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Abstract—In this paper we propose a stochastic geometric
model to study the energy burdens seen in a large scale
hirarchical sensor network. The network makes a natural use
of aggregation nodes, for compression, filtering or data fusion of
local sensed data. Aggregation nodes (AGN) then relay the traffic
to mobile sinks. While aggregation may substantially reduce the
overall traffic on the network it may have a deleterious effect
of concentrating loads on paths between AGNs and the sinks–
such inhomogeneities in energy burdens may in turn lead to
nodes with depleted energy reserves. To remedy this problem we
consider how one might achieve more balanced energy burdens
across the network by spreading traffic, i.e., using a multiplicity
of paths between AGNs and sinks. The proposed model reveals,
how various aspects of the task at hand impact the characteristics
of energy burdens on the network and in turn the likely lifetime
for the system. We show that the scale of aggregation and degree
of spreading might need and can be optimized. Additionally if the
sensing activity involves large amounts of data flowing to sinks,
then inhomogeneities in the energy burdens seen by nodes around
the sinks will be hard to overcome, and indeed the network
appears to scale poorly. By contrast if the sensed data is bursty
in space and time, then one can reap substantial benefits from
aggregation and balancing.

I. INTRODUCTION
In large-scale wireless ad-hoc/sensor networks enabled by

multi-hop relaying, it is critical to provide mechanisms to
conserve energy due to nodes’ limited capabilities to store
and replenish energy. Additional challenges may result from
inhomogeneous spatial patterns in traffic loads resulting in
uneven energy burdens seen by nodes resulting in a shortening
the network’s lifetime. In this paper we consider a widely con-
sidered hierarchical organization of network resources based
on local aggregation of sensor data followed by forwarding to
a set of information sinks. The rationale is to have nodes in
close proximity elect an aggregation node, whose role might
be to compress, filter, or perform data fusion on spatially
correlated data prior to forwarding it to an information sink.
Unfortunately, such a hierarchy still faces an intrinsic problem
from an energy perspective: the nodes close to sinks will
still see a disproportionate energy burden as they will see the
higher loads of traffic that flow to the sinks. One solution is to
increase the density of sinks, however it may end up being too
costly. In this paper we will assume that only a small number
of sinks are available as compared to the size of network, and
thus by large-scale we mean that on average there are a large
number of sensors associated with sinks.
A second possibility is to make sinks mobile, i.e., have sinks

change their locations to balance the energy burdens incurred
accross the network nodes [1]. As shown in Fig. 1, the network
can operate in two stages. In Stage 1 local aggregation nodes

Fig. 1. Stages of operation for sensor network with mobile sinks.

(AGN) may aggregate information from sensors in their cell
while sinks move around. Then, in Stage 2, the sinks may
‘probe’ the network at high power, and collect information
from AGNs. Not surprisingly the effectiveness of this scheme
depends on a number of factors including the very nature of
information being gathered. Among those we consider to be
critical we have: the timescale of sink mobility, the spatio-
temporal periodicity of sensed data, and delay sensitivity of
data delivery.
For brevity let us consider a few extreme examples. If

every sensor generates data periodically on relatively short
timescales versus that on which sinks move, and if this data
must be relayed to sinks immediately, then the network will
scale very poorly for two reasons: concentration of energy
burdens and throughput collapse around sinks. In this case
the only reasonable solution is to put more sinks. However
if data delivery is delay insensitive AGNs may forward data
only when a sink is close by i.e., in an opportunistic sense
the sink mobility increases energy efficiency and throughput
capacity [2].
By contrast let us consider the case of applications where

the ‘events’ being sensed correspond to spatio-temporal bursts
of information and can tolerate delays on the order of the
timescales of sink mobility. We believe a number of inter-
esting scenarios for large-scale sensor networks fall in this
category, e.g., environmental monitoring. In this case the
network can significantly benefit from the load and energy
balancing resulting from the sink mobility. However this
has the following problem: as shown on the left of Fig. 2,
the aggregated data may still be substantial even once it is
successfully compressed/filtered, and may be forwarded on
‘narrow’ paths to the sinks. This may result in inhomogeneities



Fig. 2. Comparison of the point-to-point routing (on the left) and a facet-
to-facet routing (on the right). Note the figure on the right shows the facet
routing for only one of the aggregation nodes for simplicity.

in the energy burdens over network which will eventually
shorten the network’s lifetime.
To mitigate the concentration of load associated with aggre-

gation it is reasonable to spatially spread aggregated traffic
in a proactive manner. That is we propose to automatically
have nodes spatially cooperate to create multi-path routes
over which traffic is spread. An efficient, scalable way to
achieve this it is to use a facet routing scheme as shown
on the right of Fig. 2. The idea is spread the traffic over
‘facets’ of Voronoi cells induced by a set of landmarks
where such hypothetical facets are depicted as dotted lines
in the figure. The scheme is decentralized and light-weight in
nature and may be efficiently implemented using geographic
routing techniques. Moreover one can use local information of
depletion levels within landmark cells to efficiently ‘detour’
highly depleted local regions. In this paper we will largely
focus on analyzing stochastic geometric models which allow
one to evaluate several tradeoffs associated with aggregation
of traffic an then the degree of spreading, e.g., facet widths,
over which traffic is carried to the sinks.
We will explore the following tradeoffs associated

with spatial spreading of traffic combined with aggrega-
tion/compression. First by spreading traffic over several paths,
one can certainly balance energy burdens but at the expense
of having traffic traverse longer distances and thus larger
average energy costs. Second by aggregating information from
nodes one can reduce the traffic load through compression,
filtering and/or data fusion, but this may lead to undesriable
inhomogeneities of load and thus energy burdens from AGNs
to sinks. The fundamental design questions are:

• How much spreading is beneficial for traffic from the
AGNs to the sinks?

