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Abstract—We consider the multicast scheduling problem for
block transmission of packets in a heterogeneous network using
a half-duplex Relay Station (RS). The RS uses random linear
coding to efficiently transmit packets over time-varying multicast
channels. Our goal is to minimize the average decoding delay.
Because of the half-duplex operation, at each time slot the
RS must decide to either (1) fetch a new packet for encoding
from the base station, or (2) multicast a coded packet to
mobile users. Thus, optimal scheduling hinges on exploiting
multicast opportunities while persistently supplying the encoder
(at the RS) with new packets. We formulate an associated fluid
control problem and show that the optimal policy incorporates
opportunism across multicast channels, i.e., the RS performs a
multicast transmission only if the collection of channel conditions
are favorable; otherwise, it performs a fetch. Based on the fluid
policy, we propose an online algorithm. We prove that our
algorithm asymptotically incurs no more than 4/3 and 2 times
the optimal delay, for two-user and arbitrary number of user
system respectively. Simulation results show that, in fact, our
algorithm’s performance is very close to theoretical bounds.

Index Terms—Heterogeneous networks, network coding, op-
portunistic scheduling, fluid approximation, asymptotic perfor-
mance.

I. INTRODUCTION

To meet the ever-growing demand for throughput and cov-
erage, relay technologies have been widely considered in next-
generation cellular systems, e.g., heterogeneous networks with
relay stations [1], [2]. We focus on two-hop relay networks in
which there exists an intermediate node dedicated for relaying.
The first hop serves as the high-speed wireless backhaul, and
the second hop provides the access links to mobile users. In
cellular networks, the two-hop relay architecture is preferable
to multi-hop (more than two hops) relay networks, because
of relatively low packet delays and reduced routing/signalling
overheads. Meanwhile, with advances in cellular technology,
recent years have witnessed an explosion of multimedia traffic
over cellular networks. Accordingly, multicasting over wireless
networks has received much interest as a means for efficient
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dissemination of multimedia information to mobile users, e.g.,
evolved multimedia broadcast/multicast services (eMBMS)
[3]. While multicasting over relay networks has been studied
recently, e.g., from information theoretic perspectives [4]–[6],
very little is known about the channel-aware (opportunistic)
scheduling in such systems. Opportunism of time-varying
multicast channels is not well understood even for simple relay
networks, and there exist a number of related open problems.

In this paper, we study multicast scheduling algorithms
using Random Linear Network Coding (RLNC) in heteroge-
neous networks with relay stations. As shown in Fig. 1, the
network consists of a macro Base Station (BS), a Relay Station
(RS) and users associated with the RS. A data block consisting
of K packets, initially backlogged at a BS queue, must be
delivered to all users. The RS stores the packets received from
the BS in its buffer, and applies RLNC over the stored packets
to generate coded packets, which are then transmitted to the
users. Our goal is to minimize the average decoding delay,
which is defined as the time until every user has received K
linearly independent packets and thus is able to decode the
entire data block.

To exploit the broadcasting nature of wireless links, the RS
transmits a coded packet on a single time-frequency resource.
For simplicity, this is done at a fixed multicast rate across all
packets. We assume that the users’ channels are time-varying
and that their Channel State Information (CSI) is known to
the RS. Consequently, the transmission of a coded packet is
only successful for users whose channel state can support the
multicast rate. We assume that the RS operates in the half-
duplex mode, as in many practical systems [2]. Thus, the RS
must repeatedly make scheduling decisions as to whether to
multicast a coded packet or to fetch an original packet1. Our
model is intended to capture the salient characteristics of RS
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scheduling for such multicast transmissions.
Our focus is on scheduling strategies leveraging opportunis-

m across time-varying multicast channels. We show that it is
important to strike a good balance between multicasting and
fetching, as described below. On the one hand, the RS should
frequently fetch original packets from the BS. Otherwise, there
may exist many users who already have received the same
number of linearly independent packets as the original packets
stored at the RS. Because the coded packets are random
linear combinations of those stored at the RS, the coded
packets transmitted thereafter will not be linearly independent
of the packets already received by these users, rendering
the transmitted packets useless to them. On the other hand,
fetching too often can be inefficient, because fetching is always
performed at the expense of the opportunity to multicast,
due to the half-duplex operation of the RS. A key insight
is that it is desirable to multicast only when the channel
conditions are favorable (i.e., many users are likely to receive
the packet and the packet contains new information on degrees
of freedom relative to those already received) and to fetch
original packets otherwise. One can achieve a good balance
between multicasting and fetching by making the best use of
multicasting opportunities while keeping the coded packets
“innovative” to many users. Optimal scheduling, however, is
a complex function of, for example, the queue lengths of the
RS and users, and channel parameters (possibly asymmetric
among users). This problem is particularly challenging for
large systems. We aim to develop a scalable algorithm with
provable performance guarantees. Despite their importance,
such scheduling/queueing strategies for the opportunistic cod-
ed multicast have not yet been well explored for two-hop relay
networks. The related work is described below.

Related Work: One of the fundamental studies of random
linear coding in packet networks is [8]. The authors show
that RLNC achieves the min-cut capacity for both unicast and
multicast in lossy packet networks. They assume, unlike in
our work, that all packets have predetermined schedules for
transmission. Studies [9] and [10] examine the throughput and
delay performance of RLNC for broadcasting over one-hop
networks as a function of the coding window size and the
number of users. In [11], the authors focus on minimum delay
scheduling in single-hop networks and show that an RLNC
scheme, even without CSI, can outperform traditional uncoded
schemes with CSI. Note that the analyses in [9]–[11] are
mainly restricted to the case in which the users are statistically
symmetric in terms of channel conditions. However, in this
paper, we will address the challenging case of asymmetric
channels.

The queueing aspects of wireless coded multicast over
single-hop networks have been studied in [12] and [13]. The
study in [12] analyzes the queueing delay performance of a
packet coding scheme with an adaptive coding window size
based on the number of packets buffered at the source. In [13],
the authors consider a model in which a BS serves multiple
multicast flows. They propose a simple coding scheme that

1In order to coordinate with the BS on scheduling, the RS can generate cell
control messages, e.g., the RS operates as a “non-transparent relay” specified
by the IEEE 802.16 working group [7].

combines packets from different queues, and derive conditions
under which their scheme achieves the maximum throughput.

Prior work on RLNC for multi-hop networks includes [14],
where the authors study packet coding schemes over lossy
networks in which the intermediate nodes can encode packets
stored in their finite-size buffers; however, they focus on
serving a single flow without scheduling conflicts, which
differs from our work. The study in [15] examines a packet
scheduling problem using RLNC in a cooperative network
comprising a source and two receivers. The authors take a
dynamic programming approach to find the optimal schedule,
which has scalability issues when the number of receivers
is large. Recently, a multicast scheduling algorithm for two-
hop OFDMA relay networks was proposed in [16]. However,
they do not consider network coding, and their objective
differs from ours; they consider finding the optimal subchannel
allocation over multiple multicast sessions to maximize the
aggregate multicast throughput.

Contributions and Paper Organization: In this paper, we
propose a scalable scheduling algorithm for opportunistic cod-
ed multicast in two-hop relay networks. Below, we summarize
our contributions.

(a) The underlying decision problem is a Markov Decision
Process (MDP) that is intractable, even for a moderate
problem size. Thus, we formulate an associated fluid
control problem. The fluid problem is nonconvex because
of the nonlinear characteristics of decoding delays under
RLNC; however, we are able to show the optimal fluid
control problem can be reformulated as a linear program
(LP).

(b) The LP is still difficult to solve because its size is
exponential in the number of users. However, we show
that the solution has a threshold-based structure. Indeed
the optimal policy is for the RS to multicast only if the
current channel conditions are such that the “revenue”
(defined later) exceeds a certain threshold; otherwise, the
RS fetches a packet from the BS. This result explicitly
characterizes the optimal tradeoff point between fetching
new packets and opportunistic multicast transmission.

(c) We propose a low-complexity scheduling algorithm mo-
tivated by the thresholding property of the optimal policy.
We prove that our algorithm asymptotically achieves at
most twice the optimal decoding delay. For two-user
systems, the approximation ratio is shown to be at most
4/3. Simulation results show that our algorithm in fact
performs far better than the derived bounds, achieving
decoding delays that are very close to theoretical lower
bounds.

The remainder of this paper is organized as follows. Section
II introduces our system model and problem formulation.
The associated fluid problem is developed in Section III;
its reformulation as an LP is discussed in Section IV. In
Section V, we identify the properties of the optimal fluid
policy. We propose our algorithm in Section VI and analyze its
performance in Section VII. Section VIII contains simulation
results. Section IX concludes the paper.
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II. SYSTEM MODEL AND PROBLEM FORMULATION

We shall use boldface letters to denote vectors and matrices.
The ith entry of vector x is denoted by xi. All of the vectors
are assumed to be column vectors, unless stated otherwise. We
define [x]+ := max{x, 0}.

Let n denote the number of users, and I = {1, ..., n} denote
the set of user indices. A block of K packets is initially
backlogged at the BS, and is to be disseminated to all users
through the RS. Each packet is represented as a vector of
length ν over a finite field Fd and has a length of ν⌈log2d⌉
bits. We assume that all original packets received by the RS
are stored in the RS queue until the transmission completes.
The RS creates coded packets by applying RLNC over all
the original packets in its queue. We consider a time-slotted
system in which the integer l denotes the time index. At each
time slot, the half-duplex RS can either fetch an original packet
from the BS or multicast a coded packet to the users. The
decoding delay is defined as the number of time slots it takes
for all of the users to receive K linearly independent coded
packets. The decoding overhead of the users is assumed to be
negligible2.

