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Abstract—Newly developed hypertext transfer protocol
(HTTP)-based video streaming technologies enable flexible
rate-adaptation under varying channel conditions. Accurately
predicting the users’ quality of experience (QoE) for rate-
adaptive HTTP video streams is thus critical to achieve efficiency.
An important aspect of understanding and modeling QoE is
predicting the up-to-the-moment subjective quality of a video as
it is played, which is difficult due to hysteresis effects and non-
linearities in human behavioral responses. This paper presents
a Hammerstein-Wiener model for predicting the time-varying
subjective quality (TVSQ) of rate-adaptive videos. To collect data
for model parameterization and validation, a database of longer
duration videos with time-varying distortions was built and the
TVSQs of the videos were measured in a large-scale subjective
study. The proposed method is able to reliably predict the TVSQ
of rate adaptive videos. Since the Hammerstein—Wiener model
has a very simple structure, the proposed method is suitable for
online TVSQ prediction in HTTP-based streaming.

Index Terms— QoE, HTTP-based streaming, time-varying
subjective quality.

I. INTRODUCTION

ECAUSE the Hypertext Transfer Protocol (HTTP) is

firewall-friendly, HTTP-based adaptive bitrate video
streaming has become a popular alternative to its Real-Time
Transport Protocol (RTP)-based counterparts. Indeed, compa-
nies such as Apple, Microsoft and Adobe have developed
HTTP-based video streaming protocols [1]-[3], and the Mov-
ing Picture Experts Group (MPEG) has issued an international
standard for HTTP based video streaming, called Dynamic
Adaptive Streaming over HTTP (DASH) [4].

Another important motivation for HTTP-based adaptive
bitrate video streaming is to reduce the risk of playback
interruptions caused by channel throughput fluctuations. When
a video is being transmitted, the received video data are
first buffered at the receiver and then played out to the
viewer. Since the channel throughput generally varies over
time, the amount of buffered video decreases when the channel
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throughput falls below the video data rate. Once all the
video data buffered at the receiver has been played out, the
playback process stalls, significantly impacting the viewer’s
Quality of Experience (QoE) [5], [6]. In HTTP-based rate-
adaptive streaming protocols, videos are encoded into multiple
representations at different bitrates. Each representation is then
partitioned into segments of lengths that are several seconds
long. At any moment, the client can dynamically select a
segment from an appropriate representation to download, in
order to adapt the downloading bitrate to its channel capacity.
Although HTTP-based streaming protocols can effectively
reduce the risk of playback interruptions, designing rate-
adaptation methods that could optimize end-users’ QOE is
difficult since the relationship between the served bitrate
and the users’ viewing experience is not well understood.
In particular, when the video bitrate is changed, the served
video quality may also vary. If the impact of quality variations
on QoE is not accurately predicted, the rate adaptation method
will not provide the optimal QoE for the users.

One important indicator of QoE is the time-varying subjec-
tive quality (TVSQ) of the viewed videos. Assuming playback
interruptions are avoided, the TVSQ is a continuous-time
record of viewers’ judgments of the quality of the video
as it is being played and viewed. The TVSQ depends on
many elements of the video including spatial distortions and
temporal artifacts [7], [8]. What’s more, human viewers exhibit
a hysteresis [9] or recency [10] “after effect”, whereby the
TVSQ of a video at a particular moment depends on the
viewing experience before the moment. The quantitative nature
of this dependency is critical for efficient rate adaptation. For
example, as observed in our subjective study (see Section II-E
for more detail), a viewer suffering a previous unpleasant
viewing experience tends to penalize the perceived quality
in the future. One approach to combat this is to force the
rate controller to provide higher video quality in the future
to counterbalance the negative impact of a prior poor view-
ing experience. But, without a predictive model for TVSQ,
it is impossible to qualitatively assess how much quality
improvement is needed. Another important property of the
TVSQ is its nonlinearity. In particular, the sensitivity of the
TVSQ to quality variation is not constant. This property
should also be utilized for resource allocation among users
sharing a network resource (such as transmission time in
TDMA systems). For example, when the TVSQ of a user
is insensitive to quality variations, the rate-controller could
reserve some transmission resources by reducing the bitrate
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Fig. 1. Proposed paradigm for TVSQ prediction.

without lowering the user’s TVSQ. The reserved resources
could then be used to increase the bitrate of other users and
thus improve their TVSQs. A predictive model for TVSQ is an
essential tool to assess the sensitivity of TVSQ and to achieve
quality-efficient rate adaptation.