• When is the benefit of aggregation ( compression) of traf-
fic counteracted by the concentration of energy burdens
in the network ?

To capture the characteristics of the problem in this paper
we devise a mathematical model for traffic aggregation and
spreading. It is without a doubt a very simple caricature, based
on first-order models for energy and compression at AGNs, yet

it will allow us to study how the network lifetime is affected by
a number of design parameters, including the effectiveness of
aggregation/compression, the density of sinks, battery capacity
of sensors, etc. We will show how one can further jointly
optimize the spatial scales for aggregation and spreading so
as to maximize network lifetime and provide numerical study
of the results.
This paper is organized as follows: in Section II we discuss

related work. In Section III we briefly present our models
and assumptions. In Section IV we derive mean and variance
of energy burdens, and based on those we discuss how to
optimize operation to maximize the network’s lifetime in
Section V. This is followed by a numerical study in Section
VI. Finally we conclude with Section VII.

II. RELATED WORK

There has been substantial amount of research on energy
conserving routing for large-scale ad hoc/sensor networks, for
different network scenarios and contexts. The idea of using
mobile relays or base stations in large sensor network was
proposed and studied in [3], [4], [1] in which automated
robots are deployed to solve scalability problems in sensor
networks. Particularly in [1] the authors show how the energy
concentration problem around sinks can be mitigated by
showing that the fluctuation of energy burdens gets smoothed
out by a single mobile base station. In this paper we tackle a
more general problem by considering hierarchical aggregation
with multiple mobile sinks, and see how the performance can
be optimized. In particular we provide an analytical model
to capture the impact that aggregation/compression, traffic
spreading and moving sinks will have on network lifetime.
In this respect this paper is closely related to our previous

work [5] where we model the random, unstructured traffic in
homogeneous network as inducing spatial traces of energy
burdens and show how the proactive multipath routing is
connected to network lifetime. We will use part of these
results to model the behavior of spatial patterns of structured,
i.e., hierarchical traffic in the sequel. Finally we are inspired
by studies modelling network structure via hierarchies of
Voronoi tessellations and exploit such geometric structures
for various purposes. Notably modelling of telecommunication
networks using stochastic geometry has been proposed in
[6] for analyzing the cost of a network with a hierarchy
associated with proximity, where we borrow their framework
and notations in part.

III. MODELS AND ASSUMPTIONS
As mentioned earlier assume that mobile sinks periodically

coordinate to ‘probe’ the network, i.e., broadcast their loca-
tions and announce they are ready to serve as data sinks. If
some AGNs have data to send they forward the data to the
nearest sink as depicted in Fig. 1 - we refer to this two-
stage operation as a round. The sinks navigate network at
random and we assume the spatio-temporal load on network
is relatively light and that at each round AGNs see sinks at a
set of random locations which are effectively independent of



Fig. 3. Strip model.

past rounds. We also assume that AGNs are selected based on
proximity, i.e., once selected the sensors associate themselves
with the closest AGN.
For modelling purposes we assume the locations of sensors

constitute a homogeneous Poisson point process (PPP), and
the locations of sinks at each round also constitute PPP with
the identical density but are independent across the rounds.
We assume the density of sinks is much smaller than that of
sensors, i.e., the cost for placing a large number of sinks is
high, thus at each round a sink is associated with hundreds or
thousands of sensors on average.
We will use a simplified first order model for energy

expenditures associated with data transmissions where energy
burdens are proportional to the traffic incident on a node
[5]. For analysis purposes we will capture the energy bur-
dens induced by routing traffic from AGNs to sinks as two
dimensional functions capturing the energy burden per unit
area and whose support set captures a footprint of spatially
clustered multi-path routes between the AGNs and sinks and
corresponds to a closed set in R2. More specifically we shall
assume traffic is spread over rectangular ‘strips’ of certain
width which represents the spatial scale of spreading. Fig. 3
depicts the strip model. Originating from each AGN the strips
represents the spatial footprints for energy burdens towards a
sink. For example in a region where multiple strips overlap,
sensors would see energy burdens proportional to the sum of
energy burdens contributed by overlapping strips. Intuitively if
the width of strips becomes larger one would see larger regions
for overlaps, however this may not translate into higher energy
burden in those regions since each unit of area in a larger strip
would carry less traffic due to spreading.
In fact energy burdens are not homogenous over a strip.

We incorporate the cost associated with traffic spreading in
the strip model as follows. We associated with each strip a
function capturing the energy burdens at different locations
as shown by Fig. 4. The proposed function is motivated by
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Fig. 4. Energy burden density on a strip.

