set, corresponding to the resources of the real sys-
tem considered, then there exists a unique policy which satisfies the balance property
while being efficient, namely balanced fairness [3]. In this paper we focus on sys-
tems which are constrained by a polymatroid capacity set [10,17] and operate under
balanced fair resource allocation.

It was proved in [17] that balanced fairness is Pareto-efficient when it is applied in
polymatroid capacity sets, which in practice yields explicit recursion formulas for the
performance metrics. However, if no further assumptions are made on the structure
of the system, the time complexity to compute these metrics is exponential with the
number of queues. It was proved in [17] that it can be made linear at the cost of strict
assumptions on the overall symmetry of the capacity set and the traffic intensity at
each queue. Under symmetry in interaction across queues, it was shown in [18] that
the performance is robust to heterogeneity in loads and system configuration under
an appropriate scaling regime. However, there is little understanding of performance
for scenarios where queues themselves interact in heterogeneous fashion.

In this paper, we consider a scenario where the processor-sharing system is parti-
tioned into a finite number of parts, so that queues are exchangeable within each part
and asymmetric across different parts. For such systems, that we call poly-symmetric,
we obtain a performance expression with computational complexity which is poly-
nomial in the number of queues. We demonstrate the usefulness of these bounds by
applying them to tree data networks, which are representative of backhaul networks,
and to randomly configured heterogeneous computer clusters. In addition, we pro-
vide a monotonicity bound which allows us to bound performance of systems with
capacity regions which are ‘nearly’ poly-symmetric.
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The paper is organized as follows. Section 2 introduces the model and shows
that it applies to real systems as varied as tree data networks and computer clusters.
We also recall known facts about balanced fairness. In Section 3, we introduce the
notion of poly-symmetry and show that it yields explicit recursion formulas for the
performance metrics which have a complexity that is polynomial in the number of
queues in the processor-sharing system. Finally, Section 4 gives stochastic bounds to
compare the performance of different systems. We conclude in Section 5.

2 System model

2.1 Processor-sharing queueing system with a polymatroid capacity set

We consider a system of n processor-sharing queues with coupled service rates and
we denote by I = {1, . . . ,n} the set of queue indices. For each i ∈ I, jobs enter the
system at queue i according to some Poisson process with intensity λi and have i.i.d.
exponential service requirements with mean σi, resulting in a traffic intensity ρi =
λiσi at queue i. Jobs leave the system immediately after service completion. Such a
queueing system will be called a processor-sharing system throughout the paper.

The system state is described by the vector x = (xi : i ∈ I), where xi is the number
of jobs at queue i for each i ∈ I. For each x ∈ Nn, I(x) = {i ∈ I : xi > 0} denotes the
set of active queues in state x. Queues have state-dependent service rates. For each
x ∈ Nn, φ(x) = (φi(x) : i ∈ I) denotes the vector of service rates per queue when the
system is in state x.

The system is characterized by a capacity set, which is defined as the set of all
feasible resource allocations φ = (φi : i ∈ I) ∈Rn

+. This capacity set may be specified
by practical constraints like the capacities of the links in a data network or the service
rates of the servers in a computer cluster. We are interested in queueing systems
whose capacity set is a particular type of polytope called a polymatroid [10].

Definition 1 A polytope C in Rn
+ is a polymatroid if there exists a non-negative

function µ defined on the power set of I such that

C =

{
φ ∈ Rn

+ : ∑
i∈A

φi ≤ µ(A), ∀A⊂ I

}

and µ satisfies the following properties:

Normalization: µ( /0) = 0,
Monotonicity: for all A,B⊂ I, if A⊂ B, then µ(A)≤ µ(B),
Submodularity: for all A,B⊂ I, µ(A)+µ(B)≥ µ(A∪B)+µ(A∩B).

µ is called the rank function of the polymatroid C .

Before we specify the resource allocation, we give two examples of real systems
that fit into this model.
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(b) Assignment graph of the cluster
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(c) Equivalent processor-sharing system
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Fig. 1: A tree data network and a computer cluster with their representation as a
processor-sharing system with n = 2 queues

2.2 Tree data networks

The first example is a data network with a tree topology [6], representative of back-
haul networks of Internet service providers. There are n users that can generate flows
in parallel and we denote by I = {1, . . . ,n} the set of user indices. For any i∈ I, user i
generates data flows according to some Poisson process with intensity λi that is inde-
pendent of the other users. All flows generated by user i follow the same route in the
network and have i.i.d. exponentially distributed sizes with mean σi in bits, resulting
in a traffic intensity ρi = λiσi in bit/s. The state of the network is described by the
vector x = (xi : i∈ I), where xi is the number of ongoing flows of user i, for each i∈ I.

We make the following assumptions on the allocation of the resources. The ca-
pacity of each link can be divided continuously among the flows that cross it. Also,
the resource allocation per flow only depends on the number of flows of each user in
progress. In particular, all flows of a user receive the same capacity, so that the per-
flow resource allocation is entirely defined in any state x ∈ Nn by the total capacity
φi(x) allocated to flows of user i, for any i ∈ I.

Under these assumptions, we can represent the data network by a processor-
sharing system with n queues, one per user. For each i ∈ I, the jobs at queue i in
the equivalent processor-sharing system are the ongoing flows of user i in the data
network, and the service rate of this queue in state x is the total capacity φi(x) allo-
cated to the flows of user i. We will now describe the corresponding capacity set.
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Each link can be identified by the set of users that cross it. Specifically, we can
describe the network by a family T of subsets of I, where a set L ⊂ I is in T if
and only if there is a link crossed by the flows of all users i ∈ L. We assume that the
network is a tree in the following way.

Definition 2 The network is called a tree if for all L,M ∈T , L∩M 6= /0 implies that
L⊂M or M ⊂ L.

There is no loss of generality in assuming that I ∈T , for if not, the network is a forest
where each subtree can be considered independently. For each L ∈ T , we denote by
CL the capacity in bit/s of link L. We assume that all links are constraining since
otherwise we can simply ignore the non-constraining ones. The resource allocation
must then satisfy the capacity constraints

∑
i∈L

φi(x)≤CL, ∀L ∈T , ∀x ∈ Nn, (1)

so that the capacity set is given by

C =

{
φ ∈ Rn

+ : ∑
i∈L

φi ≤CL, ∀L ∈T

}
.

Example 1 Figures 1a, 1c and 1d give the example of a tree data network with 2
users. The routes of the users are given in Figure 1a. The flows of each user cross one
link that is individual and another that is shared by both users. The representation of
this data network as a processor-sharing system is given in Figure 1c and the corre-
sponding capacity set is given in Figure 1d. It is easy to see that it is a polymatroid
for any value of the link capacities.

The following theorem generalizes this last remark to any tree data network.

Theorem 1 The capacity set of a tree data network is a polymatroid with rank func-
tion µ defined by

µ(A) = min

{
∑

L∈Σ

CL : Σ ⊂T is a family of disjoints sets s.t. A⊂
⋃

L∈Σ

L

}

for all non-empty set A⊂ I. In addition, we have µ(L) =CL for each L ∈T .

Proof We can certainly assume that T contains all the singletons since letting C{i} =
minL⊂T ,i∈L CL for each i ∈ I does not modify the capacity set C . We can easily see
that the result remains true if we do not make this assumption.

We apply the following lemma which is a direct consequence of Theorems 2.5
and 2.6 of [10] about intersecting-submodular functions on intersecting families of
subsets.
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Lemma 1 Let T be a family of subsets of I and g : T → R such that, for all L,M ∈
T with L∩M 6= /0, we have L∩M ∈T , L∪M ∈T and g(L)+g(M)≥ g(L∪M)+
g(L∩M). Further assume that /0, I ∈ T , g( /0) = 0 and T contains all the singletons
of I. Then the set of solutions in Rn of the equations

∑
i∈L

φi ≤ g(L), ∀L ∈T ,

is given by {
φ ∈ Rn : ∑

i∈A
φi ≤ f (A), ∀A ∈ I

}
,

where f is the real-valued, normalized, submodular function defined on the power
set of I by

f (A) = min

{
∑

L∈Σ

g(L) : Σ ⊂T is a partition of A

}
, ∀A⊂ I.