The goal of this paper is to develop a predictive model
that captures the impact of quality variations on TVSQ. The
model predicts the average TVSQ every second and can be
used to improve rate-adaptation algorithms for HTTP-based
video streaming.

We propose to predict TVSQ in two steps (see Fig. 1). The
two steps capture the spatial-temporal characteristics of the
video and the hysteresis effects in human behavioral responses,
respectively. In the first step, quality-varying videos are par-
titioned into one second long video chunks and the short-
time subjective quality (STSQ) of each chunk is predicted.
Unlike TVSQ, which is a temporal record, the STSQ is a
scalar prediction of viewers’ subjective judgment of a short
video’s overall perceptual quality. A STSQ prediction model
such as those in [7] and [11]-[14], operates by extracting
perceptually relevant spatial and temporal features from short
videos then uses these to form predictions of STSQ. Hence,
STSQ contains useful, but incomplete evidence about TVSQ.
Here, the Video-RRED algorithm [14] is employed to predict
STSQs because of its excellent quality prediction performance
and fast computational speed. In the second step, the predicted
STSQs are sent to a dynamic system model, which predicts the
average TVSQ every second. The model mimics the hysteresis
effects with a linear filter and captures the nonlinearity in
human behavior with nonlinear functions at the input and the
output of the linear filter. In HTTP-based streaming protocols,
the interval between consecutive video data rate adaptations is
usually several seconds long.! Since the proposed model pre-
dicts the average TVSQ per second, the prediction timescales
are suitable for HTTP-based streaming.

The contributions of this paper are summarized as follows:

1) A new database for the TVSQ of HTTP-based video
streams. A database of rate-varying video sequences is
built to simulate quality fluctuations commonly encoun-
tered in video streaming applications.? Then, a subjec-
tive study was conducted to measure the TVSQs of these
video sequences. This database is useful for developing
and validating TVSQ models and thus is important in its
own right, as it may contribute to future research efforts.

2) An effective TVSQ prediction method. Using the new
database, a dynamic system model is proposed to predict

For example, in MPEG-DASH [4], the rate adaptation interval is at least
two seconds.

2Since HTTP is based on TCP, which guarantees that the data is delivered
without packet loss. Thus, only encoding distortions are considered.
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the average TVSQ per second of video. Experimental
results show that the proposed model reliably tracks the
TVSQ of video sequences with time-varying qualities.
The dynamic system model has a simple structure and
is computationally efficient for TVSQ prediction. It is in
fact suitable for online TVSQ-optimized rate adaptation.
In HTTP-based video streaming protocols, the video is
encoded into multiple representations at different video
data rates. These representations are stored on the video
server before transmission. Thus, the rate-STSQ function
for each second of the video can be computed off-
line before transmission. Since the proposed dynamic
system model predicts the TVSQ from the STSQ, we
may combine the rate-STSQ function with the dynamic
system model to obtain a rate-TVSQ model. This rate-
TVSQ model can then be used to determine the video
data rate that optimizes the TVSQ.
Related Work: TVSQ is an important research subject in the
realm of visual quality assessment [9], [10], [15]-[18]. In [10],
the relationship between STSQ and TVSQ for packet videos
transmitted over ATM networks was studied. A so-called
“recency effect” was observed in their subjective experiments.
At any moment, the TVSQ is quite sensitive to the STSQs over
the previous (at least) 20-30 seconds [10]. Thus, the TVSQ at
any moment depends not only on the current video quality, but
also on the preceding viewing experience. In [15], Tan ef al.
proposed an algorithm to estimate TVSQ. They first applied
an image quality assessment algorithm to each video frame.
Then they predicted the TVSQ with per-frame qualities using
a “cognitive emulator” designed to capture the hysteresis of
the human behavioral responses to visual quality variations.
The performance of this model was evaluated on a database
of three videos, on which the encoding data rates were adapted
over a slow time scale of 30-40 seconds [15]. In [16], a
first-order infinite impulse response (IIR) filter was used to
predict the TVSQ based on per-frame distortions, which were
predicted by spatial and temporal features extracted from the
video. This method was shown to track the dynamics of the
TVSQ on low bit-rate videos. In [17], an adaptive IIR filter
was proposed to model the TVSQ. Since the main objective
of [17] was to predict the overall subjective quality of a long
video sequence using the predicted TVSQ, the performance
of this model was not validated against the measured TVSQ.
In [9], a temporal pooling strategy was employed to map the
STSQ to the overall video quality using a model of visual
hysteresis. As an intermediate step, the STSQ was first mapped
to the TVSQ, then the overall quality was estimated as a time-
averaged TVSQ. Although this pooling strategy yields good
predictions of the overall video quality, the model for the
TVSQ is a non-causal system, which contradicts the fact that
the TVSQ at a moment only depends on current and previous
STSQs. In [18], a convolutional neural network was employed
to map features extracted from each video frame to the TVSQ.
The estimated TVSQs were shown to achieve high correlations
with the measured TVSQ values on constant bitrate videos.
In [9] and [17], estimated TVSQ was used as an
intermediate result in an overall video quality prediction
process. However, the performances of these models were not
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validated against recorded subjective TVSQ. The TVSQ mod-
els proposed in [15], [16], and [18] mainly targeted videos
for which the encoding rate was fixed or changing slowly.
Newly proposed HTTP-based video streaming protocols, e.g.,
DASH, provide the flexibility to adapt video bitrates over time-
scales as short as 2 seconds. Thus the prior models cannot be
directly applied to estimate the TVSQ for HTTP-based video
streaming.