‘continuum’ analogy for flows in high-density networks [5],
[7]. For example, the flow density corresponds to field strength
within homogeneous medium in electrostatic problems. Note
that the solutions of such system dynamics the field strength
exhibit harmonic decay in the radial distance from the source.
We will make a similar analogy such that ‘well-balanced’
spreading of traffic leads to a harmonic distribution of flow
strengths around source and destination. Let the set Sw(s, d)
be a rectangular strip of width w with its ends located at s and
d. The density for energy burden, i.e., burden per unit area, is
given by a function hw : R2 × R2 × R2 → R2 such that, for
x ∈ Sw(s, d),

hw(x, s, d) =
{ w

2(w−1)|z−x|+w if |z − x| < w
2 for z = s, d,

1
w otherwise.

If x %∈ Sw(s, d), h is defined to be 0. An example of h for
w = 6 and |s − d| = 9 is shown in Fig. 4. The function has
a peak value 1 at s and d, harmonically decreases to w−1

between s and d and assumes constant value in the remaining
area of the strip. We use this function to capture the energy
burden density associated with change of traffic load when the
traffic diverges and converges at endpoints, and is spread by
a factor of w.

IV. DERIVATION OF COSTS UNDER STRIP MODEL

A. Mean Cost
First we introduce our notation:
• Π0,Π1,Π2 denote PPP of sensors, AGNs and mobile
sinks at probing instant respectively.

• λk is the intensity of point process Πk.
• Ny is the number of points from Π0 associated with a
AGN at location y. Also we define N+

y := Ny + 1.
• Vz(Π) is the Voronoi cell with the nucleus z ∈ Π induced
by the point process Π.

• Ex
k is the Palm expectation given that a point in Πk is

located at x.



• Sw(y, z) is a strip of width w with its ends located at y
and z.

• Br(x): a ball of radius r with its center at x.
We are interested in the overall contribution of strips

originating from each AGN to its closest sink that overlaps
at the typical sensor from Π0, e.g., see Fig. 3. Since this
contribution is stationary, one can write the expectation of
the energy burdens burden from the perspective of a typical
sensor as:

E0
0




∑

yj∈Vz0 (Π2)∩Π1

gw(O, yj , z0)N+
yj



 (1)

Here gw(x, y, z) represents the energy burden density experi-
enced at a sensor at location x incurred by a strip originating
from y towards the sink located at z. By z0 we denote a
random point denoting the location of the closest sink to the
origin: note this is an approximation which ignores the edge
effect on cell boundaries of Π2. Also the term N+

yj
accounts

for the number of Π0 points aggregated at AGN plus the
AGN point itself. By multiplying it by gw(O, yj , z0) we obtain
the energy burden density experienced at the origin when the
aggregated traffic N+

yj
is forwarded to a sink at z0 originating

from a AGN1 at yj .
Using Neveu exchange formula [6], one can rewrite (1) as

λ2

λ0
E0

2

∫

V0(Π2)




∑

yj∈V0(Π2)∩Π1

gw(x, yj , O)N+
yj



Π0(dx)

(2)

= λ2E0
2

∫

V0(Π2)
E0,1




∑

yj∈V0(Π2)∩Π1

gw(x, yj , O)N+
yj



 dx

(3)

where we have moved the expectation with respect to Π0 and
Π1, denoted by E0,1, inside the integral from independence
among Π0,Π1 and Π2. Applying Campbell’s formula [8] for
the term inside the integral, we can write

λ2E0
2

∫

V0(Π2)

∫

V0(Π2)
Ey

1

[
gw(x, y,O)N+

y

]
Π1(dy)dx (4)

= λ2λ1E0
2

∫

V0(Π2)

∫

V0(Π2)

[
gw(x, y,O)E0

1N+
0

]
dydx (5)

We have that E0
1N0 = λ0

λ1
, thus E0

1N+
0 = λ0+λ1

λ1
.

Note that (5) should be evaluated by considering the void
probability regions of Π2, e.g., union of balls, however it
leads to an expression that cannot be reduced to closed form.
Thus we approximate the Voronoi cell region V0(Π2) as a ball
centered at origin with radius R which is a random variable
distributed according to the distance from the nucleus to a

1It is required that all the points from Π1 are more than distance w away
from their closest sink in order for (1) to be valid. As an approximation we let
this condition hold most of the time by assuming λ0, λ1 ! λ2 and w varies
on the order of λ1 at most, and we refer to this as large-cell approximation
in the sequel.

R

O

A B

C

w/2

x

y

D E

Fig. 5. Illustration for the computation involving hw(x, y, O) in the region
I1.

vertex on the boundary of the cell. Its distribution is given by
[9]

fR(r) = 2π2λ2r
3e−πλ2r2

Thus (5) is approximated by

λ2(λ1 + λ0)E
∫

BR(O)

∫

BR(O)
gw(x, y,O)dydx (6)

We decompose the integration region with respect to x
in (6) to I1 := BR(O) \ Bw/2(O) and I2 := Bw/2(O).
Approximately in the region I1 the energy burden seen at
location x is mainly an accumulation of the strips which carry
the traffic spread at each aggregation nodes. In I2, i.e., the
region ‘nearby’ the sink, the traffic will ‘converge’ to the sink
and the sensors in that region will experience the total traffic
aggregated at the sink.
We first consider the integration (6) with x in the region

I1, i.e., when w
2 < |x| < R in which case gw(x, y, z) is given

by hw(x, y, z) and in order to compute this integral, we first
identify the region which is the set of y locations such that
strips having end points at y and O will hit the location x.
As shown in Fig. 5, such region is the intersection of the
complement of B |x|

2
(x

2 ) and the sector of radius R formed
by extension of segments OA and OB, where A and B are
the tangent points of the lines originating from O and the ball
Bw

2
(x). Let us denote that region by Kw(x).
By inspecting hw(x, y,O), the integral can be divided into

two parts where hw(x, y,O) is constant or varies with y. We
see that, in the region Kw(x) ∩ Bc

w
2
(x), the contribution of

the strips originating within that region to x is constant by 1
w ,

thus the inner integral of (6) reduces to |Kw(x)∩Bc
w
2
(x)|/w.

