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ABSTRACT
Disruptive changes are underway in the automotive industry as

large-scale platforms based on vehicular fleets are deployed to de-

liver ride sharing and delivery services. Such platforms can also

be leveraged to deliver wireless connectivity services, e.g., large-

scale connectivity for the Internet of Things (IoT). This paper ex-

amines a network architecture based on a mesh of IoT devices,

roadside repositories and vehicular mobile gateways – referred

to as mesh+vehicular. We propose a system-level model to study

its relative merits versus conventional infrastructure-based IoT

architectures– referred to as mesh+cellular. The model reflects the

salient properties of the architectures including the key interplay

among the variability in the network geometries, routing trees,

wireless capacity and eventually IoT queue stability.

The paper provides an initial study of the scaling of the IoT sens-
ing capacity of the routing trees per repository and base station

respectively for the two architectures: i.e., the scaling the maxi-

mum common traffic rate the trees’ IoT devices can generate while

maintaining the stability of its queues. We then define the har-
vesting capacity per mobile gateway and base station in the two

architectures, i.e., the average aggregate IoT rate each can extract

assuming IoT devices are limited to their sensing capacity in each

tree. Perhaps surprisingly, we show that as the spatial density λs of
IoT devices and corresponding density of repositories along roads

scale up, the proposed mesh+vehicular architecture has a gain in

its harvesting capacity of order at least λ
γ /4
s where γ is the wire-

less path loss exponent. Underlying such gains is a fundamental

shift in network geometry and information flows: in mesh+cellular

systems IoT data is routed toward cells’ sinks (zero-dimensional

objects) while in mesh+vehicular data is routed to road induced cell

edges (one-dimensional objects). Detailed system-level simulations

validate the obtained scaling results.
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1 INTRODUCTION
1.1 Motivation
The automotive industry is undergoing disruptive changes. In par-

ticular, the emergence of large-scale platforms for ride sharing and

delivery services is expected to result in fleets of shared driver-

less transportation vehicles. Such fleets deliver compelling capital

and operational cost reductions through substantially improved

resource utilization possibly disrupting the traditional paradigm of

vehicle ownership [30]. Further, by freeing people from driving, it

is expected that the personalization and customization of vehicle

riders’ experience will be critical, including the opportunities to

enhance productivity and/or entertainment while in motion. To

that end, vehicles will need to be extremely well connected to the

infrastructure. In the context of such changes, we revisit a com-

plementary question: how can a fleet of well-connected vehicles

be leveraged to enable new forms of connectivity? In particular,

how could such fleets be used to provide new forms of large-scale

connectivity for IoT?

1.2 Background and Related Work
The IoT serves as a platform to interconnect sensor/tag/device

nodes which facilitate monitoring of physical processes, tracking

entities, and capturing information. Such networks are expected to

become part of the fabric of modern life, supporting a wide range

of applications in smart cities as well as agricultural and ecological

applications in rural areas. According to Cisco’s VNI technical

report [15], by 2020, the density of IoT devices could reach 10
5/km2

in urban to suburban areas. In order to provide connectivity to such

high numbers of heterogeneous IoT devices, diverse technologies

are envisioned, from RFID, Bluetooth, Zigbee, and standard Wifi,

to emerging standards such as low power Wifi, low-power-wide-

area (LPWA), and Narrowband IoT (NB-IoT) [4]. To enable Internet

connectivity for IoT devices with limited power, short transmission

range, and possibly sporadic traffic. mesh based relaying has been

proposed. Indeed architectures using multi-hop relaying towards

https://doi.org/10.1145/3209582.3209590
https://doi.org/10.1145/3209582.3209590
https://doi.org/10.1145/3209582.3209590


Mobihoc ’18, June 26–29, 2018, Los Angeles, CA, USA C. Choi et al.

base station

Voronoi cell
induced by 
base station 
locations

mesh relaying 
of IoT data to
cell’s base station

IoT device

Figure 1: mesh+cellular architecture where IoT traffic is re-
layed to the base station at the Voronoi center.
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Figure 2: Illustration of the vehicular+mesh architecture
that relay IoT traffic to repositories at the cell edges. The IoT
traffic is relayed to its nearest repository.

sinks connected to the Internet have been studied since the early

2000s [1, 6, 32]. and [31] for example product. We refer to these a

mesh+cellular architectures, see Figure 1.
In this paper, we consider an alternative which leverages mesh

networking and vehicular fleets – we refer to this asmesh+vehicular,
see Figure 2. In this architecture, IoT devices forward their uplink

data towards repositories (possibly simply IoT devices or dedicated

road side units) at the nearest road using multi-hop relaying. Ve-

hicles serve as Internet gateways which opportunistically pick up

data from repositories next to roads.

Such architectures are not new, indeed they fall in the class

of Delay Tolerant Networks (DTN). DTNs have been extensively

studied in, e.g., [2, 21, 22, 28]. A seminal paper in this area is [21],

where it was first shown that mobility could significantly increase

the capacity of networks if one could tolerate delays. Subsequently,

DTNs with mobile nodes received substantial attention, see e.g.,

[11, 24, 29]. The scaling properties of DTNs were studied in a series

of key papers including [19, 21]. The trade-off relationship between

delay and throughput was specifically analyzed in [20]. Most of

the theoretical work on DTNs has focused on networks with a

single type of node: typically, a human carrying a mobile phone, or

vehicles [10, 33]. The key novelty of the study in this paper is that it

incorporates the geometry and dynamics of the network elements:

(1) vehicles move along and repositories are located on roads (2) IoT

devices are randomly scattered in space inducing flows on radial

spanning trees. To our knowledge, there has been no system-level

study of the capacity of such architectures.

