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Abstract—In this paper, we investigate the use of proactive
multipath routing to achieve energy-efficient operation of ad hoc
wireless networks. The focus is on optimizing tradeoffs between
the energy cost of spreading traffic and the improved spatial
balance of energy burdens. We propose a simple scheme for
multipath routing based on spatial relationships among nodes.
Then, combining stochastic geometric and queueing models, we
develop a continuum model for such networks, permitting an
evaluation of different types of scenarios, i.e., with and without
energy replenishing and storage capabilities. We propose a
parameterized family of energy balancing strategies and study the
spatial distributions of energy burdens based on their associated
second-order statistics. Our analysis and simulations show the
fundamental importance of the tradeoff explored in this paper,
and how its optimization depends on the relative values of the
energy reserves/storage, replenishing rates, and network load
characteristics. For example, one of our results shows that the
degree of spreading should roughly scale as the square root of the
bits meters load offered by a session. Simulation results confirm
that proactive multipath routing decreases the probability of
energy depletion by orders of magnitude versus that of a shortest
path routing scheme when the initial energy reserve is high.

Index Terms—Gaussian random field, 1 queue, sensor
networks, shot-noise process, stochastic geometry.

I. INTRODUCTION

ENERGY-EFFICIENT design and operation of ad hoc mul-
tihop wireless networks is a key problem in the context

of mobile and/or distributed sensing applications, where energy
storage and availability may be quite limited. There are many
levels at which one can address this problem. Advances in sil-
icon technology can realize energy savings through power ef-
ficient circuitry, e.g., voltage scaling, while specialized archi-
tectures can be devised to allow components to enter “sleep”
modes. At the same time power control and optimized MAC
protocols which put nodes to sleep can bring substantial energy
savings enabling networks with thousands of sensors. Particu-
larly, in large ad hoc wireless networks the data originated from
a source might need to be relayed a long distance to a desti-
nation or sink wireline node. Relaying through many hops may
cause intermediate nodes to consume substantial amounts of en-
ergy and thus make energy-efficient routing a particularly crit-
ical task.

Manuscript received March 4, 2005; revised October 4, 2006; approved
by IEEE/ACM TRANSACTIONS ON NETWORKING Editor N. Shroff. This
work was supported in part by the National Science Foundation under Grant
ECS-0225448. This work was presented in part at IEEE INFOCOM 2005,
Miami, FL.

The authors are with the Department of Electrical and Computer Engineering,
University of Texas at Austin, Austin, TX 78712 USA (e-mail: sbaek@ece.
utexas.edu; gustavo@ece.utexas.edu).

Digital Object Identifier 10.1109/TNET.2006.890102

Fig. 1. Comparison of the shortest path routing scheme (on the left) and a typ-
ical load-balancing scheme (on the right). The dotted arrows represent flows for
S1–D1 and the dashed arrows represent flows for S2–D2, respectively.

Consider the network shown in Fig. 1. Two sources ,
send to destinations , on opposite ends of the network,
respectively. In the network on the left these sessions are sup-
ported along shortest hop routes. If one of these sessions were
sustained for a long time, nodes along the route would even-
tually see depleted energy reserves, roughly “dividing” the net-
work into two parts. Subsequently, if other nodes needed to com-
municate across this depleted zone they may result in exhaus-
tion of energy along the diagonal, or require selection of routes
around this area of the network, which in turn would incur ad-
ditional energy burdens. This simple example shows how en-
ergy depletion along long routes combined with interactions
with future overlapping and/or routing of additional traffic flows
might exacerbate the energy problem. A natural solution to this
problem is to spread out the energy burden of sustained sessions
so as to obtain a spatially balanced energy burden. Specifically,
one may split traffic across two disjoint routes as shown on the
right in Fig. 1. Assuming energy consumption is roughly propor-
tional to the load this leads to a more balanced energy burden
across sets of intermediate nodes. At the same time this scheme
may involve a larger number of nodes, e.g., a route with five
versus four hops, and thus an increased overall energy burden.

In this paper, we consider overall system design aspects for
such multipath routing strategies—we refer to this as proactive
balancing of energy burdens over multiple routes. Our primary
interest here is not to devise detailed multipath routing algo-
rithms, but rather to investigate the design of, and possible im-
provements afforded by, such routing mechanisms. The key in-
tuition is that the more we spread the traffic, the more the en-
ergy profile of the network will be balanced. However, spreading
traffic requires that some packets take long “detours”, which
will incur extra energy cost. This tradeoff associated with the
degree of spreading is the main topic investigated in this paper.
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To this end, we use a simple, idealized model to characterize
and parameterize the spatial energy balancing aspects of proac-
tive multipath routing schemes. Our model provides sharp in-
sights on design choices under various scenarios. For example,
one of the key issues studied in this paper is the degree to which
a session’s traffic should be spread, depending on the load and
the distance it must travel. Not surprisingly, we show that traffic
should be spread more as the load and the hop count increase,
and provide a simple scaling rule to proactively adapt the degree
of spreading.

The paper is organized as follows. In Section II, we discuss
related work in this area. Section III introduces a concrete multi-
path routing and balancing strategy. In Section IV, we present a
continuum model and characterize spatial energy burdens using
a shot-noise process associated with the model. Section V uses
a grid network to explicitly analyze a parameterized family
of energy balancing strategies. In Sections VI and VII, we
formulate and investigate the design and optimization of such
spreading using second-order and asymptotic approximations.
Section VIII includes simulation results and a discussion of
various scenarios. Finally, Section IX presents our conclusions.