When the strips are originated from y in the region Kw(x)∩
Bw/2(x), the energy density contribution changes with y.
If we consider y ∈ Kw(x) ∩ Bw

2
(x) satisfying |x − y| is

constant, hw(x, y,O) is also constant since it depends only
on |x − y|, which facilitates the evaluation of the surface
integral in (6). Also we denote the sector xBCA by Cw(x)
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Fig. 6. Illustration for the computation in the region I2.

and approximate the region of integration Kw(x)∩Bw
2
(x) =

Cw(x) \ B|x|/2(x/2) by Cw(x) which induces only a small
error when x ' w. Thus by defining a function h̄(ρ) as

h̄(ρ) =
w

2(w − 1)ρ + w
,

we can rewrite the inner integral of (6) as
∫

BR(O)
hw(x, y,O)dy

≈
|Kw(x) ∩ Bc

w
2
(x)|

w
+

∫

Cw(x)
hw(x, y,O)dy

=
|Kw(x) ∩ Bc

w
2
(x)|

w
+ (π + 2arcsin(

w

2|x| ))
∫ w

2

0
ρh̄(ρ)dρ.

When evaluating the expression inside the expectation of
(6), we use large-cell approximation, such that λ2 ) λ1 and w
varies on the order of λ1, so that R ' w with high probability,
for example we let

√
R2 − (w

2 )2 ≈ R, arcsin( w
2R ) ≈ w

2R , etc.
Then we have that

λ2(λ1 + λ0)E
∫

I1

∫

BR(O)
hw(x, y,O)dydx (7)

= 2πλ2(λ1 + λ0)E
[
R3

3
+ π

{
m(w)

2
− w

8

}
R2

+
{

wm(w) − w2

8

}
R − πw2

4
m(w) +

πw3

32

]
(8)

where m(w) is defined as

m(w) =
∫ w

2

0
ρh̄(ρ)dρ =

w2

4(w − 1)2
(w − 1 − log(w)).

Note m(w) captures the average overall cost for spreading
within a strip, i.e., it roughly increases linearly with w.
Next let us consider (6) in the region I2 for x. As presented

in Fig. 6, we see that for a sensor at location x all the strips
originating from the half-circle region of radius R hit the
location x. Specifically let us denote the half circle whose
diameter segment is orthogonal to x and centered at O by
B̄R(O, x), then we assume all the y locations which are the
originating points of the strips within B̄R(O, x) \ Bw(O)

contributes the burdens at x location. Note again from the
large-cell approximation we ignore the strips that are origi-
nated within the region Bw(0) for simplicity. Moreover such
contribution of burdens depends not on y but only on |x| if we
consider the shape of energy burden density of a strip, e.g.,
see Fig. 6. In specific one can write

gw(x, y,O) = h̄(|x|),

thus we have that, from (6),

λ2(λ1 + λ0)E
∫

I2

∫

B̄R(O,x)\Bw(O)
h̄(|x|)dydx

= λ2(λ1 + λ0)E
[
|B̄R(O, x) \ Bw(O)|

∫

I2

h̄(|x|)dx

]

= 2πλ2(λ1 + λ0)
∫ w

2

0
ρh̄(ρ)dρE

[
|B̄R(O, x) \ Bw(O)|

]

= 2πλ2(λ1 + λ0)m(w)E
[
πR2

2
− πw2

2

]

Combining this with (8) and discarding one minor term, i.e.,
o(R) for simplicity and using

E[Rk] =
Γ(k

2 + 2)
(πλ2)k/2

finally we have that

2π(λ1 + λ0)µ(w, λ2)

where we define µ(w, λ2) as
{

2m(w) − w

4
+

5
8π

√
λ2

+
3
√
λ2

4
(wm(w) − w2

8
)
}

(9)

B. Variance of Cost
To evaluate the variance of the energy burden for a typical

sensor under the strip model, consider the following:

E0
0




∑

yj∈Vz0 (Π2)∩Π1

hw(O, yj , z0)N+
yj




2

(10)

=
λ2

λ0
E0

2

∫

V0(Π2)




∑

yj∈V0(Π2)∩Π1

hw(x, yj , O)N+
yj




2

Π0(dx)

(11)

=
λ2

λ0
E0

2

∫

V0(Π2)




∑

yj∈V0(Π2)∩Π1

h2
w(x, yj , O)(N+

yj
)2

+
∑

yj ,yk∈V0(Π2)∩Π1
yj $=yk

hw(x, yj , O)hw(x, yk, O)N+
yj
N+

yk



Π0(dx)

(12)