The challenge in developing such an analysis is the mix of ran-

dom geometric structures (cells, routing trees, roads), wireless ca-

pacity (interference, SIR, Shannon rate), and dynamics (relaying,

queuing, vehicular pickup). This paper uses stochastic geometry

to model the geometric structures and information and queuing

theory to compare the capacity scaling of mesh+cellular and the

mesh+vehicular architectures. The geometric structures for both

the are random objects in the Euclidean plane. We also make the

use of Palm calculus [8] which allows one to define the characteris-

tics of typical objects (typical cell, typical mesh tree, etc.) in such

networks. Our analysis is based on Poisson assumptions (Poisson

line process and Poisson point processes) which have been used

extensively in the study of cellular wireless networks in [5, 8, 16]

while the Poisson line Cox model was leveraged to model vehicular

networks in [13, 27]. The dynamic aspects associated with vehicular

pickup have not been previously studied in these works.

1.3 Contributions
The primary contributions of this paper are as follows.

(1) Network model combining large-scale geometry and dynam-
ics with small-scale wireless characteristics.We propose an develop

a simple model capturing the salient features of mesh+vehicular

(and mesh+cellular) architectures. The model includes elements of

the large-scale geometry such as the road system where vehicles

and repositories move/lie and routing of IoT devices’ traffic along

induced spatial trees. The model also captures small-scale charac-
teristics, such as the signal-to-interference ratio (SIR) of wireless

links on trees, which are linked via Shannon’s capacity formula

to the service rates for IoT relaying queues in the routing trees.

Overall, to our knowledge this is the first attempt to capture and

study the characteristics and interplay of geometry and variability

at different scales.

(2) Study of network performance and capacity gain. We provide

definitions for the sensing capacity and harvesting capacity of the

network architectures and characterize their scaling properties as

the density of IoT devices λs (and associated repositories) increases.
The sensing capacity is defined as the maximal common sensing rate

that IoT devices sharing a routing tree to a repository/base station

can generate while maintaining the stability of the IoT queues in

trees. We then define harvesting capacity per mobile gateway and

base station in the two architectures, i.e., the average aggregate IoT

rate each can extract assuming IoT devices are limited to the sensing

capacity in each tree. Perhaps surprisingly, we show that the gain

in the harvesting capacity of mesh+vehicular over mesh+cellular

architecture is of order λ
γ /4
s where γ models the wireless channel

path loss. This establishes the enormous potential that a shift from

routing traffic inwards to sinks (as in cellular-based networks) to

routing traffic outwards to cell edges (i.e., repositories on roads as in

vehicular networks) would provide. Our analysis further highlights

the complex interplay between large-scale geometry (e.g., change

in IoT traffic flows) and small-scale fluctuations (e.g.,.due to local

variations in interference) play in limiting capacity. In particular,
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we highlight the key role of the theory of extremes of small-scale

fluctuations, in determining the sensing capacity bottlenecks. Com-

plementary detailed simulation results validate the scaling gain

results.

2 SYSTEM MODEL
This section describes the spatial model, the relaying strategy, the

queuing models, performance metrics, and preliminary results. Be-

fore introducing our spatial model, we remind the reader that the

Voronoi tessellation induced by the realization of a point process

Φ = {xi ∈ R
2, i ∈ N} is defined by VΦ = {VΦ (xi ),xi ∈ Φ} where

VΦ (xi ) = {x ∈ R
2 |∥x − xi ∥ ≤ ∥x − x j ∥, j , i} is the Voronoi cell

associated with xi ∈ Φ. For instance, if Φ is a Poisson point process,

VΦ is the Poisson-Voronoi tessellation.

2.1 Spatial Model
2.1.1 Mesh+cellular architecture. Wemodel the locations of base

stations for themesh+cellular architecture by a planar Poisson point

process (PPP) Φb with density λb . In addition, we model the loca-

tions of IoT devices as an independent planar PPP Φs with intensity

λs . Each base station is assumed to serve uplink traffic of IoT devices

in its Voronoi cell. Figure 1 illustrates the mesh+cellular architec-

ture. Note that the cellular architecture in this paper captures the

traditional infrastructure-based architectures, e.g., could be either

cellular or wifi, but without mobile gateways.

2.1.2 Mesh+vehicular architecture. As briefly discussed in Intro-

duction, in the proposed mesh+vehicular architecture, vehicles play

the role of gateways. Since vehicles travel on roads, we model the

network of roads as a stationary Poisson line process (PLP) Φl rep-
resented by a PPP Ξ on the cylinder set C = R×[0,π ]. Specifically,
each point of Ξ, say (r ,θ ), corresponds to a line in the Euclidean

space specified by {(x ,y) ∈ R2 |x cosθ + y sinθ = r }, where r de-
notes the distance from the origin to the line and θ denotes the

angle between the positive x−axis and the unit normal vector to

the line, measured in the counterclockwise direction. The intensity

measure of Ξ is given by ΛΞ (dr dθ ) = λl drG (dθ ) = λl
π dr dθ . Note

that we consider G (dθ ) = dθ
π , then the PLP yields randomly dis-

placed lines (see Fig. 3 top). If the intensity measure along θ -axis is
concentrated, G (dθ ) = 1

2
δ0 +

1

2
δπ /2, the PLP Φl yields only verti-

cal and horizontal lines, which is referred to as a Manhattan line

process (see Fig. 3 bottom). The lines on the plane tessellate the

Euclidean space into the Crofton cells.