Multicast packets are encoded and transmitted on a single
time-frequency resource unit, e.g., a Resource Block (RB),
destined for all the users, at a predetermined fixed rate used
for multicasting. Due to the time-varying channels, we assume
for simplicity that one of two cases may occur: a given user
either successfully receives the packet or not. Let us define
a binary random process Xi(l) such that Xi(l) = 1 if user
i would be able to receive the packet in time slot l, and
Xi(l) = 0 otherwise. We assume that the CSI is available
at the transmitter, i.e., the RS knows Xi(l),∀i ∈ I , prior to
transmission. The RS allocates3 the RB only to the users who
can receive the packet, i.e., the RS multicasts the packets to
the set of users given by {i ∈ I|Xi(l) = 1} at time slot l.
Because of such resource sharing in multicast transmissions,
the users’ channels are inherently “ON-OFF” channels. We
say that the channel of user i is in the ON (resp. OFF) state at
time slot l if Xi(l) = 1 (resp. Xi(l) = 0). Note for simplicity,
we assume that there are no “packet erasures”, i.e., the users
in the ON state can successfully receive the transmitted packet
with probability 1.

We further assume that Xi(l)’s are stationary and ergodic
discrete-time Markov chains (DTMC) on {0, 1}, and are
independent across users. Let pi := P(Xi(l) = 1) denote
the steady-state probability that the channel of user i is in the
ON state. The channel between the BS and the RS is called
the wireless backhaul. We assume that the backhaul is always
in the ON state. This is a reasonable assumption because, in

2As discussed in [17], the receiver is able to retrieve the coding coefficients
for decoding, if it runs an identical pseudo-random number generator (PRNG)
initialized with the same seed as the encoder. We can show that, it is sufficient
for a coded packet to contain the information on (1) the number of original
packets used for the encoding at the RS, and (2) the total number of coded
packets transmitted. The users can feed this information to the PRNG to
retrieve the coefficients.

3By allocation we mean that the RS notifies a subset of users through a
control channel so that those users may “listen” to the RB for reception. The
users who did not get the allocation can simply stay idle, or temporarily enter
“sleep” mode to save power.

practice, the backhaul tends to have a high capacity, e.g., the
RS may be located in the line-of-sight of the BS.

We will use vector s := (s1, · · · , sn) ∈ {0, 1}n to denote
the aggregate channel state of users. Specifically, si = 1 (resp.
si = 0) indicates that the channel state of user i is in the
ON (resp. OFF) state. For example, for n = 3, the channel
state s = (1, 1, 0) indicates that the channels of user 1 and
2 are in the ON state. We let S := {0, 1}n denote the set of
all possible channel states. Let the random process X(l) :=
(X1(l) · · ·Xn(l)) ∈ S denote the channel state in time slot l.
The probability that the channel state is s in the steady state
is denoted by p(s) where

p(s) := P(X(l) = s) =
∏
i∈I

psii (1− pi)
1−si .

When a coded packet is received by user i, we say that it
is an innovative packet for user i if it is linearly independent
of all of the packets previously received by user i. Let Bi(l)
(resp. B̂i(l)) denote the number of packets (resp. innovative
packets) received by user i up to time slot l. Note that Bi(l)
counts both innovative and noninnovative packets. In fact, only
the innovative packets matter to the users. Let BR(l) be the
number of packets received by the RS up to time slot l. We
have that for all i ∈ I

Bi(l) ≥ B̂i(l), and BR(l) ≥ B̂i(l).

When a coded packet is multicast at time slot l, the probability
that it is innovative to user i is given by [13]

1− dB̂i(l)−BR(l). (1)

Note that (1) is equal to 0 when BR(l) = B̂i(l), and is close
to 1 when BR(l) > B̂i(l) and d is sufficiently large. For
simplicity, we assume that (1) is equal to 1 if BR(l) > B̂i(l).
In other words, if user i has received fewer innovative packets
than the original packets received by the RS, any coded packet
multicast by the RS is innovative to user i. This assumption
is widely used, e.g., see [12] and [15]. Once a user receives
K innovative packets, the user can decode the whole block
of original packets. The goal for the RS is to take optimal
scheduling actions, either a multicast or a fetch, each time
slot so as to minimize the mean decoding delay. Table I is a
summary of the notation used in our work.

Note that once the RS fetches K original packets from the
BS, the optimal action is to repeatedly multicast the coded
packets. Thus, we will divide the overall transmission policy
into two stages:

• Opportunistic Fetch stage: time duration from the begin-
ning of the transmission until the RS fetches K original
packets. At each time slot in this stage, the RS should
decide to perform either a fetch or a multicast depending
on the time-varying multicast channels.

• Flush stage: time duration following the Opportunistic
Fetch stage until all users have received K innovative
packets. The RS always performs a multicast in this stage.

We briefly show that our problem can be formulated as
an MDP. We define Q := {0, 1, . . . ,K} × {0, 1, . . . ,K}n
as the system state space, which represents the number of
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TABLE I
SUMMARY OF THE NOTATION

General System Parameters
n number of users
I := {1, . . . , n}, set of user indices
K number of packets in a block
d coding field size
Xi(l) channel state of user i in time slot l
pi probability that user i’s channel is in the ON state
ib ∈ argmini∈I{pi}, index of the bottleneck user
s := (s1, . . . , sn), channel state
S := {0, 1}n, set of channel states
p(s) probability that the channel state is s
Bi(l) number of packets received by user i up to time slot l
B̂i(l) number of innovative packets received by user i up to time

slot l
BR(l) number of packets in the RS queue in time slot l
w := (w1, . . . , wn), vector of users’ weights
ρ(w, s) :=

∑
i∈I siwi, revenue associated with channel state s

ρ̂(w, s) := ρ(w, s)/(1 + sib ), normalized revenue associated with
channel state s

Fluid Model Related Parameters
π(s, t) instantaneous fraction of time spent for multicasting

under the condition that the channel state is s at time t
bi(t) units of fluid received by user i up to time t

b̂i(t) units of innovative fluid received by user i up to time t
bR(t) units of fluid in the RS queue at time t
ri(t) fluid rate achieved by user i at time t
r̂i(t) innovative fluid rate achieved by user i at time t
rin(t) inflow rate to the RS at time t

original packets received by the RS and the number of linearly
independent packets received by the n users. The action space
A of our MDP consists of two elements: the RS may perform
either a multicast or a fetch. If we associate a fixed action
with each system state, the system clearly evolves as a Markov
chain. Note that the system state space |Q| = O(Kn+1) and
the channel states |S| = O(2n). Because of the “curse of
dimensionality,” our MDP quickly becomes computationally
intractable as K and n increase.

III. FLUID APPROXIMATION

Stochastic control problems are both analytically and com-
putationally difficult, but in this section we will consider the
fluid model as a deterministic relaxation. Fluid models provide
tractable approximations, as shown in many studies [18]–[20].

We first introduce the related random processes. Let Gs(l)
(resp. Hs(l)) denote the cumulative number of time slots in
which the RS performed a multicast (resp. a fetch) and the
channel was in state s ∈ S up to time slot l. We have that

BR(l) =
∑
s∈S

Hs(l); Bi(l) =
∑
s∈S

siGs(l), ∀i ∈ I.

Recall that si = 1 if in channel state s user i’s channel was
ON. Define a binary random process Ψ(l) such that Ψ(l) = 1
if the RS performs a multicast in time slot l, and 0 otherwise.
Thus, we have that

Gs(l) =

l∑
j=1

1(X(j) = s,Ψ(j) = 1),

Hs(l) =

l∑
j=1

1(X(j) = s,Ψ(j) = 0).

Let t ∈ R denote a continuous time index. We extend
the definition of a discrete-time random process Y (·) to
continuous time as follows:

Ỹ (t) := Y (⌊t⌋).

Let D[0,∞) be the set of functions f : [0,∞) → R that are
right-continuous with left limits (RCLL). Then, clearly, G̃s(t)
and other extended processes defined previously, are random
elements in D[0,∞). Consider a sequence of systems for the
fluid scaling parameter m = 1, 2, . . .. In the mth system,
the total number of packets to be received is scaled from K
to mK. We will use superscript (m) to denote the random
processes associated with the mth system, e.g., G̃(m)

s (t) is the
process G̃s(t) in the mth system. We denote the rescaling of
the random process Ỹ (m)(t) by y(m)(t) given by

y(m)(t) :=
1

m
Ỹ (m)(mt). (2)

For example, g(m)
s (t) is the rescaling of the process G̃

(m)
s (t).

Lemma 1: The rescaled processes satisfy the following con-
vergence uniformly over compact sets (u.o.c.) as m → ∞:

g(m)
s (t) → gs(t),

h(m)
s (t) → hs(t),

b
(m)
R (t) → bR(t) =

∑
s∈S

hs(t),

b
(m)
i (t) → bi(t) =

∑
s∈S

gs(t)si, ∀i ∈ I

where gs(t), hs(t), bR(t), and bi(t) are Lipschitz continuous
on [0,∞).

