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Fig. 5. Histogram of the distance between node bm and the source node for
λ = 0.03.

of existing solutions. The other centralized algorithm is linear-time and
finds an approximation of the optimal solution. Furthermore, we have
proposed a simple distributed range assignment algorithm for energy-
efficient broadcasting. We have demonstrated that, on average, both the
linear-time approximation and the distributed algorithm are almost as
efficient as the optimal range assignment for networks with uniformly
distributed nodes. The distributed algorithm would be of particular
interest not only because of its distributed nature but also for its very
low complexity (constant in network size) and the small amount of
network knowledge that each node requires to perform the algorithm
(only the distances to the adjacent neighbors).
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Abstract—We consider an opportunistic feedback and scheduling
scheme for multiuser wireless systems. In opportunistic feedback schemes,
a set of thresholds is assigned to the users, and only users with channel
quality above the threshold transmit the feedback on channel state infor-
mation (CSI) to the base station. We propose an opportunistic feedback
scheme that combines techniques from queue/weight-based opportunistic
scheduling to improve users’ delay performance. A set of queue-based
weights designed to slowly track variations in users’ backlog is computed;
then, each user is assigned a threshold based on the weights. The proposed
scheme effectively captures heterogeneity in the offered loads, which is
crucial for delay performance. To that end, we formulate a nonconcave
maximization problem and propose an approximation algorithm that is
numerically shown to have high accuracy. By simulation, we show that our
scheme substantially reduces the mean delay, compared with conventional
schemes.

Index Terms—Channel state information (CSI) feedback, delay, mul-
tiuser diversity (MUD), opportunistic scheduling (OS), user heterogeneity.

I. INTRODUCTION

Multiuser diversity (MUD) can lead to capacity gains in wireless
networks by exploiting the time-varying nature of users’ channels
and opportunistically scheduling those with the highest capacity. Such
channel-aware opportunistic scheduling (OS) for downlink transmis-
sion requires timely feedback of channel state information (CSI) from
the users to the base station (BS). However, the resources available
for CSI feedback are scarce; thus, a considerable amount of research
has been carried out toward achieving efficient utilization of feed-
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back resources while minimally compromising the gain achievable
from MUD.

Several opportunistic feedback (OF) schemes have been proposed
(see, e.g., [1]–[3]). The idea is to have users contend for a shared
resource to transmit their feedback. To reduce the likelihood of col-
lisions, thresholds are assigned to each user, and only users having
channel quality above their respective threshold transmit feedback.
Such channel-aware feedback schemes attempt to reduce feedback
overhead while enabling the BS to schedule users with the “best” chan-
nel quality. In the OF scheme proposed in [1], multiple minislots are
available for feedback. Users contend for minislots using a common
threshold that is chosen to maximize the sum throughput of the system.
A key issue for such OF schemes is the management of heterogeneity,
particularly when the channel distributions are “unequal” among the
users. To deal with a similar problem in the context of OS, several
schemes based on the cumulative distribution function (cdf) of the
rates have been proposed, e.g., [4]. We refer to such schemes as
maximum quantile (MQ) scheduling, where the quantile is defined
as the cdf evaluated at the current rate. The idea behind scheduling
the user with the highest quantile is to serve a user whose channel
quality is the highest relative to its own distribution. MQ scheduling
has desirable properties, e.g., it is temporally fair and maximizes
throughput asymptotically in the number of users [5]. The static
splitting scheme [2] is based on quantiles. Users are divided into k
equal-sized groups, where k is the number of minislots. In each group,
the users are assigned a single threshold based on quantile and contend
for a minislot. The BS selects the user with the highest quantile among
those identified in each group. In the scheme of [3], thresholds change
over minislots, and users with higher quantiles are likely to transmit
feedback earlier in the contention phase. A feedback protocol [6]
is proposed based on the proportional fair (PF) scheduling metric,
where users are assigned multiple thresholds and access probabilities,
depending on their channel distributions.

In this paper, we consider OF and OS schemes to achieve low
packet delays. Delay performance critically depends on heterogeneity
in the offered loads, i.e., not only heterogeneous channel distributions
but different traffic arrival rates among the users as well. To track
offered loads, one should take queue length into account. A queue-
based feedback strategy that achieves the maximum throughput under
partial CSI was studied in [7]. However, their feedback model is not
based on random access like ours: instead, the BS receives feedback
only from certain subsets of the users.

In this paper, we propose an OF scheme integrating the principles
of queue-based OS. We first compute a set of weights chosen to
slowly track variations in users’ queue lengths. Next, the thresholds
to be assigned to the users are determined based on the weights,
so that the BS schedules users to maximize the average weighted
sum of quantiles. This is motivated by queue-based schedulers [8],
[9] designed to achieve low delays, where they essentially maximize
the average weighted sum of normalized rates. The idea behind such
objective is that rates capture opportunism from MUD and weights
control opportunism achieved by the users, so that users with longer
queue lengths achieve higher degrees of opportunism. Rates are nor-
malized to prevent rate starvation of the users with poor signal-to-
noise ratio (SNR) distributions. The quantile is essentially a nonlinear
normalization of the rate in a way that is neutral to the distribution
of rates. Thus, opportunism achieved by users is controlled in a fair
manner, which enables us to both exploit opportunism and achieve
fairness. Moreover, since the quantile is a unified measure of channel
quality, thresholds can be defined in terms of quantiles. Hence, our
scheme provides a unified framework for computing thresholds. If raw
rates were used, instead of quantiles, the computation would depend
on the rate distribution of all the users and would be extremely hard

under user heterogeneity. We will focus on threshold assignments and
scheduling for maximizing the average sum of weighted quantiles
(ASWQ). To our knowledge, this work is the first attempt to combine
and jointly optimize OF and queue-based OS.