II. RELATED WORK

There has been substantial research on the design and imple-
mentation of energy conserving routing protocols suitable for ad
hoc networking applications. Let us review some of this work.
In [1], a characterization and algorithm determining the most
energy-efficient route between two nodes is proposed. How-
ever, it is not clear whether using such routes will extend net-
work lifetime, nor how this would impact network capacity for
nonhomogenous traffic loads. By contrast, [2] and [3] propose
and evaluate routing mechanisms to maximize network lifetime
based on nodes’ current residual energy reserves, whereas scal-
ability and the effectiveness of greedy routing to spread energy
burdens are a concern. Among recent work, [4] and [5] show
that, by properly defining cost metrics as exponential functions
of the residual energy at each node, one can achieve compet-
itive optimality for throughput under energy constraints. The
work of [6] takes yet another tack—they propose packet-level
randomized routing in order to proactively balance energy bur-
dens across the network. A unifying principle emerges from this
body of work: the tradeoff between minimizing the energy ex-
pended to carry an offered load versus the balancing of energy
burdens across the network. To the best of our knowledge, the
spatial character of this tradeoff has not been studied. The pri-
mary contribution of this paper is the use of a stochastic geo-
metric framework to analyze, and then work towards realizing
this tradeoff in an “optimal” manner.

III. SPATIAL MODELLING

This section is divided into three parts. We start by stating
our model assumptions. We then introduce a multipath routing
scheme based on nodes’ spatial relationships. Finally, we pro-
pose a continuum model where we regard the field of the wire-
less nodes as an infinitesimal “medium” that carries fluid, i.e.,
the traffic flow. This leads to a simple shot-noise process model
for the spatial field of energy expenditures which is amenable to
analysis.

A. Model Assumptions

We will use a simplified model for energy expenditures as-
sociated with data transmissions. Nodes are assumed to share
a common transmit power level sufficient to guarantee the net-
work is connected. They relay packets towards the destination
via neighboring nodes in a hop-by-hop manner. We refer to a
flow of traffic between a pair of source–destination nodes as a
session, and refer to the source and destination nodes as a ses-
sion pair.

A key assumption in this paper will be that the energy con-
sumption at each node is roughly proportional to the traffic it is
carrying, so we use the terms “traffic load” and “energy burden”
interchangeably. This linear relationship is assumed to be satis-
fied with a common proportionality constant for each node.

In reality, there are many factors, in addition to the traffic load,
that contribute to the energy burdens in a wireless network, e.g.,
interference and channel contention. Due to such factors our
assumption may not hold in the following situations.

• The proportionality constant may vary, e.g., some nodes
may experience larger energy burden per load if transmis-
sion ranges and the amount of local interference are higher.

• The relationship between traffic load and energy burden
can be nonlinear, e.g., depending on protocols such as
CSMA, loads beyond capacity may lead to throughput
collapse.

• The number of paths used for multipath routing schemes
may affect the interference level, e.g., when multiple paths
are geographically clustered, the routes may interfere with
each other versus “single” path routing.

Nevertheless, by properly defining the proportionality con-
stant, this seems to be a reasonable model to capture the first-
order relationship between energy expenditure and traffic for
various types of wireless networks. We assume the network
satisfies homogeneity conditions such that the average energy
burden per unit load is roughly constant over time, and the traffic
is not severely limited by interference. Moreover, we are inter-
ested in making a comparative analysis of proactive multipath
routing schemes with different numbers of multipaths, for ex-
ample one can consider a scheme which transmits packets al-
ternating among multiple routes in a time-division manner so
that inter-route interference among neighboring routes is lim-
ited. Finally, our assumption of a linear relationship between en-
ergy burden and carried load is intended to allow the study of the
longer term burdens accrued under various routing approaches.
As such the proportionality constant need not reflect the exact
instantaneous relationship but rather some approximate longer
term relationship between load and energy burden.

We assume traffic is relayed only via neighboring nodes
which we shall define based on proximity as follows. We model
the locations of the nodes as fixed and following a spatial point
process in the plane. A natural notion of proximity can be
introduced via the Voronoi tessellation and Delaunay graphs in-
duced by the locations of the nodes. These are discussed below.

Suppose the locations of the nodes constitute a point process
on the plane . Each point serves as a seed for a

cell
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Fig. 2. Illustration of regions R (S;D) and R (S;D) for the source–desti-
nation pair (S;D).

in the Voronoi tessellation induced by . If is
not an empty set, we refer to and as neighboring
cells and we say that and are neighbors.

A Delaunay graph is a graph whose vertex set is and whose
edges connect nodes that are neighbors. We denote the Delaunay
graph by where is the set of Delaunay edges. Routes
considered in the discussion below will be based on the De-
launay graph. We shall assume that the spatial distribution of
nodes is fairly uniform and sufficiently dense that each node can
in fact reach its neighbors.

B. Proximity-Based Multipath Routing

Consider a route connecting two nodes , which has
a minimal length, i.e., sum of the Euclidean lengths of the edges
it traverses. This path is referred to as the Shortest Delaunay
Route (SDR) and has a length that is within a factor of 2.42 of the
Euclidean distance between and , see, e.g., [7], [8]. Note
that the SDR is based on the Euclidean norm, thus the SDR may
not coincide with a route having a minimum number of hops. We
will see in the sequel (Section VIII) that this subtle difference
may impact the spatial distribution of energy expenditures sig-
nificantly. Based on the SDR, we propose the following simple
construction for a set of paths between two nodes, say .