Assuming λ2 ) λ0, λ1, the intensity measure for the second
term in (12) is approximated by Π1 × Π1 from the property
of PPP, and furthermore Nyj and Nyk are independent con-
ditioned on the area of cells originated by yi, yk since they



are the number of points in Π0 fall on disjoint regions , i.e.,
Vyj (Π1) and Vyk(Π2). Also we assume that the area of V0(Π2)
is large with high probability w.r.t. density of Π1, so that their
contributions to the indicator terms in (12) are uncorrelated
with high probability considering the shape of a strip, thus the
Nyj and Nyk are assumed to be roughly independent marks
associated with yj and yk.
Thus the term can be written

E




∑

yj ,yk∈V0(Π2)∩Π1
yj $=yk

{hw(x, yj , O)hw(x, yk, O)N+
yj
N+

yk
}





≈



E





∑

yj∈V0(Π2)∩Π1

hw(x, yj , 0)N+
yj









2

Thus this term cancels out when evaluating the variance which
reduces to

Var00




∑

yj∈Vz0 (Π2)∩Π1

hw(O, yj , z0)N+
yj



 (13)

≈ λ2

λ0
E0

2

∫

V0(Π2)




∑

yj∈V0(Π2)∩Π1

h2
w(x, yj , O)(N+

yj
)2



Π0(dx)

(14)
This can be evaluated in the similar way as before, except that
the term including N 2

0 .
Recall that N0 is the number of points in Π0 which lie

within the typical Voronoi cell of Π1. To compute E0
1N 2

0 we
have that

E0
1N 2

0 = E[E0
1{Π0(V0(Π1))}2 | |V0(Π1)|]

= E[λ0|V0(Π1)| + {λ0|V0(Π1)|}2]

where Πk(V ) denotes the number of Πk points in a compact
set V ∈ R2. since given the area |V0(Π1)| the mean and
variance can be obtained using the PPP property of Π0. Using

E|V0(Π1)| =
1
λ1

, E|V0(Π1)|2 ≈ 1.28
λ2

1

we have that

E0
1[N+

0 ]2 = 1 + 3
λ0

λ1
+ 1.28

λ2
0

λ2
1

.

Thus the variance is given by

2π
(
λ1 + 3λ0 + 1.28

λ2
0

λ1

)
σ2(w, λ2) (15)

where we define σ2(w, λ2) as
{

v(w) − 1
4

+
5

8πw
√
λ2

+
3
√
λ2

4
(wv(w) − w

8
)
}

(16)

and v(w) is defined as

v(w) =
∫ w

2

0
ρh̄2(ρ)dρ =

w2

4(w − 1)2
(
1
w

− 1 + log(w)).

V. DESIGN FOR JOINTLY OPTIMIZED COMPRESSION,
AGGREGATION AND ENERGY BURDEN BALANCING

In this section we investigate how one can jointly optimize
the degree of aggregation and traffic spreading subject to
compression performance and density of mobile sinks, based
on the strip model. Specifically we find the optimal densities
for aggregation nodes and landmarks for a given compression
model and sink density in order to minimize the network de-
pletion probability. In the following we introduce compression
models and specify how we estimate the depletion probability.

A. Compression and Data Models

We factor in the compression gains associated with the
number of sensors per aggregation node. Assume every sensor
generates a packet of size 1. Let us denote the size of
packet after compression by f(n) when the total number of
aggregated packets is n. One would expect f(n) ≤ n, however
it is more important to point out, firstly, the asymptotic gain
for the compression, and secondly, the rate of convergence to
that gain as n grows. Thus we have the following assumptions
for f(n):
1) limn→∞

f(n)
n = α, 0 ≤ α ≤ 1,

2) f(n)
n is a monotonically nonincreasing function of n.

If we consider the compression via entropy coding, these
assumption corresponds to those on the entropy rate of a
sequence of random variables. For example, suppose each
sensor i generates discrete random variable Xi where it is
identically distributed according to a random variableX whose
entropy is 1. If we let f(n) = H(X1,X2, . . . , Xn) the first
assumption is equivalent to stating the entropy rate

lim
n→∞

H(X1,X2, . . . , Xn)
n

= α.

and it is known that H(X1,X2,...,Xn)
n is a nonincreasing func-

tion of n, i.e., monotonicity of entropy per element [10] for
stationary stochastic process {Xi}, which corresponds to the
second assumption.
Note we intend to capture a fairly general concept for

compression, i.e., if there is any gain in reducing traffic via
data aggregation we will refer to it as compression. Consider
the following example of data filtering. Suppose a large sensor
network monitoring seismic activity of a region, and when a
number of sensors (say 10) have detected strength of seismic
waves and reported to local aggregation node. The aggregation
node may judiciously choose to send only the averaged wave
strength contained in one packet to central data fusion point,
achieving 10:1 compression ratio. One may make similar
assumptions as provided, for example when the number of
seismic wave samples increase, there are more chances for
filtering and as a result there always exists reduction in the
compressed size per data sample.
Next we consider the decaying rate of f(n)

n . Although we
are able to reflect a wide range of nonincreasing f(n)

n to
our analysis, we consider a harmonically decaying model



for simplicity, i.e., it decreases in an order of 1
n . It is also

motivated by the following example:
Example 1: Suppose the aggregation node at the origin in

a straight line collects data from sensors that are located at
d, 2d, 3d, . . ., i.e., the sensors are equally apart with some dis-
tance d. The sensors generate identically distributed Gaussian
random variables having zero-mean unit-variance. The model
for correlation is such that the correlation coefficient for a pair
of sensors that are distance x apart by