Our problem is shown to correspond to maximizing a nonconcave
polynomial function, i.e., a nonconcave polynomial program (PP)
for which there is no known polynomial-time solution algorithm in
general. We propose an approximation algorithm that has a complexity
that is linear in the network size as follows: We first reveal key
properties of the optimal thresholds and then propose to use a set of
approximate thresholds that possess those properties and are optimized
to maximize the ASWQ. Furthermore, the algorithm deals with the
important problem of optimally scheduling a user when the BS cannot
recover feedback due to undesirable events such as collisions or
when none of the users transmits feedback. Through such a joint
optimization of threshold assignments and scheduling, the algorithm
is numerically shown to achieve an ASWQ that is nearly optimal. Our
simulations show that the proposed scheme can substantially reduce
the mean delay, compared with other existing schemes. This paper is
organized as follows: Section II introduces the system and feedback
models. The proposed feedback/scheduling algorithm is discussed in
Section III. Section IV presents numerical and simulation results.
Section V concludes the paper. The proofs for all the theorems and
lemmas in this paper are relegated to Appendices.

II. SYSTEM MODEL AND OPPORTUNISTIC FEEDBACK

Consider a time-slotted system with n users sharing a time-varying
channel served in the downlink by a BS. Denote the set of user indices
by J = {1, 2, . . . , n}. For user i, the rate at time slot t ∈ Z is modeled
by a stationary ergodic random process Ri(t), which has the marginal
distribution of a random variable (RV) Ri. We assume that Ri’s are
independent but not necessarily identical across users. Let Fi(·) denote
the cdf of Ri. Define the quantile of user i by Xi := Fi(Ri), and let
X = (X1, . . . ,Xn). Thus, it can be shown that X consists of n i.i.d.
uniform RVs on [0,1]. We assume that Fi(·) is known to each user. Let
I(φ,X) be an RV representing the index of the scheduled user under
a policy φ when the quantiles are X in some timeslot. (The policy
will be defined in the sequel.) For an arbitrary nonnegative weight
vector w = (w1, . . . , wn), the ASWQ denoted by θ(w;φ) is defined
as follows:

θ(w;φ) :=
∑
i∈J

wiE [Xi · 1 (I(φ,X) = i)]

=
∑
i∈J

wiE [Fi(Γi) · 1 (I(φ,X) = i)] . (1)

In the uplink, we assume that there is a single minislot in which the
users contend to transmit channel feedback. Each user is assigned a
threshold, and only users whose quantiles exceed the threshold trans-
mit feedback. If only one user transmits feedback, the BS successfully
receives the feedback and schedules the user in that slot. If two or
more users transmit feedback, a collision occurs. If no user transmits
feedback, the uplink slot for feedback will be idle. We call this event
an idle feedback slot (IFS). When a collision or IFS occurs, the BS
cannot recover CSI from any user. We assume however that the BS
can distinguish between the events of a collision and IFS. In the case
of a collision or IFS, the BS selects a user, polls the user to receive
feedback, and schedules the user in that slot. This model is similar to
those of [1], [2], and [6]. We denote the vector of thresholds assigned to
the users by x = (x1, . . . , xn), where x ∈ [0, 1]n. Let α ∈ J (β ∈ J)
be the index of the user selected in the case of an IFS (collision). A
policy denoted by φ is defined as φ := (x, α, β). We denote the set of
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all possible policies by Φ. The idea is to choose a policy φ ∈ Φ that
maximizes (1).

III. PROPOSED FEEDBACK AND SCHEDULING SCHEME

We first discuss the choice of weights as a function of queue lengths.
Recently, weights that are logarithmic in queue lengths have been pro-
posed in the context of queue-and-channel aware scheduling and are
shown to be effective in reducing mean delay [9]. Specifically, at time
slot t, the BS sets weights wi(t), i ∈ J , according to wi(t) = log(1 +
qi(t)), where qi(t) is the number of backlogged bits or the queue
length of user i for downlink transmission. Such logarithmic weights
slowly vary with temporary fluctuations in qi(t). Thus, graceful degra-
dation of delay performance is possible under temporary fluctuations
in offered load while maintaining the gain from MUD [9]. In our
scheme, the BS sets wi = wi(t) at each time slot, and with newly ob-
tained w = (w1, . . . , wn), the BS maximizes θ(w;φ) and finds opti-
mal thresholds. New thresholds are broadcast to the users prior to their
feedback transmissions. The motivation behind maximizing (1) is dis-
cussed in [10]. We show that, in case of full CSI, such a policy not only
guarantees certain rates for the user with the longest queue but also
serves the longest queue with highest possible rate and thus maximizes
the throughput asymptotically in the number of users in the system.

Since w changes over time, threshold broadcast may frequently
occur, which can be an overhead in practice. We propose the follow-
ing method to reduce such overhead. Let φ̃ denote the policy (i.e.,
thresholds) which has been most recently updated to the users. At
every time slot, the BS computes the optimal policy φ∗, given the
current weight w. Users get the policy update from φ̃ to φ∗ only if
φ̃ significantly deviates from φ∗ in terms of the achievable ASWQ.
Specifically, denote the ASWQ achieved by φ̃ and φ∗ given the current
weight w by θ̃ and θ∗, respectively. Define the error ε = |θ̃ − θ∗|/θ∗
and parameter δ. We propose that the update occurs only if ε > δ.
Later, we show that, by changing δ, one can achieve a smooth tradeoff
between performance and the broadcast overhead.