1) Draw a straight line segment between and ,
and draw two additional lines, through and and or-
thogonal to . Let and denote
the open planes with their boundaries being and
its orthogonal lines as shown in Fig. 2.

2) We let denote the set of nodes included in the
SDR from to , and refer to this route as the Level 1
route. and are referred to as the Level-1 connectors.

3) Find the set of nodes which are neighbors of
and fall in . Among the nodes in
select two nodes each of which is closest1 to

and , respectively, and refer to them as Level-2 connec-
tors. Create a route that connects the nodes in
with Delaunay edges where the endpoints of the route are
Level-2 connectors.

4) Construct a SDR for a Level-2 connector to its closest
Level-1 connector and repeat the same for the other con-
nector. If this SDR crosses new nodes, update
by adding these new nodes in . Now the nodes in

1We perform random tie-breaking if there are multiple nodes with the same
closest distances.

, and can be connected via a Delaunay route
which is referred to as Level-2 route.

5) Next, determine the set of nodes which are
neighbors of but falls in this time.
Following the similar process as above, find the Level-3
connectors, construct SDRs from these connectors to
Level-1 connectors, update . This constructs the
Level-3 route.

6) For , the Level- route can be constructed in a sim-
ilar manner. Determine the new set of nodes that
are neighbors of and fall in . Find
the Level- connectors, construct SDRs from these con-
nectors to Level- connectors and update .

The basic idea is to recursively construct higher level routes
based on nodes which are neighbors of those included in pre-
vious levels but alternating between and in
order to balance the spreading cost as the levels increase. We
confine relaying nodes to the regions and
so as to prevent routes from extending backward.2 As will be
clear from the construction, the role of connectors is to ensure
connectivity via Delaunay routes among , and the routes at
different levels. These routes can be constructed by each node
if it has the information on the locations of its neighbors, the
source and the destination.

An example of our route construction for a source–destina-
tion pair is illustrated in Fig. 3. At each level, the level
connectors are marked with arrows. Note that at level 3, the level
connector associated with node is not its neighbor (see dotted
line), thus an SDR route is constructed between them. Also, note
that this route includes a node, indicated by a star, which is in
fact not contained in .

We shall refer to this construction as proximity-based multi-
path (PBM) routing which gives us a concrete set of paths over
which to distribute traffic so as to spread out energy burdens.

As shown in Fig. 3, the set of PBM routes associated with a
session is spatially clustered by construction. We shall refer to
the set of nodes in such a cluster as the spatial footprint of a ses-
sion. For example, the nodes within the shaded Voronoi cells in
Fig. 3 correspond to the spatial footprints of the session as we
increase the degree of spreading. Thus, the traffic pattern on a
network can be viewed as a dynamic set of, possibly overlap-
ping, spatial footprints. This is the basic idea behind the con-
tinuum model introduced in the next section.

IV. CHARACTERIZATION VIA CONTINUUM MODEL

A. The Continuum Model and Shot-Noise Formulation

Consider the case where the density of the nodes in a network
is large. We can think of an infinitesimal area in space as corre-
sponding to a node with an initial energy reserve. Each footprint
will correspond to a closed set in , and is assumed to have
a well-defined, possibly random, shape. Since an infinitesimal
area (node) serves as a “carrier” of a flow, a footprint can be re-
garded as a “vessel” which contains the flow from a source to a
sink. Session pairs are located at the ends of footprints. We refer
to the “length” of a footprint which corresponds to the distance

2In step 4) of the construction, some nodes that are not contained in these
regions may be included in a route.
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Fig. 3. Construction of Level 1, 2, and 3 routes for nodes S and D, from left to right. The route at each stage is shown with solid lines and the shaded regions are
the cells for the nodes in routes. The nodes marked by an arrow are the connectors at each route.

Fig. 4. A realization of the energy footprints for sessions in an ad hoc network.
A footprint is assumed to have an elliptical shape for the purpose of illustration.

between a session pair as the span, and the maximum “width”
of a footprint as the spreading width. We refer to the midpoint
of the session pair as the center of the associated footprint. We
assume that the centers of footprints constitute a point process
in . Fig. 4 exhibits a realization of the process capturing the
energy burdens incurred over a period of time—only sessions’
footprints with span and spreading width are shown.

Each location within a footprint would, in general, experience
a different load/energy burden. To model this, we define a load
distribution function which is the load per unit area, i.e., the
energy burden density at each location, in a footprint. The load
distribution function depends on the “strategy” used to spread
traffic within a footprint—this will be further quantified in the
sequel.

The proposed continuum model can be mathematically for-
malized as follows. Let denote an isotropic, random closed
subset of . We will assume has the distribution of a typ-
ical footprint in a given network. The load distribution function

gives the spatial density of energy burden
at each location, for a session with unit load. Specifically, for

, if then and otherwise
corresponds the relative energy burden per unit area at location

of the footprint .
We assume that the centers of sessions constitute a homoge-

neous spatio-temporal Poisson point process with intensity
per unit time per unit area. Let us denote by a spatial point
process in for the centers of the sessions/footprints that have
been been offered to the network during time . Thus, is a

homogeneous spatial Poisson point process with intensity of .
Each point has an associated footprint denoted by .
We assume are i.i.d. copies of . The contribution of the
energy burden on location from a session centered at with
footprint , is given by . Note since we equivo-
cate load and energy burden, depends on how a routing
mechanism chooses to spread the flow of session within its
footprint . For now, assume that the strategy does
not depend on the amount of load is carrying, and denote the
offered load, in bits, by – these are assumed to be i.i.d. with
the same distribution as . Thus, gives
the spatial load density of session .