Proof: The proof is similar to Lemma 1 in [18].
Hence, gs(t), hs(t), bR(t), and bi(t) are Lipschitz continuous
and have derivatives almost everywhere for t ≥ 0. The points
at which the derivatives exist are called regular points [18].
The derivative of y(t) at a regular point t is denoted by ẏ(t).

Let δ := m−α for some α ∈ (0, 1). For some regular point
t, we have that

Gs(m(t+ δ))−Gs(mt) =

⌊m(t+δ)⌋∑
j=⌊mt⌋+1

1(X(j) = s,Ψ(j) = 1).

Dividing both sides by mδ, we have that

Gs(m(t+ δ))−Gs(mt)

mδ
(3)

=

⌊m(t+δ)⌋∑
j=⌊mt⌋+1

1(X(j) = s)

mδ
·

⌊m(t+δ)⌋∑
j=⌊mt⌋+1

1(X(j) = s,Ψ(j) = 1)

⌊m(t+δ)⌋∑
j=⌊mt⌋+1

1(X(j) = s)

.

(4)

The limit of the factor on the RHS of (4) as m → ∞ is
denoted by π(s, t) ∈ [0, 1], which can be interpreted as the
instantaneous fraction of time spent for multicasting, on the
condition that the channel state is s at time t. Additionally, as
m → ∞, the factor on the LHS of (4) converges to p(s), and
(3) converges to ġs(t) because t is regular. Thus, we have that
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ġs(t) = p(s)π(s, t). By taking similar steps for the process
Hs(t), we get ḣs(t) = p(s)[1− π(s, t)].

Let ri(t) := ḃi(t) and rin(t) := ḃR(t) denote the fluid rate
achieved by user i and the inflow rate to the RS at time t,
respectively. Define b̂i(t) as the cumulative units of innovative
fluid (analogous to innovative packets in the stochastic model)
received by user i up to time t. Let r̂i(t) :=

˙̂
bi(t) denote the

innovative fluid rate achieved by user i at time t. We have that

r̂i(t) =

{
ri(t), if bR(t) > b̂i(t),

min[ri(t), rin(t)], if bR(t) = b̂i(t).
(5)

That is, the innovative fluid rate achieved by user i is equal
to ri(t) if bR(t) > b̂i(t); this reduces to min[ri(t), rin(t)]
if bR(t) = b̂i(t), because the total units of innovative fluid
received by user i cannot exceed the units of fluid received by
the RS.

The users need to receive mK innovative packets in the
mth system; thus, under the fluid scaling (2), we want all of
the scaled trajectories b̂

(m)
i (t), i ∈ I to reach K. We define

the asymptotic decoding delay in the fluid regime as

T = inf
t

{
t ∈ R+

∣∣∣min
i∈I

{b̂i(t)} = K
}
. (6)

i.e., our goal is to minimize the time until every user receives
at least K units of innovative fluid. Hence, delay minimization
using a deterministic fluid model can be formulated as follows:

(F) minimize
π

T = inf
t

{
t ∈ R+

∣∣∣min
i∈I

{b̂i(t)} = K
}

subject to bi(0) = b̂i(0) = 0, ∀i ∈ I, (7)

bi(t) = bi(0) +

∫ t

0

ri(τ)dτ, ∀i ∈ I, (8)

b̂i(t) = b̂i(0) +

∫ t

0

r̂i(t)dτ, ∀ i ∈ I, (9)

bR(t) = bR(0) +

∫ t

0

rin(τ)dτ, bR(0) = 0, (10)

ri(t) =
∑
s∈S

p(s)π(s, t)si, ∀i ∈ I, (11)

rin(t) =
∑
s∈S

p(s)[1− π(s, t)], (12)

π(s, t) ∈ [0, 1], ∀s ∈ S, (13)
π(s, t) = 1, if bR(t) = K. (14)

Similar to the original stochastic problem, (F) is a two-stage
fluid fill-up problem, i.e., the Opportunistic Fetch stage (resp.
Flush stage) is the time before (resp. after) the instant at which
the fluid level at the RS queue reaches K. Fig. 2 shows an
example of buffer trajectories for (F) with n = 2. During the
Flush stage, the optimal control will perform multicasting at
all times. Hence, the inflow rate to the RS, rin(t), is exactly
0 during the Flush stage. Also, the fluid rate achieved by user
i is pi for all i ∈ I during the Flush stage. Thus, it remains
to find the optimal policy to be used during the Opportunistic
Fetch stage.

t

K

( )
R
b t

1
ˆ ( )b t

2
ˆ ( )b t

Opportunistic Fetch Flush

Fig. 2. An example of buffer trajectories with n = 2.

IV. PROBLEM REFORMULATION

Solving (F) requires a technique called calculus of varia-
tions, which tends to be difficult. Instead, we convert (F) into a
simpler optimization problem from which we identify several
properties of the solution.

Theorem 1: There exists an optimal policy for the fluid
problem (F) such that the fluid rates are constant during the
Opportunistic Fetch stage.

Proof: The proof is given in Appendix A.
Recall that the optimal policy during the Flush stage is to
keep multicasting. Thus, the problem reduces to optimizing
the constant fluid rates during the Opportunistic Fetch stage.
For notational simplicity, we will drop the time index from
π(s, t), rin(t), ri(t), and r̂i(t), and instead, use π(s), rin, ri,
and r̂i. Based on (5), we have that

r̂i = min{ri, rin}, ∀i ∈ I. (15)

Up to time K
rin

, the RS has received K units of fluid, and user i
has received Kr̂i

rin
units of innovative fluid for each user i ∈ I .

Thus, the remaining units of innovative fluid to be received
by user i during the Flush stage is given by

K − r̂i
rin

K =
[rin − ri]

+

rin
K. (16)

It follows that, the decoding delay (6) is given by

K

rin
+max

i

{
[rin − ri]

+

rin

K

pi

}
.

Overall, we have that (F) is equivalent to the following
problem:

minimize
π

K

rin
+max

i

{
[rin − ri]

+

rin

K

pi

}
(17)

subject to rin =
∑
s∈S

p(s)[1− π(s)], (18)

ri =
∑
s∈S

p(s)π(s)si, ∀i ∈ I, (19)

π(s) ∈ [0, 1], ∀s ∈ S. (20)

This problem is still difficult for two reasons. First, it is
nonconvex, and second, the number of variables π(·) is
exponential in n. Let us first address the nonconvexity.

Define ib ∈ argmini∈I{pi} as the index of the “bottleneck”
user, i.e., the user whose channel has the lowest probability of
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being in the ON state. Consider the following problem:

(P) maximize
π

min
i∈I

{ri} (21)

subject to rin = rib , (22)
(18)− (20).

Theorem 2: The solution to (P) is optimal for (F) as well.
Proof: The proof is given in Appendix B.

Let us discuss some of the implications of Theorem 2. In the
proof of the theorem, we show that there exists an optimal
policy satisfying the following constraint:

rin = min
i∈I

{ri}. (23)

If we combine (23) and the definition of r̂i in (15), we have
that

r̂i = min[ri, rin] = rin, ∀i ∈ I.

That is, all users achieve the same innovative fluid rate given
by rin under (23). Consequently, all users will simultaneously
finish receiving K units of innovative fluid at the end of the
Opportunistic Fetch stage, in which case, the Flush stage will
have zero duration. Therefore, we need only optimize over one
stage, i.e., the Opportunistic Fetch stage. Intuitively, a good
policy will dispense with the Flush stage if possible, because
during that period it cannot exploit opportunism. Importantly,
the nonconvexity of (17) is resolved, because the second term
of (17) becomes 0 under constraint (23), which results in the
one-stage LP given by (P). In the proof of Theorem 2, we also
observe that rib = mini∈I{ri} holds under the optimal policy
in addition to (23). That is, there exists an optimal policy under
which the bottleneck user achieves the minimum fluid rate
among users. The bottleneck user governs the decoding delay;
thus, one should maximize the service rate of the bottleneck
user, as in (P). Theorem 1 allows us to consider only (P),
which is significantly simplified from (F), in the rest of this
paper.

V. OPTIMAL FLUID POLICY

There are 2n variables in (P); thus, it seems difficult to solve
(P) directly. Instead, we will first examine the structure of the
solutions to (P). For this purpose, we will reformulate (P) as
a max-weight problem as follows:

(MW) maximize
π

∑
i∈I

wiri

subject to
∑
s∈S

p(s)π(s)[1 + sib ] = 1, (24)

(18)− (20),

where (24) is derived from (22) by expressing rin and rib in
terms of π(·).

Theorem 3: There exist non-negative weights wi, i ∈ I ,
such that (P) is equivalent to (MW).

Proof: The proof is given in Appendix E.
One can interpret the weight wi as the revenue per unit
bandwidth accrued by user i. Therefore, we may regard (MW)
as a revenue maximization problem as follows. If we express

the objective of (MW) in terms of π(·), we have that∑
s∈S

p(s)π(s)ρ(w, s) (25)

Define w := (w1, . . . , wn) as the weight vector, and
ρ(w, s) :=

∑
i∈I wisi as the revenue earned by the system

when the RS multicasts under channel state s. Therefore, (25)
is the expected revenue earned by the system under policy
π(·). We will also define ρ̂(w, s) := ρ(w, s)/(1 + sib) as
the “normalized” revenue. By definition, ρ̂(w, s) penalizes
ρ(w, s) by a factor of 2 if the bottleneck user’s channel is ON
in channel state s, i.e., sib = 1. The penalty arises because
there exists a constraint which involves the bottleneck user,
i.e., (24) in the problem (MW). Hence it is natural that the
solution of (MW) is biased by the bottleneck user, and that
bias/penalty would be captured by the normalized revenue.