Conditionally on the PLP Φl , vehicles are distributed according

to a stationary PPP Ψv with intensity µv on each line. Collectively,

those PPPs form what is referred to as a Poisson line Cox point

process, Φv = {Ψv }. Note that the distance between the two clos-

est points on the same line follows an exponential distribution

with parameter µr and PPPs on different lines are conditionally

independent. We assume, for simplicity, that each vehicle moves

at a constant speed v along its road, choosing its direction with

probability 1/2.

Similarly, conditionally on the same realization of the PLP, repos-

itories are modeled via a PPP Ψr with intensity µr on each line.

Hence, collectively, the PPPs {Ψr } form a Poisson line Cox point

process denoted by Φr = {Ψr }. Notice that the PPPs for vehicles
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Figure 3: Illustration of the Poisson line Cox point process
(circles), PLP (solid lines), and the Voronoi cells (dashed
lines) where G (dθ ) = 1/π dθ or G (dθ ) = 0.5δ0 + 0.5δπ /2, re-
spectively.

and repositories {Ψv ,Ψr } are conditionally independent. Figure 3

illustrates the Poisson line Cox point process and its Voronoi cells.

As for the mesh+cellular architecture, the locations of the IoT

devices in the mesh+vehicular architecture are modeled by an in-

dependent planar PPP Φs with intensity λs . Figure 2 illustrates all
the elements of the mesh+vehicular architecture.

2.2 Stochastic Geometry and Typicality
Palm calculus allows one to define typicality. For instance, under

the Palm distribution ofΦr , one sees the typical Cox-Voronoi cell, or
equivalently the Voronoi cell of a typical repository. Intuitively, the

typical Cox-Voronoi cell is one of the two-dimensional objects sur-

rounded by the dashed lines in Fig. 3, selected at random. Similarly,

under the Palm probability of Φb , one sees the typical Poisson-

Voronoi cell. The typical Cox-Voronoi and Poisson-Voronoi cells are

random polygons. Their geometric properties, such as the lengths

of edges, angles between edges, and areas, are characterized by

their probability distributions. Nevertheless, even for the simplest

case, which is that of the typical Voronoi cell of a homogeneous PPP,

the distribution of the area of the cell is still unknown. Analyzing
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D

S
X

Figure 4: Path of the radial spanning tree from source S to
destination S . For the destination D, the next hop from de-
vice X is chosen among the devices closer to D than X . The
next hop is the device which is the closest to X .

the distribution of the typical cell is hence out of the scope of this

paper. The only results available on these random objects regard

their moments, e.g., mean area. Here is a summary of the results

on first order moments for typical cells that will be used below.

Lemma 1. In the mesh+vehicular architecture, the densities of
repositories is µr λl and the mean area of the typical repository Voronoi
cell is given by (µr λl )

−1. In the mesh+cellular architecture, the density
of base stations is λb and the mean area of the typical base station
Voronoi cell is λb−1.

For the proof of above, the mesh+vehicular architecture is dis-

cusssed in [14] and the mesh+cellular architecture is discussed in

[12].

2.3 Mesh Networking and Routing
This paper considers a tractable nearest neighbor routing strategy.

The source forwards its traffic (packet) to its nearest relay that is

closer to its destination than itself (and to the destination directly

if there is no such relay). The associated paths are mathematically

characterized by radial spanning trees1[9] on the mesh of IoT de-

vices. Figure 4 illustrates the radial spanning tree from source S
to destination D. Specifically, in both architectures, IoT devices

are sources and relays at the same time. Base stations and repos-

itories are destinations in the mesh+cellular architecture and the

mesh+vehicular architecture, respectively. Based on the geometry,

IoT devices decide their destinations to be their closest base station

in the mesh+cellular architecture or their closest repository in the

mesh+vehicular architecture, respectively.

In the mesh+vehicular architecture, IoT devices follow the strat-

egy explained above, and therefore IoT meshes are characterized by

1
Suppose two IoT nodesX , Y inV the Voronoi cell centered at the origin. Then, there

exists a directed edge of radial spanning tree rooted at the origin if

∥Y −O ∥ < ∥X −O ∥ and Φs (V ∩ BO ( ∥X ∥) ∩ BY ∥X − Y ∥) = ∅,

where Bx (r ) denotes the ball of radius r centered at x ∈ R2 . In other words, X has

an edge toward Y if Y is closer to the root and there exists no other IoT device at the

intersection of the Voronoi cell V , the ball centered at the origin with radius ∥X ∥,
and the ball centered at the X with radius ∥X − Y ∥ .
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Figure 5: Simplified example of relaying from IoT nodes to
repositories. Filled disks illustrate sources, blue squares and
dotted lines describe repository (Cox point process) and the
Cox-Voronoi cells.

radial spanning trees on IoT devices rooted at repositories. Recall

that, contrarily to the base stations in the mesh+cellular archi-

tecture, repositories hold IoT data until it is delivered to a vehicle

passing by. Consequently, the mesh+vehicular architecture involves

two types of packet transmissions: wireless multi-hop relaying of

IoT devices to the repositories, and wireless transmissions from

repositories to vehicles.