The total energy burden per unit area accumulated at location
during time can be represented as a shot-noise

process as follows:3

(1)

Next, we state several known results from shot-noise theory.
Since is stationary, we can consider a typical location at the
origin based on the following result.

Lemma 1: (See [9].) Let us define , the
energy burden density at the origin. Also, let be the th
order cumulant of . Since is a homogeneous Poisson
process with intensity , we have that

Defining the normalized mean and variance as

(2)

(3)

we have that

and

We shall for now assume the load equals 1 with proba-
bility 1, i.e., , which we will revisit in
Section VI.

3Precisely, if the session i has not ended by time t, the offered load by that
session will be less than U . Thus, we assume that each load is offered in an
instantaneous manner – we are interested in the cumulative spatial loads induced
by footprints.



BAEK AND DE VECIANA: SPATIAL ENERGY BALANCING THROUGH PROACTIVE MULTIPATH ROUTING IN WIRELESS MULTIHOP NETWORKS 97

As mentioned earlier, the function captures both
the “shape” and how the flow is spread within a typical foot-
print—these are the design choices one can make to control
the mean and variance of the spatial energy burdens. Although
using only two moments to describe the statistical properties
of may not be sufficient, the following theorem suggests
this might give a good approximation (see [9]).

Theorem 1: (Asymptotic normality of shot-noise process)
Consider defined in Lemma 1. We have that

as

where is the standard normal distribution.
From this theorem, we have that, for large , the probability

that the energy burden per unit area exceeds a prescribed level
is given by

(4)

(5)

In order for this approximation to be useful, we assume a typical
node in the network sees a large number of overlapping foot-
prints on average.

B. Depletion Probability and Network Lifetime

A common criterion for the energy performance of a network
is its lifetime, e.g., the time before some fraction of nodes (or
any single node) drop(s) below a certain battery level. Our ob-
jective lies in the complementary question: given a desired net-
work operation time, can we minimize the fraction of the de-
pleted nodes? For example, if one wishes to operate a sensor
network for a week, what fraction of nodes might survive the
week and what is a good multipath routing strategy to achieve
this? We believe this to be a practical objective in engineering
such networks. To address this question, we shall use the ap-
proximation in Theorem 1.

Let be the desired network operation time, and assume
. Suppose the critical reserve level per unit area is speci-

fied as a multiple of where is defined as the mean energy
consumption of the baseline scheme, i.e., a scheme without mul-
tipath routing. Thus, is specified in terms of a factor times the
mean energy consumption of baseline scheme during . Thus,
by letting , and by defining as

(6)

we can estimate the fraction of nodes that have not depleted the
critical level by time by . To reduce the likelihood
of depletion we wish to maximize for a given , i.e., min-
imize the probability of depletion through admissible
choices for and .

Equation (6) provides us with crucial insights. Certainly, we
would like to minimize both and , however as we will see
later, there is a tradeoff between these parameters, i.e., we can
decrease at the cost of increasing , and vice versa. The op-
timal tradeoff will depend on . If is small, one might try

Fig. 5. Topology of a regular grid footprint. The coordinates of locations are
shown for some nodes in their lower left corners. The source and the destination
is marked by S and D, respectively, and the dimensions l and w of the grid are
shown.

to decrease . Conversely, if is relatively large, one might
prefer strategies that give smaller . This captures the funda-
mental tradeoff addressed in this paper, i.e., that between the
benefit of spatial energy balancing by traffic spreading ( ) and
the cost associated with such spreading ( ). To this end, in the
following section we discuss parameterized energy balancing
strategies for which and can be estimated explicitly.

V. PROACTIVE ENERGY BALANCING STRATEGIES

We will study strategies that give desirable footprints and
flow distributions over the footprints, so as to reduce

. For simplicity, we assume the spans of footprints are
fixed to . Also, we let the loads offered by sessions be fixed to
1 and treat the maximum footprint width as a design param-
eter. We will deal with the issues involving random spans and
session load in later sections.

While it is possible to take an approach in continuum flow
domain by making analogy with incompressible ideal fluid
problems; see [10] for details, this approach requires numerical
methods to estimate , , and . To obtain intuitive and
closed-form results, we take another approach by considering
parameterized spreading strategies over a regular grid.

Let us consider a session pair in a network. We assume that
the intermediate relaying nodes form a regular grid topology,4

as shown in Fig. 5. The hop count between the session pair is
fixed to . The source emits one unit of flow which is distributed
among the intermediate nodes to reach the destination, and a
flow can be relayed only among adjacent nodes. A grid foot-
print is defined to be the set of grid nodes which carry nonzero
flow for a given session pair. Accordingly, a spreading strategy
corresponds to assigning the flow rates at the intermediate nodes
such that the total flow is conserved. These are analogous to
with fixed span and spreading width, and , respectively.

We refer to the maximum degree, in number of hops, to which
the flow is spread as the spreading width . Our main goal is
to determine “good” spreading strategy and grid footprint for
given and the constraint . In particular, we will consider the
minimum variance strategy specified as follows.

