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Abstract—This paper explores an emerging wireless architec-
ture based on unmanned aerial vehicles (UAVs), i.e., drones. We
consider a network where UAVs at fixed altitude harvest data
from Internet-of-Things (IoT) devices on the ground. Each UAV
serves IoT devices within its coverage area. In such a system,
the UAVs’ motion activates IoT uplink transmissions and so
the motion triggers the interference field and determines the
network performance. To analyze the performance, we propose
a stochastic geometry model. The coverage area of each UAV,
referred to as the activation window, is modeled for simplicity as
a rectangle where at most one IoT device is scheduled to transmit
at any given time. In this setting, we analyze the signal-to-
interference and data rate from two typical perspectives, namely
from a typical UAV’s and from a typical IoT device’s points of
view.

I. INTRODUCTION

This paper focuses on an aerial-based network enabling the
connectivity to ground-based Internet-of-Things devices (IoT)
[1]. When IoT devices have a limited transmission range,
the data from IoT devices could be collected with the help
of technologies such as narrowband-IoT [2] and low-power-
wide-area [3]. Yet, these approaches are based on a fixed
infrastructure and, as pointed out in several papers including
[4], the network capacity may be limited as the density of IoT
devices increases.

In the context of network densification, a possible approach
is to leverage mobile elements such as vehicles. Underlying
such a network architecture is the delay tolerant concept [5]–
[7], where the network capacity or coverage are improved
by possibly tolerating additional delays. As discussed in the
literature [8], a number of IoT applications are delay tolerant
and therefore rely on vehicles would be a conceivable mean to
harvest information from IoT devices. To that end, technolo-
gies that utilize mobile harvesters or data mules have been
studied in [9]–[12].

Nevertheless, IoT data harvesting via vehicles undergoes a
few practical limitations. First, vehicles travel only on roads
and thus vehicles may fail to provide sufficient coverage if
IoT devices are far from the roads. Second, the quality of
communication diminishes as the distance from vehicles to
IoT devices grows, especially for static IoT devices [13]. An
emerging technology which overcomes these challenges is that
based on Unmanned Aircraft Vehicles (UAVs), e.g., drones;

Indeed, motion is no longer limited to the road network. Fur-
thermore, UAVs’ trajectories can be orchestrated to enhance
network performance. Given this advantage over vehicles, they
have drawn attention from various industry players. Amazon
Prime Air [14] and Google Wing [15] are two such examples.
UAVs have been studied by academia and industry as a key
network enabler [16], [17]. The aim of the paper is to explore
the emerging wireless architecture where UAVs harvest IoT
data from ground IoT devices.

It is challenging to analyze the performance of such net-
works because the links are established between fixed IoT
devices and flying UAVs, instead of between fixed IoT de-
vices and fixed base stations, for example. Consequently, the
analysis of the network performance should be based on a
system model that captures the relative motion of the UAVs
and IoT devices. In such a network, the motion of UAVs drives
the activation of the uplink transmission/interference and thus
the network performance.

The contributions of this paper are as follows:
An analytical framework for Data Harvesting based

on UAV network: This paper proposes a new architecture
where constantly moving UAVs collect IoT data from surface-
level devices. We use two stationary point processes to model
the locations of IoT devices and UAVs, respectively. We
initially study a linear UAV network. The locations of UAVs
are modeled as a randomly shifted periodic point process.
UAVs move at speed v to the positive x-direction. Surface
IoT devices are assumed to be distributed according to a
homogeneous Poisson point process with intensity λ in a strip
of size l centered on the x-axis. Each UAV activates IoT
devices in its coverage area homogeneously and at most one
device from each coverage area is allowed to transmit at a
time. The motion of UAVs steers the coverage areas on the
ground. Consequently, the data transmissions, interference, and
network performance are driven by the mobility and geometry
of the network model.

Performance analysis of the coverage probability, data
rate, and amount of transmitted data: We begin by showing
that the shot-noise process (and the interference power) at a
typical UAV is translation- and time-invariant. Then, under
the Palm distribution of the UAV point process, we obtain
the SIR distribution of the typical UAV as well as its data
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Fig. 1. Illustration of the proposed model where the UAVs are at the height
z = 0.5 km and the distance between UAVs is 2km.

rate. Similarly, under the Palm distribution of the IoT point
process, we characterize the amount of data transmitted from
the typical IoT device to its serving UAV. By comparing the
network performance from two points of view, we formulate a
general relationship that the data rate of the typical UAV and
the amount of data transmitted from the typical IoT device is
linearly related. The formula follows from the mass transport
principle, which implies that it holds for any spatial model
having joint stationary structure.

II. SYSTEM MODEL

We begin by introducing our spatial model for the proposed
UAV network. Then, we discuss access control, propagation
model, and network performance metrics.

A. UAVs and IoT Devices

IoT devices on the ground are distributed according to a
planar Poisson point process of intensity λ on a bi-infinite strip
of width l on the x, y plane. The finite width strip allows us
to focus our analysis on the relative motion of UAVs and IoT
devices and then on uplink communications from IoT devices
to UAVs. The IoT devices are assumed to be static and to
always have data to transmit.