ρ(x) = exp(−cx)

where c is a positive constant. If we consider the differential
entropy hn of the total data aggregated from n sensor to the
origin (thus there are n+1 samples including the data collected
by the aggregation node itself), we have that

hn =
1
2
log(2πe)n+1|Kn+1| nats

=
1
2
log(2πe)n+1(1 − e−2cd)n nats

where Kn is the covariance matrix for n data samples, and it
is easy to show that since Kn is symmetric Toeplitz matrix the
determinant is given by the above expression. If we normalize
hn by the differential entropy for a single sample and refer to
it as f(n), we have that

f(n) =
log{2πe(1 − e−2cd)}

log(2πe)
n + 1 nats.

Clearly we have that

α = lim
n→∞

f(n)
n

=
log{2πe(1 − e−2cd)}

log(2πe)
< 1

and f(n)/n decreases on the order of 1
n . !

In what follows we will set f(n) = αn+1, for example if the
number of samples collected to a aggregation node is given by
a random variable N0 the traffic generated after compression
is given by f(N0).
Finally we model the data generation at each strip as a

Bernoulli random variable P with parameter p, i.e., at each
round an aggregation node will forward data to sink with
probability p. It is equivalent to saying each strip carries an
independent ‘mark’ of P , which is a crude model for sampling
spatio-temporal random field. Note p is an important parameter
which should be known a priori as will be discussed in Section
VI.

B. Depletion Probability
We assume the density of sensors are fixed and some portion

of the sensors are elected to aggregation nodes so that one can
view the point process of sensors as a mixture of two thinned
independent point processes, e.g., sensors perform independent
coin flipping to become aggregation nodes. Also we assume
without loss of generality λ0 = 1. Thus we assume Π1 is PPP
with density λ1 where λ1 is less that 1 and thus the density
of sensor process Π0 are 1 − λ1. Also we replace N+

0 with
f(N0) = αN0+1 in the previous derivations to account for the

compression gain with varying number of sensors associated
with an aggregation node.
Reflecting these modifications we have the following ex-

pressions for mean and the variance: the mean is given by
2πpµ̃(w, λ1, λ2) where we define

µ̃(w, λ1, λ2) := (α + (1 − α)λ1)µ(w, λ2)

and the variance is given by 2πpσ̃2(w, λ1, λ2) is given by

σ̃2(w, λ1, λ2) := [(0.28α2 − 2α + 1)λ1 +
1.28α2

λ1

+ 2α− 1.56α2]σ2(w, λ2).

Given these we estimate the energy depletion probability after
multiple rounds of data collection at a typical sensor. At each
round the energy burden at a typical sensor is incurred by data
relaying/forwarding from landmarks to nearest sink locations
which are independent across rounds. If these burdens are
accumulated over sufficient number of rounds, we may apply
central limit theorem (CLT) [11] for the energy depletion
probability .
Suppose one would like to operate the given network for

m rounds. The maximum energy reserve, denoted by b, is
parameterized to the average number of data generation for a
sensor duringm rounds, i.e.,mp. Specifically b is a multiple of
mp, say 2πk, i.e., b = 2πkmp for convenience. If we denote
the energy burdens at a typical node by Zm at mth round,
for m sufficiently large, we may apply CLT and the depletion
probability is given by

P (Zm > b) ≈ φ (zk(w, λ1, λ2))

where we define the following:

zk(w, λ1, λ2) :=
√

2πmp

{
k − µ̃(w, λ1, λ2)

σ̃(w, λ1, λ2)

}
, (17)

φ(u) :=
1
2π

∫ ∞

u
e−v2/2dv. (18)

The objective is to have as many nodes alive after m rounds,
i.e., we would like to maximize zk(w, λ1, λ2) for a given
density of mobile sinks per round, i.e., λ2. Thus we formally
define the problem as follows:

maximize: zk(w, λ1, λ2),
subject to: λ2 < λ1 ≤ 1 = λ0,

variables: w, λ1,

given: λ2, α, k,m, p.

C. Design for Optimal Landmark/Aggregation Densities
Unfortunately zk depends in a complex way on w and λ1

and moreover the function is not necessarily convex. However
with the aid of numerical evaluation of the objective function
we find that, for a wide range of values of k, α and λ2

the function admits an unique maximizer, i.e., it is sufficient
to estimate a local maximizer using the first-order necessary
condition for the optimality. Thus we propose the following
method to solve analytically for an approximate solution.