4This serves as a coarse approximation for a dense, uniform network. Also,
note its similarity with the topology induced by PBM construction discussed in
Section III, e.g., those shown in Fig. 3.
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Let us label each node with an integer coordinate
placing the source node at the origin as shown in Fig. 5. The
total outgoing flow rate at node is denoted by which
will also represents the energy consumed at node . Define
the set . Under the
above construction, we have that

(7)

(8)

where the continuum footprint corresponds to a grid foot-
print within , i.e., . Similarly,
the load per unit area corresponds to the flow rates
associated with a grid footprint. We wish to minimize (8) by
properly setting for given and .

The rationale behind the minimum variance strategy is that, in
order to maximize , it is an efficient strategy to minimize
assuming that is moderately large, i.e., all the nodes have large
energy reserves at the beginning so they would not suffer from
depletion when only a few sessions overlap at a given location.

Before we formally define the flow distribution problem for
the minimum variance, let us assume that and are even and
odd integers, respectively, for symmetry purposes and ,
i.e., traffic is not spread beyond . We also add an extra con-
straint that the flow rates are equal along the middle abscissa
(MA). The MA is defined to be the nodes that lie on the middle
of the horizontal span of , i.e., the nodes along axis in
Fig. 5. We refer to this suboptimal approach as equi-flow min-
imum variance strategy. The implications of the additional con-
straint will be explained in the sequel.

1) Problem 1: Equi-flow minimum variance problem.

(9)

(10)

(11)

(12)

(13)

where (11) is the source emitting 1 unit of flow, (12) corresponds
to the definition of the spreading width and (13) is the equal flow
constraint at the MA.

The solution can be explicitly obtained by exploiting the con-
vexity of the objective; see the Appendix .

Lemma 2: The solution to Problem 1 is, for all ,

,
otherwise.

Fig. 6. Flow allocation under equi-flow minimum variance strategy when w =

5 and l = 7.

An example of such a flow assignment is illustrated in Fig. 6.
The dotted lines are contours that represent level sets of nodes
which have the same total flow. The value of the levels decreases
harmonically, i.e., as the contour expands outward
from the source. Note is the sum of horizontal and vertical
outgoing flows at location in the figure.

We comment on the additional constraint. Without (13),
the minimum variance flow allocation can be obtained using
standard optimization techniques such as the projected gra-
dient method [11]. However, with (13), the problem yields a
closed-form, simple and intuitive solution. Moreover, it gives
an excellent approximation especially for large values of . In
fact, one can show that the solution obtained for the suboptimal
scheme converges to the optimal solution when is large [10].

Given the flow assignment in Lemma 2, we have that

(14)

(15)

The following observations are in order. The grid footprint
suggested by the solution is such that it corresponds to , i.e.,

for all , which in turn means that the
grid footprint for the equi-flow minimum variance strategy has
a rectangular shape. Recall that we imposed equal flow con-
straints on MA parameterized by its width . However, our so-
lution indicates that the flow should be spread as much as pos-
sible within . For , we see that increases with

, i.e., the mean energy increases with the spreading width, in-
deed the flow will travel longer distances. However, decreases
with , i.e., the variance decreases with the degree of spreading.
Thus, as mentioned earlier, one cannot minimize the mean and
the variance simultaneously. The interesting case is where is
much larger than . Then the mean energy is roughly invariant
to small changes in , but the variance is sensitive to —the
dominant term is . Thus, for a load that traverses a long
route, the benefit in terms of reducing variance from spreading
is large. For a more detailed discussion, see [10].
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Fig. 7. A numerical evaluation of optimal design of spreading width under
equi-flow minimum variance strategy. The session span l is fixed to 20 and the
initial energy reserve parameter k is varied. Note the change in the tradeoff point
indicated by arrows, i.e, the optimal w moves from 3 to 5 with increasing k.

VI. DESIGN TRADEOFFS: NETWORKS WITHOUT

ENERGY REPLENISHING CAPABILITY

A. Depletion Probability of the Typical Node

In this section, we numerically evaluate the depletion proba-
bility of a typical node, combining the estimates in (14) and (15)
with . Here is assumed to be 1, is set to 20 and
since it is the mean energy consumption without spreading – see
(14) for the case where . Fig. 7 exhibits a plot of
for varying , i.e., varying the initial energy reserves of network
nodes versus the spreading width . Clearly, there exists a that
minimizes the depletion probability for each . As expected, for
the case where nodes have high initial energy reserves, the op-
timal gets larger. The intuition is that, whenever the nodes in
the network have large residual reserves, they should cooperate
to balance load on the network, i.e., the number of nodes par-
ticipating in carrying a flow should increase, but up to a degree
where the energy cost of load balancing does not overload the
network.

B. Depletion Probability for a Network

One can also approximate the spatial energy burden pattern
as a stationary, isotropic Gaussian random field in . Consider

in (1) for . Let us model a network as occupying
a ’nice’ subset in , e.g., a rectangle or circle [12]. Consider
the probability that the node with the highest energy burden in

exceeds a prescribed level by some time , i.e.,

(16)

We can estimate the asymptotic value of this probability as
via extreme value theory for homogeneous Gaussian fields,

see [12] and [13]. Consider the normalized energy burden den-
sity where . Let us
define the normalized spatial covariance function at time

by for . Since the

field is isotropic, this function depends only on the norm of ,
denoted by . Suppose that the following holds for some pos-
itive constant :

Here denotes the infinitesimal order of decay of the covariance
with the magnitude . Again, assume that is given by
where is large, then based on the Poisson clumping heuristic
[12], we can rewrite and approximate (16) as

where is the area of the region and is the two-
dimensional Pickand’s constant which depends only on . We
see that the depletion probability is proportional to the physical
area of the network, and is related to the covariance structure
of the footprints.5 Comparing this with the result for the typical
node, we note that they share the term , but there is
the extra term which may increase the depletion
probability for large values of .

