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Abstract— Technologies that enable network slicing are
expected to be a key component of next generation mobile
networks. Their promise lies in enabling tenants (such as
mobile operators and/or services) to reap the cost and perfor-
mance benefits of sharing resources while retaining the ability
to customize their own allocations. When employing dynamic
sharing mechanisms, tenants may exhibit strategic behavior,
optimizing their choices in response to those of other tenants.
This paper analyzes dynamic sharing in network slicing when
tenants support inelastic users with minimum rate requirements.
We propose a NEtwork Slicing (NES) framework combining:
1) admission control; 2) resource allocation; and 3) user dropping.
We model the network slicing system with admitted users as a
NES game; this is a new class of game where the inelastic nature
of the traffic may lead to dropping users whose requirements
cannot be met. We show that, as long as admission control
guarantees that slices can satisfy the rate requirements of all their
users, this game possesses a Nash equilibrium. Admission control
policies (a conservative and an aggressive one) are considered,
along with a resource allocation scheme and a user dropping
algorithm, geared at maintaining the system in Nash equilibria.
We analyze our NES framework’s performance in equilibrium,
showing that it achieves the same or better utility than static
resource partitioning, and bound the difference between NES and
the socially optimal performance. Simulation results confirm the
effectiveness of the proposed approach.

Index Terms— Wireless networks, network slicing, multi-tenant
networks, resource allocation, guaranteed rate servi.e., inelastic
traffic.

I. INTRODUCTION

IT IS widely agreed among the relevant industrial com-
munity [1] and ongoing standardization efforts [2] that

enabling network slicing is a key technological requirement
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for 5G mobile networks. Such technology enables wireless
infrastructure to be “sliced” into logical networks, which may
be customized to support one or more specific services. This
provides a basis for efficient infrastructure sharing among
diverse entiti.e., so-called tenants, each owning a slice. Tenants
could be traditional or virtual mobile network operators
acquiring a network slice from an infrastructure operator to
support their business, as well as new players that simply view
connectivity as a servi.e., such as Over-The-Top (OTT) service
providers which provision network slices to ensure quality of
service to their end-customers.

A major element underlying network slicing is a mechanism
for resource allocation amongst slices. One of the approaches
considered in 3GPP suggests that base station resources could
be statically partitioned based on fixed ‘network shares’ [3].
However, given that slices’ loads may be non-uniform accross
space and varying in ti.e., sharing gains can be achieved
by dynamically allocating resources to slices based on their
current needs (while respecting their overall network shares).
At the same ti.e., tenants should retain the ability to operate
their slices autonomously and, in particular, to customize
the allocation of resources to their users. This suggests the
need for a flexible framework for resource sharing, wherein
(i) tenants indicate their preferences to the infrastructure
(e.g., by dynamically subdividing their network share amongst
their users), and (ii) base station resources are allocated to
slices according to such preferences (e.g., proportionally to
the shares assigned to the users).

Under such a resource allocation model, it is to be expected
that tenants might exhibit strategic behavior, adjusting their
preferences to current demands at the different base stations
so as to maximize their performance (subject to their share
of the network). This could potentially have adverse effects
on the network; e.g., the overall network efficiency might
be harmed, or tenants’ preferences (and the corresponding
requests) might exhibit oscillations. While this problem has
been studied in [4] for the case of elastic users, in many
cases tenants’ traffic will be inelastic in nature, wherein
a user must either be guaranteed a minimum rate or her
utility decreases sharply. When attempting to satisfy such user
requirements, tenants’ behavior may differ substantially from
that in [4], affecting both network efficiency and stability.
The focus of this paper is thus on the analysis of resource
allocation for network slicing when tenants support inelastic
users.
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A. Related Work

The resource allocation mechanism analyzed in this paper
corresponds to a Fisher market, which is a standard framework
in economics. In such markets, buyers (in our case slices) have
fixed budgets (in our case corresponding to pre-agreed network
shares) and bid for resources within their budget (according to
their preferences), which are then allocated to buyers propor-
tionally to their bids [5]. Within the Fisher Market framework,
our model falls in the category of buyers that anticipate
the impact of their bids [6]. The analysis of Fisher markets
under such price-anticipating buyers has been limi.e., so far,
to the case of buyers with linear [6] or concave [4], [7] utility
functions.

A related resource allocation model often considered in the
networking field is the so-called ‘Kelly’s mechanism’, which
allocates resources to players proportionally to their bids [8].
This model has also been analyzed for price-anticipating
players [9]. However, in Kelly’s mechanism players respond
to their payoff (given by the utility minus cost) whereas in our
model tenants’ behavior is only driven by their utilities (since
they have a fixed budget, i.e., the network share). Moreover,
Kelly’s model has mainly been studied for concave utility
functions.

The topic of network slicing is currently attracting substan-
tial attention from the research community. One of the main
issues investigated is the resource allocation across different
sli.e., which is the focus of this paper. A number of works
have been devoted to the resource allocation among different
operators or tenants sharing the same wireless infrastructure
(see e.g. [10]–[12]), and in [13], the authors focus on resource
allocation of processing resources in network slicing in the
context of C-RAN; see [14] for a survey on resource slicing
in virtual wireless networks. In contrast to our paper, all these
works have focused on elastic traffic.

In the context of network slicing, there are some works
which have considered inelastic traffic. The algorithm pro-
posed in [15] attempts to satisfy the demands of all slices
but does not account for the resources each slice is entitled to.
Similarly, [16]–[18] propose algorithms to meet requests from
all tenants, but do not account for elastic demands and do not
consider budget constraints. In [19], the authors propose an
algorithm to trade resources among tenants, but their approach
involves complex negotiations and relies on heuristic consid-
erations rather than a well-established analytical framework.
In contrast to all these works, our approach supports both
elastic and inelastic services and is based on fixed budgets,
corresponding to the network shares; this is in line with one
of the scenarios considered in 3GPP [3] and does not involve
pricing individual requests, which may represent an advantage
in practical deployments.

In this work, we build on the Fisher Market mechanism
for resource allocation across slices and analyze the game
resulting from the interaction of several non-cooperative slices
aiming to maximize their own network utility given a fixed
budget. This problem has been addressed in the context of
concave utility functions: [7] ensures the existence of Nash
Equilibria (NE) for this type of utility functions, [20] proves
the existence of a NE for price-taking players, [4] shows the

convergence of Best Response Dynamics for certain classes
of concave functions and [6] shows they may not converge
for linear utilities. Much less attention has been paid to
non-concave utility functions; among the few works on this
topic it is worth mentioning [21], which uses potential games
to prove convergence of Best Response Dynamics to a region
around the NE for finite strategy games [22].

In the specific context of Fisher market-like frameworks,
to the best of our knowledge our work is the first attempt to
analyze resource allocation for inelastic traffic. In particular,
this work addresses the following gap in the literature of
resource allocation models: the analysis of budget-constrained
resource allocation under price-anticipating users with inelas-
tic utilities. The nature of inelastic utility functions leads to
a new class of non-cooperative games, where a slice prefers
to drop users whose rate requirements cannot be met, rather
than allocating them insufficient resources. The nature of such
games differs substantially from the ones previously analyzed
in the literature for elastic traffic.

On the 5G standardization front, network slicing is currently
being specified by 3GPP [2]. In particular, 3GPP’s SA5 is
working on the definition of a management and orchestration
framework to support network slicing [23], [24]. While these
efforts do not specifically address dynamic resource allocation,
which is our focus here, the algorithms we propose are in
line with this framework. One of the key features of our
approach is the ability of tenants to customize their allocations;
there is wide consensus in the standardization community
that this is needed to efficiently satisfy their very diverse
requirements (see, e.g., [25] for examples of possible vertical
tenants).