In this paper, a new video quality database is built
and is specifically configured to enable the development of
TVSQ prediction models of HTTP-based video streaming. The
STSQs of the videos in the new database were designed to
vary randomly over time scales of several seconds in order
to simulate the quality variations encountered in HTTP-based
video streaming. The database consists of 15 videos. Each
video is 5 minutes long and is viewed by 25 subjects.
Organization and Notation: The remainder of this paper is
organized as follows: Section II introduces the new TVSQ
database and describe its construction. Section III explains
the model for TVSQ prediction. In Section IV, the model is
validated through extensive experimentation and by a detailed
system theoretic analysis.

Some of the key notation are briefly introduced as
follows. Let {x[t], t = 1,2...} denote discrete time series.
The notation (x) ity denotes the column vector
(x[f1], x[#1 + 1], ..., x[t2]). The zero-padded convolution of
(x), 4, and (y)mz is denoted by (x)mz * (y)tl:t . Lower-case
symi)ols such as a denote scalar variables. Random variables
are denoted by uppercase letters such as A. Boldface lower-
case symbols such as a denote column vectors and a' is
the transpose of a. Calligraphic symbols such as A denote
sets while |A| is the cardinality of .A. Finally, the function
Vaf(a,b) denotes the gradient of the multivariate function
f(a, b) with respect to variable a.

II. SUBJECTIVE STUDY FOR MODEL IDENTIFICATION

In this section, the construction of the database and the
design of the subjective experiments is described first. Then,
based on the experimental results, the dynamic system model
for TVSQ prediction is motivated.

A. Quality-Varying Video Construction

Using the following 5 steps, 15 quality-varying videos were

constructed such that their STSQs vary randomly across time.

1. Eight high quality, uncompressed video clips with dif-

ferent content were selected. These clips have a spatial

resolution of 720p (1280 x 720) and a frame rate of

30 fps. A short description of these clips is provided

in Table I. The content was chosen to represent a broad

spectrum of spatial and temporal complexity (see sample
frames in Fig. 2).

2. Using the video clips selected in the first step, 3
reference videos were constructed. They were used to
generate quality-varying videos in the subjective study.
Each reference video was constructed by concatenating
5 or 6 different clips (see Fig. 3). The reference video
were constructed in this way because long videos with
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TABLE I
A BRIEF DESCRIPTION OF THE VIDEO CLIPS IN OUR DATABASE
Name Abbreviation | Description
Fountain ft Still camera, shows a fountain.
Turtles tu Still camera, a girl is feeding turtles.
Stick st Still camera, a man is waving a stick.
Bulldozer bu Camera span, a man is driving a bulldozer.
Singer&girl sg Camera zoom, a man is singing to a girl.
Volleyball vo Still camera, shows a volleyball game.
Dogs do Camera span, two dogs play near a pool.
Singer si Camera zoom, a singer is singing a song.

(& ()]

Fig. 2. Sample frames of the video clips involved in the subjective study.
The abbreviations of the names of the videos can be found in Table. I. (a) ft.
(b) tu. (c) st. (d) bu. (e) sg. (f) vo. (g) do. (h) si.