Thus, we expect that, by increasing , we will observe a sim-
ilar tradeoff curve as obtained for the typical node (Fig. 7), but
the curve will be flatter due to the term , which is
shown in [10].

C. Optimal Choice of When Sessions Have Different Spans
and Varying Loads

A natural question arises: is it beneficial to change the
spreading width if the distance between session pairs
varies? An intuitive answer is that, if the span of a session is
high, it helps to spread more, i.e., choose larger . The rationale
is that sessions spanning longer distances have an increased
chance of overlapping with other sessions. Thus, it is more
important to reduce hotspots induced by such sessions.

Further, we can also consider the impact of the variability
in traffic loads associated with sessions should have on the
spreading width. If a session has higher traffic loads, one can
expect that we should spread more. In this section, we inves-
tigate how the optimal spreading width should scale with the
span and traffic loads in a network/traffic model where these
are indeed variable.

Let be a random variable whose distribution is that of the
span for the typical session pair and the distribution of variable
loads be that of a random variable . We have mild assump-
tions for and such that they have finite support and are in-
dependent of each other. Let us capture a strategy for choosing
the spreading width depending on and by some function

. From the previous arguments one would expect the op-
timal spreading width to be a nondecreasing function of and

. Using our model we shall determine in an approximate
manner.

Considering only the dominant terms in (14) and (15), we will
use the following approximations:

(17)

5For the estimation results for a, � versus varying w, see [10].
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for the case where is typically much greater than . With the
above approximations and setting , we have that

The goal is to find an optimal choice for , i.e., one that
maximizes and thus minimizes the depletion probability
of a typical node.

Assume that is continuously6 distributed over a finite sup-
port and the probability density is nonzero
and smooth on that support. Let us partition into subinter-
vals , , where

. Similarly, suppose has a finite support
, define , for

some integer . Suppose is stepwise constant over each
box , i.e., for some and , for if
and . Thus, we would like to find choices for that
maximize .

Theorem 2: Under the above setup, the optimal spreading
strategy is a nondecreasing function of and .

To prove the theorem, we introduce the following notations:
(resp. ) is the expectation of (resp. ) con-

ditioned on that (resp. ). We also need the
following lemma.

Lemma 3: Let have an arbitrary positive probability den-

sity function over the partitions . Then is a non-

decreasing function of .
One can see this result intuitively by considering refining

the partition of , so that for some we have that
and , thus the ratio is which

is nondecreasing in . For a formal proof of the lemma, we refer
the reader to [10].

Proof of Theorem 2: One can rewrite as follows:

where and . It is easily seen
that admits unique set of maximizers denoted by
such that

(18)

where is a constant given by

using the first-order necessary condition for optimality. Firstly,
by inspecting (18), since , we see is an
nondecreasing function of , i.e., if , from the

6In fact, L takes integer values. However, our arguments yield more intuitive
results and can be trivially extended to such discrete random variable cases.

definition of . Secondly, by Lemma 3,
is also nondecreasing in . As one can see from the above deriva-
tions, such properties hold irrespective of the distributions of
and .

Now we have the following observation regarding how the
optimal spreading width scales with the span and traffic loads
of a session. If we decrease the interval lengths of each
and into infinitesimal ones, we have that
and . Thus, from (18) we have the
scaling rule of

i.e., the optimal spreading width for a given session approxi-
mately follows the square root of the bits meters of its offered
load. We will verify by simulation that indeed such dynamic
spreading schemes outperform those with fixed .

VII. DESIGN TRADEOFFS: NETWORKS WITH

ENERGY REPLENISHING CAPABILITY

Next, we consider the case where nodes have the capability
to replenish their energy at constant rate of units per unit time
and their energy storage capacity is . We model the energy
level of a node by a queue where arrivals correspond to new
energy burdens to be served, i.e., replenished at rate . Note that
the dynamics of the queue and their physical interpretation are
reversed: filling the queue with energy burden corresponds to
consuming its energy reserves. Thus, we are interested in the
likelihood that the queue length exceeds the level .

For a typical node which is covered by multiple session foot-
prints over time, the energy load burden for each footprint would
be buffered in the node’s energy queue which is replenished at
rate . In reality, an energy request fills the queue, i.e., consumes
energy at a roughly constant rate, which can be modelled by
using a continuous load model, e.g., fluid queues (see [14]). For
simplicity we will assume that energy burdens are imposed in-
stantaneously on nodes and the offered load at a typical node
depends only on its location within the footprints that hit the
location. We will again assume the footprint arrival process is
a homogeneous Poisson process in time and space. With these
assumptions we will use a discrete-time queueing model that
approximates the queue corresponding to these dy-
namics of energy burden at a typical node.

In this regime, we study the asymptotic decay rate of the
queue content as an indicator of the probability that the energy
burdens exceed a large initial energy reserve of . For a stable,
single-server queue, we denote the steady-state workload by .
If the following condition is satisfied for some :

then we refer to as its asymptotic decay rate [15]. We will
use the results in [15] and [16] to describe the behavior of the
tail probabilities.