From the first order necessary condition for the optimality
we need to find (w, λ1) pair that satisfies the following
equation:

µ̃(w, λ1, λ2)
∂
∂s µ̃(w, λ1, λ2)

=
2σ̃2(w, λ1, λ2)
∂
∂s σ̃

2(w, λ1, λ2)
(19)

for s = w and λ1. Firstly let us fix λ1 and consider the
objective function in terms of w. By inspecting the functions
µ(w, λ2) and σ(w, λ2), we see that the optimal w for a
given λ1 will be not large, i.e., at most 10. The rationale is
that σ(w, λ2) contains the dominating term 5/(8π)(w

√
λ2)−1

since λ2 ) 1, thus if we increase w at a small value will
greatly reduce σ(w, λ2) and increase the objective function
since σ(w, λ2)−1 is a multiplicative factor. However con-
sidering the characteristic of 1

w the gain will not be high
especially considering the ‘penalty’ of increasing the mean
energy burden, i.e., µ(w, λ2) with increasing w. Moreover if
we write the explicit first order necessary condition for λ1, the
optimal λ1 is a solution to the following equation:

m(w, λ2)
{
γ(1 − α)λ3

1 + 3.84α2(1 − α)λ1

+(2δ(1 − α) − αγ)λ2
1 + 1.28α3

}
= 1.28kα2 − kγλ2

1. (20)

where γ := 1 − 2α + 0.28α2, δ := 2α − 1.56α2. Note that
the solution to the above equation is the intersection point
of a quadratic curve and a cubic curve scaled by a positive
number m(w, λ2). One can verify that (1) the equation admits
an unique solution for λ1 > 0, (2) using the conjecture on the
optimal w value the sensitivity of the solution is quite small
with respect to m(w, λ2) for a wide range of λ2 values. Thus
we would like to fix the scaling m(w, λ2) to a representative
value given the expected range of the location of the optimal
w. We use the lower limit of w value, i.e., w = 1 which
corresponds to the baseline scheme, i.e., no traffic spreading
if we consider the shape of energy density on a strip. The
rationale is that we expect the optimal w to be a small number,
thus we choose the smallest possible value of w. The choice
of m(1, λ2) turns out to be a conservative estimate of λ1 in
that the solution to (20) decreases with increasing w thus it
maximizes the maximizer λ1 if we recall that higher density
of aggregation nodes corresponds to lower number of nodes
per aggregation node on average.
Thus we solve the cubic equation (20) by setting the scaling

to m(1, λ2). Let us denote the solution by λ∗
1 if the solution

lies within the interval [0, 1] or set λ∗
1 = 1 otherwise. With λ∗

1

determined we solve (19) with respect to w, and using second-
order approximations for the logarithmic term (19) reduces to
a quadratic equation admitting an unique positive solution w∗

given by

w∗ =
−b +

√
b2 − 4ac

2a
(21)

where

τ :=
5

24π
√
λ2

, β := α + (1 − α)λ∗
1,

a :=
β

8
, b := β

(
τ

4
− 3

4

)
+

k

2
,

c :=β

(
τ2 − τ

4
+

1
2

)
− k

(
1
2

+ τ

)
.

We summarize the procedure as follows:
1) Find m(1, λ2) and solve the cubic equation (20) to find
a positive root.

2) Set λ∗
1 as the minimum of 1 and the root.

3) Find w∗ using (21). The resulting (w∗, λ∗
1) pair is an

approximate maximizer.
Note this can be done in an analytical way, however due to
complexity we do not specify the root of the cubic equation
explicitly. Based on this result in the following section we
provide numerical results on specific tradeoffs existing in
traffic spreading and compression/aggregation schemes.

VI. NUMERICAL RESULTS AND DISCUSSION
In this section we study numerical results based on the

analysis presented in the previous section. First we investigate
the impact of the sink density λ2 and the compression ratio
α on the optimal spatial scales for traffic spreading and
aggregation. In these results we have assumed the network
aims to operate a total of m = 100 rounds with the thinning
probability p for traffic as 0.1. The maximum reserve k is
appropriately scaled to obtain each point in the plot such
that the optimal spatial scales yield a depletion probability
of 10−4. Fig. 7 (Fig. 8) show the optimal spatial scale w∗

(resp. λ∗
1) for traffic spreading (resp. aggregation density)

with varying λ2 and α, Note in the plot the axis for the
density of sinks is translated to the average number of sensors
associated with a sink: for example 1000 nodes per sink would
correspond to λ2 = 10−3. The number of sensors per sink
ranges from 500 to 2000, and α takes values 0.2, 0.5 and
0.8 which represent excellent, moderate and poor compression
performance respectively.
By inspecting Fig. 7 we have the following observations.

When we fix the compression ratio the optimal spreading
width tends to increase as the number of sensors per sink
increases. We see that in Fig. 8 the change in λ∗

1 is negligible
with the variations in λ2 when α is fixed, i.e., the traffic
generated per AGN is roughly constant. This implies that as λ2

decreases the traffic travels longer distances, in which case the
result in Fig 7 indicates that traffic should spread more. This
is intuitive since we would see larger number of overlapping
strips for smaller sink densities thus reducing the variability
by spreading improves the performance.
Let us consider how w∗ varies when λ2 is fixed and

we change α. Fig. 7 shows that we should spread more
conservatively when the compression worsens. This may be
interpreted as a tension between mean and variance of the
energy burdens, i.e., the mean plays larger role per sensor in
network lifetime with deteriorating compression ratio when
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Fig. 7. Optimal facet width as a function of compression ratio and sink
density.
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Fig. 8. Optimal aggregation density as a function of compression ratio and
sink density.

the size of sink cells is fixed. However if we consider Fig. 8
at the same time the overall traffic per strip increases when
the compression performance improves. For example when
λ2 = 10−3 the optimal pair (w∗, λ∗