2.4 Congestion Model
Asmentioned in the introduction, the traffic in our two architectures

will experience congestion in distinctive ways, e.g, around zero

dimension base station sinks or around one dimension cell edges.

To capture these characteristics we introduce the simplest queuing

model as follows.

2.4.1 Queuing model for IoT Mesh. Each IoT device xi ∈ φs is
assumed to generate sensing data packets according to a Poisson

process with intensity ξ packets/sec and packets are assumed to

have exponentially distributed size with mean 1/α bits. In addition

to its own traffic each IoT device may serve as a relay to other node’s

traffic. Thus each IoT queue may carry traffic from several upstream

nodes as a result of radial spanning tree routing to repositories/base

stations. Note that an IoT node may relay IoT packets heading to

different destinations/next hops and thus different service rates.

Consequently, under the radial spanning routing of IoT traffic,

the overall network can be viewed as a multi-class Kelly network

where packets associated with different radial spanning trees cor-

respond to different classes (see e.g. [25]). See Figure 5 for the

illustration of the Kelly network in simplified geometry where for

simplicity repositories are equally spaced. Specifically, all packets

in the same class are relayed to their corresponding relay sharing

the same exponential packet service time. The packet service rate
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Figure 6: Different classes are in different colors.

Figure 7: Different classes are in different colors. The radial
spanning graphs are coupled in space compared to the ones
in Figure 6.

depends on the packet size and the associated wireless links’ physi-

cal transmission rate which we will describe shortly. Note that all

IoT devices in this paper are assumed to receive and transmit at

the same time. Figures 6 and 7 illustrate the simulated topologies

of the Kelly networks in both architectures.

2.4.2 Queuing model for repositories. In the mesh+vehicular

architecture, repositories can only communicate opportunistically
when vehicles pass by; thus, their characteristics are not well cap-

tured by an M/M/1 queuing model. A natural approach is to assume

the repository queue (server) is active when one (or more) vehicles

are in its Voronoi cell; otherwise, it shuts down (goes on vacation),

until a new vehicle enters its cell. Such systems are referred to as

queues with vacations, see e.g. [17], and can be somewhat com-

plex to work with (see time-limited gated queues with vacations

in e.g. [26]). In the spirit of the simplified models, we introduce

an appropriate repository queuing model. Noticing that the inter-

arrival times of vehicles can be interpreted as server vacations, we

assume vehicles (servers) arrive to serve a repository queue as a

Poisson process with rate µvv . The inter-arrival time of vehicles is

exponentially distributed with mean (µvv )
−1

since the density of

vehicles on the road is µ and their speed is v .

2.5 Wireless Link Capacity and Queue Service
Rates

The service rate of each queue can be interpreted as the achiev-

able transmission rate at its intended receiver. Without fading, the

received signal power is assumed to be attenuated according to

a general distance-based path loss model δ−γ where δ is the dis-

tance and γ is the path loss exponent. Notice that the power law

assumption on the path loss model underlies the main claims of

this paper.

Without loss of generality, the bandwidth is assumed to be

1. Then, the transmission link rate ri, j from IoT node i to IoT

node j is modeled by the Shannon rate formula based on signal-to-

interference-ratio (SIR) and it is given by

ri, j = log
2
(1 + SIRi, j ) = log

2

*.
,
1 +

δ
−γ
i, j

σ 2

j

+/
-
, (1)

where σ 2

j is the interference at node j and δi, j is the distance from

node i to its next hop node j. There is no difficulty in introducing

fading in these formulas and in the subsequent analysis. Recall that

IoT devices are assumed to receive and transmit concurrently.

Incorporating the transmission rate with the queuing model in

the previous section, we get that the service rate ifor packets at IoT

queue i which are relayed to j is given by ηi, j = αri, j .
Similarly, the service rate of a repository queue to a vehicle v

inside its Cox-Voronoi cell is given by ηr,v = αrr,v , where the

transmission rate of repository node r to vehicle v is given by

rr,v = log
2

*
,
1 +

δ
−γ
r,v

σ 2

v

+
-

(2)

where δr,v is the distance from repository r to vehicle v and σ 2

v is

the interference currently seen at vehicle v .

2.6 Performance Metrics
Wewill introduce two performance metrics to compare our network

architectures: the sensing capacity and harvesting capacity. The

first is formally introduced in this subsection while the second is

relegated to Section 4.3

Consider a routing tree T x associated with a base station sink or

repository x . The tree includes all paths from IoT nodes in Voronoi

cell of x to the sink/repository x . Each IoT device i ∈ T x relays

traffic on behalf of IoT nodes associated with destination x as well

as possibly traffic on behalf of other destinations. Let Hi denote

set of next hop nodes for routes traversing node i , and ηi, j the link
rate from IoT node i to j . Finally let Ni, j denote the number of IoT

nodes whose traffic is relayed by node i to next hop j including
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possibly traffic generated by node i . Suppose each IoT device were

to generate the same rate ξ then the mean load at node i denoted
ρi (ξ ) is given by

ρi (ξ ) =
∑
j ∈Hi

ξNi, j

ηi, j
= ξ

∑
j ∈Hi

Ni, j

ηi, j
. (3)

Note that to ensure the stability of all the nodes in the tree one must

ensure ρi (ξ ) < 1 for all i ∈ T x .We shall define sensing capacity

of the tree as the max rate ξ that satisfies such stability constraints.