This is because wi(t) is logarithmic in qi(t) and thus slowly changes
with qi(t), which leads to a slow change in the optimal ASWQ over
time. Thus, users see a graceful degradation of performance with
decreasing frequency of threshold broadcast.

Next, we formulate the problem of determining thresholds that
maximize ASWQ for the given w, i.e.,

Problem 1 (P1) Maximize θ(w;φ)

Subject to φ ∈ Φ. (2)

Without loss of generality, we assume that w1 ≥ w2 ≥ · · · ≥ wn. We
rewrite θ(w;φ) as follows:

θ(w;φ) =

{∑
i∈J

wir
i
S(φ)

}
+ wαrI(φ) + wβrC(φ) (3)

where riS(φ) is defined as the average quantile achieved by user i when
only user i transmits feedback, and rI(φ) (rC(φ)) is defined as the
average quantile achieved by user α (user β) in case of IFS (collision).
Since Xi is a uniform RV on [0,1] ∀i ∈ J , given threshold xi, the
probability of feedback transmission is 1 − xi. Thus

riS(φ)=E [Xi ·1 (Xi∈ [xi, 1], Xj ∈ [0, xj) ∀j ∈ J \ {i})]

=E [Xi ·1 (Xi∈ [xi, 1])]·P (Xj ∈ [0, xj) ∀j∈J \ {i})

=

1∫
xi

s ds·
∏

j∈J,j �=i

xj=
(1 − x2

i )

2

∏
j∈J,j �=i

xj .

User α is served when no one transmits feedback; thus, rI(φ) =
E[Xα · 1(Xi ∈ [0, xi) ∀i ∈ J)] = (1/2x2

α) · (
∏

i∈J,i �=α
xi). A colli-

sion occurs either when user β and one or more other users transmit
feedback or when user β does not transmit feedback but at least two
other users transmit feedback. Let Cβ

m denote the event where at least
m users from J \ {β} transmit feedback. In the following, we give an
expression for rC(φ) in terms of P(Cβ

1 ) and P(Cβ
2 ), as well as that for

θ(w;φ) accordingly from (3)

rC(φ) =E [Xβ · 1 (Xβ ∈ [xβ , 1])] · P
(
Cβ

1

)
+ E [Xβ · 1 (Xβ ∈ [0, xβ))] · P

(
Cβ

2

)
=

(
1 − x2

β

)
2

P

(
Cβ

1

)
+

x2
β

2
P

(
Cβ

2

)

θ(w;φ) =
∑
i∈J

{
wi

(1 − x2
i )

2

∏
j∈J,j �=i

xj

}
+

wαx
2
α

2

[ ∏
i∈J,i �=α

xi

]

+
wβ

(
1 − x2

β

)
2

[
1 −

∏
i∈J,i �=β

xi

]
+

wβx
2
β

2

×

[
1 −

∏
i∈J,i �=β

xi −
∑

i∈J,i �=β

{
(1 − xi)

∏
j∈J,j �=i,β

xj

}]

(4)

where it is easily seen that P(Cβ
1 ) and P(Cβ

2 ) are the last two bracketed
terms of (4), respectively. Thus, P1 is the problem of maximizing
(4) subject to x ∈ [0, 1]n and α, β ∈ J . Since (4) is a nonconcave
polynomial in x, P1 is a nonconcave PP. Let φ̂ = (x̂, α̂, β̂) denote the
optimal policy. The globally optimal solution can be found in closed
form when n = 2 as follows: we omit its proof for brevity.

Lemma 1: The optimal policy φ̂ when n = 2 is given by x̂1 =
(2w2)/(3w1), x̂2 = 1/3, and α̂ = β̂ = 1.

We henceforth assume that n ≥ 3. Recently, there has been much
interest in approximately solving PP problems, notably using sum-
of-squares (SOS) methods, which solve a family of semidefinite
programming relaxations of the problem [11]. Such methods often
have computational complexity, which is a high-order polynomial in
n [11]. We present an approximation algorithm with complexity O(n)
as follows:

Consider the problem of finding an optimal set of thresholds that
maximize the ASWQ with some fixed α and β. We temporarily assume
that α �= β

Problem 2 (P2) Maximize θ (w; (x, α, β))

Subject to x ∈ [0, 1]n.

We begin by characterizing the solution to P2, showing that the
optimal thresholds must be nonzero and possess a certain monotonic
property, which, in turn, motivates the proposed approximation.

Lemma 2: Supposing that x̃ is a solution to P2, then x̃i �= 0 holds
for all i ∈ J .

Theorem 1: Suppose that x̃ is a solution to P2. For some i, j ∈ J \
{α, β} such that i ≤ j, implying that wi ≥ wj , we have that x̃i ≤ x̃j ,
i.e., the optimal thresholds are nonincreasing in the weights.