100 seconds

Video1l [ do | s [ tu [ st ] bu [ w ]
video2 [ bu [ vo [ s T st ] tu [ # ]
Video3 | vo [ b ] sg [ si Jdo]
Fig. 3. The construction of the reference videos. The abbreviation of the

names of the clips can be found in Table I.

monotonous content can be boring to subjects. This
could adversely impact the accuracy of the TVSQ mea-
sured in the subjective study. The length of each video
is 300 seconds, which was chosen to agree with the
value recommended by the ITU [19]. This is longer than
the videos tested in [9], [15], [16], [18], [20], and [21]
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thus is a better tool towards understanding the long-term
behaviorial responses of human vision system.

3. For each reference video, 28 distorted versions were
generated. Specifically, every reference video sequence
was encoded into 28 constant bitrate streams using
the H.264 encoder in [22] and then were decoded.
To achieve a wide range of video quality exemplars, the
encoding bitrates were chosen from hundreds of Kbps
to several Mbps.

4. Every distorted version was partitioned into 1 second
long video chunks and their STSQs were predicted with
the computationally efficient and perceptually accurate
RRED index [14]. Let the RRED index of the ™ chunk
in the ¢ distorted version of the k™ reference video
be denoted by q‘Z‘,’(d[t], where t € {1, ...,300} second,
¢ e{l,...,28}, and k € {1,2, 3}. Then the Difference
Mean Opinion Score (DMOS, see [23]) of the STSQ for
each chunk was predicted via logistic regression:

dmos( /] — 16.4769 +9.7111 log( 1 + a7 [r] 0
e ' E\" T 06444 )

The regression model in (1) was obtained by fitting a
logistic mapping from the RRED index to the DMOSs
on the LIVE Video Quality Assessment Database [24].
Here, the predicted DMOS qgj}zos[t] ranges from O to 100
where lower values indicate better STSQ. To represent
STSQ more naturally, so that higher numbers indicate
better STSQ, we define the Reversed DMOS (RDMOS)
corresponding to a DMOS of x to be 100 — x. Thus,
the predicted RDMOS of the STSQ for each chunk is
given by:

qir L] = 100 — gfRle]. by

Broadly speaking, a RDMOS of less than 30 on the
LIVE databases [24] indicates bad quality, while scores
higher than 70 indicate excellent quality. As an example,
Fig. 4(a) plots q‘g’i,?‘os[t] for all of the distorted versions
of the first reference video. Clearly, their STSQ covers
a wide range of RDMOSs.

5. Finally, for each reference video, 6 quality-varying
videos were constructed by concatenating the video
chunks selected from different distorted versions. For
the kM reference video, 6 target STSQ sequences
{(q;%;c)moo,j = l,...,6} were designed to simu-
late the typical quality variation patterns in HTTP-based
streaming (see section II-B for more details). Then,
6 quality-varying videos were constructed such that their
STSQs approximate the target sequences. Specifically,
the ™ chunk of the j™ quality-varying video was
constructed by copying the ™ chunk in the 8;“, j,k—th
distorted version, where

£ j = argmin g 1] — g 11]). 3)

Denoting the STSQ of the ™ chunk in the obtained
video by qj.t (1], we have

QL] = gL, “)

2209

Predicted RDMOS

Predicted RDMOS

50 100 150 200 250 300
t/sec.

Fig. 4. (a) The STSQ of each compressed version of the reference video is
shown in different colors. (b) A example of the designed target video quality
q'€'[¢] and the actual video quality q®[¢] of the video sequence used in our
database.

As can be seen in Fig. 4, since the RDMOS scale
is finely partitioned by the RDMOSs of the com-
pressed versions, the error between the obtained STSQ
qj‘ ([7] and the target STSQ q}‘i[r] is small. Among the
6 quality-varying videos generated from each reference
video, 1 video is used for subjective training and the
other 5 videos are used for subjective test. In all,
3 x 1 = 3 training videos and 3 x 5 = 15 test videos
were constructed.
With this procedure, the pattern of quality variations in the
test video sequences is determined by the target video quality
sequence (q;g;() The design of (q;g;{) is described next.

B. Target Video Quality Design

To obtain a good TVSQ prediction model for videos
streamed over HTTP, the target video quality (q;%;c)moo was
designed such that the generated quality-varying videos can
roughly simulate the STSQs of videos streamed over HTTP.
In HTTP-based video streaming protocols such as those
described in [1]-[4], videos are encoded into multiple repre-
sentations at different bitrates. Each representation is then par-
titioned into segments, each several seconds long. The client
dynamically selects a segment of a representation to download.