Let us define the problem. The energy burdens of each foot-
print are assumed to be i.i.d. with a distribution that is not heavy-
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TABLE I
DECAY RATES WITH VARYING SPREADING WIDTHS

tailed. We denote the virtual workload for the energy queue as-
sociated with a typical location in time slot for
by . Then we have that

where and is the total energy burden per unit
time slot, and is the replenished energy per time slot. These
dynamics correspond to a Lindley process, and since are
i.i.d., we can readily apply the following results on the decay
rate function.

Theorem 3: [15] Let us assume is stationary and thus
stable under condition , i.e., . If
are i.i.d., then satisfies

where .
We can readily obtain the required cumulant generating func-

tion of energy burden per time slot as follows.
Theorem 4: The cumulant generating function of is

given by

Hence, we have that the rate decay function is given by

under the stability condition

(19)

Proof: See the Appendix.
The stability condition relates the replenishing rate , and the

rate of new energy burden requests per unit area, , times the
average total energy per footprint. The root of
may be found numerically. Using (14) and (15), several decay
rates with varying spreading widths are given in Table I. Here

and , and let us denote the critical replenishing
rate to satisfy the stability condition when as . The
replenishing rate is set to where and .

Again, we observe tradeoffs associated with different replen-
ishing rates. When , the optimal spreading width is 3,
but with a higher replenishing rate , the optimal in-
creases to 5. The intuition is that, with higher replenishing rates,
one can spread traffic further to get more benefits from spatial
balancing. However, if the replenishing rate decreases close to
the critical value, the mean energy cost to spread is no longer
negligible so that a smaller spreading width is preferred.

Fig. 8. Energy depletion probability for nodes without energy replenishing ca-
pability. � and � represents the mean and the standard variation of energy ex-
penditure of each scheme.

VIII. SIMULATIONS

A. Basic Setup

In this section, we simulate several scenarios to further
explore the benefits of proactive spreading. The performance
metric will be the probability that a randomly selected node is
depleted after a fixed time given a maximum energy reserve
(MER). This metric is of fundamental interest from an engi-
neering perspective, when given a network operation time and
a MER, we wish to minimize the probability of the typical node
is depleted, or equivalently, the fraction of depleted nodes in
the network.

A total of 400 node locations were generated according to an
uniform distribution on a 20 20 unit square area. Session ar-
rivals are homogeneous in space, and a total of 200 sessions are
generated at each simulation run. This is repeated 500 times to
obtain an averaged energy profile. Unless otherwise specified,
each session offers 1 unit of load per unit time with a holding
time of 1 unit time. We simulate session arrivals by picking
two nodes at random, which corresponds to a session pair and
then setting up a unidirectional flow. We set up multipath routes
based on the PBM route construction introduced in Section III,
and the flow is equally divided on each path in order to approx-
imate the scheme in Section V. In our simulations, the shortest
path routing (SPR) is a routing that takes the minimum number
of hops on the Delaunay graph of nodes. This must be distin-
guished from the shortest Delaunay routing (SDR) which is a
PBM routing with a spreading width of 1.

B. Scenarios

1) Nodes Without Replenishing Capability: Fig. 8 shows the
average energy depletion probability for several values of the
spreading width and SPR. A point in this plot should
be interpreted as follows: “the probability that the energy ex-
penditure of a typical node will exceed is ”. If is the MER,
then is the probability that a typical node is depleted.
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Fig. 9. Energy depletion probability for nodes with energy replenishing
capability.

Let us consider only proactive routing first. When the MER
is less than 20 units, routing with a minimal spreading width

performs best. However, as the MER increases to
more than 25 units, proactive multipath routing with the largest
spreading width outperforms the others. These re-
sults are consistent with previous discussions, since with a high
MER, a scheme with a lower variance in the energy expenditure

is preferable at the cost of higher mean energy expen-
diture. These tradeoffs occur when the maximum reserve is be-
tween 20 and 25 units in our simulations. SPR has a lowest mean
energy expenditure but the highest variance, and suffers from
the worst performance in tail behavior, i.e., the lowest slope in
the decay for the probability of depletion with the MER. Also,
note that it has different performance as compared to the SDR

case: the SDR performs better due to its steeper slope
in the tail probability. We verified that, for SDR, the shape of
the empirical histogram of energy burden indeed resembles the
Gaussian probability density function (p.d.f.), while that for the
SPR is monotonically decreasing with a heavy tail [10].

2) Nodes With Replenishing Capability: Fig. 9 shows the en-
ergy depletion probabilities when the nodes have the capability
of replenishing their energy reserves. At each simulation run a
total of 200 sessions arrive uniformly on the time interval [0,
200]. Nodes have replenishing rate of 0.125 energy units per
unit time. The benefit from proactive spreading is greater than
that seen for the non-replenishing case. The intuition here is that,
for larger , the average number of nodes that participate in a
session is greater than that of a scheme with less . Thus, more
nodes have a chance to replenish their energy reserves, which
results in a reduced mean and less variance in the energy expen-
diture (see and in Fig. 9) with the largest spreading width,

.
3) Dynamic Spreading: Using the results from Section VI,

we have simulated a scheme with dynamic spreading widths
depending on the random load and random session span
according to our scaling rule where nodes do not have
energy replenishing capability. Fig. 10 shows the simulation re-
sults of such an dynamic spreading scheme. Here each session

Fig. 10. Energy depletion probability for the dynamic spreading scheme ad-
justed to session load and hop length.