Definition 1. The IoT device sensing capacity of tree T x is given
by

ξx := min

i ∈T x

1

ρi (1)

Note in defining the sensing capacity of the tree T x , we assumed

that all IoT nodes both associated with repository/base station x
as well as others generate the same rate ξ . It is possible that traf-
fic heading to other destinations may be bottlenecked elsewhere,

which would allow the tree T x to possibly render a higher mini-

mum rate to its own IoT nodes. Thus the above characterization is

in fact a lower bound on the minimum common rate that the tree

can support, for its IoT devices.

Note also that due to the stochastic variations in tree size and

overlaps as well as link rates each tree may achieve a different

sensing capacity. In the sequel we will however study its scaling

properties for a high-density regime.

3 SCALING OF NETWORKS
This section is focused on the basic geometrical properties of the

spatial elements of the proposed models. In the asymptotic regime

that we describe below, we fix every system parameter (including

v , λl and µv ), except for the spatial density of IoT devices λs and
the linear density of repositories µr . Below, the notation A ∼ B
indicates that A and B are of the same order, as λs → ∞, i.e.,

0 < lim inf

λs→∞

A

B
≤ lim sup

λs→∞

A

B
< ∞.

For instance, if a function of λs is of order 1, it becomes a constant

(up to a multiplicative constant) as λs tends to infinity.

3.1 Scaling of IoT Density
Assumption 1. We consider a scaling where the density of IoT

devices λs tends to∞. In the mesh+cellular architecture, the density of
base station is fixed. In the mesh+vehicular architecture, the density of
roads and vehicles are fixed, but the density of repositories is assumed
to satisfy

µr ∼ λs .

Remark 1. The comparison that we will make between the pro-
posed mesh+vehicular architecture (where the density of repositories
tends to infinity) and the mesh+cellular architecture (where the den-
sity of base stations is fixed) may look unfair due to the Assumption 1.
In fact it is not. First, in the mesh+vehicular architecture, repositories
are nothing but IoT devices located along roads. In other words, except
for the fact that the repositories are on roads, their transmission range,
buffer size, battery capacity, and cost are the same as those of IoT
devices. Therefore, assuming a dense deployment of repositories is

not restrictive in the context of a dense IoT setting. Second and more
importantly, the analogue of base stations in the mesh+cellular setting
is vehicles in the mesh+vehicular case. Both have the densities of order
1.

Under the assumption, the distribution of the Cox-Voronoi cell

can be further characterized as follows.

Lemma 2. Under Assumption 1, the typical Cox-Voronoi cell w.r.t.
Φr converges to a one-dimensional segment S almost surely in the
Fell topology. Its length is given by the summation of two independent
exponential random variables each with parameter 2λl .

See [14] for the proof.

4 MAIN CLAIMS
The main claims of this paper are given in the statement below.

We note at the outset, that given the complexity of the systems

under considerationwe have resorted to roughmathematical scaling
analysis that will require formal proofs, however, all of the results

have been validated via simulation. Thus we shall refer to our

results as "claims" and provide rough "proofs" based on expected

scaling properties. In this section, each IoT device packet size has

the mean size of 1.

Claim 1. Under Assumption 1 and for path loss exponent γ ≥ 2,
the mesh+vehicular architecture has a sensing capacity at least of
order λ−γ /4−1/2s and the mesh+cellular architecture has a sensing
capacity of order λ−γ /2−1/2s .

We shall informally establish this claim based on considering the

large-scale network characteristics which are close to their means,

radial spanning trees of IoT devices in these large-scale geometries,

and local fluctuations in the wireless service rates and traffic in

these trees which determine the order of the load at bottleneck

queues.

4.1 Mesh+Vehicular Sensing Capacity
Let Cx denote the Cox-Voronoi cell of repository at x and Φs (Cx )
the set of IoT nodes located inside Cx . Then, the collection of all

paths starting from a node in Φs (Cx ) to root x forms a tree which is

denoted by T x . Further, we shall letVx denote the set of vertices

of T x . It is important to note that in general, although the root x
and its leaves Φs (Cx ) are in the Cox-Voronoi cell Cx , most vertices

of T x are outside of Cx particularly when the Cox-Voronoi cells

are very thin – see Figures 5 and 7.

Claim 2. Under Assumption 1 the cardinality of the setVx is of
order

√
λs .

Proof. The typical Cox-Voronoi cellCx has an area of order 1/λs
since its width has order 1/λs and its height has order 1 – see Lemma

3. So the cardinality of Φs (Cx ) is order 1. In our asymptotic regime,

the length of each hop along the radial spanning tree towards the

repository e.g., from y ∈ Φs (Cx ) to x is of order 1/
√
λs [9]. Hence,

the number of hops along such a path is order

√
λs and since there

is order 1 leaves in Φs (Cx ), the cardinality of the setVx is of order
√
λs . □
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Let d be an IoT device. It may have several next hop nodes

depending on the number of radial spanning trees, i.e., classes of

packets, that contain it. Let Hd denote the set of next hop nodes

for d . It is easy to check that the cardinality of Hd is of order 1.