Next, we investigate the solution to (MW). Let us intro-
duce the following notation, which will be useful for further
discussion. For given w, let η(k) := (η1(k), . . . , ηn(k)) ∈ S
denote the channel state such that ρ̂(w,η(k)) is the kth largest
(ties are arbitrarily broken) among all {ρ̂(w, s)|s ∈ S}.
Additionally, define k∗ as

k∗ := min

{
k

∣∣∣∣∣
k∑

j=1

p(η(j))[1 + ηib(j)] > 1

}
.

Theorem 4: The following policy π∗(·) is optimal for
(MW):

π∗(s) =

 1, ρ̂(w, s) > ξ,
β, ρ̂(w, s) = ξ,
0, otherwise,

(26)

where

ξ := ρ̂(w,η(k∗)), β :=
1−

∑
s:ρ̂(w,s)>ξ p(s)[1 + sib ]∑

s:ρ̂(w,s)=ξ p(s)[1 + sib ]
.

Proof: The proof is given in Appendix F.
Remark: By definition, the fluid policy π∗(s) represents the
time fraction of multicasting under channel state s. In the
original stochastic network, π∗(s) (resp. 1 − π∗(s)) is anal-
ogous to the probability of multicasting (resp. fetching) at
a time slot, under the condition that the channel state is s.
From that perspective, we see that π∗(·) clearly possesses a
threshold-based structure; the RS performs a multicast w.p.
1 at a time slot only if the normalized revenue earned by
the system exceeds the threshold ξ. Indeed, from π∗(·), we
observe the aforementioned tradeoff between multicasting and
fetching. The RS should perform multicasting only if the
current channel condition is sufficiently favorable, i.e., it yields
a high normalized revenue; otherwise, the RS should perform
fetching.

We also find that the normalized revenue serves as a
measure of channel quality/opportunism. The optimal policy
implicitly ranks the channel states in the order of associated
normalized revenue. That is, for two channel states s,σ ∈ S,
we may say that s precedes σ in terms of channel quality if
ρ̂(w, s) > ρ̂(w,σ). The RS multicasts w.p. 1 under π∗(·) only
if the current channel state precedes ξ. Our result explicitly
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characterizes the optimal tradeoff point in the opportunism.
Although we have found the solution structure, it proves

to be difficult to compute the exact solution. Computing the
threshold ξ for (MW) requires the knowledge of η(k), which
is the channel state with the kth largest normalized revenue.
We briefly argue that determining η(k) for given w and k
is related to an NP-hard problem called the kTH LARGEST
SUBSET [21], which is defined as follows. For a finite multiset
A, let ∥A∥ :=

∑
a∈A a denote the sum-element of A.

INSTANCE: Finite multiset A, positive integer k and c.
QUESTION: Are there k or more distinct subsets B ⊆ A
such that ∥B∥ ≤ c?

We will refer to the sum-element of a subset as a subset-sum.
(MW) is related to the kTH LARGEST SUBSET as follows.
Let us define the multiset A such that A := {w1, . . . , wn}.
For channel state s = (s1, . . . , sn), define multiset Bs :=
{wi|si = 1, i ∈ I}. Bs is a subset of A, and we have that
∥Bs∥ =

∑
i∈I wisi = ρ(w, s). Thus, the set of revenues

{ρ(w, s)} is a collection of all possible subset-sums of A.
Consequently, in (MW), computing η(k∗), i.e., finding the
k∗th largest normalized revenue, is at least as hard as finding
the k∗th largest revenue, or, equivalently, finding the k∗th
largest subset-sum of A.

VI. LOW-COMPLEXITY RELAY SCHEDULING POLICY

Next we propose a low-complexity scheduling policy that
achieves low decoding delays. Below, we summarize our
policy.

First, we introduce the Weight-Based Priority (WBP) rule
which we propose as a simplified measure of channel quality
intended for low-complexity policy computations. We approx-
imately solve (MW) based on the WBP rule and obtain a
threshold-based fluid policy. Next, we map the fluid policy
to an online policy for the original discrete networks, which
we call policy translation. Policy computation and translation
are performed periodically; in each period, the weights used
for policy computation are adjusted according to the users’
queue states. We will adopt the framework proposed in [22]
for policy translation and renewal, as discussed later.

A. Weight-Based Priority (WBP) Rule
Solving (MW) is difficult, primarily because we use the

normalized revenue as a measure of channel quality. Specifi-
cally, in Section V, we showed that the precedence relations
among channel states have a combinatorial nature. Instead, we
propose WBP, a simplified precedence rule for ranking channel
states. Prior to that, we introduce the following definitions.

Definition 1: For a k-dimensional binary vector x =
(x1, . . . , xk), we define ⟨x1 · · ·xk⟩ as the k-bit nonnegative
binary number associated with x where x1 is the most
significant bit, i.e.,

⟨x1 · · ·xk⟩ :=
k∑

i=1

xi2
k−i.

Definition 2: For two binary vectors x = (x1, . . . , xk) and
y = (y1, . . . , yk) of length k ∈ Z+, we define x ≻ y if

⟨x1 · · ·xk⟩ > ⟨y1 · · · yk⟩.

The notation “≺” is defined in a similar way. The definitions of
the operators “≻” and “≺” are extended to compare a binary
vector with a scalar quantity. For example, for some ξ ∈ R,
x ≻ ξ means ⟨x1 · · ·xk⟩ > ξ.

Using the above notations, we introduce the WBP rule as
follows. Without loss of generality, assume that w1 ≥ · · · ≥
wn, i.e., that the users are indexed in descending order of
weight. Consider two channel states s,σ ∈ S such that s ̸= σ.
WBP is a precedence rule such that, we say that s precedes
σ if s ≻ σ. In other words, we compare the channel states by
treating them as binary numbers. For example, suppose that
there are three users. Consider channel states s = (1, 0, 0)
and σ = (0, 1, 1). Since ⟨100⟩ = 4 is greater than ⟨011⟩ = 3,
we say s is a better channel state than σ under the WBP
rule. Recall that, in the binary number ⟨s1 . . . sn⟩ associated
with channel state s, the ith bit si represents the channel state
of user i whose weight is wi. Because w1 ≥ · · · ≥ wn,
we see that the WBP rule gives higher priority to users
associated with larger weights. Later, we will set a user’s
weight to the remaining workload for that user, as in max-
weight type schedulers [23]. Thus, by prioritizing users with
high workloads, the WBP rule serves as a simple (yet effective)
measure of channel quality; we will show this in the sequel.

We will use the WBP rule to approximately solve (MW) as
follows. Consider the following problem:

(P-WBP) maximize
π

∑
i∈I

wiri

subject to (18)− (19), (24)

π(s) =

 1, s ≻ ξ,
β, s = ξ,
0, s ≺ ξ,

(27)

ξ ∈ {0, . . . , 2n − 1}, β ∈ [0, 1). (28)

(P-WBP) is identical to (MW), except that π(·) is constrained
to be a threshold-based policy under the WBP rule, i.e., the RS
should multicast w.p. 1 only if the binary number associated
with the current channel state exceeds a threshold ξ.

Algorithm 1 exhibits an algorithm to determine the optimal
threshold parameters ξ and β in (P-WBP). According to (24),
the optimal ξ is the maximum ξ such that∑

s∈S,s≥ξ

p(s)[1 + sib ] ≥ 1. (29)

The LHS of (29), as well as the objective of (P-WBP), are
monotonically decreasing in ξ. In Algorithm 1, we initialize ξ
with 2n−1 which is the median element in S, and iterate the
following to find the optimal ξ: (i) calculate the LHS of (29),
(ii) compare the result with 1, and (iii) adjust ξ accordingly to
make (29) as tight as possible. This is the well-known bisection
method. Because the searching space of ξ has 2n elements, it
takes O(n) steps to determine the optimal ξ using bisection.
Thus, Algorithm 1 has a complexity of O(n).

B. Discrete-Review Policy

In this subsection, we will construct an online policy for the
original network problem. The Discrete-Review (DR) policy
[22] is a general method for translating a deterministic fluid
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Algorithm 1 Finding the optimal ξ and β

1: ξ ← 2n−1, Residual← 1, SumProb← p1(1 + pib).
2: if ib = 1 then
3: SumProb← 2p1.
4: end if
5: for j = 1 to n− 1 do
6: if SumProb ≤ Residual then
7: Residual← Residual− SumProb, ξ ← ξ − 2n−j−1.
8: if j = ib − 1 then
9: SumProb← 2(1−pj)pj+1

pj(1+pj+1)
SumProb.

10: else if j = ib then
11: SumProb← (1−pj)pj+1

2pj
SumProb.

12: else
13: SumProb← (1−pj)pj+1

pj
SumProb.

14: end if
15: else
16: ξ ← ξ + 2n−j−1.
17: if j = ib − 1 then
18: SumProb← 2pj+1

1+pj+1
SumProb.

19: else
20: SumProb← pj+1SumProb.
21: end if
22: end if
23: end for
24: if SumProb ≤ Residual then
25: Residual← Residual− SumProb, ξ ← ξ − 1.
26: if ib = n then
27: SumProb← 1−pn

2pn
SumProb.