B. Key Contributions

The rest of the paper is organized as follows. In Section II
we present our system model, and propose the Network Slic-
ing (NES) framework to address resource allocation in such
system. NES consists of three modules: admission control,
weight allocation and user dropping. Section III focuses on
the admission control module: it finds the requirements to
ensure stability and proposes two polici.e., a conservative and
an aggressive one, to perform admission control. Section IV
presents the other two modules: a resource allocation mech-
anism and a strategy to drop users when rate guarantees
are infeasible, and analyzes the convergence of the resulting
dynamics. We then study in Section V the performance of NES
versus two benchmark allocations: static resource partitioning
and the social optimal. Throughout the paper, we present
analytical results that support the design of NES, including
(i) the existence of a Nash Equilibrium and the convergence of
Best Response Dynamics, (ii) the effectiveness of admission
control and protection from other sli.e., (iii) the user selection
and weight allocation choi.e., and (iv) the gains over static
slices and loss over social optimal. We further evaluate the
performance of NES via simulation in Section VI, confirming
that it provides substantial gains in terms of utility, throughput
performance and reduced blocking probability while incurring
an acceptable complexity.
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II. NETWORK SLICING MODEL

We consider a wireless network consisting of a set of
resources B (the base stations or sectors) shared by a set of
network slices O (each operated by a different tenant). At a
given point in ti.e., the network supports a set of active users
U (the customers or devices), which can be subdivided into
subsets Uo

b , Ub and Uo, corresponding to the users of slice
o at base station b, the users at base station b, and the users
of slice o, respectively. We consider that the association of
users with base stations is fixed (e.g., by a pre-specified user
association policy) and let b(u) denote the base station that
user u is (currently) associated with.

A. Resource Allocation Model

Following a similar approach as [4] and [10], in our model
each slice o is allocated a network share so (corresponding
to its budget) such that

∑
o∈O so = 1. The slice is at

liberty to distribute its share amongst its users, assigning them
non-negative weights (corresponding to the bids):

wu for u ∈ Uo, such that
∑

u∈Uo

wu ≤ so.

We let wo = (wu : u ∈ Uo) be the weights of slice o, w =
(wu : u ∈ U) those of all slices and w−o = (wu : u ∈ U \Uo)
the weights of all users excluding those of slice o. We further
let lb(w) =

∑
u∈Ub

wu denote the load at base station b,
do

b(w
o) =

∑
u∈Uo

b
wu the aggregate weight of slice o at b,

and ao
b(w

−o) =
∑

u∈Ub\Uo
b

wu the aggregate weight of all
other slices (excluding o) at b. We shall allocate each user a
fraction of the base station’s resources in proportion to her
weight wu.

We let cu denote the achievable rate for user u, defined as
the product of (i) the average rate per resource unit achieved
by the user, and (ii) the total amount of resources available
at the base station. Note that this depends on the modulation
and coding scheme selected for the current radio conditions,
which accounts for noise as well as the interference from the
neighboring base stations. Following similar analyses in the
literature [10], [26], [27], we shall assume that cu is fixed for
each user at a given time.

We further let ru denote the rate allocated to user u. Under
our model, ru is given by cu times the fraction of the base
station’s resources allocated to the user. Given that users are
allocated a fraction of resources proportional to their weights,
we have that ru is a function of the weights w given by:

ru(w) =
wu∑

v∈Ub(u)
wv

cu =
wu

lb(u)(w)
cu. (1)

When implementing the proposed resource allocation mech-
anism, a slice may assign a non-zero weight to some users
while others may be dropped. To decide the setting of the
users’ weights, we assume that each slice o is aware of the
aggregate weight of the other tenants at each base station,
i.e., ao

b(w
−o). It is worth noting that for the mechanism under

study we have that (i) a slice only sees the aggregate weight of
the other sli.e., and hence can learn very limited information
about the other slices; in particular, the weights of each tenant

are not disclosed, and (ii) the mechanism needs to store very
limited data; indeed, it is sufficient to keep the total load
of each base station, as a tenant can obtain ao

b(w
−o) by

simply subtracting its weight from the base station’s load. Such
information is already considered within the network slicing
management system defined by 3GPP [24], and hence should
be readily available.

In order to avoid the indeterminate form resulting from
having all the weights at a base station equal to 0 in (1),
we will require weights to exceed a fixed lower bound
(i.e., wu ≥ δ, ∀u). This bound can be arbitrarily small; indeed,
in practice it should be set as small as possible, to allow slices
the highest possible flexibility while avoiding zero weights.
Accordingly, in the rest of the paper we assume that δ is so
small that its effect can be neglected, except for Theorem 2,
where this assumption is required to prove the existence of a
Nash Equilibrium.

In the case where a slice o is the only one with users at
a given base station b, such a slice would simply set wu to
the minimum possible value for these users, allowing them to
receive all the resources of this base station while minimizing
the consumed share. To avoid dealing with this special case,
hereafter we shall assume that all base stations have users
from at least two slices. Note that this assumption is made
to simplify the expressions and discussion, and does not limit
the generality of our analysis and algorithm, which indeed
supports base stations with all users from the same slice.

B. Slice Utility

Network slices may support services and customers with
different needs, or may wish to differentiate the service they
provide from competing slices. To that end, we assume that
each slice has a private utility function, Uo, that reflects the
slice’s performance according to the preferences and needs of
its users. The slice utility consists of the sum of the individual
utilities of its users, Uu, i.e.,

Uo(w) =
∑

u∈Uo

Uu(ru(w)).

For inelastic traffic, we assume each user u requires a
guaranteed rate γu, hereafter referred to as the user’s minimum
rate requirement. Following standard practi.e., we shall model
inelastic traffic utility functions as1

Uu(ru(w)) = φufu(ru(w)), for ru(w) ≥ γu,

where fu(·) is a concave2 utility function associated with
the user, and φu is the relative priority of user u (where
φu ≥ 0 and

∑
u∈Uo φu = 1). The relative priorities reflect

the importance that users are given by the tenant of their slice;
they dri.e., jointly with the load at the respective base stations,
the weights assigned to the users, which in turn determine the
rate allocation.

1Inelastic traffic utility functions are typically modeled as a discontinuous
function [28] or a sigmoidal one [29]. In this paper we adopt the former
model, which aims at providing users with a guaranteed rate, and thus is
aligned with the Guaranteed Bit Rate (GBR) class of 3GPP [30].

2Note that, even when fu(·) is concave, we are dealing with non-concave
utiliti.e., due to the minimum rate requirement.
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Note that the above utility function is only defined for
rates above the minimal requirement, as performance degrades
drastically if this guarantee is not met. Note also that the
above definition includes elastic traffic, which corresponds to
the special case γu = 0; thus, the results of this paper apply
to mixes of elastic and inelastic traffic.

While most of our results hold for arbitrary fu(·) functions,
in some cases we will focus on the following widely accepted
family of utility functions (see α-fairness, [31]):

fu(ru) =

⎧
⎨

⎩

(ru)1−αo

(1 − αo)
, αo �= 1

log(ru), αo = 1,

(2)

where the αo parameter sets the level of concavity of the
user utility functions, which in turn determines the underlying
resource allocation criterion of the slice. Particularly relevant
cases are αo = 0 (maximum sum), αo = 1 (proportional
fairness), αo = 2 (minimum potential delay fairness) and
αo → ∞ (max-min fairness).