Consider now the queue of device d . In this queue, the service time

of a packet with next hop h ∈ Hd is an exponential random variable

with parameter

log
2

(
1 +

S (d,h)

I (h)

)
,

where S (d,h) is the receive power at h from d , namely ∥h − d ∥−γ ,
and I (h) is the interference power at h. Recall packets are assumed

to be exponentially distributed with mean 1, hence modeling the

transmission rate by the Shannon capacity we obtain the above

packet service rate.

Claim 3. Under Assumption 1, the largest mean packet service
time bx in the tree T x is of order λγ /4s .

Proof. By approximating log(1 + x ) as x for x ≪ 1, the largest

mean service time experienced by a packet traversing nodes in (but

not necessarily following) the tree T x is given by

bx = max

n∈Vx
max

h∈Hn

I (h)

S (n,h)
.

In the high density regime being considered, the rescaled shot

noise
I (h)
λ2s

converges in distribution to an alpha stable random

variable A(h) with parameter 2/γ [7]. Similarly, the ratio
λ2s

S (n,h)
converges to a random variable B (n,h) with a tail distribution func-

tion F (x ) = exp(−πx2/γ ) (Weibull) truncated at λ2s [23]. Hence, for
some given λs , we have

I (h)

S (n,h)
= A(h)min(B (n,h), λ2s ).

For a given h, the random variable A(h) is large when there is an

interfering transmitter close to h; whereas B (n,h) is large when
the distance between n and h is large. These extreme events are

essentially independent. Therefore, using Breiman’s lemma [18],

the tail of the product A(h)B (n,h) is given by a constant times that

of A(h).
Furthermore, the maximum of k independent alpha-stable ran-

dom variables with parameter 2/γ is known to grow as k
γ
2 [7].

Since the tails of the random variables A(h)B (n,h) are the same, up

to multiplicative constant, as those ofA(h), and since these random
variables are mixing w.r.t. h, it follows that the largest mean service

time bx in tree T x is of order the maximum of

√
λs (Claim 1) inde-

pendent with the same distribution as A(h), i..e, of order growing

as λ
γ /4
s . □

For any IoT node y we shall letUy denote the set of trees which

contain y.

Claim 4. Under Assumption 1 the cardinality ofUy of a typical
IoT node y is of order

√
λs .

Proof. Consider trees {T xi }, where . . . ,x−2,x−1,x0,x1,x2, . . .
are successive repositories along a typical road. Note that these

trees have common nodes and edges. By Claim 2 each tree has order
√
λs nodes. So per unit length of road, the sum of the cardinalities

of the trees is of order λs
√
λs . Since there are only λs nodes per

unit of length, a typical node must belong to order

√
λs trees. □

Recall that each Cox-Voronoi cell contains order 1 nodes (λs ∼
λl ), so each tree generates an overall traffic which is order 1. Hence,

by Claim 4 above, it follows that the traffic through a typical IoT

node is of order

√
λs .

Claim 5. The sensing capacity of the mesh+vehicular architecture
is at least of order λ−γ /4−1/2s .

Proof. Let us first consider possible bottlenecks at IoT queues

and then focus on repository nodes. There are two underlying

reasons an IoT queue might become a bottleneck. First the service

time to the next hop node of one of its packet classes (i.e., radial

spanning trees that traverse it) could be huge. This could be due to

a high interference or a poor signal. Recall the worst mean packet

service time in a typical tree was evaluated in Claim 3 and is of order

λ
γ
4

s . Second, the traffic (arrival rate) to the device is huge. These two

phenomena are essentially independent. Due to the homogeneity

of the IoT device locations, a service rate bottleneck is roughly

equally likely to arise anywhere in a tree; a bottleneck arising at an

IoT node serving packets with extremely high mean service times

will thus see a traffic load given by arrival rate

√
λ to a typical IoT

node times the scaling of the worst case mean service time λ
γ
4

s i.e.,

λ
γ
4
+ 1

2

s which is greater than λs for γ ≥ 2. By contrast, a bottleneck

arising at a node due to a huge traffic arrival rate, i.e., due to a large

number of overlapping radial spanning trees sharing the node, will

scale by no more than

√
λs (Figure 8). This leads to the conclusion

that the first type of IoT bottleneck, i.e., associated with a deviation

in the mean service rates, dominates the second types associated

with excessive packet arrivals rate. From this, a lower bound on the

sensing capacity can be derived; if the bottlenecks indeed arise at

IoT queues, then the scaling of the sensing capacity of the tree in

the mesh+vehicular networks would be inversely proportional to

the load i.e., at least of order λ
−γ /4−1/2
s .