To model the locations of UAVs, we use a randomly-shifted
periodic point process on a line; UAVs are separated by
distance µ. The locations of UAVs at time t are given by

Ψ(t) =
∑
k∈Z

δ(kµ,0,h)+(U,0,0)+(vt,0,0), (1)

where U ∼ Uniform
[
−µ2 ,

µ
2

]
is a random uniform shift, µ

is the distance between UAVs, δx denotes the Dirac measure
indicating a point mass at location x, Z denotes the set of all
integers, and h is the UAVs’ altitude. UAVs move with speed
of v. Fig. 1 illustrates the UAVs, their projections, and the IoT
devices. Due to the shift U, the proposed UAV point process
is stationary. [18].
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Fig. 2. Illustration of the proposed network with a UAV located at (0, 0, h)
at time zero. The black arrow indicate the moving direction. It moves at
108 km/h and the density of IoTs is 100km2. The activation windows at time
t = 0, 10, 20 are described by solid blue, dashed red, dotted green rectangles,
respectively.

B. Multiple Access

In the network based on UAV harvesters, the uplink trans-
missions from IoT devices are driven by the motion of UAVs.
To begin with, an IoT device is marked as active if and only
if it is located inside the coverage area of UAV—referred to as
the activation window. It is given by the set [−w2 ,

w
2 ]×[− l

2 ,
l
2 ]

centered at every projection of UAV onto the ground.
We assume that time is slotted. From each activation win-

dow, out of its all active IoT devices, a single IoT device
is randomly chosen for data transmission. In other words,
at each time, IoT devices insides the windows are activated
as possible candidates for data transmission, yet at most one
IoT device per window transmits at a time. Such an access
control model can be interpreted as time division multiple
access (TDMA) scheduling by the UAV, which will later be
approximated by a processor sharing scheme; we will refer
to it simply as TDMA. Fig. 2 illustrates the locations of
IoT devices, activation windows at time 0, 10, and 20,, and
corresponding active IoT devices, respectively.

C. Propagation Model

Time is slotted and we assume that each time slot has a
duration Ts. Each time slot is assumed to be equal to the
coherence time Tc of the wireless channel. Consequently, each
time slot experiences a different realization of a Rayleigh
fading.

The received signal power is modeled by a distance-based
power law path loss model with Rayleigh fading. Specifically,
the received signal power over distance d is equal to pGd−α

where p is the transmit power, G is an exponential random
variable with mean one, and α is the path loss exponent greater
than one [19].



D. Performance Metrics

For the proposed UAV network, we evaluate the per-
formance from two typical perspectives: UAV’s perspective
and IoT device’s perspectives. For each perspective, we use
different Palm distributions and then analyze the coverage
probability and instantaneous data rate.

III. PERFORMANCE FROM UAVS

A. Shot-noise process seen by the typical UAV

To quantify the shot-noise process seen by the typical UAV,
we consider the Palm distribution of the UAV point process.
Under this Palm distribution, a typical UAV is located at
(0, 0, h) at any given slot [20]. Consequently, corresponding
activation windows for all UAVs are given by

W =
⋃
i∈Z
Wi =

⋃
i∈Z

[
µi− w

2
, µi+

w

2

]
×
[
− l

2
,
l

2

]
.

Under the TDMA, the shot-noise process—associated with the
uplink transmissions from IoT devices—seen at the typical
UAV is given by

N =
∑
i∈Z

pGi‖(Xi, Yi, 0)− (0, 0, h)‖−α1{Φ(Wi)6=∅},

where (Xi, Yi) are the x and y coordinates of the transmitting
IoT device, if any, in window Wi. Let Φ̂ denote the active
IoT point process. Let 1{A} denote the indicator function that
takes value one only if A is true, or zero otherwise.

Theorem 1. The Laplace transform of the uplink shot-noise
process at the typical UAV is given by Eq. (2).

Proof: See [21] for the proof.

Remark 1. The shot-noise process of the typical UAV is time-
invariant. This indicates that the distribution of the shot-noise
process seen by the typical UAV characterizes that of shot-
noise process seen by any UAV at any given time slot. The
shot-noise process directly leads to the interference of the
network, and therefore it eventually determines the network
performance. Notice that the typical analysis is made possible
because of the joint stationarity of the proposed geometry
model and the linear motion of UAVs.

B. Coverage Probability

We assume that each UAV decodes the received signal
transmitted from its own window, by treating interference from
other windows as noise. The coverage probability is defined
as a function of τ : P0

Ψ(SIR ≥ τ) under the Palm distribution
of Ψ, where SIR = S/I and the random variables S and I
denote the received signal power, and the interference power,
respectively.

Theorem 2. The coverage probability of the typical UAV is
given by Eq. (3).