In our model for slice behavior, a tenant proceeds as follows
to optimize its performance. First, it maximizes the number
of users that see their rate requirement met, selecting as many
users as can be possibly served. Second, it maximizes the
utility Uo(w) obtained from the users that have been selected.

Note that the above framework is sufficiently flexible
to accommodate different network slicing models, including
those under study in 3GPP [24]. For instance, in the case where
tenants are Mobile Virtual Network Operators (MVNOs),
the users of a tenant may have different service demands
(e.g., elastic and inelastic users). Alternatively, we can also
support a model where different slices are deployed for specific
services; in this case, we may have some slices with only
elastic users and others with only inelastic users.

C. Baseline Allocations

Below we introduce two approaches to resource allocation
that we will use as benchmarks to assess the performance of
the proposed framework. For now, we shall assume the users’
rate requirements can be met, and thus focus on the weight
allocation that maximizes the slice’s utility.

1) Socially Optimal Allocation (SO): If slices were to share
their utility functions with a central authority, one could in
principle consider a (share-constrained) allocation of weights
(and resources) that optimizes the overall performance of
the network, expressed in terms of the network utility U(w)
defined as the sum of the slices’ utilities (see [4], [10]):

U(w) :=
∑

o∈O
Uo(w).

The above is referred to as the socially optimal allocation,
which is given by the following maximization:

max
w≥0

U(w)

s.t.
∑

u∈Uo

wu = so, , ∀o ∈ O, wu ≥ δ,

ru(w) ≥ γu, ∀u ∈ U .

We shall denote the resulting optimal weights and resource
allocation in the socially optimal setting by w∗ and r∗ =
(r∗u(w∗) : u ∈ U), respectively.

2) Static Slicing Allocation (SS): By static slicing (also
known as static splitting [32]) we refer to a complete par-
titioning of resources based on the network shares so, o ∈ O.
In this setting, each slice o receives a fixed fraction so of each
resource, which is shared among its users proportionally to
their weights,

rss
u (wo) =

wu∑
v∈Uo

b(u)
wv

socu, ∀u ∈ Uo, ∀o ∈ O, (3)

where we note that, in this case, the rate of a user depends
only on the weights of the other users in her sli.e., i.e., wo.
A slice can then unilaterally optimize its weight allocation as
follows:

max
wo≥0

Uo(wo)

s.t.
∑

u∈Uo

wu = so, rss
u (w) ≥ γu, ∀u ∈ Uo.

where we have abused notation to indicate that in this case
the slice’s utility, given by Uo(wo) =

∑
u∈Uo Uu(rss

u (wo)),
depends only on wo. We shall denote the resulting optimal
weights resulting from static slicing by wo,ss.

D. Network Slicing Framework

In this paper, we introduce our NEtwork Slicing (NES)
framework to address the resource allocation problem in the
context of the above system. NES manages both users and
resources in network sli.e., as mobile users come and go. The
proposed framework comprises the following modules:

1) Admission control: the purpose of this module is to
ensure that admitted users will see their rate require-
ments met during their lifetime with a sufficiently high
probability, even after there are changes in the network.

2) Weight allocation: this module determines how to allo-
cate weights to the users, with the goal of maximizing
the slice’s utility.

3) User dropping: while admission control aims at ensur-
ing that all rate requirements are always met, when
users re-associate or see a change in their radio con-
ditions, or when other slices admit more users, it could
happen that a slice can no longer keep all its users while
meeting their requirements; in that case, this module
decides which users to drop.

The design of the admission control module is presented
in Section III, while that of the weight allocation and user
dropping modules is presented in Section IV.

In order to analyze the stability of the NES framework,
we assume that slices are competitive (strategic and selfish),
i.e., each attempts to unilaterally optimize its own utility, and
model the behavior of the weight allocation and user dropping
modules as a non-cooperative game. Note that this game only
considers admitted users, i.e., admission control is not part of
the game. It may be played at a point in time when admitted
users may have re-associated or seen a change in their radio
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conditions, or new users may have been admitted; as a result,
when playing the game we may not be able to meet all
rate requirements. Thus, the game involves slices deciding
(i) which set of users to serve when the rate requirements
of all users cannot be met, and (ii) how to allocate weights
amongst the slice’s users, in response to other slices’ decisions.
Hereafter we refer to this game as the network slicing game;
its formal definition is stated as follows:

Definition 1: Consider a set of slices o ∈ O, each with a
set of admitted users u ∈ Uo. In the network slicing game,
each slice selects which subset of users to serve within the
set Uo and their associated weight allocation wo such that
(i) as many users as possible are served (meeting their rate
requirements), and (ii) the slice’s utility Uo is maximized for
the selected subset of users.

III. ADMISSION CONTROL FOR SLICED NETWORKS

In order to meet user rate requirements, NES needs to apply
admission control on new users, rejecting them when the slice
cannot guarantee with a very high probability that it will be
able to satisfy the rate requirements of all its users during
their lifetime. Note that this only applies to new users; in
case the user rate requirements can no longer be satisfied as a
result of users moving, or other tenants changing their alloca-
tions, this is handled by the user dropping module described
in Section IV-A.

In the following, we analyze the implications of apply-
ing admission control on the system stability, and pro-
pose two different admission control algorithms, Worst-case
admission control (WAC) and Load-driven admission con-
trol (LAC). These two algorithms correspond to different
trade-offs between slice isolation and efficiency: while WAC
provides perfect isolation, guaranteeing that a slice will never
need to drop users because of changes in the other slices’
loads, LAC achieves a higher efficiency at the cost of providing
more relaxed guarantees on isolation (yet ensuring that the
probability of dropping a user remains sufficiently low).

A. Nash Equilibrium Existence

A critical question is whether the network slicing game
defined in Section II-D possesses a Nash Equilibrium (NE),
i.e., there exists a choice of users and associated weight
allocation w such that no slice can unilaterally modify its
choice to improve its utility. In the following, we analyze
the requirements on admission control policies in order to
ensure that a NE exists after admission control is applied. Note
that, if the game does not have a NE, strategic slice behavior
may lead to system instability affecting the practicality of the
proposed approach.

The following theorem shows that if admission control
cannot ensure that slices can satisfy the rate requirements
of all their users, the network slicing game may not have
a NE. The proof of the theorem exhibits a case where
instability arises when there is no weight allocation such that
the rate requirements of all the users of a given slice are met
given feasible allocations for the other slices. Note that in
a dynamic setting such a situation could ari.e., when a slice

initially admits users for which the requirements are feasible,
and subsequently other slices admit additional users to their
sli.e., making some of the users in the first slice infeasible
(see the Appendix for the proof of all the theorems).

Theorem 1: When slices cannot satisfy all of their users’
rate requirements, the existence of a NE cannot be guaranteed
for the network slicing game.

The problem identified by the above theorem can be over-
come by applying an admission control scheme that avoids
such situations. According to the following theorem, a NE
exists as long as admission control is able to guarantee that
a slice can satisfy the rate requirements of all its users under
any feasible weight allocation of the other slices (including
future allocations when possibly new users may have been
admitted). Note that in this case the resulting game focuses on
maximizing slice utilities while meeting the rate requirements
of all users. This result implies that, as long as proper admis-
sion control is implemented and ensures that rate requirements
can always be satisfi.e., the stability of the system can be
guaranteed.

Theorem 2: Suppose admission control ensures that, for
any feasible weight allocation of the other sli.e., each slice
o has a weight allocation wo such that its users’ rate require-
ments are met. Then, the network slicing game has a (not
necessarily unique) NE.