Theorem 1 is intuitive since, for i ∈ J \ {α, β}, we have that
riS(φ) = 1/2(1 − x2

i )
∏

j �=i
xj , which has the same form for all i ∈

J \ {α, β}, whereas the contribution by riS(φ) to (3) is proportional to
wi. Thus, to maximize (3), the user with larger wi should have larger
riS(φ). Note that riS(φ) is decreasing in xi with the other variables
fixed. Hence, for user i with larger wi, xi should be smaller, i.e., user i
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Fig. 1. Illustrated example of the optimal thresholds for P2 and those from
the proposed approximation. The parameters are n = 8, α = 1, β = 2, and
k = 4, from which we have that L(4)(1, 2) = {3, 4, 5, 6} and M(4)(1, 2) =
{7, 8}. Note that L(4)(1, 2) contains the indices of the k = 4 largest weights
from J \ {1, 2}. The proposed scheme assigns the threshold x (1) to the users
in L(4)(1, 2) (M(4)(1, 2)). Both the optimal and approximated thresholds are
shown to be nondecreasing in user index i, i.e., nonincreasing in wi, i.e., both
of them satisfy Theorem 1.

should have a higher probability of feedback transmission. This is the
rationale for our approximation described next.

We introduce two variables x ∈ [0, 1] and k ∈ K := {1, . . . , n−
2}. We select k users that are associated with the k largest weights
from J \ {α, β}, and we denote the set of indices of those users
by L(k)(α, β). The set denoted by M (k)(α, β) comprises the rest
of the users from J \ {α, β}. We assign threshold x to the users in
L(k)(α, β) and 1 to the users in M (k)(α, β). (Hence, the users in
M (k)(α, β) will not transmit feedback with probability 1.) Fig. 1
shows the idea. We let α = 1 and β = 2, and a set of the optimal
thresholds {x̃i}, i ∈ J \ {1, 2} is shown as an example. The approxi-
mated thresholds are shown: note that they also satisfy Theorem 1, i.e.,
they are nonincreasing in wi, and make a transition from x to 1 like a
“step” function. From numerical experiments, we found that {x̃i} tend
to make a transition to 1, which indeed resembles a “jump;” thus, we
observe that the approximation closely mimics the optimal structure of
the problem. Both x and k will be optimized for the maximum ASWQ:
this, combined with the optimized selection of α and β as proposed in
the sequel, turns out to yield an accurate approximation.

The maximization of the ASWQ under the proposed approximation
is formulated as follows, where we will first consider the optimization
with a fixed k: We introduce further constraints to P2 as follows:
xi = x ∀i ∈ L(k)(α, β) and xj = 1 ∀j ∈ M (k)(α, β). In addition,
under the current assumptions such that n ≥ 3 and α �= β, we have
that the optimal xα is 1 (see Case (3) in the proof of Lemma 2); thus,
we may set xα = 1 in P2 without affecting its solution. By adding
those constraints to P2, we obtain P3, i.e.,

Problem 3 (P3)

Maximize wβ

(1 − x2
β)

2
xk

+

⎧⎨
⎩

∑
i∈L(k)(α,β)

wi

⎫⎬
⎭ (1 − x2)

2
xk−1xβ

+
wα

2
xkxβ +

wβ

(
1 − x2

β

)
(1 − xk)

2

+
wβx

2
β

2

[
1 − kxk−1 + (k − 1)xk

]
(5)

Subject to 0 ≤ x ≤ 1, 0 ≤ xβ ≤ 1. (6)

Fig. 2. Mean relative error E[E] versus n. The relative error E is defined
by E := 1 − (Θ/Θ∗), where Θ is the sum-of-weighted-quantiles from the
proposed scheme, and Θ∗ is that from the optimal solution found by the SOS
method proposed in [11] computed for each instance of the randomly generated
weight vectors, which are uniformly distributed on [0, 1]n. When n = 3, the
proposed scheme yields the exact solution; thus, the case is not shown here. For
each n, 104 random vectors of weights were generated.

Note that (5) is not a concave function, yet we show that P3 has O(1)
complexity, irrespective of k and n.

Lemma 3: The complexity of P3 is O(1).
Next, we discuss the optimal choices for α and β. Let us denote

the value of P2 and P3 by g(α, β) and h(k)(α, β), respectively. Note
that P1 is equivalent to maximizing g(α, β) over α, β ∈ J . Since P3
is obtained by adding extra constraints to P2 for a fixed k, we will
maximize h(k)(α, β) over α, β ∈ J and k ∈ K, which is essentially
solving P1 with extra constraints. Consider maximizing h(k)(α, β)
over α, β ∈ J for a fixed k. We show that it is sufficient to consider
O(1) out of n2 possible choices for (α, β) pairs.

Theorem 2: In maximizing h(k)(α, β) over α, β ∈ J , it is sufficient
to consider only the following (α, β) pairs: (1,2), (2,1), (1, k + 2),
(k + 2, 1), (k + 1, k + 2), (k + 2, k + 1), (1,1), and (k + 1, k + 1).

In summary, our algorithm first fixes k ∈ K and then solves P3 for
O(1) number of times over the choices of α and β given by Theorem 2.
From Lemma 3, for each α, β, and k, the complexity of P3 is O(1).
This process is repeated for all k ∈ K; thus, the overall complexity
is O(n). So far, we have assumed α �= β. In the case of α = β, we
can use very similar arguments to those previously made to formulate
P3′ analogous to P3, which also has O(1) complexity. The overall
procedure of the proposed scheme is provided in Table I.

IV. NUMERICAL AND SIMULATION RESULTS

Next, we explore the accuracy of the proposed algorithm. The
optimal solution to P1 is found using the SOS method [11] and is
compared with our proposed solution. Fig. 2 shows the error in the
ASWQ of the proposed scheme relative to the optimal one averaged
over problems with randomly generated weight vectors for each n.
Over the simulated range of n, the error is observed to be below 0.01%.