The definition of a tree ensures that T ∪{ /0} satisfies the assumptions of the lemma,
with the function g defined on T ∪{ /0} by g(L) = CL for any L ∈ T and g( /0) = 0.
Hence, the set of solutions of the capacity constraints (1) in Rn is

P =

{
φ ∈ Rn : ∑

i∈A
φi ≤ f (A), ∀A⊂ I

}

where f is the normalized, submodular function given by

f (A) = min

{
∑

L∈Σ

CL : Σ ⊂T is a partition of A

}
, ∀A⊂ I.

Note that no claim about the monotonicity of f can be made above because the points
in P can have negative components. This is illustrated in Figure 2, where the inter-
section point of the sides of P corresponding to the sets {1} and {1,2} has a negative
ordinate because f ({1,2})< f ({1}).

Since the components of a vector of resource allocation are always positive, the
capacity set C of the data network is given by C =P∩Rn

+. As we will see, since we
restrict ourselves to points with positive components, the function µ which charac-
terizes C is not only normalized and submodular like f but also non-decreasing. This
is illustrated in Figure 2, which shows that we can substitute f ({1}) with f ({1,2})
to describe the side corresponding to the set {1} in C .

More formally, we prove that C is equal to the polymatroid C ′ with rank function
µ given by

µ(A) = min{ f (B) : A⊂ B⊂ I} , ∀A⊂ I.

One can check that this function µ coincides with the one given in the theorem state-
ment. We first show that µ is indeed a rank function and then we prove that C is equal
to C ′.
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µ({1,2}) = f ({1,2})

f ({1})µ({1})
= f ({1,2})

P

C

φ1

φ2

Fig. 2: Construction of the capacity set of a tree data network in Rn
+ from the set of

solutions of its capacity constraints in Rn

The normalization of µ follows from that of f . Also µ is non-decreasing by con-
struction. Finally, for each A,B⊂ I, we have µ(A)+µ(B) = f (A′)+ f (B′) for some
A′,B′ ⊂ I such that A⊂ A′ and B⊂ B′, and also

f (A′)+ f (B′)≥ f (A′∪B′)+ f (A′∩B′)≥ µ(A∪B)+µ(A∩B),

where the first inequality holds by submodularity of f and the second by definition
of µ , since A∪B⊂ A′∪B′ and A∩B⊂ A′∩B′. Hence µ is submodular.

We finally prove that C = C ′. It is clear that any vector in C ′ is also in C =
P ∩Rn

+ since µ(A) ≤ f (A) for all A ⊂ I. Conversely, consider φ ∈ C . If φ is not
in C ′, then there is A ⊂ I so that ∑i∈A φi > µ(A), which implies that µ(A) < f (A).
By definition of µ , it follows that there is B ⊂ I so that A is a strict subset of B and
f (B) = µ(A). But then

∑
i∈B\A

φi = ∑
i∈B

φi−∑
i∈A

φi < f (B)−µ(A) = 0,

so that at least one component of φ is negative. This is a contradiction. ut

Example 2 Figure 3 gives the example of a tree data network with its capacity set.
The routes of the users are given in Figure 3a. Each link is labeled with the set of user
indices whose flows cross this link. The capacity constraints are

φ1 ≤C{1}, φ2 ≤C{2}, φ3 ≤C{3}, φ1 +φ2 ≤C{1,2}, φ1 +φ2 +φ3 ≤C{1,2,3}.

The rank function µ of the capacity set is given by

µ({1}) =C{1}, µ({1,2}) =C{1,2}, µ({1,2,3}) =C{1,2,3}.

µ({2}) =C{2}, µ({1,3}) = min
(
C{1}+C{3},C{1,2,3}

)
,

µ({3}) =C{3}, µ({2,3}) = min
(
C{2}+C{3},C{1,2,3}

)
,



8 Thomas Bonald et al.

1

2

3

(a) User routes

φ1
φ2

φ3
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Fig. 3: Representation of a tree data network

2.3 Computer clusters

We consider a cluster of m servers which can be pooled to process jobs in parallel.
The set of servers is denoted by S = {1, . . . ,m}. There are n classes of jobs and we
denote by I = {1, . . . ,n} the set of class indices. For any i ∈ I, class-i jobs enter
the cluster as a Poisson process with intensity λi and have i.i.d. exponential service
requirements with mean σi, resulting in a traffic intensity ρi = λiσi for class i. Jobs
leave the cluster immediately after service completion. The state of the cluster is
described by the vector x = (xi : i ∈ I), where xi is the number of jobs of class i, for
each i ∈ I.

The class of a job defines the set of servers that can process it. The server as-
signment is given by a family (Si : i ∈ I) of subsets of S, where Si denotes the set of
servers that can serve class-i jobs, for each i ∈ I. Equivalently, the server assignment
can be described by a bipartite graph

G =

(
I,S,

⋃
i∈S

({i}×Si)

)

called the assignment graph of the computer cluster. The service capacity of server s
is µs for each s = 1, . . . ,m. For any set A⊂ I of job classes, we let

µ(A) = ∑
s∈
⋃

i∈A Si

µs (2)

denote the aggregate capacity available for the classes in A.
We make the following assumptions on the allocation of the server capacities.

Servers can be pooled to process jobs in parallel. When a job is in service on several
servers, its service rate is the sum of the rates allocated by each server to this job. We
also assume that the capacity of each server can be divided continuously among the
jobs it can serve. Finally, the allocation of the service rates per job only depends on
the number of jobs of each class in the cluster. In particular, all jobs of a class receive
service at the same rate, so that the per-job resource allocation is entirely defined in
any state x ∈ Nn by the total capacity φi(x) allocated to class-i jobs, for each i ∈ I.
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Under these assumptions, we can describe the evolution of the cluster with a
processor-sharing system with n queues, one per class. For each i∈ I, queue i contains
class-i jobs and its service rate in state x is the total capacity φi(x) allocated to class-
i jobs collectively. It was proved in [17] that the capacity set of such a cluster is a
polymatroid and that the function µ defined by (2) is its rank function.

Example 3 Figure 1b gives the assignment graph for an example of a computer clus-
ter, where job classes are on the left and servers are on the right. Server 2 can serve
both classes whereas servers 1 and 3 are specialized. The corresponding processor-
sharing system with 2 queues is shown in Figure 1c and its capacity set, which is
a polymatroid in R2

+, is depicted Figure 1d. The vertical and horizontal sides corre-
spond to the individual constraints of classes 1 and 2, with µ({1}) = µ1 + µ2 and
µ({2}) = µ2 +µ3. The diagonal side corresponds to the joint constraint on classes 1
and 2, with µ({1,2}) = µ1 +µ2 +µ3.

2.4 Balanced fairness

The service rates are allocated by applying balanced fairness [3] in the polymatroid
capacity set C introduced in Section 2.1.

For each i ∈ I, let ei denote the n-dimensional vector with 1 in position i and
0 elsewhere. Balanced fairness is defined as the only resource allocation that both
satisfies the balance property

φi(x)φ j(x− ei) = φi(x− e j)φ j(x), ∀x ∈ Nn, ∀i, j ∈ I(x),

and maximizes the resource utilization in the following sense: in any state x ∈ Nn,
φ(x) ∈ C and there exists A⊂ I(x) such that

∑
i∈A

φi(x) = µ(A).

The balance property ensures that there exists a balance function Φ on Nn such that
Φ(0) = 1 and

φi(x) =
Φ(x− ei)

Φ(x)
, ∀x ∈ Nn \{0}, ∀i ∈ I(x).

The second condition implies that Φ satisfies the recursion

Φ(x) = max
A⊂I(x)

{
∑i∈A Φ(x− ei)

µ(A)

}
, ∀x ∈ Nn \{0}.