Note that the above theorem guarantees the existence of a
NE when all slices are elastic; indeed, elastic slices have a rate
requirement equal to 0, and therefore their rate requirements
can always be satisfied. This leads to the following result.

Corollary 1: When all slices are elastic, the network slicing
game has a NE.

In the following, we propose two alternative admission con-
trol policies (one more aggressive and one more conservative)
that aim at ensuring that the conditions given by Theorem 2 are
met. Note that it is ultimately up to the tenant to choose and
customize its admission control strate.g., and hence each tenant
may independently apply its own admission control policy.

B. Worst-Case Admission Control (WAC)

The WAC policy is devised to ensure that the rate require-
ments of all users are always met, independently of the behav-
ior of the other tenants. To that end, under the WAC policy a
slice admits users as follows: it conservatively assumes it has
access to only a fraction so of resources at each base station,
and admits users only if their requirements can be satisfied
with these resources. Given that a user needs a fraction γu/cu

of the base station’s resources to meet her rate requirement,
this policy imposes that for slice o the following constraint is
satisfied at each base station b:

∑

u∈Uo
b

γu

cu
≤ so. (4)

The WAC policy aims at ensuring that (4) is satisfied
at all times. However, even if this condition holds when a
new user is admitted, it may be subsequently violated upon
changes in the sli.e., e.g., due to mobility of users or changes
in their cu. To provide robustness against such changes,
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we follow the approach in [33] for single-tenant networks.
Specifically, we add a guard band to (4) aimed at ensuring
that the condition will continue to hold with high probability
after any changes. Thus, a slice admits a new user request as
long as the following holds

∑

u∈Uo
b

γu

cu
≤ ρw · so,

where ρw < 1 parametrizes the guard band: the smaller
this parameter, the larger the guard band. In practi.e., this
parameter may be set to different values by different slices
based on the slice specifics, such as the fluctuations of
cu or user association (where larger fluctuations will require
a larger guard band) or the desired level of assurance to its
users (stricter guarantees will require a larger guard band). The
reader is referred to [33] for a discussion on how to set this
parameter.

In the following, we analyze the properties of WAC under
the assumption that (4) is satisfied with this policy. The
theorem below shows that, as long as this condition is sat-
isfi.e., a slice will always be able to meet its users’ rate
guarantees independent of the setting of the other slices. Thus,
a high degree of protection to the choices and changes in other
slices is provided. The theorem also shows that if the slice
deviates from the proposed policy, it is not protected from
the other slices’ choi.e., implying that this policy represents a
necessary condition to provide protection.

Theorem 3: Consider a slice o with users having rate
requirements γo = (γu : u ∈ Uo), then the following hold:

1) If (4) is satisfi.e., there exists at least one weight
allocation wo such that ∀u ∈ Uo ru(w) ≥ γu, for
any feasible allocation of the other slices’ aggregate
weights ao.

2) If (4) is not satisfi.e., slice o is not protected, as there
is a feasible ao allocation such that slice o is not able
to meet the rate requirements of its admitted users.

Note that combining this result with Theorem 2, it follows
that a NE exists when all slices run WAC. Indeed, the above
theorem ensures that a slice can find an allocation that meets
the rate requirements of all its users for any feasible ao, which
comprises all the possible allocations of the other slices w−o.
Theorem 2 guarantees that when this holds, a NE exists. Thus,
we have the following corollary:

Corollary 2: If (4) is satisfied by all sli.e., then the network
slicing game has a NE.

Note that Corollary 2 imposes more conservative conditions
than Theorem 2; for instance, if a slice never has users at
a given base station, according to Theorem 2 such a slice
cannot place any weight on this base station; in contrast,
the arguments behind (4) account for, and protect the slice
against, such possibility.

C. Load-Driven Admission Control (LAC)

While the WAC policy protects a given slice from the
others, it may be overly conservative in some cases where base
stations are lightly loaded or where some slices are unlikely to
use resources at certain base stations. In those cases, one may

opt to be more aggressive in admitting users without running
significant risks. To this end, we propose the Load-driven
Admission Control (LAC) policy, where a slice measures
the current load across base stations and performs admission
control decisions based on the measured loads (assuming that
they will not change significantly).3

The following theorem provides a basis for the design of
the LAC policy. It gives a necessary and sufficient condition
that has to be satisfied to meet the rate requirements of the
slice’s users, given the current weight allocations of the other
slices. This constraint is shown to be less restrictive than the
one imposed by (4), implying that LAC (potentially) allows
the admission of more users than WAC.

Theorem 4: Consider a slice o comprising users with rate
requirements γo = (γu : u ∈ Uo), and suppose the aggregate
weight of the other slices is given by ao. Then, a weight
allocation wo that meets slice o’s rate requirements exists if
and only if the following is satisfied:

∑

b∈B

∑
u∈Uo

b
γu/cu

1 −∑u∈Uo
b

γu/cu
ao

b ≤ so. (5)

where Uo
b is the subset of users of slice o associated with base

station b, according to the given user association policy.
Moreover, if the rate requirements satisfy (4), then the above

condition is satisfied.
The central idea of the LAC policy is as follows. Upon

receiving a request of a new user u with a rate requirement γu,
slice o assesses the current ao values in the network and
checks whether (5) would be satisfied with the new user.
According to the theorem, as long as (5) is satisfi.e., the rate
requirements can be met if the ao values do not change.
However, in practice ao may change due to the response of
the other slices to slice o, or to changes in the other slices
(e.g., the admission of new users). We shall address this
uncertainty by following a similar approach to WAC: when
admitting a new user, we verify that (5) is satisfied with a
sufficiently large guard band, i.e.,

∑

b∈B

∑
u∈Uo

b
γu/cu

1 −∑u∈Uo
b

γu/cu
ao

b ≤ ρl · so, (6)

where ρl < 1 is the parameter providing the guard band for
LAC. Note that, in addition to other considerations, in this case
the setting of ρl will need to account for observed statistical
fluctuations of ao, larger fluctuations requiring a larger guard
band.

The following theorem shows that, as long as the chosen
value for ρl is sufficiently conservati.e., LAC is effective in
guaranteeing that the rate requirements of all users are met.

Theorem 5: There exists a ρl value sufficiently small such
that the rate requirements of all the users of slice o can be
met independent of how the other slices change their weights.

The following corollary follows from the above result and
Theorem 3. Indeed, as long as every slice satisfies either (4)
and (6), Theorems 3 and 5 guarantee that all slices can choose

3Note that many similar (load-driven) admission control algorithms have
been proposed in the literature [34], [35] in the context of single-tenant
networks. In this paper, we apply this concept to a network slicing setting.
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a weight allocation that satisfies the rate requirements of all
their users. Furthermore, Theorem 2 guarantees that when this
holds there exists a NE. These implies that, as long as all
slices run either WAC or LAC, the system can be expected to
be stable.

Corollary 3: If either (4) or (6) holds for every slice (the
latter with a sufficiently small ρl), then there exists a NE.

IV. WEIGHT ALLOCATION AND USER

DROPPING FOR NETWORK SLICING

Once a slice decides which users to admit, possibly fol-
lowing one of the admission control policies presented above,
it needs to determine the weight allocation of the admitted
users. In NES, this is determined based on a sequence of
best responses, where in each round a slice chooses its best
response given the choices of the other slices. A slice’s best
response involves the following two steps: (i) user subset
selection, to determine which subset of users to serve, and
(ii) weight allocation, to set the weights of the users in
the selected subset. In the following, we first present the
algorithms to perform the user subset selection and weight
allocation, and then analyze the convergence of the sequence
of best responses.