On the other hand, for repository r , the traffic is of order 1 IoT

nodes times the arrival rate each IoT queue in the tree. Moreover,

using the cycle analysis in vacation queue [17], the service rate is

1

µr
1

µr
+ 1

µv
log

2

(
1 +

δ−γr ,v
σ 2

v

)
. Therefore, the bottleneck of a repository

is given by

1

1

µr
1

µr
+ 1

µv
log

2

(
1 +

δ−γr ,v
σ 2

v

) ∼ λs

log
2

(
1 +

λγs
λγ /2
s

) ∼ λs
log

2
(λs )
, (4)

where we use the fact that under Assumption 1, δr,v is of order

λ−1s since the scale of the width of the repository cell is of order

λ−1s while the scale of σ 2

r,v is of order λ
γ /2
s [7] since a vehicle

sees IoT interferers (density of order λs ) and repository interferers

(density of order 1) and IoT interferers dominate. Consequently,

in the tree the IoT bottleneck dominates the repository bottle-

neck as λ
−γ /4−1/2
s < λs/ log2 (λs ), and thus the sensing capacity of

mesh+vehicular architecture is of order λ
−γ /4−1/2
s at least. □
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4.2 Mesh+Cellular Sensing Capacity
Let Px denote the Poisson-Voronoi cell of base station x and Φs (Px )
denote the set of IoT nodes in Px . The collection of all paths starting
from nodes Φs (Px ) and leading to x form a tree T ′x . LetV

′
x denote

the vertices of T ′x .

Claim 6. Under Assumption 1 the cardinality of the setV ′x is of
order λs .

The following claim is similar to Claim 3 given in the previous

subsection.

Claim 7. Under Assumption 1 and if γ ≥ 2 the largest mean
service time for nodes in the tree T ′x is of order λγ /2s .

Claim 8. Lety be the typical IoT device with associated base station
x . The cardinality of the set of nodes in the subtree Tx,y made of nodes
that use y as a relay their packets to x , is of order

√
λs . By contrast,

nodes that are not typical, but instead known to be close to the base
station x see traffic which is at most of order λs .

Proof. The first property follows from unimodularity [3]. Pick

a node y at random in the tree. Make this node the root in a random

directed graph. This rooted graph is unimodular by construction.

Send mass 1 from every node every other node downstream. The

mean mass arriving at the root is the mean cardinality of theVy .

The mean mass leaving the root is the length of the path from y
to the base station. The latter has order

√
λs . This concludes the

proof. □

Claim 9. Under Assumption 1 and if γ > 2, the sensing capacity
of the mesh+cellular architecture is of order λ−γ /2−1/2s .

Proof. The argument is similar to that of Claim 5 in the previ-

ous subsection. The worst bottleneck arises either at a typical IoT

node with extremely poor mean service rate or at a node seeing

a particularly large traffic, i.e., nodes close to the base station. By

Claim 8, the worst case mean service time of a typical node asso-

ciated with a base station scales as λ
γ /2
s and it in turn by Claim

8 will see an arrival rate from upstream nodes which is of order

√
λs , giving a total load λ

γ /2+1/2
s . Nodes close to the base station

may see higher loads, i.e., order at most λs but the scaling of their

service rate is much better than that of the IoT seeing the worst

mean service. Hence, the capacity of the mesh+cellular architecture

is of order λ
−γ /2−1/2
s . □

4.3 Comparison of Harvesting Capacities
The main merit of the mesh+vehicular architecture is that it allows

one to connect a dense set of devices (density of order λs ) to a

sparse set of gateways namely base stations or mobile gateways

(density of order 1) using thin mesh trees (vertices of order

√
λs ).

In contrast, the mesh+cellular architecture involves fat ball-shaped

trees (with a number of vertices of order λs ).
The first advantage of these thinner trees is that they have less

severe wireless bottlenecks, i.e., service times, compared to those

of the larger trees in the mesh+cellular architecture, as stressed in

Claims 3 and 7 above. It should be stressed that the main reasons

for the gain are (1) trees used in the mesh+vehicular architecture

have less nodes in average than those used in the mesh+cellular

architecture and (2) the metric (worst bottleneck) is computed per

tree. The worst wireless bottleneck in a collection of order λs thin
trees of the vehicular setting (with a total number of devices order

λs ) would be the same as in the ball-shaped tree of the cellular case.

Since trees have so different in their sizes, a fair comparison

would be made by taking the viewpoint of a typical gateway vs. a

typical base station, rather than by taking a typical repositry vs. a

typical base station. This requires the introduction of a new metric,

harvesting capacity.

Definition 2. The harvesting capacity of a gateway (base station
sink or vehicle) is defined by the mean number of packets (or equiva-
lently bits α = 1) that the gateway receives per unit of time assuming
that each tree operates just below its sensing capacity.

Finally, the fair comparison of the architectures should be made

by comparing the harvesting capacity of gateways in each architec-

ture. The following claim is the main claim of this paper.

Claim 10. A harvesting capacity gain of order at least λγ /4s exists
when moving from the cellular architecture to the vehicular architec-
ture.

Proof. Over a time interval of length l , a base station harvests

order λ
−γ /2+1/2
s packets because there are order λs sensing flows

and each flow has order λ
−γ /2−1/2
s . During the same time interval,

a vehicular gateway visits vlλs repositories. The mean number of

packets it harvests per repository is at least of order λ
−γ /4−1/2
s . By

multiplying them
2
the vehicular gateway harvests at least of order

vlλ
−γ /4+1/2
s packets. For comparison of orders, consider v = l =

1. □

5 SIMULATION RESULTS
This section presents simulation methodology and results. The

system level simulator is meticulously designed in order to con-

form to the models proposed in Section 2. In particular, for the

mesh+cellular architecture, both the Poisson point process for base

stations and the Poisson point process for IoT devices are simulated.