In [17] it is proved that balanced fairness is Pareto-efficient in polymatroid capacity
sets, which means that this maximum is always achieved by the set I(x) = {i ∈ I :
xi > 0} of active queues:

Φ(x) =
∑i∈I(x) Φ(x− ei)

µ(I(x))
, ∀x ∈ Nn \{0}. (3)
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Since the balance property is satisfied, the processor-sharing system defined in
Section 2.1 is a Whittle network [16]. A stationary measure of the system state X =
(Xi : i ∈ I) is

π(x) = π(0)Φ(x)ρx, ∀x ∈ Nn,

where we use the notation ρx = ∏i∈I ρi
xi for any x ∈ Nn. Substituting (3) into this

expression yields

π(x) =
∑i∈I(x) ρiπ(x− ei)

µ(I(x))
, ∀x ∈ Nn \{0}.

It is proved in [3] that the system is stable, in the sense that the underlying Markov
process is ergodic, if and only if

∑
i∈A

ρi < µ(A), ∀A⊂ I,

which means that the vector of traffic intensities belongs to the interior of the capacity
set. In the rest of the paper, we assume that this condition is satisfied and we denote
by π the stationary distribution of the system state.

2.5 Performance metrics

By abuse of notation, for each A ⊂ I, we denote by π(A) the stationary probability
that the set of active queues is A:

π(A) = P{I(X) = A}= ∑
x∈Nn,
I(x)=A

π(x), ∀A⊂ I.

For each i ∈ I, let Li = E[Xi] denote the mean number of jobs at queue i and, for each
A ⊂ I, let Li(A) = E [Xi|I(X) = A] denote the mean number of jobs at queue i given
that the set of active queues is A. By the law of total expectation, we have

Li = ∑
A⊂I

Li(A)π(A), ∀i ∈ I.

The following theorem gives a recursive formula for π(A) and Li(A) for any A ⊂ I
and i ∈ I. It is a restatement of Theorem 4 in [17] using the same idea as Proposition
4 and Theorem 1 in [18].

Theorem 2 For each non-empty set A⊂ I, we have

π(A) =
∑i∈A ρiπ(A\{i})
µ(A)−∑i∈A ρi

. (4)

Let i ∈ I. For each set A⊂ I, we have Li(A) = 0 if i /∈ A, and otherwise

π(A)Li(A) =
ρiπ(A\{i})+ρiπ(A)+∑ j∈A\{i}ρ jπ(A\{ j})Li(A\{ j})

µ(A)−∑ j∈A ρ j
. (5)
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Fig. 4: Computer cluster with two exchangeable indices and a third index

Observe that (4) allows one to evaluate recursively π(A)/π( /0) for each A ⊂ I,
from which π( /0) can be computed. Similarly, for each i∈ I, (5) allows one to evaluate
recursively π(A)Li(A)/π( /0) for each A ⊂ I and each i ∈ I, from which the value of
Li can be deduced. One could then compute performance metrics like the mean delay
or the mean service rate per queue from Li by applying Little’s law. Note that the
complexity is exponential in the number of queues.

3 Poly-symmetry

3.1 Definition

The exponential complexity of the formulas of Theorem 2 makes it impractical when
we want to predict the performance of large-scale systems. To cope with this, we
introduce the notion of poly-symmetry, which allows us to obtain formulas with a
complexity that is polynomial in the number of queues at the cost of some regularity
assumptions on the capacity set and the traffic intensity at each queue. Poly-symmetry
is a generalization of the notion of symmetry which was considered in [17,18].

The following definition will be used subsequently to introduce poly-symmetry.
It is easy to check that it defines an equivalence relation on the set I of indices.

Definition 3 Let C be a polymatroid on Rn
+ and denote its rank function by µ . Let

i, j ∈ I with i 6= j. We say that indices i and j are exchangeable in C if

µ(A∪{i}) = µ(A∪{ j}), ∀A⊂ I \{i, j}.

As the name suggests, two indices are exchangeable if and only if exchanging these
indices does not modify the capacity set. Note that the exchangeability of two indices
i and j implies that they have the same individual constraints µ({i}) = µ({ j}). The
reverse implication is not true when n > 2, as we will see in the following example.
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Example 4 Consider the computer cluster with the assignment graph depicted in Fig-
ure 4a, where all servers have the same unit capacity. The corresponding polyma-
troid capacity set is illustrated in Figure 4b. We have µ({1}) = µ({3}) = 2 and
µ({1,2}) = µ({2,3}) = 3, so that indices 1 and 3 are exchangeable. Index 2 is not
exchangeable with any of the two other indices because µ({1,2}) = µ({2,3}) = 3
while µ({1,3}) = 4.

Let us now define poly-symmetry. Suppose K ≥ 1 and consider a partition Σ =
(Ik : k = 1, . . . ,K) of I in K parts.

Definition 4 Let C be a polymatroid in Rn
+. C is called poly-symmetric with respect

to partition Σ if for any k = 1, . . . ,K, all indices in Ik are pairwise exchangeable in C .

Since the exchangeability of indices defines an equivalence relation on I, we can
consider the quotient set of I by this relation, which is the partition of I into the
maximal sets of pairwise exchangeable indices. Definition 4 can then be rephrased
as follows: a polymatroid C is poly-symmetric with respect to a partition Σ if and
only if Σ is a refinement of the quotient set of I by the exchangeability relation in
C . It follows directly from the definition that the polymatroid of Example 2 is poly-
symmetric with respect to partition ({1,2},{3}) when C{1} = C{2}, as we can see
in Figure 3b. Also in Example 4, the polymatroid is poly-symmetric with respect to
partition ({1,3},{2}).

For each k = 1, . . . ,K, let nk = |Ik| denote the size of part k, where by part we mean
a subset of the partition. For any A⊂ I, let |A|Σ = (|A∩ Ik| : k = 1, . . . ,K) denote the
vector of sizes of each part of A in the partition. The set of these vectors is denoted
by

N =
K

∏
k=1
{0,1, . . . ,nk}.

We now give an alternative definition of poly-symmetry which is equivalent to Defi-
nition 4. It is a generalization of the definition of symmetry given in [17,18]. We will
use it to express and prove Theorem 3.

Definition 5 Let C be a polymatroid in Rn
+ and denote its rank function by µ . C is

called poly-symmetric with respect to partition Σ if for any A ⊂ I, µ(A) depends on
A only through the size of A∩ Ik for each k = 1, . . . ,K. Equivalently, there exists a
componentwise non-decreasing function h : N → R+ such that µ(A) = h(|A|Σ ) for
all A⊂ I. We call h the cardinality rank function of C with respect to partition Σ .

Proof of the equivalence We only prove that Definition 4 implies Definition 5; the
reverse implication is clear. For any A,B ⊂ I with |A|Σ = |B|Σ , we can write A =
(A\B)t(A∩B) and B = (B\A)t(A∩B), where t denotes the union of two disjoint
sets. Since we have |A\B|Σ = |B\A|Σ , we are thus reduced to proving that µ(AtC)=
µ(BtC) for all disjoint sets A,B,C ⊂ I such that |A|Σ = |B|Σ . This can be done by
ascending induction on the cardinality of A and B. ut

Example 5 Consider the computer cluster with the assignment graph depicted in
Figure 5, where all servers have the same unit capacity. The corresponding capac-
ity set is illustrated in Figure 5b. It is poly-symmetric with respect to partition Σ =
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1

2

3

(a) Assignment graph

ρ

φ1 φ2

φ3

(b) Capacity set

Fig. 5: Computer cluster with a polymatroid capacity set which is poly-symmetric
with respect to partition Σ = ({1,3},{2})

({1,3},{2}) and the corresponding cardinality rank function h is given by h(0,0)= 0,
h(1,0) = 2 and h(0,1) = h(1,1) = 3.

3.2 Performance metrics

Let Σ = (Ik : k = 1, . . . ,K) be a partition of I. We consider a processor-sharing system
with a polymatroid capacity set which is poly-symmetric with respect to Σ . For each
A ⊂ I, the vector |A|Σ = (|A∩ Ik| : k = 1, . . . ,K) gives the number of active queues
in each part of the partition when the set of active queues is A. By abuse of notation,
for each k = 1, . . . ,K, we denote by ek the vector of NK with 1 in component k and 0
elsewhere.