A. User Subset Selection

When a slice cannot satisfy the rate requirements of all its
users, it needs to decide which subset to serve. Note that, while
admission control aims at ensuring that rate requirements of
all users can always be satisfi.e., in practice this can only be
ensured with a (very) high probability due to the unpredictable
nature of the mobile network; thus, in some unlikely cases it
may happen that the rate requirements of some users cannot be
met. When this happens, the slice has to drop those users. Note
that this yields a novel paradigm for managing the resources
of a sli.e., where changes in one part of the network may lead
to dropping users in another part.

Below we present the algorithms for two possible
approaches for user selection: (i) MaxSubsetSelection, which
maximizes the cardinality of the subset of served users (thus
minimizing user dropping); and (ii) PriorityUserSelection,
which uses a priority ordering on a slice’s users (enabling
a slice to customize its users’ service).

To realize MaxSubsetSelection we use a greedy algorithm
which at each step adds the user which needs the smallest
additional weight to meet the selected users’ rate requirements.
To that end, let Ũo be a candidate subset of the admitted users
by slice o, Uo, and let ωo

b (Ũo) be the minimum aggregate
weight required to satisfy the rate requirements the candidate
subset’s users on base station b, Ũo

b . The value of ωo
b (Ũo)

can be computed as follows. The minimum weight wu needed
to satisfy the rate requirement of user u ∈ Ũo

b must satisfy
wucu/lb = γu; summing these over u ∈ Ũo

b and isolating∑
u∈Ũo wu yields

ωo
b (Ũo) = ao

b(w
−o)

∑
u∈Ũo

b
γu/cu

1 −∑u∈Ũo
b

γu/cu
.

where we are assuming
∑

u∈Ũo γu/cu ≤ 1 (otherwise we let
ωo

b (Ũo) = ∞).
We further let ωo(Ũo) =

∑
b∈B ωo

b (Ũo) denote the aggre-
gate minimal weight requirement for the sli.e., and for any
user u′ ∈ Uo we define the marginal aggregate weight of the
user u′ given candidate subset Ũo as

Δωo(Ũo, u′) = ωo(Ũo ∪ {u′}) − ωo(Ũo).

Building on the above notation, we present a greedy solution
in Algorithm 1, which provides as output the set of selected
users Ũo. The following theorem confirms the effectiveness of
this algorithm.

Algorithm 1 MaxSubset Algorithm

Initialize: Ũo = ∅
while Ũo �= Uo do

u∗ = argminu′{Δωo(Ũo, u′) | u′ ∈ Uo \ Ũo}
if ωo(Ũo ∪ {u∗}) ≤ so then Ũo := Ũo ∪ {u∗} else
return

end

Theorem 6: The MaxSubsetSelection algorithm results in a
subset of users that maximizes the number of users the slice
can serve and still meet their minimal rate requirements.

Alternatively, slices might apply a PriorityUserSelection
algorithm to customize their user subset selection policy by
assigning users a priority order. Such an ordering may depend,
e.g., on the users’ traffic class, the revenue they generate, how
long users have been in the system, and/or their current signal
to noise ratio, among other factors. To this end, the algorithm
simply adds users sequentially to the subset to be served
in order of decreasing priority until no more can be added,
i.e., ωo(Ũo ∪ {u∗}) > so.

B. Weight Allocation

Once a slice has selected a set of users whose requirements
can be satisfi.e., it sets their weights as follows. Given the
aggregate weights of the other slices, ao

b(w
−o), a slice chooses

wo such that the its utility is maximi.e., i.e.,

wo = argmax
w′o

∑

u∈Ũo

Uo(w′o,w−o),

s.t.:
w′

u

ao
b(w−o) + lob(w′o)

≥ γu

cu
, ∀u ∈ Ũo,

w′
u ≥ δ, ∀u ∈ Ũo,

∑

u∈Ũo

w′
u ≤ so.

where, for convenience, we write Uo(w′o,w−o) = Uo(w) to
highlight dependencies on other slices weights.

Note that as long as utility functions fu(·) are concave in
the allocated user rates, the above maximization corresponds
to a (computationally tractable) convex optimization problem.

C. Convergence of Best Response Dynamics

With NES, we determine users’ weight allocation based
on a sequence of best responses. The proposed algorithm
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implements the best response computed above in rounds: slices
update the weight allocation of their users wo, sequentially,
one at a time and in the same fixed order, in response to
the other slices weights ao. Following standard game theory
terminology, we refer to this iterative process as Best Response
Dynamics.

The following theorem shows that the above dynamics
may not converge. In particular, the proof of the theorem
considers an instance satisfying the conditions of Theorem 2,
i.e., a feasible instance under admission control, and shows
that, even though a NE is guaranteed to exist under such
conditions, Best Response Dynamics do not converge.

Theorem 7: Consider a game instance such that, for each
slice o ∈ O there exists an allocation satisfying the rate
requirements of all its users for any possible allocation of the
other slices. Even though a NE is guaranteed to exist under
these conditions, Best Response Dynamics may not converge.

While the above theorem shows that convergence cannot
be ensured, our simulation results show that in practice Best
Response Dynamics converge quickly to a region close to the
NE, and hence we can simply force the system to halt after a
number of best response rounds and use the weights obtained
in the last round. Specifically, following the results provided
in Section VI-D, in our simulations we halt the system after
7 rounds.

From the above, it can be seen that NES incurs an accept-
able computational load, as its execution involves solving a
sequence of convex optimization problems (each of which
scales with the number of users of the slice and number
of base stations) for a limited number of times (namely,
the number of slices in the network multiplied by 7). More-
over, the above computations may be possibly performed at
centralized controllers, as the resource allocation does not need
to be implemented in the base stations before the sequence
of optimizations converges or stops. Also, resources may be
re-allocated only periodically to alleviate the overhead associ-
ated to the reconfiguration of base stations. Quantitative results
on the computational load are provided in Section VI-E.

V. ANALYSIS OF THE NES FRAMEWORK

In the following, we analyze the performance achieved by
the NES approach proposed above as compared to the two
baseline allocations given in Section II-C: (i) the socially
optimal allocation, and (ii) static slicing. Our analysis assumes
that NES reaches a Nash equilibrium.

A. Gain Over Static Slicing

The result below shows that NES outperforms static slicing.
Theorem 8: For the same set of admitted users, the utility

achieved by an operator under NES is never lower than the
utility that this operator would obtain under static slicing.

While the theorem assumes the same set of admitted users
for static slicing and NES, we argue that the result holds
in general. Indeed, a tenant is free to choose any admission
control policy, including that employed by static slicing, and
it is to be expected that it will apply the policy that maximizes
its utility. Thus, it follows that the level of satisfaction of the

tenant will be greater with NES, under the chosen admission
policy, than with static slicing.

B. Loss Over the Socially Optimal Allocation

We now study the difference in the utility achieved
under socially optimal resource allocation vs. that achieved
under NES. We focus on the case where fu(·) follows (2) for
αo = 1 and αo = 2, which are two highly relevant settings in
practice (corresponding to proportional and minimum delay
potential fairness, respectively). To perform the comparison,
we define the Loss over the Social Optimal (LSO) as follows.
For αo = 1 we define LSO

.= U(w∗) − U(ŵ), where
w∗ is the socially optimal weight allocation and ŵ is the
weight allocation with NES, while for αo = 2 we define it as
LSO

.= U(ŵ)
U(w∗) . Note that these definitions are adjusted to the

type of utility function: for αo = 1, utilities are logarithmic
in the rate, and hence by subtracting utilities we capture the
ratio between rates, while for αo = 2 utilities are inversely
proportional to the rates, and hence the ratio between rates is
obtained by dividing utilities.