Based on the deployment of the Poisson base stations and IoTs, the

destination of each IoT device is determined based on the Voronoi

tessellation. Given the geometry of point processes and correspond-

ing Voronoi tessellation, radial spanning trees for mesh networking

lead to multi-class routing networks (Figure 6). Then, from each IoT

queue, different Shannon rates are derived for different classes and

they are exactly determined by using the interference seen by the

node and next hop distances. Then, using the stability condition of

multi-class queues Eq. (3), the sensing capacity is derived.

In the same vein, for the mesh+vehicular architecture, the Pois-

son point process for IoT devices and the Cox point processes for

repositories are simulated. Based on the layout of IoTs, roads, repos-

itories, and Cox-Voronoi tessellation, the radial spanning trees are

simulated to define the multi-class routing networks. (Figure 7).

Similar to the mesh+cellular case, the sensing capacity of each tree

is found by identifying the worst queue in the tree. Notice that the

2
Note that we implicitly used a spatial ergodic theoremwhen summing up the numbers

of packets harvested in the sequence of repository trees visited by the vehicular

gateway. This ergodic theorem is justified by the mixing properties of the model and

by the fact that sensing capacity is locally defined.
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Figure 8: Maximum traffic among nodes per tree.

queues in the mesh+vehicular architecture are two types: repository

and IoT queues. The service rate of the repository queue is derived

from the geometry, namely the width of the Cox-Voronoi cell. By

identifying the minimum queue in each tree and spatially averaging

the capacities of trees, the sensing capacity of the mesh+vehicular

architecture is derived.

To obtain simulation results, we consider a network in a disk of

radius 1km where the density of base stations is λb = 10/km2
and

the density of roads is λl = 1/km. The density of IoT devices varies

in order to test the network capacity in dense regimes; specifically,

λs = 4λl µr .We consider the path loss exponent γ = 4.

5.1 Maximum Traffic
Figure 8 plots the maximum traffic (packet arrival toward IoT de-

vices) per tree, i.e., T x and T ′x , obtained by simulation, in the

mesh+vehicular and mesh+cellular architectures, respectively. As

the density of IoT devices increases, the worst traffic is of order

√
λs

in the mesh+vehicular architecture. On the other hand, as the den-

sity increases, the worst traffic is of order λs in the mesh+cellular

architecture.

5.2 Sensing Capacity and Harvesting Capacity
Figure 9 plots the sensing capacities and Figure 10 plots the harvest-

ing capacities obtained by simulations. From the obtained graphs,

the sensing capacity of mesh+vehicular architecture is of order λ−1s
that is greater than the lower bound identified in Claim 5 and that of

mesh+cellular architecture is of order λ−2.5s as presented in Claim

9. The harvesting capacity of vehicular is given by of orders 1 that

is greater the lower bound in the proof of Claim 10. The harvesting

capacity of cellulra is given by of order λ−1.5s as presented in Claim

10. The harvesting gain is of order 1.5 and it is greater than the

lower bound in Claim 10

6 CONCLUSION AND FUTUREWORK
The results in this paper characterize the potential gains that den-

sification leveraging mobility on road-based vehicular networks
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could bring. In particular the IoT architecture based on repositories

and mobile gateways enables a shift from routing flows inwards

to zero-dimensional sinks to routing traffic outwards towards one-

dimensional cell edges, which should not only improve capacity

but also distribute the congestion/energy burdens across the net-

work. The mesh+vehicular architectures route traffic along thinner

mesh trees towards repositories, experiencing less severe traffic

and wireless capacity bottlenecks vs those in the larger trees of the

conventional mesh+cellular architecture.

This work is only a very first step in this direction. Several

complementary directions should be investigated.

A first important question that we leave for future work is

whether the capacity gain brought by the mesh+vehicular archi-

tecture is robust to changes in the wireless path loss models, e.g.,

bounded ones. Indeed our analysis relies on the extremal properties
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of the local interference, which play a dominant role in dictating

the location and scaling of the queueing bottlenecks on sensing

capacity. These are in turn depend fundamentally on the path loss

model.

Second, since the dominant bottleneck so far has been driven by

interference, another natural question is what would be the effect

on scaling of introducing physical layer or protocol based tech-

niques to mitigate interference. For instance, rather than treating

interference as noise, one could use interference cancellation and

mitigate strong interferers. This could, in principle, remove service

time (wireless link capacity) fluctuations so that all link service

times are order 1. Hypothetically this would leave fluctuations in

the traffic loads across the trees as the determining factor for the

sensing and harvesting capacities. From the claims of Section 4,

we get that the mesh+cellular architecture has the worst traffic

bottleneck of order 1/λs (at the nodes close to the base station)

whereas the worst bottleneck of the mesh+vehicular architecture is

the repository, and is of order log(λs )/λs . Thus we might hope the

gain is still present but logarithmic rather than polynomial in λs .
Finally, the results presented in this paper are based on argu-

ments mixing mathematical claims validated via simulation which

are still far from rigorous proofs. Our future work is geared at cre-

ating needed foundations to allow more rigorous analysis for both

power-law and more general path loss models.
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