As in Section 2.4, the resources are allocated by applying balanced fairness in
this capacity set under some vector of traffic intensity ρ which satisfies the stabil-
ity constraints. For simplicity of notation, for each a ∈N , we denote by π(a) the
probability that the number of active queues in part k is ak for each k = 1, . . . ,K:

π(a) = P{|I(X)|Σ = a}= ∑
A⊂I,
|A|Σ=a

π(A).

For each k = 1, . . . ,K, let Lk = E
[
∑i∈Ik Xi

]
denote the mean number of jobs in the

queues of part k and, for each a ∈N , let Lk(a) = E
[
∑i∈Ik Xi||I(X)|Σ = a

]
denote

the mean number of jobs in the queues of part k given that there are al active queues
in part l for each l = 1, . . . ,K. The regularity assumptions ensure that, for each k =
1, . . . ,K, 1

nk
Lk and 1

nk
Lk(a) for each a ∈N also give the mean numbers of jobs at

queue i for any i ∈ Ik. By the law of total expectation, we have

Lk = ∑
a∈N

Lk(a)π(a), ∀k = 1, . . . ,K.

The following theorem gives a recursive formula for π(a) and Lk(a) that allows one
to compute recursively these quantities with a complexity O(n1 · · ·nK). The proof is
given in Appendix A.
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Theorem 3 Consider a system of n processor-sharing queues with state-dependent
service rates allocated according to balanced fairness in a polymatroid capacity set
C . Assume that C is poly-symmetric with respect to partition Σ and denote by h the
corresponding cardinality rank function. Further assume that for each k = 1, . . . ,K,
all queues of Ik receive jobs with the same traffic intensity %k, i.e. ρi =%k for all i ∈ Ik.
For each a ∈N \{0}, we have

π(a) =
∑

K
k=1(nk−ak +1) %k π(a− ek)

h(a)−∑
K
k=1 ak %k

. (6)

Let k = 1, . . . ,K. For each a ∈N , we have Lk(a) = 0 if ak = 0, and otherwise

π(a)Lk(a) =
1

h(a)−∑
K
l=1 al %l

{
ak %k π(a)+(nk−ak +1) %k π(a− ek)

+
K

∑
l=1

(nl−al +1) %l π(a− el)Lk(a− el)

}
. (7)

This result applies to Example 5 with the partition Σ = ({1,3},{2}) when classes 1
and 3 have the same traffic intensity. The set of suitable vectors of traffic intensities
is depicted as the darkly shaded region in Figure 5b.

In this theorem, we have assumed that the cardinality rank function h was given.
Given a real system like those of Sections 2.2 and 2.3 which is known to be poly-
symmetric with regard to some partition Σ = (Ik : k = 1, . . . ,K), one could ask if it is
also possible to build h with a complexity O(n1 · · ·nK). This is straightforward for a
computer cluster. Concerning the tree data networks, we can actually apply a method
similar to that of the proof of Theorem 1. Specifically, we first define recursively a
concave function f on N by f (0) = 0, f (a) =CL if there is L ∈T so that |L|Σ = a,
and otherwise

f (a) = min{ f (b)+ f (c) : b,c ∈N s.t. b,c 6= a and a = b+ c},

from which we can construct h by letting

h(a) = min{ f (b) : b ∈N and a≤ b}, ∀a ∈N .

We will now see two examples of real systems where this result applies.

3.3 Application to tree data networks

We consider the simple example of a tree data network where each user has an in-
dividual access line and all users share an aggregation link which has a capacity C
in bit/s. The user access lines can have K different capacities r1, . . . ,rK in bit/s. This
corresponds to the model introduced in [1] to predict some performance metrics in
Internet service provider access networks, where the individual access lines represent
subscriber lines which are connected to the aggregation link by the DSLAM.
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Access lines
with capacity r1

Access lines
with capacity r2

Aggregation link
with capacity C

Fig. 6: User routes

Example 6 Figure 6 gives a toy example with K = 2 possible access rates r1 and r2.
There are three users with access rate r1 and two users with access rate r2. All users
are constrained by the aggregation link with capacity C.

For each k = 1, . . . ,K we denote by Ik the set of users with access rate rk. These
form a partition of the set I =

⊔K
k=1 Ik of users. Theorem 1 ensures that the capacity

set of this data network is a polymatroid with rank function µ given by

µ(A) = min

(
K

∑
k=1
|A∩ Ik|rk,C

)
, ∀A⊂ I. (8)

It is poly-symmetric with respect to partition Σ = (Ik : k = 1, . . . ,K). The correspond-
ing cardinality rank function h is given by

h(a) = min

(
K

∑
k=1

akrk,C

)
, ∀a ∈N .

We further assume that for each k = 1, . . . ,K, all users with access line rk have the
same traffic intensity %k< rk. Then the network is stable whenever ∑

K
k=1 nk %k< C,

and it meets the conditions of Theorem 3.
A metric of interest is the mean throughput per user. For each i ∈ I, we denote

by Pi and Ei the conditional probability measure and expectation given that user
i is active, corresponding to the stationary distribution πi(x) ∝ 1xi>0π(x). For each
k = 1, . . . ,K and each i ∈ Ik, the mean throughput perceived by user i is then given by

Ei[φi(X)] =
E[φi(X)]

P{Xi > 0}
=

%k

P{Xi > 0}
,

where the second equality holds by the conservation equation %k= E[φi(X)] for all
i ∈ Ik. Using the notations of Section 3.2, the mean throughput of the users with
access rate rk is given by

γk =
%k

1− ∑
a∈N :ak<nk

(nk−1
ak

)
∏
l 6=k

(nl
al

)
π(a)

.

where π(a) for each a ∈ N can be computed with a complexity O(n1 · · ·nK) by
(6). Other performance metrics such as the mean congestion rate per user can be
computed similarly.



16 Thomas Bonald et al.

3.4 Application to computer clusters

Let d1,d2 ≥ 1. We consider a computer cluster with m = d1d2 servers and n = d1+d2
classes. All servers have the same unit capacity and all jobs have a unit mean size.
The set I of classes is partitioned into two subsets I1 and I2. I1 contains d2 classes that
can each be served by d1 servers and I2 contains d1 classes that can each be served
by d2 servers. For any i = 1, . . . ,d2, the i-th class of I1 can be served by the servers
(i−1)d1 + j for j = 1, . . . ,d1. For any i = 1, . . . ,d1, the i-th class of I2 can be served
by the servers i+( j−1)d1 for j = 1, . . . ,d2. Figure 7 gives a toy example with d1 = 2
and d2 = 3.

1 2 3 4 5 6

1 2 3

4 5

Fig. 7: Computer cluster with d1 = 2 and d2 = 3

Any class of I1 shares exactly one server with any class of I2, and this server is
dedicated to these two classes. The rank function of this cluster is thus given by

µ(A) = |A∩ I1|d1 + |A∩ I2|d2−|A∩ I1|× |A∩ I2|, ∀A⊂ I.

The polymatroid capacity set defined by this rank function is poly-symmetric with
respect to partition Σ = (I1, I2) and the corresponding cardinality rank function is
given by

h(a) = a1d1 +a2d2−a1a2, ∀a ∈N .

For each k = 1,2, assume that all classes in Ik have the same traffic intensity %k.
Further assume that the vector of traffic intensities %= (%1,%2) stabilizes the system,
that is

a1 %1 +a2 %2< a1d1 +a2d2−a1a2, ∀a ∈N .

We can then apply Theorem 3 with partition Σ to compute the mean number of jobs
of each class with a complexity O(n1n2). We deduce the mean delay δi of class-i jobs
for each i ∈ I by Little’s law:

δi =
Lk

nkλi
, ∀k = 1,2, ∀i ∈ Ik.

4 Stochastic Bounds

4.1 Monotonicity result

While the property of poly-symmetry is not often satisfied in practice, except in spe-
cific cases like the examples of Sections 3.3 and 3.4, it can be used to derive stochastic
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bounds on most systems, as shown below. The following result will allow us to con-
trol the impact of the capacity set on performance.

Given 0 < ε < 1 and a polymatroid C in Rn
+ with rank function µ , we denote by

(1+ ε)C the polymatroid in Rn
+ with rank function (1+ ε)µ and by (1− ε)C the

polymatroid in Rn
+ with rank function (1− ε)µ .