The following theorem provides a bound on the LSO and
gives an instance for which the LSO is close to this bound,
showing that the bound is tight.

Theorem 9: Let user utilities fu(·) follow (2),
¯
γu be the

minimum rate guarantee in the network, c̄u be the largest
possible achievable rate and ε =

¯
γu/c̄u. Under a given set of

admitted users, we have that:
1) If αo = 1 ∀o ∈ O, then LSO ≤ − log(ε) and there is

an instance for which LSO ≥ − 1
2 log(2ε).

2) If αo = 2 ∀o ∈ O, then LSO ≤ 1
ε and there is an

instance for which LSO ≥ 1
3ε .

Note that, according to the above results, the bound on the
LSO relaxes as we decrease the minimum rate requirement
in the network, and becomes unbounded in the case where
we have elastic traffic with no rate guarantees, i.e., γu = 0.
However, in a well provisioned network all users should expe-
rience a sufficiently large rate, and in this case the LSO should
be low according to the above result. This is corroborated
by our simulation results, which show that in practice NES
performance is close to optimal and LSO is very small.

VI. PERFORMANCE EVALUATION

We next evaluate the performance of NES via simulation.
Unless otherwise stated, the mobile network setup of our
simulator follows the IMT-A evaluation guidelines for dense
‘small cell’ deployments [36], considering a network with
19 base stations disposed in a hexagonal grid layout with
3 sectors, i.e., |B| = 57. User mobility follows the Random
Waypoint (RWP) model. The users arrive to the network
following a Poisson Process with intensity λ arrivals/sec,
and their holding times are exponentially distributed. Users’
SINR is computed based on physical layer network model
specified in [36] (which includes path loss, shadowing, fast
fading and antenna gain) and user association follows the
strongest signal policy. The achievable rate for a user u,
cu, is determined based on the thresholds reported in [37].
Unless otherwise stated, the rate requirement of the inelastic
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Fig. 1. Performance of NES in terms of network utility as compared to the
two benchmark allocations (SS and SO).

users is set to γu = 0.5 Mbps, we have αo = 1 for all
sli.e., there are 5 slices in the network with equal shares,
the arrival rate is λ = 5 (equally split among slices) and
the average holding time is 1 minute. In the simulations,
we consider both slices with mixed traffic of different types
(Sections VI-A and VI-C) as well as slices dedicated to one
specific traffic type (Section VI-B). All confidence intervals
are below 1%.

A. Network Utility

We first analyze the network utility achieved by NES
as compared to the two benchmark solutions presented in
Section II-C (namely, SS and SO). To ensure that the rate
requirements of admitted users are always met, we adopt the
WAC admission control policy with ρw = 1 and suppress
user movements yielding changes in base station associations
and/or cu values. To analyze the impact of inelastic traffic,
we vary the fraction of inelastic traffic arrivals, θ, yielding
an arrival rate of θλ for inelastic users and of (1 − θ)λ for
elastic ones. The results, depicted in Fig. 1, show that (i) NES
outperforms very substantially SS, providing very high gains,
and (ii) it performs almost optimally, very close to the SO.
Moreover, this holds independently of the mix of elastic and
inelastic users present in the network.

B. Throughput Gains

To give a more intuitive measure of the gains achieved by
NES, we define the throughput gain over SS, Δ, as follows:
it is the value such that, if we increase the rate of all users
in SS by Δ, we reach the same network utility as NES
(e.g., Δ = 100% means that SS achieves the same utility as
NES when multiplying all user rates by 2). Fig. 2 illustrates
the throughput gains for (i) αo = 1 and αo = 2, which are
the two most relevant αo values in practi.e., (ii) elastic and
inelastic sli.e., where all users are either elastic and inelastic,
and (iii) different arrival rates λ, yielding different network
loads. We conclude from the results that (i) gains are very
substantial, ranging from 100% to 20%, (ii) they decrease

Fig. 2. Throughput gains over SS for different traffic types (elastic, inelastic),
utility functions (αo) and network load (λ).

with the load, as already observed in [4], and (iii) they are
fairly insensitive to the fraction of inelastic traffic and choice
of utility function.

C. Blocking Probability

In addition to improving the performance of admitted users,
one of the key advantages of the dynamic resource allocation
implemented by NES is that it allows admitting more users
while meeting their rate requirements. In order to assess the
achieved improvement, we evaluate the blocking probability
(i.e., the probability that a new user cannot admitted) under
NES versus SS. For NES, we consider the two admission
policies proposed in Section III (WAC and LAC), while for
SS we apply the policy given in [33]. For all settings, we drop
users based on the MaxSubsetSelection algorithm, and adjust
the guard bands to ensure that the probability of dropping an
admitted user is no more than 1%. To increase the offered
load sufficiently so that we can observe the behavior of the
blocking probability, we set γu = 1 Mbps and an average
holding time of 2 minutes. The results are given in Fig. 3 as
a function of the fraction of inelastic user arrivals (θ). They
show very high gains over SS for both approaches (WAC and
LAC), and confirm that, by behaving more aggressively, LAC
is able to admit many more users than WAC.

D. Convergence to the NE

To better understand the dynamics of NES, we have eval-
uated a very large number of randomly generated scenarios
(namely 104 scenarios) with the following settings: (i) a uni-
form number of slices between 2 and 10, i.e., |O| ∼ U(2, 10),
(ii) a number of users per slice of |Uo| ∼ U(0, 350),
(iii) inelasticity level θ ∼ U(0, 100)(%), (iv) minimum rate
requirements γu ∼ U(0, 3) Mbps, and (v) the shares so

proportional to the number of users. We have found that a
vast majority (97.6%) of scenarios converge to the NE after
100 rounds. For such scenarios, Fig. 4 shows the difference
between the weight allocation at a given round and the one
at the NE in terms of mean squared error (RMSE), providing
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Fig. 3. Blocking probability for new arrivals for the two policies proposed
and the SS benchmark.

Fig. 4. Box plot for the RMSE of the weight allocation at a given round
with respect to the NE weight allocation.

a box plot with the median (red), 95% percentile (box), 99%
percentile (whisker) and outliers (red crosses). We observe that
the RMSE decreases exponentially in the number of rounds.
After 7 rounds we are already very close to the NE (the median
is below 10−4), which justifies our choice in Section IV-C.
Additional results, not included for space reasons, show that
user rates exhibit a very similar behavior to the weights.

E. Computational Load

Next we evaluated the computational complexity of the NES
algorithm when the system halts after 7 rounds (as given by
the configuration chosen in this paper). Fig. 5 shows the com-
putational times for a dual-core 2.9GHz i7 processor for elastic
and inelastic traffic and different numbers of slices and users,
when the number of base stations is scaled with the number of
users and admission control is adjusted to ensure that dropping
probabilities below 1%. Results confirm that NES can be
applied to practical settings, as complexity is roughly linear
with the size of the network and computational times remain
low even for large size problems; for instance, for a network

Fig. 5. Computational times of the proposed approach as a function of the
number of slices and users in the network.

Fig. 6. Blocking probability and empirical CDF of the user rates for a
scenario of 4 slices with different requirements.

with 9000 users the time falls below 2.5 seconds. We further
observe that inelastic traffic slightly increases complexity but
does not challenge the practicality of the approach. Finally,
we note that the computational time values provided here could
be further improved by optimizing the code, parallelizing tasks
and/or increasing the machine computational power.