Next, we demonstrate the delay performance of the proposed al-
gorithm. In the downlink, we use the CDMA-HDR-like model: each
time slot has the duration Δ = 1.67 ms, the bandwidth W = 40 kHz,
and the number of bits that can be served for user i is at most
ΔW log2(1 + Γi(t)), where Γi(t) denotes user i’s SNR at time t.
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TABLE I
PROPOSED ALGORITHM AND FEEDBACK SCHEME

We assume Rayleigh fading channels, which are independent across
users. A packet of size 1 kb randomly arrives at each slot per user. Our
baseline feedback scheme is an OF scheme, which assigns a single
threshold τ in terms of quantiles to all users similar to [1] and [2].
However, in our simulation, the optimal τ is numerically found for
each simulated set of arrival rates and channel distributions. We also
compare performance with the scheme based on the PF scheduling
metric in [6]. These schemes select a user at random in the case of col-
lision or IFS. While these schemes are oblivious of queue lengths, we
will make additional comparison with a queue-aware scheme, which
has the objective function obtained from replacing the quantile Fi(Ri)
with the raw rate Ri in (1). We consider three cases, and in each case,
the users are divided into equal-sized groups, i.e., Groups 1 and 2. For
the users in Group i, the mean parameters for the channels are denoted
by μi, and the probability of a packet arrival per time slot is denoted
by λi, for i = 1, 2. The cases are categorized by the heterogeneity in
the arrival and channel statistics. In Case 1, μ1 = μ2, and λ1 = λ2.

Fig. 3. Mean delay for the case of homogeneous arrival rates and homoge-
neous channel distributions. The horizontal axis represents the sum of arrival
rates of all users, i.e., (λ1 + λ2) · n/2, where we proportionally increase λ1

and λ2 along the axis. “Unif. Thres.” represents the baseline scheme with the
optimal single threshold. “PF” represents the scheme in [6]. “Rate” represents
the scheme using the objective function obtained from replacing quantiles with
raw rates in (1).

Fig. 4. Mean delay for the case of homogeneous arrival rates and hetero-
geneous channel distributions under Nakagami-m fading. The horizontal axis
represents the sum of arrival rates of all users, i.e., (λ1 + λ2) · n/2, where we
proportionally increase λ1 and λ2 along the axis. “Unif. Thres.” represents the
baseline scheme with the optimal single threshold. “PF” represents the scheme
in [6]. “Rate” represents the scheme using the objective function obtained from
replacing quantiles with raw rates in (1).

In Case 2, μ1 = 4μ2, and λ1 = λ2. We assume Nakagami-m fading
for Case 2, where m = 2, which represents a milder fading con-
dition than Rayleigh channels. In Case 3, μ1 = 4μ2, and 3λ1 = λ2.

We adjusted λi and μi to yield mean delays ranging from 100 to
300 ms for the proposed scheme. Fig. 3 shows that, in Case 1, where
the system is symmetric, our scheme reduces the mean delay by
5%–69% relative to other schemes. In Case 2, our scheme reduces
the mean delay by 14%–66% relative to others, as shown in Fig. 4. In
Case 3, we compare 200-ms throughputs defined as the total arrival
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Fig. 5. Comparison of 200-ms throughputs for the case of heterogeneous
arrival rates and heterogeneous channel distributions where n = 8. The vertical
axis represents the sum of arrival rates of all users (in terms of bits per second),
for which each scheme achieves the mean delay of 200 ms.

Fig. 6. Tradeoff between the delay performance and the overhead associated
with threshold broadcast. One of the curves shows the mean delay relative to
that in the case where δ = 0. The other curve shows the average number of time
slots in which thresholds were broadcast relative to that in the case where δ = 0.
The simulation parameters were chosen according to Case 1 with n = 12 and
(λ1 + λ2) · n/2 = 0.756.

rate to the system, which incurs the mean delay of 200 ms for a particu-
lar scheme. In Case 3, the users in Group 2 have lower service rates but
higher arrival rates; thus, the imbalance in the offered loads between
the groups is the worst among all the cases. We observe that, however,
the proposed scheme excels all other schemes, and it achieves 1.1–
2.3 times higher 200-ms throughput than other schemes for n = 8, as
shown in Fig. 5. Overall, we observe that the queue-aware schemes
significantly outperform the queue-oblivious schemes.

The simulation so far assumed δ = 0, i.e., threshold broadcast
occurs whenever queue lengths change. Next, we explore the tradeoff
between performance and broadcast overhead. Fig. 6 shows the trade-
off with varying δ’s. We observe an increase in the mean delay as the
frequency of broadcast decreases. However, the tradeoff is smoothly
achieved, and one can significantly reduce the overhead with a small
penalty in delay, e.g., the overhead is reduced by 70% with the increase
in delay by 11% when δ = 0.05.

V. CONCLUSION

We have proposed an OF scheme aimed at achieving low packet
delays in the context of a heterogeneous wireless system. Motivated
by queue/weight-based OS techniques, we have assigned the user
thresholds for feedback, which are determined by weights designed
to capture their current backlog. We have demonstrated that it is
crucial to reflect quantiles and queue lengths in the feedback design to
deal with system heterogeneity, that is, providing fairness in channel
opportunism and service history is shown to enhance MUD and
improve delay performance. Moreover, our scheme allows a simple
computation of thresholds irrespective of channel distributions, which
is of practical significance.