Theorem 4 Let 0 < ε < 1. Consider two polymatroids Ĉ and C in Rn
+ such that Ĉ

is a subset of (1+ε)C and a superset of (1−ε)C . Let ρ be an element in the interior
of (1− ε)C and denote respectively by π , π+ and π− the steady state distributions
of the processor-sharing systems with capacity sets Ĉ , (1+ε)C and (1−ε)C under
traffic intensity ρ . Then

π−(0)
π+(0)

π+(x)≤ π(x)≤ π+(0)
π−(0)

π−(x), ∀x ∈ Nn.

Specifically, for each i ∈ I, we have

π−(0)
π+(0)

Li,+ ≤ Li ≤
π+(0)
π−(0)

Li,−,

where Li, Li,+ and Li,− are the mean number of job at queue i under distributions π ,
π+ and π− respectively.

Proof Denote by µ̂ and µ the rank functions of Ĉ and C respectively. Let Φ , Φ+

and Φ− denote the balance functions of the resource allocations defined by balanced
fairness in the capacity sets Ĉ , (1+ε)C and (1−ε)C respectively. We first prove by
induction on |x| that

Φ+(x)≤Φ(x)≤Φ−(x), ∀x ∈ Nn.

The property holds for x = 0. Let x ∈ Nn \{0} and assume the inequality is valid for
any y ∈ Nn such that |y|< |x|. Then we have by (3):

Φ(x) =
∑i∈I(x) Φ(x− ei)

µ̂(I(x))
≤

∑i∈I(x) Φ−(x− ei)

µ̂(I(x))
≤

∑i∈I(x) Φ−(x− ei)

(1− ε)µ(I(x))
= Φ−(x)

where the first inequality holds by the induction assumption and the second holds by
the inclusion of (1− ε)C into Ĉ . We prove the other side of the inequality by using
the inclusion of Ĉ into (1+ ε)C . This completes the proof by induction.

It follows that
1

π(0)
= ∑

x∈Nn
Φ(x)ρx ≥ ∑

x∈Nn
Φ+(x)ρx =

1
π+(0)

.

Thus for each x ∈ Nn, we obtain

π(x) = π(0)Φ(x)ρx ≤ π(0)Φ−(x)ρx ≤ π+(0)Φ−(x)ρx =
π+(0)
π−(0)

π−(x).

The proof for the other part of the inequality is similar. The second inequality about
the mean number of jobs follows by summation. ut

The following sections illustrate how we can apply this result to the models of
tree data networks and computer clusters.
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4.2 Application to tree data networks

We first use this result to relax some assumptions of Section 3.3. The flows of each
user go through an individual access line which is dedicated to this user and an ag-
gregation link shared by all users. We still consider K groups I1, . . . , IK of users which
form a partition of the set I. For each k = 1, . . . ,K, the access rates of the users in Ik
may be different but we assume that they are all between (1− ε)rk and (1+ ε)rk for
some ε > 0. Similarly, the capacity of the aggregation link is between (1− ε)C and
(1+ ε)C. The corresponding polymatroid capacity set Ĉ is not poly-symmetric with
respect to partition Σ = (Ik : k = 1, . . . ,K) any more but its rank function µ̂ satisfies:

(1− ε)µ(A)≤ µ̂(A)≤ (1+ ε)µ(A), ∀A⊂ I,

where µ is the rank function defined by (8). Denoting by C the polymatroid defined
by µ , it follows that Ĉ is a superset of (1− ε)C and a subset of (1+ ε)C . We can
thus apply Theorem 4. In the special case where for each k = 1, . . . ,K, all users of Ik
have the same traffic intensity %k< (1− ε)rk, with ∑

K
k=1 nk %k< (1− ε)C, we can use

Theorem 3 to compute the bounds.
Specifically, let π+ and π− denote the steady state distributions of the processor-

sharing systems with capacity sets (1+ ε)C and (1− ε)C respectively under traffic
intensity ρ . For each k = 1, . . . ,K and each i ∈ Ik, the mean throughput γi of user i
satisfies

π−(0)
π+(0)

γk,− ≤ γi ≤
π+(0)
π−(0)

γk,+,

where γk,+ and γk,− are the mean throughputs under distributions π+ and π− respec-
tively. We have

γk,± =
%k

1− ∑
a∈N :ak<nk

(nk−1
ak

)
∏
l 6=k

(nl
al

)
π±(a)

, ∀k = 1, . . . ,K,

and by (6)

π±(a) =
∑

K
k=1(nk−ak +1) %k π±(a− ek)

(1± ε)h(a)−∑
K
k=1 ak %k

, ∀a ∈N \{0}.

4.3 Application to computer cluster with random assignment

Random assignment. Consider a cluster as described in Section 2.3, where we denote
by S = {1, . . . ,m} the set of servers and by I the set of class indices. Let K ≥ 1 and
consider for simplicity a partition Σ =(I1, . . . , IK) of I into K parts of size n, so that the
total number of job classes in the cluster is now given by Kn. We can easily generalize
the result to K parts of different sizes. We use the same notation as in Sections 3.1 and
3.2: for each A⊂ I, a= |A|Σ denotes the K-dimensional vector whose k-th component
is ak = |A∩ Ik|, the size of the k-th part of A in partition Σ , for each k = 1, . . . ,K; the
set of these vectors is denoted by N = {0,1, . . . ,n}K .
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We now introduce a random assignment of the servers to the job classes, which
is described by an assignment graph with random edges. Each realization of this
random assignment defines a polymatroid capacity set as in Section 2.1. Hence, once
this initial assignment is settled, we can apply balanced fairness over the associated
capacity set as described in Section 2.4. Note that our assignment is static in the sense
that the assignment graph does not change with time. For a given realization, we can
thus observe the evolution of the cluster under stochastic arrivals and compute the
resulting performance metrics similarly to Section 2.5.

The servers are randomly assigned to the job classes as follows. Let d = (dk : k =
1, . . . ,K) be a vector of positive integers. For any k = 1, . . . ,K and i ∈ Ik, the set Si of
servers that can process class-i jobs is chosen uniformly and independently at random
among the subsets of S = {1, . . . ,m} of cardinality dk. As in Section 2.3, the random
assignment is described by the family (Si : i ∈ I) which defines a random bipartite
graph

G =

(
I,S,

⋃
i∈I

({i}×Si)

)
with deterministic sets of vertices I and S and a random set of edges. Each realization
(Si : i ∈ I) of the random assignment defines a polymatroid capacity set with a rank
function given by (2). This allows us to define a random rank function associated with
the random assignment by

M(A) = ∑
s∈S

µs1s∈
⋃

i∈A Si , ∀A⊂ I.

Now let µ denote the corresponding mean rank function:

µ(A) = E[M(A)], ∀A⊂ I.

The following lemma proves that the polymatroid defined by µ is poly-symmetric
with respect to Σ .

Lemma 2 For each A⊂ I, we have µ(A) = ξ mpa with ξ = 1
m ∑s∈S µs, a = |A|Σ and

pa = 1−
K

∏
k=1

(
1− dk

m

)ak

.

Proof Let a ∈N and consider any set A⊂ I with |A|Σ = a. We just need to observe
that

µ(A) = ∑
s∈S

µsP

{
s ∈

⋃
i∈A

Si

}
.

For each k = 1, . . . ,K such that ak > 0, the probability that a server can not serve a
specific class of A∩ Ik is

(m−1
dk

)
/
(m

dk

)
= 1− dk

m . Since the assignments of the classes
are independent, it follows that the probability that this server can serve at least one
class in A is given by pa. ut
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Let ρ = (ρi : i ∈ I) be a vector of traffic intensities. If G is a realization of the
random assignment graph G such that ρ is in the interior of the polymatroid capacity
set defined by G, then the corresponding processor-sharing system is stable under
balanced fairness and we can study its steady-state behavior. We thus denote by X =
(Xi : i ∈ I) the random vector distributed according to the stationary distribution of
the system state when ρ is in the interior of G, and for completeness we let X = 0
otherwise. For each realization G of the random assignment such that ρ is in the
interior of the corresponding capacity set, we let

Li(G) = E [Xi|G = G] , ∀i ∈ I,

which is simply the mean number of jobs of each class in the corresponding processor-
sharing system under balanced fairness, as defined in Section 2.5. For each realization
G which is not stabilized by ρ , we let Li(G) = +∞.