Proof: See [21] for the proof.
Fig. 3 illustrates the coverage probability of the typical UAV

obtained by analytical formula Eq. (3) and by simulations,

respectively. Simulation results confirm the accuracy of the
derived formula. The increase of altitude of UAVs decreases
the coverage probability of the typical UAV. The coverage
probability at arbitrary small τ is equal to 1− e−λwl.

Remark 2. Since the UAV and IoT point processes are joint
stationary and the IoT point process is mixing, the above
coverage expression can be interpreted in an ergodic sense
[20]. The coverage probability accounts for the proportion of
time that the UAV correctly decode messages.

C. Data Rate

This section analyzes the data rate and the spectral ef-
ficiency. Let us consider a fixed M -ary modulation with
minimum SIR threshold τ . The data rate of the typical UAV
is defined by log2(M)P0

Ψ(SIR ≥ τ).

Theorem 3. The data rate seen by the typical UAV, R, is
given by Eq. (4).

Proof: The proof follows from Theorem 2.
Figs. 4 and 5 show the typical data rate seen from the

typical UAV. The curve on Fig. 4 is not smooth since the
modulation is given by M = 2blog2(1+τ)c based on the SIR
threshold τ . Fig. 5 describes the data rate of the typical UAV
with respect to (w.r.t.) various SIR thresholds τ. The data rate
is given by log2(1 + τ)P(SIR > τ) which is the product
of increasing and decreasing functions w.r.t. τ, respectively.
Based on the network geometry, the best τ can be found by
exploiting the trade-off. As in Fig. 5, for τ less than 10 dB,
increasing the threshold τ increases the data rate. On contrary,
for τ greater than 10 dB, increasing τ decreases the data rate.
For the activation window of w = 0.5, the optimum threshold
is around 20 dB. The SIR threshold τ may be provided as a
fixed system parameter in practice, based on the requirement
of IoT application.

IV. PERFORMANCE FROM IOT DEVICES

This section focuses on the network performance seen from
a typical IoT. Specifically, under the Palm distribution of
the IoT point process, we derive the total amount of data
transmitted, i.e., harvested from the typical IoT device to a
UAV, while the typical IoT device is inside the activation
window of the UAV.

A. Transmitted Data from the Typical IoT

The coverage and rate analysis of the previous section
captures the instantaneous network performance. Nevertheless,
in each activation window, a Poisson number of IoT devices
are present for each time slot and the processing of UAV is
shared by these IoT devices, based on TDMA. Consequently,
in order to compute the total amount of data transmitted from
a typical IoT device to a UAV while the IoT device is located
inside the activation window of the UAV, i.e., while it is served
by this UAV, one should consider the evolution of the network
geometry w.r.t. time.

We consider a typical IoT device that is randomly located on
the y-axis using the Palm distribution of the IoT point process.
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is assumed: M = 2blog2(1+τ)c with threshold τ.

We then derive the formula for the amount of data transmitted
from the typical IoT device to its serving UAV, namely the
amount of data transmitted from the typical IoT device per
UAV passage.

Theorem 4. The amount of data D transmitted from the
typical IoT device per UAV passage is given by Eq. (5).

Proof: See [21] for the proof.
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Fig. 5. The data rate seen from the typical UAV. We assume that α = 4 and
M = 2blog2(1+τ)c.

Here are few observations on Theorem 4. (1) D is inversely
linear with the speed of UAVs v. If the typical UAV moves
faster, it provides a shorter duration of active time for the
typical IoT device, and consequently, the total amount of data
transmitted would decrease. (2) D is monotonically increasing
with the distance between UAVs, µ. As the distance between
UAVs increases, the interference power decreases, and thus the
coverage and rate increase. (3) D is decreasing with the density
of IoTs λ. As the density increases, the number of active IoT
devices per window increases, and therefore D diminishes due
to the TDMA between the more numerous IoT devices.

V. UAV NETWORK OPTIMIZAITON

The activation windows are modeled as a collection of
rectangles on the plane. The width l of rectangles is derived
from the deployment of IoT devices and thus corresponds to
the area of interest. The length of each window w, on the
other hand, is a parameter that may be optimized to achieve
the best overall network performance.

Various performance metrics behave in different ways when
varying w. We focus on R . For instance, if w is too big,
IoT devices far from UAVs would be activated and therefore
the received signal power of the signal component would
decrease. On the other hand, if the window w is too small,
the chance of activation window to be empty of IoT devices
would increase and therefore the data rate would diminish.
Consequently, there exists an optimum window size w that
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maximizes R . For a given SIR threshold τ , the optimization
problem is formulated as

arg max
0<w<µ

R,

and the optimization is discussed in [21].

VI. CONCLUSION

This paper provides a framework to analyze the performance
of data harvesting from IoT devices on the building tops or
ground to a network of UAVs. Using stochastic geometry,
we propose a spatial model to describe the locations and
movement of IoT devices and UAVs. The coverage probability
of the typical UAV and its data rate are derived. Then, we
compute the amount of data transmitted from the typical IoT
device.
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