APPENDIX A
PROOF OF LEMMA 2

Denote the optimal policy by φ̃ = (x̃, α, β). Suppose that x̃i = 0
for some i ∈ J , i.e., user i transmits feedback with probability (w.p.) 1,
which implies that a collision will occur if any other user transmits
feedback. We consider three cases and show that x̃i = 0 leads to con-
tradictions in all cases. We assume that α �= β in this proof: the case of
α = β can be proved in a very similar way; thus, its proof is omitted.

Case 1—i �= α or β: Suppose user β transmits feedback under
the policy φ̃, which happens w.p. 1 − x̃β . A collision occurs w.p. 1;
thus, φ̃ will serve user β, which yields the ASWQ 1/2wβ(1 + x̃β),
which is the average weighted quantile of user β conditional on
user β transmitting feedback or his quantile being above x̃β . Next,
suppose that user β did not transmit feedback, which occurs w.p. x̃β .
A collision may or may not occur: if a collision did not occur, implying
that user i was the only transmitter, user i will be served, which yields
the ASWQ 1/2wi since the quantile of user i is independent of those
of the other users. If a collision occurred, user β will be served, which
yields the ASWQ 1/2wβ x̃β , which is the average weighted quantile
of user β conditional on the quantile of user β being below x̃β . Thus,
the ASWQ is no more than max[1/2wi, 1/2wβ x̃β ] conditional on user
β not transmitting feedback. Thus, θ(w; φ̃) is at most 1/2[wβ(1 −
x̃2
β) + x̃β max{wi, wβ x̃β}], which we define as τ(x̃β). First, assume

that wi ≥ wβ x̃β , i.e., τ(x̃β) = 1/2[wβ(1 − x̃2
β) + wix̃β ]. We assume

x̃β > 0 for now. The case for x̃β = 0 is discussed in Case 2. Consider
a policy ψ = (y, α, β) such that yβ = x̃β and yj = 1 ∀j ∈ J \ {β, i}.
From (4), we have that

θ(w;ψ) =
wβ(1 − x̃2

β)

2
+

wix̃β (1 − y2
i )

2
+

wαyix̃β

2

=
wβ

(
1 − x̃2

β

)
2

+
wix̃β

2

[
1 − y2

i +
wα

wi

yi

]
. (7)

Define the term in the brackets of (7) by ρ(yi). Since ρ(0) = 1
and ∂ρ/∂yi|yi=0 = wα/wi > 0, by making yi small enough, we
can make ρ(yi) > 1, implying that θ(w;ψ) > 1/2[wβ(1 − x̃2

β) +

wix̃β ] = τ(x̃β) ≥ θ(w; φ̃), contradicting that φ̃ is optimal. Second,
assume that wi < wβ x̃β , in which case, τ(x̃β) = 1/2wβ . Consider
a policy ζ = (z, α, β) such that zj = 1 ∀j ∈ J \ {β}, yielding
θ(w; ζ) = 1/2[wβ + wαzβ − wβz

2
β ]. By making zβ small enough,

we can make wαzβ − wβz
2
β > 0 or θ(w; ζ) > 1/2wβ , but 1/2wβ ≥

θ(w; φ̃), which is a contradiction.
Case 2—i = β: Since x̃i = x̃β = 0, user β is served at all times;

thus, θ(w; φ̃) = 1/2wβ . We have shown that the policy ζ defined
in Case 1 satisfies that θ(w; ζ) > 1/2wβ = θ(w; φ̃), which is a
contradiction.

Case 3—i = α: When α �= β and n ≥ 3, one can show by direct
expansion of (4) that θ(w;φ) has the form axα + b, where a and b
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are functions of {xi}, i ∈ J \ {α}, only; particularly, if xi > 0 for all
i ∈ J \ {α}, a > 0 holds. Consider θ(w; φ̃), which can also be written
as ãx̃α + b̃. From Cases 1 and 2, x̃i > 0 holds ∀i ∈ J \ {α}, which
implies that ã > 0. Thus, x̃α = 1 and cannot be 0 from the optimality
of φ̃. �

APPENDIX B
PROOF OF THEOREM 1

Consider a policy ψ = (y, α, β) such that yi = x̃j and yj = x̃i, and
yl = x̃l for all l �= i, j. Policies φ̃ and ψ are identical, except that the
thresholds for users i and j are switched. By definition, rmS (φ) is a
symmetric function of n− 1 variables {xl}, l ∈ J \ {m}. In addition,
rC(φ) (rI(φ)) is a symmetric function of {xl}, l ∈ J \ {β} [{xl}, l ∈
J \ {α}, see (4)]. Thus, the following hold: rjS(φ̃) = riS(ψ), r

i
S(φ̃) =

rjS(ψ), rC(φ̃) = rC(ψ), rI(φ̃) = rI(ψ), and rlS(φ̃) = rlS(ψ), ∀l �=
i, j. Thus, we have that θ(w; φ̃)− θ(w;ψ) = (wi − wj)(r

i
S(φ̃)−

rjS(φ̃)), which must be nonnegative since φ̃ is optimal. Since wi ≥
wj , we have that riS(φ̃) ≥ rjS(φ̃) or (1 − x̃2