Asymptotic poly-symmetry. We consider a sequence of computer clusters with ran-
dom assignment as defined in the previous section. Let K ≥ 1 and b > 0.

For each n ≥ 1, the n-th random cluster of the sequence contains m(n) = dbne
servers and Kn job classes. We denote the set of servers by S(n) = {1, . . . ,m(n)} and
the set of job classes by I(n) = {1, . . . ,Kn}. The service rate of server s is µ

(n)
s for each

s ∈ S(n). For simplicity, we consider a partition Σ (n) = (I(n)k : k = 1, . . . ,K) of I(n) into
K parts of size n. We can generalize the result to K parts of different sizes as long as
the size of each part is linear in n. For each k = 1, . . . ,K and i ∈ I(n)k , the set S(n)

i of
servers that can process class-i jobs is chosen uniformly and independently at random
among the subsets of S(n) of cardinality d(n)

k . Let G(n) denote the random graph de-
fined by this random assignment, M(n) the corresponding random rank function and
µ(n) its expectation.

By Lemma 2, for any n≥ 1 and a ∈N (n) = {0, . . . ,n}K , we have

µ
(n)(A) = E

[
M(n)(A)

]
= ξ

(n)m(n)p(n)a with p(n)a = 1−
K

∏
k=1

(
1−

d(n)
k
m

)ak

for all set A⊂ I(n) with |A|
Σ (n) = a, where ξ (n) = 1

m(n) ∑s∈S(n) µ
(n)
s is the mean server

capacity. Theorem 5 below shows that, under the following two assumptions on the
server capacities and the degrees of parallelism, the probability that the random rank
function is uniformly close to its mean is 1−o

( 1
n

)
. The proof is given in Appendix

B.

Assumption 1 For each n ≥ 1, S(n) is partitioned into a constant number of groups.
Each group contains Ω(n) servers which have the same capacity.

Assumption 2 For each k = 1, . . . ,K, the sequence
(

d(n)
k : n≥ 1

)
satisfies d(n)

k =

ω(logn).



Poly-Symmetry in Processor-Sharing Systems 21

Theorem 5 Let 0 < ε < 1. Under Assumptions 1 and 2, there exists a sequence (gn :
n≥ 1) such that gn = ω(logn) and for any n≥ 1,

P
{
∃A⊂ I(n) s.t. M(n)(A)≤ (1− ε)µ(n)(A)

}
≤ e−gn

and
P
{
∃A⊂ I(n) s.t. M(n)(A)≥ (1+ ε)µ(n)(A)

}
≤ e−gn .

Corollary 1 follows from Theorem 5. For any n≥ 1, let C (n) denote the polymatroid
defined by the rank function µ(n). C (n) is poly-symmetric with respect to the partition
Σ (n).

Corollary 1 Let 0 < ε < 1. Under Assumptions 1 and 2, the random capacity set
resulting from the random assignment is a subset of (1+ ε)C (n) and a superset of
(1− ε)C (n) with probability 1−o

( 1
n

)
.

Performance metrics. For each n ≥ 1, we consider a vector %(n)∈ RK
+ of traffic in-

tensities per part which stabilizes the processor-sharing system with n queues and
capacity set (1− ε)C (n) under balanced fairness, that is,

K

∑
k=1

ak %
(n)
k < (1− ε)h(n)(a), ∀a ∈N (n),

where h(n) is the cardinality rank function of the mean capacity set with respect to
partition Σ (n):

h(n)(a) = ξ
(n)m(n)p(n)a , ∀a ∈N (n).

Let X(n) denote the state in the n-th randomized computer cluster when we allocate
the resources according to balanced fairness. Given a realization G(n) which is stabi-
lized by %(n), the mean numbers of jobs per class are given by

Li

(
G(n)

)
= E

[
X(n)

i

∣∣G(n) = G(n)
]
, ∀i ∈ I(n).

For each realization G(n) which is not stabilized by %(n), we let Li

(
G(n)

)
=+∞. This

allows us to define the random variables

L(n)
i = Li

(
G(n)

)
, ∀i ∈ I.

Combining Theorems 4 and 5 yields the following result.

Theorem 6 Let 0 < ε < 1. For any n ≥ 1, denote by π
(n)
+ and π

(n)
− the stationary

distributions of the processor-sharing systems with n queues and capacity sets (1+
ε)C (n) and (1− ε)C (n) respectively, when the traffic intensity of the classes in I(n)k is

%
(n)
k , for any k = 1, . . . ,K. Let L(n)

k,+ and L(n)
k,− denote the corresponding mean number

of jobs per queue in part k, for each k = 1, . . . ,K.
Under Assumptions 1 and 2, we have

P

π
(n)
− (0)

π
(n)
+ (0)

L(n)
k,+

n
≤ L(n)

i ≤
π
(n)
+ (0)

π
(n)
− (0)

L(n)
k,−
n

, ∀k = 1, . . . ,K, ∀i ∈ Ik

= 1−o
(

1
n

)
.
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Fig. 8: Bounds obtained with m = 10,000, n = 1,000, d1 = 20, d2 = 40

For each n ≥ 1, Theorem 3 gives formulas to compute π
(n)
± and L(n)

k,± for each
k = 1, . . . ,K with a complexity O

(
nK
)
. Using Little’s law, we can deduce bounds on

the mean delay per class.

Numerical application We omit writing the exponents for brevity. Consider a ran-
domized cluster with m = 10,000 servers with unit capacity. The set of classes is
partitioned into two parts I1 and I2 with n = 1,000 classes each. The classes of I1
have a degree d1 = 20 and the ones of I2 have a degree d2 = 40. All jobs have a mean
size 1 and the arrival rates are proportional to the degrees. The traffic intensity of any
class in I2 is thus twice that of any class in I1. Let %∈ R2

+ so that

%1=
d1

d1 +d2

h(n,n)
n

and %2=
d2

d1 +d2

h(n,n)
n

,

where h is the cardinality rank function of the mean capacity set with respect to
partition Σ = (I1, I2):

h(a) = m
{

1−
(

1− d1

m

)a1
(

1− d2

m

)a2
}
, ∀a ∈ {0,1, . . . ,n}2.

We can prove that the vector of traffic intensities ρ ∈ R2n
+ with ρi =%1 for all i ∈ I1

and ρi =%2 for all i ∈ I2 is on the boundary of the mean capacity set.
Let 0 < ε < 1. For each α ∈ (0,1− ε), α % stabilizes the processor-sharing sys-

tems with capacity sets (1+ ε)C and (1− ε)C . The bounds on the mean delay that
follow from Theorem 6 by applying Little’s law are given by

1+ ε

α

π−(0)
π+(0)

Lk,+

n %k
and

1− ε

α

π+(0)
π−(0)

Lk,−
n %k

,

where π±(0) and Lk,± are computed with the recursion expressions of Theorem 3 as
follows. For each a ∈ {0,1, . . . ,n}2,

π±(a) =
(n−a1 +1) %1 π±(a− e1)+(n−a2 +1) %2 π±(a− e2)

1±ε

α
h(a)−a1 %1 −a2 %2

.
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For any k = 1,2 and a ∈N , we have Lk,±(a) = 0 if ak = 0, and otherwise

π±(a)Lk,±(a)=
1

1±ε

α
h(a)−a1 %1 −a2 %2

{
ak %k π±(a)+(n−ak+1) %k π±(a−ek)

+
2

∑
l=1

(n−al +1) %l π±(a− el)Lk,±(a− el)

}
.

Figure 8 gives the bounds obtained as a function of α ∈ (0,1−ε), for different values
of ε . For simplicity, we draw the mean service rate per job, which is simply the inverse
of the mean delay since all jobs have a unit mean size.

5 Conclusion

In this paper, we consider processor-sharing systems and introduce a poly-symmetry
criterion on the structure of their capacity set which ensures that the performance
metrics can be computed with a complexity which is polynomial in the number of
queues if the traffic intensities per queue are adjusted accordingly. We showed that
these formulas can also be used to bound the performance of a system when its ca-
pacity set is nearly poly-symmetric. We applied these results to tree data networks
and computer clusters.