F. Slice Differentiation

We next analyze the ability of NES to deploy slices
providing a customized service. To this end, we consider a
scenario with 4 slices with different requirements: (i) slice 1
provides rate requirements of γu = 1 Mbps with WAC,
(ii) slice 2 provides γu = 0.5 Mbps with WAC, (iii) slice 3
provides γu = 0.5 Mbps with LAC, and (iv) slice 4 provides
no minimum rate requirements. All slices have the same
share, the arrival rate is of λ = 10 equally split among the
sli.e., and admission control is configured to provide dropping
probabilities below 1%. Fig. 6 shows the empirical CDF of the
user rates for each slice as well as the blocking probabilities
(≈47.2%, 16.7%, 3.58% and 0%, respectively). We observe
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that (i) the minimum rate requirements are satisfied for all
slices; (ii) as the rate requirements increase, so does the
blocking probability, yielding an overall improvement of the
user rate distribution, and (iii) by employing LAC, we achieve
a dramatic reduction of the blocking probability while paying
a very small prices in terms of user rate distribution. We con-
clude that NES is effective in enabling slice differentiation.

VII. CONCLUSIONS

In this paper we proposed and analyzed a framework for
network slicing that relies on network shares and allows
slices to customize resource allocations to their users. This
framework results in a network slicing game where each slice
unilaterally reacts to the settings of the others. While this
game has been previously studied for elastic traffic, the slices’
behavior changes substantially when users have minimum rate
requirements, and so does the outcome of the game. Indeed,
we have shown that (in contrast to the elastic case) this game
may not have a Nash Equilibrium and, even when it has a NE,
Best Response Dynamics may not converge to the equilibrium.
In spite of this (apparently) negative result, we have shown
that as long as admission control is applied (which is to be
expected under inelastic traffic), we can guarantee that a NE
exists. We have proposed algorithms for admission control,
weight allocation and user dropping, which jointly bring the
system to a NE. We have further analyzed performance at
the equilibrium, showing that it is close to the social optimal
and provides substantial gains over static slicing. Based on
these results, our main conclusion is that the proposed NES
framework provides an effective and implementable scheme for
dynamically sharing resources across sli.e., both for elastic and
for inelastic traffic.

APPENDIX

PROOFS OF THE THEOREMS

A. Proof of Theorem 1

Consider a setting with two base stations (a and b) and two
slices (1 and 2), each slice with one user associated to base sta-
tion a and another user associated to base station b. We refer to
these users as U = {1a, 1b, 2a, 2b}. Let the rate requirements
of slice 1 be γ1a = γ1b = 2C/3, the users of slice 2 have
no minimum rate requirements, and s1 = s2 = 1/2. We show
that this game has no NE by contradiction. We necessarily
have that either w2a ≤ 1/4 or w2b < 1/4. Let us assume
that w2a < 1/4 and w2b > 1/4. Since in this case slice 1 can
only meet the rate requirements of user 1a, its best response
will concentrate its weight on this user, w1a = 1/2. However,
the best response of slice 2 to such allocation of slice 1 is to
concentrate its share on user 2a. Thus, w2a > 1/4, which con-
tradicts the initial assumption. Following a similar argument,
it can be seen that if we assume w2a = 1/4 or w2a > 1/4,
we also reach a contradiction. �

B. Proof of Theorem 2

Let W be the convex and compact set of feasible weights w
satisfying (i) wu ≥ δ ∀u, and (ii)

∑
u∈Uo

wu = so ∀o and

let us consider the mapping w → w̃ = Γ(w), where w̃o

is the best response of slice o to w−o. We next show that
this mapping satisfies the conditions of Kakutani’s theorem:
i) Γ(w) is non-empty, ii) Γ(w) is a convex-valued corre-
spondence, and iii) Γ(w) has a closed graph. Conditions i)
and ii) follow from the fact that the best response of a slice
to w−o is a unique allocation w̃o. This implies that that w̃
exists and is a single point (and hence a convex set). Condition
iii) is shown by proving that w̃o is a continuous function
of w−o for all slices. Consider the set of users for which
ru > γu and the set for which ru = γu. As long as these
sets do not change, w̃o can be expressed as a continuously
differentiable function of {w̃o,w−o}, and it follows from the
implicit function theorem that w̃o is a continuous function of
w−o. When some user moves from set ru > γu to ru = γu

(or viceversa), such user satisfies both the equation for ru = γu

and the one for ru > γu, providing continuity over the
transitions. Since all the conditions of Kakutani’s theorem are
satisfi.e., we have that the mapping Γ has at least one fixed
point, which implies that at least one NE exists.

To show that the NE is not necessarily unique, we provide
an example with multiple NEs. Consider a scenario with three
slices (1,2,3) and three base stations (a,b,c). Let the first slice
have users in base stations a and c (users 1a, 1c), the second
slice in a and b (2a, 2b) and the third slice in b and c (3b, 3c).
Let φ1a = φ1b = 1/2, φ2a = φ3c = 1 and φ2b = φ3b = 0.
Also, let γu = 1/2 for users 2b and 3b, γu = 0 for all other
users and cu = 1 for all users. It can be seen that all the weight
allocations satisfying w1a = w1b = 1/6, w2b = w3b = w
and w2a = w3c = 1/3 − w for w ∈ [δ, 1/3 − δ] corre-
spond to a NE, which shows that multiple NE exist for this
example. �

C. Proof of Theorem 3

The result of 1) follows directly from [4, Lemma 1]. If users
are admitted at base stations such that under static slicing
their rate guarantees are met, i.e. rss

u ≥ γu, then it follows
by the above mentioned lemma that there exists an allocation
satisfying ru ≥ rss

u ≥ γu, which proves the first part of the
theorem.

To prove 2), we proceed as follows. Suppose slice o admits
users are such that their associated rate requirements violate
(4) at some base station b, i.e.,

∑
u∈Uo

b
γu/cu > so. If all other

slices place their entire share at that base station, we have

∑

u∈Uo
b

ru

cu
=

∑
u∈Uo

b
wu

∑
u∈Uo

b
wu + 1 − so

≤ so,

which implies
∑

u∈Uo
b

ru/cu <
∑

u∈Uo
b

γu/cu and hence
necessarily ru < γu for some u, proving the second part of
the theorem. �

D. Proof of Theorem 4

Recall that the rate of user u is given by ru = wucu/lb(u).
If we add the rates of the users of slice o at a given base
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station b and isolate
∑

u∈Uo
b

wu, we obtain

∑

u∈Uo
b

wu =

∑
u∈Uo

b
ru/cu

1 −∑u∈Uo
b

ru/cu
ao

b .