i )x̃j

∏
l �=i,j

x̃l ≥ (1 −
x̃2
j )x̃i

∏
l �=i,j

x̃l. From this inequality, we can cancel out the factor∏
l �=i,j

x̃l since x̃l �= 0 for all l ∈ J by Lemma 2, from which x̃i ≤ x̃j

holds. �

APPENDIX C
PROOF OF LEMMA 3

We can define the Lagrangian of P3 as L(x, xβ , λ, ν) :=
xk−1σ(x, xβ) + λ(x− 1) + ν(xβ − 1), where σ(x, xβ) := 1/2 ×
[{
∑

i∈L(k)(α,β)
wi}(1−x2)xβ + wαxβx−kwβx

2
β + (k−1)wβx

2
βx]

and λ, ν ≥ 0, are the Lagrange multipliers associated with the
constraints x ≤ 1 and xβ ≤ 1. Note that the constraints x ≥ 0 and
xβ ≥ 0 can be shown to be always inactive, i.e., the optimal x and xβ

are strictly positive, similar to Lemma 2. For feasible x, xβ , λ, and ν,
the Karush–Kuhn–Tucker (KKT) condition for P3 is given by

∂L(x, xβ , λ, ν)

∂x
= 0

∂L(x, xβ , λ, ν)

∂xβ

= 0

(x− 1)λ = 0 (xβ − 1)ν = 0. (8)

It can be shown that solving the KKT condition (8) has O(1) complex-
ity, e.g., when λ = ν = 0, from (8)

∂L(x, xβ , λ, ν)

∂x
=

{
(k − 1)xk−2 + xk−1 ∂

∂x

}
σ(x, xβ) = 0

⇒ (k − 1)σ(x, xβ) + x
∂σ(x, xβ)

∂x
= 0 (9)

∂L(x, xβ , λ, ν)

∂xβ

= 0

⇒ {2kwβ − 2(k − 1)wβx}xβ

=

⎧⎨
⎩

∑
i∈L(k)(α,β)

wi

⎫⎬
⎭ (1 − x2) + wαx. (10)

We can solve for xβ in terms of x from (10), which renders (9) a
univariate polynomial equation in x of a constant order, which has
O(1) complexity and can be solved exactly, e.g., by the Jenkins-Traub
method. We can similarly find all the solutions to (8) and thus conclude
that P3 has O(1) complexity. �

APPENDIX D
PROOF OF THEOREM 2

We will first prove the following two lemmas: Assume that α �= β.

Lemma 4: For fixed α ∈ J and k ∈ K, denote the indices associ-
ated with the maximum and (k + 1)st largest weights from J \ {α}
by β̄ and β, respectively. Then, argmaxβ∈J\{α}[h

(k)(α, β)] is either
β̄ or β.

Proof: For fixed α and β, denote the solution of P3 by x̃,
and define φ = (x̃, α, β). Since x̃ is a feasible point of P3, we
have that, for all i ∈ L(k)(α, β), riS(φ) = 1/2(1 − x̃2)x̃k−1x̃β , which
we denote by rS(φ). Consider two cases: first assume rβS(φ) +
rC(φ) ≥ rS(φ). Consider a threshold vector x̄ such that x̄β̄ = x̃β ,
x̄β = x̃β̄ = x̃, and x̄i = x̃ ∀i ∈ J \ {β̄, β}, i.e., x̄ is obtained by
switching the thresholds between users β and β̄ from x̃. Denote
the policy (x̄, α, β̄) by φ̄. The following are verifiable from the
definitions: riS(φ) = riS(φ̄) = rS(φ) holds for all i ∈ J \ {β̄, β},

rβ̄S(φ) = rβS(φ̄) = rS(φ) holds, rβS(φ) = rβ̄S(φ̄) = 1/2(1 − x̃2
β)x̃

k,
and rI(φ) = rI(φ̄) = 1/2x̃kx̃β holds. Finally, rC(φ) = rC(φ̄) =
1/2[(1 − x̃2

β)(1 − x̃k) + x̃2
β{1 − kx̃k−1 + (k − 1)x̃k}] holds. Thus

h(k)(α, β̄)− h(k)(α, β)

= h(k)(α, β̄)− θ(w;φ) ≥ θ(w; φ̄)− θ(w;φ)

= (wβ̄ − wβ)
[
rβS(φ) + rC(φ)

]
+

⎡
⎣
⎛
⎝ ∑

i∈L(k)(α,β̄)

wi

⎞
⎠−

⎛
⎝ ∑

i∈L(k)(α,β)

wi

⎞
⎠
⎤
⎦ rS(φ). (11)

By definition, L(k)(α, β̄) is the set of indices associated with the
k largest weights from J \ {α, β̄}. Thus, L(k)(α, β̄) ∪ {β̄} is the
set of indices associated with the k + 1 largest weights from J \
{α} from the definition of β̄. This implies

∑
i∈L(k)(α,β̄)∪{β̄} wi ≥∑

i∈L(k)(α,β)∪{β} wi for any β; thus, (11) is given by

(wβ̄ − wβ)
[
rβS(φ) + rC(φ)

]

+

⎡
⎣
⎧⎨
⎩
⎛
⎝ ∑

i∈L(k)(α,β̄)∪{β̄}

wi

⎞
⎠− wβ̄

⎫⎬
⎭

−

⎧⎨
⎩
⎛
⎝ ∑

i∈L(k)(α,β)∪{β}

wi

⎞
⎠− wβ

⎫⎬
⎭
⎤
⎦ rS(φ)

= (wβ̄ − wβ)
(
rβS(φ) + rC(φ)− rS(φ)

)

+

⎧⎨
⎩
⎛
⎝ ∑

i∈L(k)(α,β̄)∪{β̄}

wi

⎞
⎠−

⎛
⎝ ∑

i∈L(k)(α,β)∪{β}

wi

⎞
⎠
⎫⎬
⎭ rS(φ)

≥ (wβ̄ − wβ)
(
rβS(φ) + rC(φ)− rS(φ)

)
≥ 0.