28: else
29: SumProb← 1−pn

pn
SumProb.

30: end if
31: end if
32: β ← Residual/SumProb.

policy into an implementable policy for stochastic networks.
Under the DR policy, time is divided into review periods of
constant length. At the beginning of each review period, we
review the system state and formulate a fluid problem with a
safety-stock requirement [24]. The safety-stock requirement is
an additional constraint to fluid problems that guards against
undesirable “boundary behaviors”, such as starvation of re-
sources. Based on the solution to the formulated fluid problem,
a scheduling policy for the stochastic network is implemented.

We will construct the DR policy associated with our prob-
lem (called WBP-DR) as follows. Let the integer L > 0 denote
the length of the review period, and let the integer u > 0
be the safety-stock parameter. Denote the time index of the
beginning of each review period by lj = jL, j = 0, 1, . . ..
At the beginning of jth review period, the RS queue length
BR(lj) and the number of innovative packets received for
each user {B̂i(lj), i ∈ I} are observed; the following problem,
which is similar to (P-WBP), is then constructed and to be
solved:

(P-DR) maximize
π

∑
i∈I

wiri

subject to (18)− (19), (27)− (28),

BR(lj)− B̂ib(lj) + L(rin − rib) ≥ u, (30)

wi =
[
K − B̂i(lj)

]+
, ∀i ∈ I. (31)

From (31), the weight of each user is set to the remaining

Algorithm 2 WBP-DR policy
1: for Each time slot l = jL, j = 0, 1, 2, . . . do
2: Observe B̂i(l), ∀i ∈ I . Set wi ←

[
K − B̂i(l)

]+
, ∀i ∈ I.

3: Sort w1, . . . , wn in descending order. If multiple users have
the same weight, prioritize users with worse channel condi-
tions, i.e., smaller pi values. Assign user indices in the order
of the users’ priorities.

4: Solve (P-DR) using Algorithm 1 by setting 1−u+B̂
ib (l)−BR(l)

L
as the initial value of “Residual”; obtain threshold parameters
ξ and β.

5: for each time slot τ in the review period do
6: Observe the channel state s and RS queue length BR(τ).
7: if BR(τ) = 0 then
8: RS performs a fetch.
9: else if 0 < BR(τ) < K then

10: if s ≻ ξ then
11: RS performs a multicast.
12: else if s = ξ then
13: RS performs a multicast (resp. fetch) w.p. β (resp.

1− β).
14: else
15: RS performs a fetch.
16: end if
17: else
18: RS performs a multicast.
19: end if
20: end for
21: end for

number of innovative packets to be received. Constraint (30)
is the safety-stock requirement; the expected RS queue length
at the end of each review period should be at least u greater
than the expected number of innovative packets received by the
bottleneck user. This constraint helps to prevent the bottleneck
user from receiving noninnovative packets. Recall that, by
adding constraints (27) and (28) to (P-DR), we are optimizing
under the WBP rule. By solving (P-DR), we obtain policy
π∗(·), which will be implemented over the next review period
{lj , . . . , lj +L− 1}. π∗(s) is implemented as the probability
to perform multicasting by the RS in a time slot, under the
condition that the channel state is s. WBP-DR is described in
Algorithm 2. Guidelines for setting parameters L and u will
be provided in the next section.

VII. PERFORMANCE ANALYSIS

In this section, we will characterize the asymptotic perfor-
mance of the WBP-DR policy. Let L(m) := fL(mK) and
u(m) := αL(m) denote parameters L and u, respectively, in
the mth system, where α ≥ 1 and fL(·) is a function such
that

fL(x)

log(x)
→ ∞ and

fL(x)

x
→ 0, as x → ∞. (32)

For example, one can set L(m) = fL(mK) = ⌊
√
mK⌋. (32)

implies that the length of a review period tends to infinity in
the fluid limit. We have that

L(m)

m
=

fL(mK)

m
→ 0, as m → ∞,

i.e., the scaled review period has zero duration in the fluid
limit. In the mth system, the weights of users at the beginning
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of jth review period are adjusted to

wi =
[
mK − B̂i(jL

(m))
]+

, ∀i ∈ I. (33)

Next, we present an upper bound on the asymptotic decod-
ing delay of WBP-DR. We first present the following lemma
on the scaled queue length trajectories b

(m)
R (t) and b

(m)
i (t).

Lemma 2: For any ϵ > 0, 0 < δ ≤ L(m)

m and j ∈ Z+, there
exists some M ∈ Z+ such that∣∣∣∣∣b

(m)
i ( jL

(m)

m + δ)− b
(m)
i ( jL

(m)

m )

δ
−

∑
s∈S

p(s)π∗(s)si

∣∣∣∣∣ ≤ ϵ,∣∣∣∣∣b
(m)
R ( jL

(m)

m + δ)− b
(m)
R ( jL

(m)

m )

δ
−

∑
s∈S

p(s)[1− π∗(s)]

∣∣∣∣∣ ≤ ϵ,

for all m > M , where π∗(s) denotes the solution to (P-WBP)
with the weights defined in (33).

Proof: See Appendix G.
Lemma 2 indicates that b

(m)
R (t) and b

(m)
i (t), i ∈ I achieve

almost constant rates within each scaled review period for
large values of m. That is, the queue trajectories are roughly
piecewise linear over time for large values of m, which is
useful in proving the next theorem.

Theorem 5: WBP-DR incurs an asymptotic decoding delay
that is at most twice the optimal value.

Proof: See Appendix H for details.
In proving Theorem 5, we utilize the fact that the service
priority of users is repeatedly adjusted based on the WBP rule;
combining this fact with Lemma 2 and the constraint (15) on
innovative fluid rates, we are able to bound the service rate
achieved by the bottleneck user under fluid scaling. In the
sequel, we will show via simulation that WBP-DR performs
substantially better than the derived bound in the discrete-time
stochastic network. Prior to that, we present a tighter bound
for two-user systems.

Theorem 6: When n = 2, WBP-DR incurs an asymptotic
decoding delay that is at most 4/3 that of the optimal value.

Proof: See Appendix I for details.
In the proof of Theorem 6, we explicitly show how the
priority among users varies during transmission and compute
the innovative fluid rates achieved by users. This enables us
to derive a tighter performance bound than that in Theorem 5.

VIII. SIMULATION RESULTS

In this section, we evaluate the performance of WBP-DR
in discrete-time stochastic networks via simulation. We will
make comparisons with the following schemes:

ARQ: This is the traditional automatic repeat request (ARQ)
where the packets are not coded. The RS first fetches a packet
from the BS, then repeatedly multicasts the packet until every
user has received a copy. This procedure is repeated K times.

GREEDY: The RS greedily performs a fetch until it receives
K original packets. Then, the RS repeatedly multicasts coded
packets until all users have received K coded packets.

LB (lower bound): This is the numerically obtained solution
to (P). It has been shown in [24] that, in the case of finite-
time horizon problems, the optimal cost of an MDP is bounded
below by the solution to the associated fluid problem.

In our simulations, we set K = 103. For the channel model,
we use a DTMC Xi(t) ∈ {0, 1} with the following transition
matrix: [

p00 p01
p10 p11

]
=

[
1− λi λi

µi 1− µi

]
for some λi, µi ∈ [0, 1]. Thus, the steady-state probability that
user i’s channel is in the ON state, or pi, is given by λi

λi+µi
.

For simplicity, we set λi = 0.2 for all i ∈ I . Thus, we have
that pi = 1

1+5µi
. We will change µi to control the value of pi

in our simulations. For WBP-DR, we set L = u = 30.
Fig. 3(a) shows the average decoding delay for symmetric-

user systems with n = 2 and p1 = p2 = p where we vary p
in the plot. We observe that the decoding delay decreases as
p increases for all policies. WBP-DR performs well, incurring
a delay that is only 1–5% higher than the lower bound. ARQ
and GREEDY incur delays that are up to 66% and 31% higher
than WBP-DR, respectively.

The case of symmetric-user systems with n = 10, pi =
p,∀i ∈ I , and varying p is shown in Fig. 3(b). WBP-DR
performs best, achieving a delay that is 1–7% higher than
the lower bound. The performance of GREEDY is close to
WBP-DR when p is close to 1, which can be explained as
follows. Due to the symmetry in channel distributions, larger
p means better channel conditions for every user. Thus, if p
is close to 1, the channel being in ON state is no longer a
scarce opportunity for any user, i.e., opportunism has little
impact on the performance. However, as p becomes smaller,
the gap of the decoding delays between GREEDY and WBP-
DR increases. A similar argument as the above holds for Fig.
3(a) when n = 2. We will discuss the effect of n in more detail
in the sequel. Meanwhile, the performance of ARQ declines
quickly with decreasing p. When p ≤ 0.4, the delay incurred
by ARQ is at least 119% higher than that of WBP-DR.

In Fig. 3(c), we consider symmetric-user systems with
fixed p = 0.5 and varying n. WBP-DR incurs a decoding
delay that is 2–7% higher than the lower bound and reduces
decoding delay by up to 50% and 19% compared with ARQ
and GREEDY, respectively. The delay incurred by GREEDY
increases slowly with increasing n, because it is related to the
maximum of n i.i.d. numbers of time slots taken by a user to
receive K coded packets. The LB also increases gradually with
n. The performance of WBP-DR is between that of LB and
GREEDY. The gap between WBP-DR and GREEDY becomes
narrow as n increases. We attempt to explain this by examining
the limiting properties of multicast channels as follows.