For the future works, we would like to generalize the notion of poly-symmetry to
relax some symmetry assumptions imposed in this paper while keeping a reasonable
time complexity for the calculation of the performance metrics. We also believe there
is further scope of enhancing the stochastic bounds by expanding their scope as well
as obtaining tighter bounds in some specific scaling regimes.

Appendix

A Proof of Theorem 3

A.1 Recursion (6)

Let a ∈N \{0}. By (4), we have

π(a) = ∑
A⊂I
|A|Σ=a

π(A) = ∑
A⊂I
|A|Σ=a

∑i∈A ρiπ(A\{i})
µ(A)−∑i∈A ρi

.

The regularity assumptions ensure that µ(A)−∑i∈A ρi = h(a)−∑
K
k=1 ak %k for any

A⊂ I with |A|Σ = a. Thus we obtain(
h(a)−

K

∑
k=1

ak %k

)
π(a) = ∑

A⊂I
|A|Σ=a

∑
i∈A

ρiπ(A\{i}) =
K

∑
k=1

%k ∑
i∈Ik

∑
A⊂I,i∈A
|A|Σ=a

π(A\{i}).
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For any k = 1, . . . ,K and any i ∈ Ik, we do the substitution

∑
A⊂I,i∈A
|A|Σ=a

π(A\{i}) = ∑
B⊂I\{i}
|B|Σ=a−ek

π(B),

and thus we obtain for any k = 1, . . . ,K,

∑
i∈Ik

∑
A⊂I,i∈A
|A|Σ=a

π(A\{i}) = ∑
B⊂I

|B|Σ=a−ek

∑
i∈Ik\(B∩Ik)

π(B) = (nk−ak +1)π(a− ek). (9)

This proves (6).

A.2 Recursion (7)

Let k = 1, . . . ,K and a ∈N \{0}. By definition of Lk(a), we have

Lk(a) = E

[
∑
i∈Ik

Xi

∣∣∣∣|I(X)|Σ = a

]
= ∑

i∈Ik

E [Xi||I(X)|Σ = a] .

It follows that

π(a)Lk(a) = ∑
i∈Ik

∑
A⊂I,i∈A
|A|Σ=a

π(A)Li(A), (10)

and by (5), we obtain

π(a)Lk(a) = ∑
i∈Ik

∑
A⊂I,i∈A
|A|Σ=a

ρiπ(A\{i})+ρiπ(A)+∑ j∈A\{i}ρ jπ(A\{ j})Li(A\{ j})
µ(A)−∑ j∈A ρ j

.

Using the regularity assumptions, this can be rewritten as(
h(a)−

K

∑
l=1

al %l

)
π(a)Lk(a) = %k ∑

i∈Ik
∑

A⊂I,i∈A
|A|Σ=a

π(A\{i})+ %k ∑
i∈Ik

∑
A⊂I,i∈A
|A|Σ=a

π(A)

+ ∑
i∈Ik

∑
A⊂I,i∈A
|A|Σ=a

∑
j∈A
j 6=i

ρ jπ(A\{ j})Li(A\{ j}).

The first term is given by (9). The second term is simply

%k ∑
i∈Ik

∑
A⊂I,i∈A
|A|Σ=a

π(A) =%k ∑
A⊂I
|A|Σ=a

∑
i∈A∩Ik

π(A) = ak %k π(a).

Finally, for any i ∈ Ik, we have

∑
A⊂I,i∈A
|A|Σ=a

∑
j∈A
j 6=i

ρ jπ(A\{ j})Li(A\{ j}) =
K

∑
l=1

%l ∑
j∈Il
j 6=i

∑
A⊂I,i, j∈A
|A|Σ=a

π(A\{ j})Li(A\{ j}).
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Doing the same substitution as in (9), we have for any l = 1, . . . ,K,

∑
j∈Il
j 6=i

∑
A⊂I,i, j∈A
|A|Σ=a

π(A\{ j})Li(A\{ j}) = ∑
B⊂I,i∈B
|B|Σ=a−el

∑
j∈Il\(B∩Il)

π(B)Li(B),

= (nl−al +1) ∑
B⊂I,i∈B
|B|Σ=a−el

π(B)Li(B).

Hence the third term of the sum is equal to

∑
i∈Ik

K

∑
l=1

(nl−al +1) %l ∑
B⊂I,i∈B
|B|Σ=a−el

π(B)Li(B)

=
K

∑
l=1

(nl−al +1) %l ∑
i∈Ik

∑
B⊂I,i∈B
|B|Σ=a−el

π(B)Li(B),

=
K

∑
l=1

(nl−al +1) %l π(a− el)Lk(a− el)

where the second equality holds by (10). When we substitute the three terms by their
expressions, we obtain (7).

B Proof of Theorem 5

We give the proof only for the case K = 2 for ease of notation; the other cases follow
analogously. For now, we assume that for all n≥ 1, all servers have the same capacity
µ
(n)
s = ξ (n) for any s ∈ S(n).

Let 0 < ε < 1. We will show that there exists a sequence (gn : n ≥ 1) such that
gn = ω(logn) and for any n≥ 1,

P
{
∃A⊂ I(n) s.t. M(n)(A)≤ (1− ε)µ(n)(A)

}
≤ e−gn .

Let us first give the main ideas of the proof. As in [18], it is divided in three steps. We
first provide a bound for P

{
M(n)(A)≤ (1− ε)µ(n)(A)

}
for each A⊂ I(n) for n large

enough. Then, for each a ∈N (n) = {0,1, . . . ,n}2, we use the union bound to obtain
a uniform bound over all sets A⊂ I with |A|

Σ (n) = a. Finally, another use of the union
bound over all a ∈N (n) gives us the result.

B.1 Partial bound

Let n≥ 1, a∈N (n) and A⊂ I(n) so that |A|
Σ (n) = a. Recall that µ(n)(A) =E[M(n)(A)]

with
M(n)(A) = ξ

(n)
∑

s∈S(n)
1

s∈
⋃

i∈A S(n)i
.
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The variables 1
s∈
⋃

i∈A S(n)i
for s ∈ S(n) are Bernoulli distributed with parameter

p(n)a = 1−
K

∏
k=1

(
1−

d(n)
k

m(n)

)ak

.

Dubbashi et al. proved in Theorem 10 of [9] that these random variables are nega-
tively associated in the sense of Definition 3 of [9]. Their Theorem 14 then showed
that the Chernoff-Hoeffding bounds (see for instance [15,19]), which hold for inde-
pendent random variables, can also be applied to these random variables. Hence we
have

P
{

M(n)(A)≤ (1− ε)µ(n)(A)
}
≤ e−

ε2
2 m(n)p(n)a , (11)

P
{

M(n)(A)≤ (1− ε)µ(n)(A)
}
≤ e−m(n)H

[
(1−ε)p(n)a ||p

(n)
a

]
, (12)

where for any p,q ∈ (0,1), H[p||q] is the KL divergence between two Bernoulli ran-
dom variables with parameters p and q respectively, given by

H[p||q] = p log
(

p
q

)
+(1− p) log

(
1− p
1−q

)
.

We also use the following lemmas which will be proved later in Appendix C:

Lemma 3 Let 0 < δ < 1
2 . Consider a sequence (gn : n≥ 1) such that gn = o

(
d(n)

1

)
and gn = o

(
d(n)

2

)
. For large enough n, we have

p(n)a ≥ δ
(a1 +a2)gn

n
, ∀a = (a1,a2) ∈

{
0,1, . . . ,

⌊
n
gn

⌋}2

.

Lemma 4 There exists a positive constant δ such that

H
[
(1− ε)p(n)a ||p(n)a

]
≥−δ + ε

a1d(n)
1 +a2d(n)

2

m(n)
, ∀n≥ 1, ∀a ∈N (n).

Consider the sequence (gn : n≥ 1) given by

gn =
(

min
(

d(n)
1 ,d(n)

2

)
logn

)1/2
, ∀n≥ 1.