Fig. 11. Comparison of the shortest residual routing, the level-3 and the level-5
residual routing.

carries i.i.d. exponentially distributed load of mean 1. As shown
in Fig. 10, for small MER region , the dynamic scheme
performs reasonably well but not best perhaps due to the error
in rounding off to an integer. However, it is superior to other
schemes with fixed spreading widths as the MER increases.

4) Routing Based on Residual Energy Reserves: Next, we
consider a class of dynamic routing schemes and study how
it benefits from proactive load balancing. Specifically, we
consider a routing scheme which exploits knowledge of the
residual energy reserve at each node, i.e., routing with state
information. We use Bellman–Ford algorithm for minimum
cost routing, where the cost is a decreasing function of the
fraction of the residual energy to its full reserve. In this way,
a route through nodes having relatively high energy reserves
might be preferred even if that route involves a higher number
of hops. Specifically, if the residual energy of th node is at
time , the cost of routing traffic to that node is
where is some positive constant and is the maximum
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energy reserve at a node. Concerning the choice of , a related
study [17] shows that a value within the range of is
preferable, so we chose . Also, we have assumed that the
routes do not change once created since such changes can incur
a severe scalability problem due to the large number of nodes.

For these simulations, we define a level- residual routing to
be such that, the best disjoint routes are chosen. Fig. 11 shows
one of such comparison. We see that proactive spreading re-
duces the tail probability although the performance of state-de-
pendent routing schemes is sensitive to the variability of traffic.
In addition, Fig. 11 exhibits the performance of proactive multi-
path routing without residual energy information when .
The results show that, although it does not use dynamic state in-
formation, it may be adequate for a network whose nodes have
high energy reserves.

IX. CONCLUSION AND FUTURE WORK

In this paper, we propose a simple model for the spatial dis-
tribution of energy burdens in a multihop ad hoc wireless net-
work. Our primary contribution is to use these models to in-
vestigate the design and potential benefits of proactive energy
balancing multipath routing schemes. To do so, we develop a
simple second-order approximation permitting one to investi-
gate tradeoffs of several types, e.g., for ad hoc networks with or
without replenishing and with energy storage capabilities. The
essential tradeoff is between the mean and variance of a spa-
tial energy (flow) balancing scheme. For our proposed models,
one might attempt to identify Pareto optimal energy balancing
strategies, e.g., one minimizing the variance subject to a mean
energy constraint, or conversely one minimizing the mean en-
ergy burden subject to a variance constraint. To simplify mat-
ters, we consider flow/energy balancing on regular grid model
for a simple parameterized family of spreading schemes. This
permits us to concretely evaluate how this tradeoff should be
optimized for the various network types and possible design cri-
teria. The results are insightful but perhaps not unexpected. For
networks with increased energy storage and/or replenishing ca-
pabilities it pays to be more aggressive in spreading traffic so as
to reduce the variance in the energy burden since the additional
energy burden can be smoothed by energy reserves or new en-
ergy sources—one must, however, ensure that the energy burden
does not exceed the replenishing capability. For the most part
our simulations confirm our analytical results and permitted us
to evaluate more general regimes of interest.

We note, however, that the traffic patterns and network ge-
ometry used in our simulations are fairly benign in that they are
fairly homogeneous in time and space. In practice, one would
expect to see irregular topologies and imbalances and variability
in traffic loads. These in turn would lead to additional variability
in the energy burdens on the network. We expect, that the bene-
fits of proactive load balancing to be be more prominent and sen-
sitive to design in the presence of the aforementioned fluctua-
tions. The degree of spreading, e.g., , might advantageously be
exploited to adaptively smooth out such spatial variabilities and
achieve improved balancing of energy burdens coupled with im-
proved performance on network lifetime. Indeed, one of the key
results in this paper shows that scales roughly as the square

root of load times distance, which is well expected by the in-
tuition that the more one should spread traffic when the spatial
burden imposed on the network increases.

Finally, we note that our focus here has been on a preliminary
analysis of proactive energy balancing. As such we have used a
simplified energy model, appropriate to study a routing scheme.
Yet overheads associated with setting up multipath routes, or
other sources of energy expenditure or savings, e.g., putting
nodes to sleep, will play a role. For example, in our model we
have for the most part ignored MAC layer. In practice the tem-
poral granularity on which load balancing is performed might be
critical. For example, fine grain spreading of traffic might cause
contention for transmission among neighboring paths lessening
the benefits from an energy perspective. Such interactions need
to be studied carefully, and might be lessened by increasing the
granularity of spreading. These and additional aspects of the
proposed routing strategies are part of our ongoing work.

APPENDIX

Proof of Lemma 2: We consider only the left half part of
the geometry using the symmetric property of the problem. Let

be the grid set of the left half part, i.e.,
. We have that

(20)

(21)

In (20), since regardless of by the
flow conservation, we have that, using the Cauchy–Schwarz
inequality

and the equality is achieved when .
For (21), it can be shown that the minimization is achieved by

setting all equal to due to the constraint (13); see [10]
for the proof.

Proof of Theorem 4: We have that the energy request arrival
process is Poisson with rate per unit time per unit space. Since

is defined as the energy request in unit time interval, is
stochastically equivalent to the shot-noise process in with
intensity . From Lemma 1, the th order cumulant of is

, thus we have that
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