Suppose we scale the system by making n large. Assume
that for simplicity, at each time slot, the channel state of a
user is distributed as Bernoulli(p). Denote the number of ON
channels at a given time slot by a random variable N ∼
Binomial(n, p). Note that N becomes concentrated around its
mean E[N ] = np due to the law of large numbers. Intuitively,
the opportunism of the multicast channel is closely related to
the extent to which N deviates from the mean. However, as
n increases, the deviation of N relative to the mean reduces
due to the concentration, i.e., the inherent opportunism of the
multicast channel “degrades” with respect to the mean np. This
partly explains why the GREEDY scheme, which is oblivious
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Fig. 3. Comparison of decoding delays based on simulations: (a) symmetric channels with n = 2 and varying p; (b) symmetric channels with n = 10 and
varying p; (c) symmetric channels with p = 0.5 and varying n; (d) asymmetric channels with pi’s are uniformly and independently generated from [0.2, 0.8]
and varying n; (e) asymmetric channels with n = 3, pi’s are uniformly and independently generated from [γ, 1− γ] and varying γ; (f) asymmetric channels
with n = 10, pi’s are uniformly and independently generated from [γ, 1− γ] and varying γ.

of opportunism, performs closer to WBP-DR and LB for larger
n. However, the above arguments are applicable to symmetric
systems. If the channels are statistically asymmetric, it is
important to exploit the opportunism of the bottleneck user
who will dominate the system performance. We examine this
aspect in the following simulation.

We present simulation results for asymmetric-user systems.
In Fig. 3(d), we have varied n from 2 to 10. For each n,
the values of pi’s are uniformly and independently generated
from [0.2, 0.8] for 104 times. The delay incurred by WBP-
DR is within 3% of the lower bound. By contrast, ARQ and
GREEDY incur delays that are 41–82% and 22–26% higher,
respectively, than that of WBP-DR. Note that the gap between
the delays achieved by WBP-DR and GREEDY is relatively
larger than that in the case of symmetric channels, e.g.,
compare Fig. 3(c) and Fig. 3(d). This shows that, one should
carefully exploit opportunism to deal with the bottleneck user
in asymmetric systems, by frequently reviewing users’ buffer
status and updating the policy accordingly, which is the main
idea behind WBP-DR.

In Fig. 3(e), we consider asymmetric systems in which
n = 3. The values of pi’s are independently and uniformly
drawn from [γ, 1−γ] where we vary γ in the plot. Therefore,
the smaller the value of γ, the more variability in the values
of pi’s. Interestingly, WBP-DR performs even better, i.e.,
closer to LB, with smaller values of γ, which we explain
as follows. A smaller γ leads to a larger gap (on average)
between pib and other users’ parameters. As a result, user ib

will further dominate the system performance because of its
relatively poor channel condition, i.e., user ib will often be
the user who has the smallest number of innovative packets
during the transmission. Because WBP-DR prioritizes users

with a smaller number of innovative packets, user ib will
be served at the highest priority most of the time, which is
also expected for the optimal policy. WBP-DR incurs a delay
that is 12–15% and 33–46% lower than that of GREEDY
and ARQ, respectively. Fig. 3(f) considers a similar scenario
as Fig. 3(e) with n = 10. WBP-DR incurs a lower delay
by 12–19%, relative to GREEDY. Additionally, WBP-DR
significantly outperforms ARQ, reducing the delay by up to
50%.

IX. CONCLUSIONS

In this paper, we examined the problem of minimizing de-
coding delays using RLNC for multicasting in heterogeneous
networks with relay stations. We formulated a deterministic
fluid approximation of the original stochastic problem. The
optimal fluid policy was shown to possess a threshold-based
structure which captures the optimal tradeoff point between
multicasting and fetching. We proposed a scheduling poli-
cy WBP-DR, which is based on prioritizing users with a
large amount of unfinished work, and derived bounds on its
asymptotic performance. We evaluated the performance of our
algorithm in discrete-time stochastic networks via simulation;
we showed that it incurs decoding delays that are close to
the theoretical lower bounds. A future direction would be
investigating the effect of other system parameters, such as
packet length ν. For example, it would be interesting to study
how to adaptively change ν at each time slot based on the
current channel and queue states, so as to further improve the
delay performance.
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APPENDIX A
PROOF OF THEOREM 1

Let us denote the optimal policy by π∗(s, t). Let T ∗
1 and

T ∗
2 be the durations of the Opportunistic Fetch stage and the

Flush stage, respectively, under policy π∗(s, t). It is clear that
π∗(s, t) = 1 for T ∗

1 < t ≤ T ∗
1 + T ∗

2 . Consider policy π′(s, t)
such that

π′(s, t) :=


1

T ∗
1

∫ T∗
1

0

π∗(s, τ)dτ, if 0 ≤ t ≤ T ∗
1 ,

1, if T ∗
1 < t ≤ T ∗

1 + T ∗
2 .

In what follows, we will use superscript ∗ (resp. ′) to indicate
the notation associated with policy π∗(s, t) (resp. π′(s, t)),
e.g., r∗in(t) (resp. r′in(t)) is the inflow rate to the RS under
policy π∗(s, t) (resp. π′(s, t)). It is easy to verify that

r′i(t) =


1

T ∗
1

∫ T∗
1

0

r∗i (τ)dτ, if 0 ≤ t ≤ T ∗
1 ,

pi, if T ∗
1 < t ≤ T ∗

1 + T ∗
2 .

r′in(t) =


1

T ∗
1

∫ T∗
1

0

r∗in(τ)dτ, if 0 ≤ t ≤ T ∗
1 ,

0, if T ∗
1 < t ≤ T ∗

1 + T ∗
2 .

We also have that

b′i(T
∗
1 ) =

∫ T∗
1

0

r′i(t)dt = b∗i (T
∗
1 ),

b′R(T
∗
1 ) =

∫ T∗
1

0

r′in(t)dt = K = b∗R(T
∗
1 ).

Thus, the duration of the Opportunistic Fetch stage under
policy π′(s, t) is exactly T ∗

1 . It is easy to verify that π′(s, t)
satisfies (13) and (14); therefore, π′(s, t) is a feasible policy.
The fluid rates are constant under policy π′(s, t) during the
Opportunistic Fetch stage, i.e.,

r′i(t) =
b∗i (T

∗
1 )

T ∗
1

, r′in(t) =
b∗R(T

∗
1 )

T ∗
1

, 0 ≤ t ≤ T ∗
1 .

Combining the above with (5), we have that

r̂′i(t) = min{r′i(t), r′in(t)} = min

{
b∗i (T

∗
1 )

T ∗
1

,
b∗R(T

∗
1 )

T ∗
1

}
for 0 ≤ t ≤ T ∗

1 , which further implies that

b̂′i(T
∗
1 ) = min{b∗i (T ∗

1 ), b
∗
R(T

∗
1 )} ≥ b̂∗i (T

∗
1 ).

Thus, the duration of the Flush stage under policy π′(s, t)
satisfies

max
i∈I

{
K − b̂′i(T

∗
1 )

pi

}
≤ max

i∈I

{
K − b̂∗i (T

∗
1 )

pi

}
= T ∗

2 .

Therefore, policy π′(s, t) incurs no higher decoding delay than
policy π∗(s, t), which proves the theorem.

APPENDIX B
PROOF OF THEOREM 2

We first introduce the following lemma.
Lemma 3: There exists an optimal policy for (F) such that

rin = min
i∈I

{ri}. (34)

The proof of Lemma 3 is provided in Appendix C. Note
that, the Flush stage has zero duration under the policies
satisfying (34), because (16) is 0 for all i ∈ I . Thus,
minimizing the decoding delay is equivalent to maximizing
rin, or equivalently, mini∈I{ri}. Hence, (F) reduces to

˜(P) maximize
π

min
i∈I

{ri}

subject to (18)− (20), (34).

Lemma 4: A necessary condition for the optimality of ˜(P)
is

min
i∈I

{ri} = rib . (35)

The proof Lemma 4 is provided in Appendix D. By Lemma
4, ˜(P) is equivalent to

maximize
π

min
i∈I

{ri}

subject to rin = rib ,

(18)− (20), (35).

Note that, (P) is a relaxation of the above problem by dropping
the constraint (35).

Lemma 5: The constraint (35) is a necessary condition for
the optimality of (P).
Lemma 5 can be proved in a similar way as Lemma 4.
According to Lemma 4 and 5, ˜(P) and (P) are equivalent.
Because ˜(P) and (F) are equivalent, the theorem is proved.

APPENDIX C
PROOF OF LEMMA 3

We will first argue that any policy under which rin <
mini∈I{ri} cannot be optimal. Suppose rin < mini∈I{ri}
holds under the optimal policy π(·). Due to (15), all users
achieve the same innovative fluid rate given by rin. We can
revise π(·) by decreasing π(s) for some s ∈ S such that
rin = mini∈I{ri} holds under π(·). Under the revised policy,
all users still achieve the same innovative fluid rate rin, but
rin has been increased because, by definition, it can only
increase by decreasing π(·). Thus, the decoding delay would
be decreased under the revised policy, which is a contradiction.