Observe that gn = ω(logn), gn = o
(

d(n)
1

)
and gn = o

(
d(n)

2

)
. Now let n ≥ 1 and

a ∈N (n). We distinguish two cases depending on the value of a.
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B.1.1 Case 1: 0≤ a1 ≤ n
gn

and 0≤ a2 ≤ n
gn

By Lemma 3, there is a positive constant δ1 such that, for large enough n,

p(n)a ≥ δ1
(a1 +a2)gn

n
.

Using (11), we deduce that

P
{

M(n)(A)≤ (1− ε)µ(n)(A)
}
≤ e−

ε2
2 δ1b(a1+a2)gn

for any A⊂ I(n) such that |A|
Σ (n) = a. The union bound yields

P
{
∃A⊂ I(n) s.t. |A|

Σ (n) = a and M(n)(A)≤ (1− ε)µ(n)(A)
}

≤ e−
ε2
2 δ1b(a1+a2)gn

(
n
a1

)(
n
a2

)
,

≤ e−
ε2
2 δ1b(a1+a2)gnna1na2 ,

≤ ea1gn

(
− ε2

2 δ1b+ logn
gn

)
ea2gn

(
− ε2

2 δ1b+ logn
gn

)
.

Since gn = ω(logn), we obtain for large enough n

P
{
∃A⊂ I s.t. |A|

Σ (n) = a and M(n)(A)≤ (1− ε)µ(n)(A)
}
≤ e−δ2(a1+a2)gn

with δ2 =
ε2

4 δ1b > 0.

B.1.2 Case 2: a1 >
n
gn

or a2 >
n
gn

Combining Lemma 4 with (12), we deduce that there is a positive constant δ3 such
that

P
{

M(n)(A)≤ (1− ε)µ(n)(A)
}
≤ eδ3m(n)−ε

(
a1d(n)1 +a2d(n)2

)

for any A⊂ I(n) such that |A|
Σ (n) = a. Since m(n) = dbne and gn = o

(
d(n)

1

)
, we have

δ3m(n)≤ ε

2
nd(n)1

gn
when n is large enough. If a1 >

n
gn

, we also have that ε

2
nd(n)1

gn
≤ ε

2 a1d(n)
1

so that

δ3m(n)− ε

(
a1d(n)

1 +a2d(n)
2

)
≤−ε

2
a1d(n)

1 − εa2d(n)
2 ≤−

ε

2

(
a1d(n)

1 +a2d(n)
2

)
for large enough n. The same argument holds by inverting a1 and a2 when a2 >

n
gn

,
so we conclude that there is a positive constant δ4 such that for large enough n, we
have

P
{

M(n)(A)≤ (1− ε)µ(n)(A)
}
≤ e−δ4

(
a1d(n)1 +a2d(n)2

)
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for any A⊂ I(n) such that |A|
Σ (n) = a. The union bound yields

P
{
∃A⊂ I(n) s.t. |A|

Σ (n) = a and M(n)(A)≤ (1− ε)µ(n)(A)
}

≤ e−δ4

(
a1d(n)1 +a2d(n)2

)(
n
a1

)(
n
a2

)
,

≤ e−δ4

(
a1d(n)1 +a2d(n)2

)
na1na2 ,

≤ ea1d(n)1

(
−δ4+logn/d(n)1

)
ea2d(n)2

(
−δ4+logn/d(n)2

)
.

Since d(n)
1 = ω(logn) and d(n)

2 = ω(logn), for large enough n, we have

P
{
∃A⊂ I(n) s.t. |A|

Σ (n) = a and M(n)(A)≤ (1− ε)µ(n)(A)
}

≤ e−δ5a1d(n)1 e−δ5a2d(n)2 = e−δ5

(
a1d(n)1 +a2d(n)2

)

for some positive constant δ5 < δ4.

B.2 Conclusion

Combining cases B.1.1 and B.1.2, we deduce that there exists a positive constant δ6
such that

P
{
∃A⊂ I(n) s.t. |A|

Σ (n) = a and M(n)(A)≤ (1− ε)µ(n)(A)
}
≤ e−δ6gn , ∀a ∈N (n)

when n is large enough. Using the union bound again, we obtain

P
{
∃A⊂ I(n) s.t. M(n)(A)≤ (1− ε)µ(n)(A)

}
≤ n2e−δ6gn = e2logne−δ6gn = e−gn

(
δ6−

2logn
gn

)
.

Since gn = ω(logn), we conclude that for a constant δ7 < δ6, we have for large
enough n

P
{
∃A⊂ I(n) s.t. M(n)(A)≤ (1− ε)µ(n)(A)

}
≤ e−δ7gn .

Finally, when servers are in groups as in Assumption 1, we can break down M(n)

into a sum of random rank functions, one for each groups. The result follows by
showing the concentration in each group as above, and then using the union bound
again.
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C Proof of the lemmas for Theorem 5

Lemma 3 Let 0 < δ < 1
2 . Consider a sequence (gn : n≥ 1) such that gn = o

(
d(n)

1

)
and gn = o

(
d(n)

2

)
. For large enough n, we have

p(n)a ≥ δ
(a1 +a2)gn

n
, ∀a = (a1,a2) ∈

{
0,1, . . . ,

⌊
n
gn

⌋}2

.

Proof Consider the sequence ( fn : n≥ 1) of functions defined on R2
+ by

fn(t1, t2) = 1−

(
1−

d(n)
1
bn

)t1(
1−

d(n)
2
bn

)t2

, ∀(t1, t2) ∈ R2
+.

We have

fn

(
2n
gn

,0
)
= 1−

(1−
d(n)

1
bn

) n
gn
2

−−−→
n→∞

1

and fn

(
0,

2n
gn

)
= 1−

(1−
d(n)

2
bn

) n
gn
2

−−−→
n→∞

1.

Thus, there is nδ ≥ 1 so that fn

(
2n
gn
,0
)
≥ 2δ and fn

(
0, 2n

gn

)
≥ 2δ for all n≥ nδ .

Then, for any n≥ nδ and any t1, t2 ≤ n
gn

, we have

fn(t1, t2) = fn

(
t1

t1 + t2
(t1 + t2,0)+

(
1− t1

t1 + t2

)
(0, t1 + t2)

)
,

≥ t1
t1 + t2

fn(t1 + t2,0)+
t2

t1 + t2
fn(0, t1 + t2),

≥ t1
t1 + t2

t1 + t2
2n
gn

fn

(
2n
gn

,0
)
+

t2
t1 + t2

t1 + t2
2n
gn

fn

(
0,

2n
gn

)
,

≥ 2δ
t1gn

2n
+2δ

t2gn

2n
,

= δ
(t1 + t2)gn

n
,

where the first two inequalities hold by concavity of fn. ut

Lemma 4 There exists a positive constant δ such that

H
[
(1− ε)p(n)a ||p(n)a

]
≥−δ + ε

a1d(n)
1 +a2d(n)

2

m(n)
, ∀n≥ 1, ∀a ∈N (n).
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Proof By definition of H,

H
[
(1− ε)p(n)a ||p(n)a

]
= (1− ε)p(n)a log(1− ε)

+
(

1− (1− ε)p(n)a

)
log
(

1− (1− ε)p(n)a

)
−
(

1− (1− ε)p(n)a

)
log
(

1− p(n)a

)
.

The first and the second terms are greater than (1− ε) log(1− ε) and log(ε) respec-
tively. With δ = (1− ε) log

( 1
1−ε

)
+ log

( 1
ε

)
> 0, we obtain

H
[
(1− ε)p(n)a ||p(n)a

]
≥−δ −

(
1− (1− ε)p(n)a

)
log
(

1− p(n)a

)
,

≥−δ − ε log
(

1− p(n)a

)
.

Finally, observe that

log
(

1− p(n)a

)
= a1 log

(
1−

d(n)
1

m(n)

)
+a2 log

(
1−

d(n)
2

m(n)

)
≤−

a1d(n)
1 +a2d(n)

2

m(n)
,

where in the inequality we used the fact that log
(

1− d(n)k
m(n)

)
≤ − d(n)k

m(n) for k = 1,2.

Hence, we obtain the expected result. ut
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