Second, assume that rβS(φ) + rC(φ) < rS(φ). Consider φ =
(x̃, α, β); then, using similar arguments as previously given, one can

show that h(k)(α, β)− h(k)(α, β) ≥ (wβ − wβ)(rS(φ)− rβS(φ)−
rC(φ)) ≥ 0. �

Lemma 5: For fixed β ∈ J and k ∈ K, denote the indices associ-
ated with the maximum and (k + 1)st largest weights from J \ {β}
by ᾱ and α, respectively. Then, argmaxα∈J\{β}[h

(k)(α, β)] is either
ᾱ or α.

The proof of Lemma 5 is omitted since it is almost identical to
that of Lemma 4. The optimal choices for (α, β) must satisfy both
Lemmas 4 and 5. One can verify that such (α, β) pairs are the
following: (1, 2), (2, 1), (1, k + 2), (k + 2, 1), (k + 1, k + 2), and
(k + 2, k + 1). Note that we assumed that α �= β. When α = β, one
can make a similar argument as previously given and show that (α, β)
pairs that satisfy the lemmas are (1,1) and (k + 1, k + 1).
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Efficient Implementation of the MIMO Sphere Detector:
Architecture and Complexity Analysis

Ronald Y. Chang, Sian-Jheng Lin, and Wei-Ho Chung, Member, IEEE

Abstract—An efficient implementation strategy for the multiple-input–
multiple-output (MIMO) sphere detector (SD) is proposed and analyzed
in this paper. The proposed method incorporates a dynamic information
storage-and-retrieval mechanism to avoid repetitive computation of pre-
viously processed results. A memory-access architecture is devised to
facilitate the implementation. The proposed method remarkably benefits
the depth-first SD and its variants, as verified by a detailed complexity
analysis and experimental results.

Index Terms—Implementation architecture, maximum-likelihood (ML)
detection, multiple-input–multiple-output (MIMO) systems, sphere detec-
tor (SD).

I. INTRODUCTION

The maximum-likelihood (ML) detection problem in wireless
multiple-input–multiple-output (MIMO) systems is mathematically
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equivalent to finding the closest lattice point in the multidimensional
space, which is a problem known to be NP-hard. Factorizing the
MIMO channel in upper triangular form (see Section II), detecting
the lattice inputs can be represented as a tree-search process. Since
ML detection employing an exhaustive search over the entire tree
is computationally infeasible in practice, various reduced-complexity
detection algorithms have been proposed, including (in tree-search
terms) the best-first search (e.g., the stack algorithm [1]), the depth-
first search (e.g., the sphere detector (SD) [2], [3]), the breadth-first
search (e.g., [4]), and the hybrid tree-search algorithms (e.g., [5]).
These contributions propose algorithmic improvements on previous
schemes. The implementation aspect of various detection schemes
has also been studied for the breadth-first K-best detector [6]–[8], the
successive-interference-cancellation-based detector [9], [10], and the
SD [11]–[13]. These contributions report on the details and modifi-
cations of the detection algorithm from the perspective of implemen-
tation and/or suggest an efficient architecture to realize the hardware
implementation of the algorithm.

The SD originally introduced in [2] and [3] essentially conducts a
constrained lattice-point search within a hypersphere defined by its
sphere radius to reduce the number of decision candidates searched.
Viewing the SD detection process as the depth-first tree traversal, it is
observed that different nodes in the tree naturally have various lengths
of shared paths to the root; therefore, metric computations for previ-
ously visited nodes can be reused to avoid redundant computations in
executing the SD. This paper explicitly explores this concept, which
is known as memoization in the computing parlance, and proposes
a computationally efficient implementation through a register-based
architecture and a register input/output (I/O) mechanism. The main
contributions of this paper are given here.

1) The proposed implementation strategy underlies the detection
algorithm itself and can be implemented in any class of the
depth-first SD—optimal or suboptimal, hard-output or soft-
output, with or without tree pruning—to enhance its computa-
tional efficiency.

2) A detailed complexity analysis is conducted to quantify the
computational saving yielded by the proposed implementation.
Our analysis shows that, if no tree pruning is enforced, the
computational cost of the proposed implementation is approx-
imately 2/(2NT + 1) times as much as that of the conventional
implementation for an NT ×NT system (real-valued process-
ing). The computational advantage of the proposed method
persists for any tree-pruning strategy employed, although the
computational saving dwindles as the pruning becomes more
extensive, as indicated by the derived upper and lower bounds
on the complexity.

This paper is organized as follows: Section II defines the system
model and reviews SD. Section III describes the proposed implementa-
tion. Complexity analysis is conducted in Section IV, and experimental
results are presented in Section V. Finally, concluding remarks are
given in Section VI.

II. MULTIPLE-INPUT–MULTIPLE-OUTPUT SPHERE DETECTOR

We consider an uncoded MIMO transmission system with NT

transmit antennas and NR receive antennas (denoted by an NT ×NR

system). We are particularly interested in the case where NR = NT ,
although this is not a constraint on either the SD algorithm or the
proposed implementation strategy for SD. The baseband signal model
is given by

yc = Hcx̃c + vc (1)

0018-9545/$31.00 © 2012 IEEE