Now, denote the optimal policy by π∗(·) and the associated
rates by r∗i , r∗in, and r̂∗i . Let T ∗

1 and T ∗
2 be the durations of the

Opportunistic Fetch stage and the Flush stage, respectively,
under π∗(·). We have that

r∗in ≥ min
i∈I

{r∗i }, r∗inT
∗
1 = K,

r∗i T
∗
1 + piT

∗
2 ≥ K, ∀i ∈ I,

∃j ∈ I : r∗jT
∗
1 + pjT

∗
2 = K. (36)

Consider a rate vector r′ = (r′1, . . . , r
′
n, r

′
in) such that

r′in =
r∗inT

∗
1

T ∗
1 + T ∗

2

=
K

T ∗
1 + T ∗

2

, (37)

r′i =
r∗i T

∗
1 + piT

∗
2

T ∗
1 + T ∗

2

≥ K

T ∗
1 + T ∗

2

, ∀i ∈ I. (38)

Note that r′ can be achieved under policy π′(·) such that

π′(s) =
π∗(s)T ∗

1 + T ∗
2

T ∗
1 + T ∗

2

, ∀s ∈ S.
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It is clear that the duration of the Opportunistic Fetch stage is
T ∗
1 + T ∗

2 under policy π′(·). From (36) and (38), there exists
some j ∈ I such that

r′j =
r∗jT

∗
1 + pjT

∗
2

T ∗
1 + T ∗

2

=
K

T ∗
1 + T ∗

2

. (39)

Combining (37), (38), and (39), we have that

r′in = min
i∈I

{r′i}. (40)

By (15), we have that

r̂′i = min{r′i, r′in} = r′in =
K

T ∗
1 + T ∗

2

, ∀i ∈ I,

which implies that all users receive K units of innovative fluid
simultaneously at the end of the Opportunistic Fetch stage.
Thus, the duration of the Flush stage is 0, and the decoding
delay is given by T ∗

1 +T ∗
2 under π′(·). Hence π′(·) is optimal

for (F), and also satisfies (34) because of (40).

APPENDIX D
PROOF OF LEMMA 4

Without loss of generality, let π∗(·) denote the optimal
policy for ˜(P) such that

r∗in = min
i∈I

{r∗i } = r∗j < r∗i , ∀i ̸= j (41)

where r∗i and r∗in are the associated rates with policy π∗(·),
and j is some user index such that pj > pib . There must exist
states s(1) and s(2) that satisfy

s
(1)

ib = 1, s
(2)

ib = 0,

s
(1)
j = 0, s

(2)
j = 1,

s
(1)
i = s

(2)
i , ∀i ∈ I, i ̸= ib, j,

such that π∗(s(1)) > π∗(s(2)); otherwise, we have that r∗ib ≤
r∗j , which contradicts (41). Consider a policy π′(·) such that

π′(s(1)) = π∗(s(1))− ∆

p(s(1))
,

π′(s(2)) = π∗(s(2)) +
∆

p(s(2))
,

π′(s) = π∗(s), ∀s ∈ S, s ̸= s(1), s(2)

where ∆ satisfies

0 < ∆ ≤ min{p(s(1))π∗(s(1)), p(s(2))[1− π∗(s(2))]}. (42)

(42) guarantees that π′(s) ∈ [0, 1] for all s ∈ S. Let r′i and
r′in be the associated rates with policy π′(·) We have that

r′in = r∗in, r′ib = r∗ib −∆, r′j = r∗j +∆,

r′i = r∗i , ∀i ∈ I, i ̸= ib, j,

Furthermore, if ∆ satisfies

0 < ∆ ≤
r∗ib − r∗j

2
, (43)

we have that r′in < r′j ≤ r′ib . Therefore, by choosing a value
of ∆ that satisfies (42) and (43), we can construct policy π′(·)

such that

min
i∈I

{r′i} = r′k > r′in = r∗in = min
i∈I

{r∗i },

where k = argmini∈I{r′i}. Let µ = r′k − r′in. Consider the
following policy π†(·):

π†(s(3)) = π′(s(3))− µ

2p(s(3))
,

π†(s) = π′(s), ∀s ∈ S, s ̸= s(3).

where s(3) ∈ S such that s(3)k = 1. One can show that

r†in = r′in +
µ

2
, r†k = r′k − µ

2
,

r†i ≥ r′i −
µ

2
, ∀i ∈ I, i ̸= k.

Thus, we have that

min
i∈I

{r†i } = r†k = r†in > r′in = r∗in = min
i∈I

{r∗i },

which contradicts the optimality of π∗(·).
Note that the above proof can be extended to the case in

which
r∗in = min

i∈I
{r∗i } = r∗j < r∗ib , ∀j ∈ Ī

for some Ī ⊂ I such that |Ī| > 1 and ib /∈ Ī . We omit the
details here to save space.

APPENDIX E
PROOF OF THEOREM 3

We will reformulate (P) as an LP with respect to r1, . . . , rn.
The feasible set associated with constraints (18)-(20) and (22)
is denoted by A such that

A =

{
π ∈ [0, 1]|S|

∣∣∣∣∑
s∈S

p(s)π(s)[1 + sib ] = 1

}
where π represents the |S|-dimensional vector (π(s), s ∈ S).
Define an n× |S| matrix H such that

Hi,j = p(s)si, if j = ⟨s1 · · · sn⟩+ 1

for all i ∈ I and j ∈ {1, . . . , 2n}. Let r = (r1, . . . , rn). Then,
the constraint (19) is given by r = Hπ. Thus, the feasible
set for (P) is given by

B =
{
r ∈ Rn|r = Hπ, π ∈ A

}
.

A is a convex polyhedron, and B is obtained by an affine
transformation of A. Therefore, B is also a convex polyhedron.
(P) is equivalent to following LP

maximize
r

min
i∈I

{ri} subject to r ∈ B. (44)

Let the optimal value of (44) be u∗ > 0, and define the set
Cu∗ := {r|mini∈I{ri} ≥ u∗}. By the separation theorem
[25] for convex polyhedra, there exists a separating hyperplane
D := {r|wTr = u∗} which separates relint(Cu∗) and
relint(B), where relint(·) denotes the relative interior of a set.
This implies that u∗ is also a solution to

maximize
r

wTr subject to r ∈ B,



13

which is equivalent to (MW). The solution to (44) lies in
D; thus, D must be a supporting hyperplane [25] of set Cu∗ .
It is straightforward to show that, for a hyperplane of form
{r|wTr = u∗} to be a supporting hyperplane of Cu∗ for any
u∗ > 0, it is necessary that the vector w has non-negative
entries. This completes the proof.

APPENDIX F
PROOF OF THEOREM 4

Define new variables x(s) := p(s)π(s)[1 + sib ] for all s ∈
S. We can rewrite (MW) as

maximize
x

∑
s∈S

x(s)ρ̂(w, s)

subject to
∑
s∈S

x(s) = 1, (45)

0 ≤ x(s) ≤ p(s)[1 + sib ], ∀s ∈ S.

The above problem can be solved in a greedy manner as
follows. First, we select x(s) with the largest value of ρ̂(w, s),
i.e., x(η(1)). Then, we attempt to set x(η(1)) as close to
p(η(1))[1 + ηib(1)] as possible until (45) is satisfied. If (45)
cannot be satisfied even after setting x(η(1)) = p(η(1))[1 +
ηib(1)], we select x(η(2)), and so on. This procedure is
repeated until (45) is satisfied, which leads to the threshold-
based solution stated in the theorem.

APPENDIX G
PROOF OF LEMMA 2

Let π′(s) denote the solution to (P-DR) formulated at the
beginning of the jth review period in the mth system. We will
first compare π′(s) and π∗(s). Recall π∗(s) is the solution to
(P-WBP) with input weights (33). Note that (P-DR) and (P-
WBP) share the same weights; the only difference is that (P-
DR) has the safety-stock requirement (30), whereas (P-WBP)
has the constraint (24), or equivalently, (22). Note the (30)
should be strictly satisfied at each review period. Following
the proof of Theorem 5.1. in [22], we have that

u(m) + B̂ib(jL(m))−BR(jL
(m))

L(m)
→ 0, ∀j ≥ ⌈α⌉,

almost surely as m → ∞. Thus, for any ϵ > 0, there exists
some M1 ∈ Z+ such that

|rin − rib | =
∣∣∣∣u(m) + B̂ib(jL(m))−BR(jL

(m))

L(m)

∣∣∣∣ ≤ ϵ

2n+1

(46)

for all m > M1. Furthermore, (46) implies that

|π′(s)− π∗(s)| ≤ ϵ

2n+1p(s)[1 + sib ]
, ∀s ∈ S (47)

for all m > M1. According to the Functional Strong Law of
Large Numbers (FSLLN), for any ϵ > 0, there exists some
M2 ∈ Z+ such that∣∣∣∣∣b

(m)
i ( jL

(m)

m + δ)− b
(m)
i ( jL

(m)

m )

δ
−

∑
s∈S

p(s)π′(s)si

∣∣∣∣∣ ≤ ϵ

2

for all m > M2. Combining the above with (47), we have that∣∣∣∣∣b
(m)
i ( jL

(m)

m + δ)− b
(m)
i ( jL

(m)

m )

δ
−

∑
s∈S

p(s)π∗(s)si

∣∣∣∣∣
≤ ϵ

2
+

∣∣∣∣∣∑
s∈S

p(s)
[
π′(s)− π∗(s)

]
si

∣∣∣∣∣ ≤ ϵ

2
+ 2n

ϵ

2n+1
= ϵ

for all m > M := max{M1,M2}. Thus, the first part of
Lemma 2 is proved. The second part can be proved in a similar
way, we omit the details here to save space.