1) is given by (2.7, 0.33),
i.e., roughly 2 sensors per AGN, when α = 0.8 and (4.2, 0.04),
i.e., roughly 25 sensors per AGN, when α = 0.2. Thus each
strip offers roughly 2.4 and 5 units of load when α is given by
0.8 and 0.2 respectively on average. Since the average distance
each strip spans is identical, this also implies strips with larger
loads should spread more given that the average length of strips
is fixed. Interestingly the above observations are consistent
with those in [5]. Finally in Fig. 8 we see that the degree of
aggregation increases, i.e., the densities for AGN decreases
with improving compression performance.
In Fig. 9 and Fig. 10 the probability of depletion versus

spreading width w and AGN density λ1, respectively with
varying α where λ2 = 10−3. Similar to the previous case
the value of k in each case is chosen to yield the optimal
depletion probability roughly at 10−4. Note Fig. 9 (Fig. 10) is
obtained using zk(w, λ∗

1, λ2) (resp. zk(w∗, λ1, λ2)) where we
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Fig. 9. The probability of depletion when λ2 = 10−3 versus spreading
width.
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Fig. 10. The probability of depletion when λ2 = 10−3 versus AGN density.

vary w (resp. λ1). In Fig. 9 the maximizers and correspond-
ing estimates of depletion probability obtained by using the
proposed approximation approach are shown by dots for each
α. When we compare these to the true minimum depletion
probabilities marked by X each of which is connected by a line
to each estimate, we see that the approach yields fairly accurate
estimate. In the two figures we clearly observe the tradeoffs
associated with spatial scales of spreading and aggregation.
By choosing the optimal spatial scale a significant gain is
achieved, e.g., about 10 times gain is realized in the depletion
probability as compared to a scheme without traffic spreading,
i.e., w near 1, see Fig. 9.
We provide some comments on these results. We find these

optimal points depend on m, the number of rounds and p,
the parameter for traffic intensity per round as one can see
in (17). If we fix p and increase m, the optimal scale for
spreading tends to decrease and for aggregation tends to



increase. Clearly in the extreme if m grows infinity the law
of large numbers dictates that only the mean will dominate
performance and the influence of variance will diminish. Thus
the optimal points move to the directions to decrease the
mean energy burdens: to spread less and more aggregation
for further compression. If reducing the mean is the issue,
rather than using aggregation based on proximity, one can
consider schemes such as exploiting mean-optimal hierarchical
organization based on Johnson-Mehl tessellation [12]. Also
we note that if p = 1 a sensor next to a sink may experience
several hundred units of energy burdens if λ2 = 10−3 in which
case due to large variability the application of CLT may not
work well. However this corresponds to the regime of heavily
loaded networks as been addressed earlier, i.e., the network
will not scale well.
By contrast for finite m and small p, there is room for

optimizing network lifetime by choosing appropriate scales for
aggregation and/or traffic spreading. Moreover from the results
the optimal scale for spreading ranges from 2∼5 which is a
reasonable degree of spreading in a practical point of view
thus enabling efficient realization of the scheme.

VII. CONCLUSION AND FUTURE WORK

In this paper we address a fundamental scalability problem
for energy-constrained large scale sensor networks based on
wireless relaying: the sensors in the vicinity of sinks will incur
a much higher energy burden. To mitigate this problem we
consider widely used ideas: reducing the traffic on the network
through local aggregation/compression and making the sinks
mobile. However in most regimes where such schemes are
applicable, we argue that network operation can still be
optimized to enhance the networks lifetime. The key idea is
to spread out aggregated traffic when it is forwarded from
AGNs to sinks in order to smooth inhomogeneity in the energy
burdens the network will incur.
Interestingly the degree to which traffic should be spread is

interwoven in a subtle way with spatial scales on which traffic
is aggregated. The tension lies in the following key tradeoffs.
Increasing the degree of traffic spreading results in smoother
energy burdens but incurs additional overall energy burdens.
By contrast, increasing the degree of aggregation reduces the
per sensor traffic and thus overall energy burdens, but increases
the spatial variability of energy burdens. Moreover these trade-
offs are not ‘orthogonal’ to each other. In this paper we provide
a stochastic geometric model to investigate this interaction. By
adopting simple models for compression and energy burdens
we were able to show how the mean and variance of energy
burdens for a typical node relates to the scales for spreading
and aggregation. We jointly optimize these scales, and find
that while spreading reduces the variance induced by overlaps
of ‘long’ routes towards sinks this only helps to extent that
the increased mean energy costs do not counteract the benefit.
Similarly the more aggregation the better unless this adversely
affects the variability of energy burdens on the network. Using
numerical results we can concretely see how these aspects
counterbalance each other. For example, even when operated at

the the optimal aggregation density the probability of depletion
may be decreased by a factor of 10 if traffic is correctly spread.
Our ongoing work includes study on the following con-

jecture: if the spreading scales are determined non-uniformly
depending on load or distances to sinks, we expect additional
improvement in network lifetime. Importantly note the setup
in our work is fairly benign, i.e., the traffic loads are spatially
homogeneous. If there is additional inhomogeneity in node
placement, sensing events, variability in data size, etc., we
conjecture that reducing variability in traffic becomes more
critical issue. On top of that in the proposed facet routing
scheme, the performance analysis on overheads and gains
associated with routing based on local depletion levels, and
devising implementation algorithms are part of our future
work.
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