By summing the above over all base stations and noting that∑
u∈Uo wu = so, we obtain

∑

b∈B

∑
u∈Uo

b
ru/cu

1 −∑u∈Uo
b

ru/cu
ao

b = so. (7)

We now prove that as long as (5) is satisfi.e., there exists
a weight allocation wo that meets the rate requirements of all
users. Let us consider the weight allocation satisfying4

wu =
(γu/cu)lb(u)∑

v∈Uo (γv/cv)lb(v)
so, ∀u ∈ Uo. (8)

Note that with the above weight allocation, the rates ru

are proportional to γu, which means that either we have ru ≥
γu ∀u or ru < γu ∀u. The latter yields a contradiction; indeed,
if ru < γu ∀u it follows that

∑

b∈B

∑
u∈Uo

b
γu/cu

1 −∑u∈Uo
b

γu/cu
ao

b >
∑

b∈B

∑
u∈Uo

b
ru/cu

1 −∑u∈Uo
b

ru/cu
ao

b = so,

which contradicts (5). Hence, it follows that ru ≥ γu ∀u.
We next prove that if (5) is not satisfi.e., then there

exists no weight allocation meeting the rate requirements. The
proof goes by contradiction. Assume (5) is not satisfied but
ru ≥ γu ∀u. From the latter, it follows that

∑
u∈Ub

ru/cu ≥∑
u∈Ub

γu/cu ∀b. Combining this with (7) yields

∑

b∈B

∑
u∈Uo

b
γu/cu

1 −∑u∈Uo
b

γu/cu
ao

b ≤ so,

which contradicts that assumption that (5) is not satisfied.
Finally, we show that if the rate requirements satisfy (4),

then they surely satisfy (5). The lhs of (5) increases with∑
u∈Uo

b
γu/cu. As long as this value is no larger than so,

we have that the following equation gives a sufficient condition
for (5) to be satisfied: so

1−so

∑
b∈B ao

b ≤ so.
The above is surely satisfied since

∑
b∈B ao

b = 1−so. As (4)
imposes

∑
u∈Uo

b
γu/cu ≤ so, it follows that as long as (4) is

satisfi.e., (5) is also satisfied. �

E. Proof of Theorem 5

Let us take ρl = minb
ao

b

1−�u∈Uo
b

γu/cu
. Then, from (6) it

follows that
∑

b∈B
∑

u∈Uo
b

γu/cu ≤ so. From this, we have
that condition (4) is satisfied. According to Theorem 3, as long
as this condition is satisfi.e., there exists a choice of wo

that satisfies the rate requirements of all users of slice o
independent of the weight setting of the other sli.e., which
completes the proof. �

4The existence of such an allocation follows from applying Brouwer
fixed-point theorem to the function f : W → W , where wu = fu(w)
is given by (8) and W is the set of weights satisfying

�
u∈Uo wu = so and

wu ≥ (γu/cu)ao
bso/

�
v∈Uo(γv/cv) (recall that ao

b �= 0 ∀b, as weights
cannot be zero).

F. Proof of Theorem 6

The proof goes by contradiction. Let Ũo be the set of
users selected by the MaxSubsetSelection algorithm, and let us
assume that there exists an alternative feasible user selection
Ûo such that |Ûo| > |Ũo|. If we take the set Ûo and substitute
each user by another one in the base station with smaller
γu/cu, the resulting set Ūo is feasible and has the same number
of users as the original one. Note that set Ūo necessarily has
some base station b with more users than set Ũo – otherwise
|Ûo| > |Ũo| would not hold. Let us assume that there exists
some other base station b′ with fewer users. In this case, let
us remove user u from one of the base stations with more
users, b, and add user u′ in one of the base stations with fewer
users, b′. The resulting set remains feasible, as Δωo

b′(Ūo, u′) ≤
Δωo

b′(Ūo, u) – otherwise MaxSubsetSelection would have cho-
sen a different subset of users. We can do this until there are
no base station with fewer users than in Ũo. The result of
these operations is a feasible set where all base stations have
as many users or more than Ũo, and overall it has more users.
However, this yields a contradiction: if such set was feasible,
the MaxSubsetSelection algorithm would have selected more
users. �

G. Proof of Theorem 7

Let us consider a scenario with three base stations (a,b,c)
and three slices (1,2,3), with s1 = s2 = s3 = 1/3 and
any arbitrary α1, α2, α3 values. Let slice 1 have two users
associated to base stations a and b (u1a, u1b), slice 2 two
users associated to base stations b and c (u2b, u2c) and slice 3
two users associated to base stations a and c (u3a, u3c).
Let cu = 1 ∀u, γ1a = γ2b = γ3c = 1/2, γ1b = γ2c =
γ3a = 0, φ1a = φ2b = φ3c → 0 and φ1b = φ2c =
φ3a → 1. The NE of this instance is wu = 1/6 ∀u.
However, if we start with w3c = w < 1/6 and w3a =
1/3 − w, and perform a best response cycle starting starting
with slice 1 followed by 2 and 3, it can be seen that this
leads to an endless cycle where each slice takes a weight
allocation of either {w, 1/3 − w} or {1/3 − w, w} at each
step (none of which corresponds to the NE). Hence, Best
Response Dynamics do not converge for this instance of the
game. �

H. Proof of Theorem 8

The proof follows from [4, Lemma 1], which shows that,
given a slice o and a feasible weight allocation w−o for
the other sli.e., there exists a weight allocation wo for
slice o, possibly dependent on w−o, such that the resulting
weight allocation w satisfies ru(w) ≥ rss

u for all u ∈ Uo.
Therefore, there exists a weight allocation that provides the
same utility as static slicing. Since the weight allocation
chosen by NES is the one that maximizes the slice’s utility,
it surely provides a utility no smaller than that under static
slicing. �
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I. Proof of Theorem 9

We start for αo = 1. To prove the bound on the LSO,
we first note that

U(w∗) =
∑

o∈O

∑

u∈Uo

soφu log

(
w∗

u∑
u′∈Ub(u)

w∗
u′

cu

)

≤
∑

o∈O

∑

u∈Uo

soφu log (c̄u) .

Furthermore, from the minimum rate constraint it follows that

U(ŵ) =
∑

o∈O

∑

u∈Uo

soφu log

(
ŵu∑

u′∈Ub(u)
ŵu′

cu

)

≥
∑

o∈O

∑

u∈Uo

soφu log
(

¯
γu

)
.

Combining the above two equations, we obtain U(w∗) −
U(ŵ) ≤ log(c̄u/

¯
γu) = − log(ε), which completes the first

part of the proof.
To show that the above bound is tight, we consider the

following network instance. We have two slices with shares
s1 = s2 = 1/2 and two base stations. The first slice has
two users in the first base station (weights w11 and w12) and
the second slice has one user in the first base station (w21) and
another one in the second base station (w22). All users have
cu = c̄u, and the rate requirements are γ11 = c̄u(1/2 − ε)
for the first user and γu =

¯
γu = c̄uε for the other ones.

Furthermore, let φ11 → 0, φ12 → 1, φ21 → 0 and φ22 → 1.
In the allocation employed by NES (which corresponds to
the NE) we have w11 = 1/2 − ε, w12 = ε, w21 → 1/2 and
w22 → 0, which yields U(ŵ) = 1

2 log(εc̄u)+ 1
2 log(c̄u). In the

social optimal, we have the following weight allocation: w11 =
(

1
2 − ε

)(
1
2 + ε

2(1−ε)

)
, w12 = 1/2 − w11, w21 = ε

2(1−ε) and

w22 = 1/2 − w21, from which U(w∗) = 1
2 log ((1/2)c̄u) +

1
2 log(c̄u). This yields U(w∗) − U(ŵ) = − 1

2 log (2ε) , which
terminates the proof for αo = 1.

To prove the LSO bound for αo = 2, we note that

U(w∗) ≥ −
∑

o∈O

∑

u∈Uo

soφu
1
c̄u

and

U(ŵ) =≤ −
∑

o∈O

∑

u∈Uo

soφu
1

¯
γu

.

Combining these two equations we obtain U(ŵ)
U(w∗) ≤ 1

ε , which
completes the first part of the proof. The tightness of the bound
is proven by considering the same network instance as for
αo = 1:

U(ŵ)
U(w∗)

=
− 1

2
1

εc̄u
− 1

2
1
c̄u

− 1
2

1
(1/2)c̄u

− 1
2

1
c̄u

=
1
ε + 1
1

1/2 + 1
≥ 1

3ε
.

�
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