APPENDIX H
PROOF OF THEOREM 5

By Lemma 2, the scaled trajectories b(m)
R (t) and b

(m)
i (t), i ∈

I become arbitrarily close to piecewise linear for sufficiently
large values of m. Specifically, during the jth review period
under fluid scaling, they achieve rates that are arbitrarily close
to the optimal rates for (P-WBP) with the weights defined in
(33). Thus, it suffices to derive bounds for such optimal rates
to (P-WBP); the bounds can be applied to the trajectories
under WBP-DR under fluid scaling. Let policy π∗(·) denote
the solution to (P-WBP) with the weights defined in (33).
Define ai, i ∈ I as follows:

ai :=

∑
s∈S p(s)π∗(s)si∑
s∈S p(s)π∗(s)

≤ 1. (48)

We have that∑
s∈S

p(s)π∗(s)

=
∑

s∈S:si=1

p(s)π∗(s) +
∑

s∈S:si=0

p(s)π∗(s) (49)

≤
∑

s∈S:si=1

p(s)π∗(s) +
∑

s∈S:si=1

1− pi
pi

p(s)π∗(s) (50)

=
∑

s∈S:si=1

1

pi
p(s)π∗(s). (51)

We can derive the inequality (50) as follows. For any channel
state s ∈ S such that si = 0, there exists a channel state
σ ∈ S such that

σi = 1 and σj = sj , ∀j ∈ I, j ̸= i.

Clearly, we have that σ ≻ s. Thus, from the definition of the
WBP rule, we have that

π∗(σ) ≥ π∗(s). (52)

Also we have that

p(s)

p(σ)
=

∏
j∈I p

sj
j (1− pj)

1−sj∏
j∈I p

σj

j (1− pj)1−σj
=

1− pi
pi

. (53)

By applying (52) and (53) to the second summation of (49),
we obtain the inequality (50). Combining (48) and (51), we
conclude that

1 ≥ ai ≥
∑

s∈S:si=1 p(s)π
∗(s)∑

s∈S:si=1
1
pi
p(s)π∗(s)

= pi, ∀i ∈ I.
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According to (24), we have that

1 =
∑
s∈S

p(s)π∗(s)[1 + sib ] = (1 + aib)
∑
s∈S

p(s)π∗(s).

Thus, for all i ∈ I , we have that

ri =
∑
s∈S

p(s)π∗(s)si = ai
∑
s∈S

p(s)π∗(s) =
ai

1 + aib
≥ pib

2
.

From (24), or equivalently (22), we have that

rin = rib ≥ pib

2
.

According to (15), the innovative fluid rate achieved by each
user under the solution to (P-WBP) in the jth review period
is bounded below by pib/2 for any j ∈ Z+. Therefore, the
asymptotic decoding delay under WBP-DR policy is bounded
above by 2K/pib . Because the optimal innovative fluid rate
achieved by user ib is no more than pib , the optimal decoding
delay is bounded below by K/pib . Thus, the theorem is proved.

APPENDIX I
PROOF OF THEOREM 6

Without loss of generality, we assume p1 ≤ p2, i.e., ib =
1. By Lemma 2, it suffices to examine the optimal rates for
(P-WBP) to characterize the users’ trajectories under WBP-
DR. First, one can easily verify that the fluid rates as the
solution to (P-WBP) depend only on the relative order of
the priority among users. Thus, we introduce the following
notation. Let π(j)(·) denote the solution to (P-WBP) when
user j receives the higher priority. Additionally, let r(j)i , r̂(j)i ,
and r

(j)
in denote the associated rates with policy π(j)(·). We

consider the following cases:
Case 1: p1p2 ≥ 1

2 . We have that, by solving (P-WBP),

π(j)((11)) =
1

2p1p2
, π(j)(s) = 0, ∀s ̸= (11);

r
(j)
1 = r

(j)
2 = r

(j)
in =

1

2
, ∀j = 1, 2.

Based on (15), both users achieve the same innovative fluid
rate 1

2 , irrespective of the priority among the users.
Case 2: p1p2 < 1

2 and 1− 2p1 ≥ p1(1− p2). We have that

π(1)((11)) = π(1)((10)) = 1, π(1)((01)) ≥ p1(1− p2)

p2(1− p1)
;

r
(1)
in = r

(1)
1 = p1 ≤ r

(1)
2 .

In this case, User 1 always receives the higher priority, and
both users achieve the same innovative fluid rate p1.

Case 3: p1p2 < 1
2 and 1− 2p1 < p1(1− p2). We have that

π(1)((11)) = 1,
π(1)((10))

π(1)((01))
>

p2(1− p1)

p1(1− p2)
, π(1)((00)) = 0;

r
(1)
in = r

(1)
1 > r

(1)
2 .

We also have that r(2)1 ≤ r
(2)
2 since p1 ≤ p2. Thus, the higher-

priority user achieves a higher fluid rate in this case. As an
example of Case 3, Fig. 4 shows the trajectories of innovative
fluids of User 1 and 2 with p1 = 0.5 and p2 = 0.6. User 1
receives the higher priority at the first review period. At the

t0
1
t

2
t

Review 

period

1
b̂ t

2
b̂ t

2
b̂ t

1 2

ˆ ˆ
R

b t b t b t

1
b̂ t

Fig. 4. Example of trajectories for Case 3.

second review period, the higher priority is assigned to User
2 whereas b̂2(t) overtakes b̂1(t) at t = t1. Due to (24), we
have that bR(t) = b̂1(t) for all t ≥ 0. Hence, during (t1, t2],
r̂2(t) is reduced from r

(2)
2 to r

(2)
1 , or equivalently r

(2)
in , since

b̂2(t) cannot exceed bR(t) for all t ≥ 0. Since b̂1(t) = b̂2(t) at
t = t2, the trajectories during 3rd and 4th review periods will
evolve in the same manner as in the first two review periods;
such trajectory patterns repeat over all the subsequent review
periods. In general, it takes ⌈κ⌉+1 review periods from t = 0
for b̂2(t) to overtake b̂1(t), where κ is given by

κ =
r
(1)
1 − r

(1)
2

r
(2)
2 − r

(2)
1

> 0. (54)

Let c denote the mean innovative fluid rate achieved by both
users under WBP-DR policy in the fluid limit. We have that

c =
r̂
(1)
1 + ⌈κ⌉r̂(2)1

1 + ⌈κ⌉
=

r
(1)
1 + ⌈κ⌉r(2)1

1 + ⌈κ⌉
. (55)

Next, we compute the optimal rates by directly solving (P).
Denote the solution to (P) by π∗(·), and the associated rates
by r∗i , r∗in, and r̂∗i . Similar to (P-WBP), we consider three
cases:

Case 1: p1p2 ≥ 1
2 and Case 2: p1p2 < 1

2 and 1 − 2p1 ≥
p1(1 − p2). For both Case 1 and 2, one can show that users
achieve the same innovative fluid rates as in (P-WBP).

Case 3: p1p2 < 1
2 and 1− 2p1 < p1(1− p2). We have that

π∗((11)) = 1,
π∗((10))

π∗((01))
=

p2(1− p1)

p1(1− p2)
, π∗((00)) = 0,

r∗in = r∗1 = r∗2 < p1.

Thus, both users achieve the same innovative fluid rate given
by r∗1 . Recall that π(j)((11)) = 1 and π(j)((00)) = 0 for
j = 1, 2 in this case. Because π∗(·), π(1)(·), and π(2)(·) satisfy
(24), π∗(·) can be represented as a convex combination of
π(1)(·) and π(2)(·), i.e., there exist α1, α2 ∈ [0, 1] such that

α1 + α2 = 1; π∗(s) = α1π
(1)(s) + α2π

(2)(s), ∀s ∈ S.

Therefore, we have that

r∗i = α1r
(1)
i + α2r

(2)
i , ∀i = 1, 2.

Since r∗1 = r∗2 and based on (54), one can show that

α1 =
1

1 + κ
, α2 =

κ

1 + κ
, r∗1 = r∗2 =

r
(1)
1 + κr

(2)
1

1 + κ
.
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Combining the above with (55), we have that

c

r∗1
=

r
(1)
1 + ⌈κ⌉r(2)1

r
(1)
1 + κr

(2)
1

· 1 + κ

1 + ⌈κ⌉
=

θ + ⌈κ⌉
θ + κ

· 1 + κ

1 + ⌈κ⌉
(56)

where θ := r
(1)
1 /r

(2)
1 > 1. From Theorem 5, we have that

r
(2)
1 ≥ p1/2. Because r

(1)
1 ≤ p1, we conclude that θ ≤ 2.

Finally, we derive a lower bound for (56). Define x = ⌈κ⌉ ∈
Z+. For fixed θ ∈ (1, 2], (56) satisfies

θ + x

θ + κ
· 1 + κ

1 + x
>

θ + x

θ + x− 1
· x

1 + x
, (57)

because the LHS of (57) is increasing in κ ∈ (x− 1, x]. One
can show that the RHS of (57) is increasing in x ∈ Z+. Thus,
for fixed θ ∈ (1, 2], (56) is bounded below by (θ + 1)/2θ.
Because (θ + 1)/2θ ≥ 3/4 for θ ∈ (1, 2], the theorem is
proved.
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