Therefore, in our subjective study, (q;fg;{)moo was designed

as a piece-wise constant time-series. Specifically, (q;%;c)moo
was generated using two independent random processes. The
first random process {D(s) : s = 1,2,...} simulates the
length of the video segments. The second random process
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Fig. 5. The design of the target STSQs. The durations of each segment
dy,dy, ... were realizations of D(1), D(2),.... The STSQ levels g1, g2, ...

were realizations of Q(1), Q(2),....

{Q(s) : s = 1,2,...} simulates the STSQs of segments. The
sequence (q;“f;{)moo was constructed as a series of constant-
value segments where the durations of the segments were given
by D(s) and the RDMOSs of the segments were given by Q(s)
(see Fig. 5).

In HTTP-based video streaming protocols, the duration of
video segments can be flexibly chosen by the service provider.
Shorter durations allow more flexibility for rate adaptation
when the channel condition is varying rapidly. For example,
due to the mobility of wireless users, the wireless channel
throughput may vary on time scales of several seconds [25].
Consequently, this work focus on applications where the
lengths of the segments are less than 10 seconds. TVSQ
modeling for videos undergoing slowly varying data rates has
been investigated in [15], [16], and [18]. In a subjective exper-
iment, there is always a delay or latency between a change
in STSQ and a subject’s response. During the experimental
design, we found that if the video quality varied too quickly,
subjects could not reliably track their judgments of quality
to the viewed videos. Specifically, when the video quality
changes, a subject may take 1-2 seconds to adjust his/her
opinion on the TVSQ. If the quality is adapted frequently, the
quality variations that occur during this adjustment process
can annoy the subject and thus reduce the accuracy of the
measured TVSQs. Thus, we restricted the length of each
segment to be at least 4 seconds, which is comfortably longer
than the subjects’ latency and short enough to model quality
variations in adaptive video streaming. In sum, the random
process {D(s) : s = 1,2,...} takes values from the set
{4,5,6,7,8,9,10}.

The distribution of STSQs of a video transported over HTTP
depends on many factors including the encoding bitrates,
the rate-quality characteristics, the segmentation of each rep-
resentation, the channel dynamics, and the rate adaptation
strategy of the client. To sample uniformly from among all
possible patterns of STSQ variations, the random processes
D(s) and Q(s) were designed as i.i.d. processes, which
tend to traverse all possible patterns of quality variations.
Also, the distributions of D(s) and Q(s) were designed to
“uniformly” sample all possible segment lengths and STSQ
levels, respectively. To this end, we let D(s) take values in the
set {4,5,6,7,8,9, 10} with equal probability. Similarly, the
distribution of Q(s) was designed such that the sample values
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of Q(s) would be distributed as if the videos were uniformly
sampled in the LIVE database, because that set of videos is
carefully chosen to represent a wide range of perceptually
separated STSQ [24]. The RDMOSs of videos in the LIVE
database are distributed as approximately obeying a normal
distribution N (50, 102) [24]. Therefore, we let the distribution
of Q(s) be A'(50, 10%). In the LIVE database, almost all of the
recorded RDMOSs fall within the range [30, 70]. Videos with
RDMOS lower than 30 are all very severely distorted while
videos with RDMOS higher than 70 are all of high quality.
Due to saturation of the subjects’ scoring capability outside
these ranges, the recorded qualities of videos with RDMOSs
lower than 30 or higher than 70 are difficult to distinguish.
Therefore, we truncated Q(s) to the range [30, 70].

C. Subjective Experiments

A subjective study was conducted to measure the TVSQs
of the quality-varying videos in our database. The study
was completed at the LIVE subjective testing lab at The
University of Texas at Austin. The videos in our database were
grouped into 3 sessions. Each session included one of the three
reference videos and the 6 quality-varying videos generated
from the reference video. The videos in each session were each
viewed and scored by 25 subjects. One of the quality-varying
videos was used as a training sequence. The other six videos,
including 5 quality-varying videos and the reference video,
were used for subjective study. The subjects were not notified
about the existence of the reference videos. The subjective
scores obtained from these reference videos were then used
for the computation the RDMOSs of the TVSQs [23].

A user interface was developed for the subjective study
using the Matlab XGL toolbox [26]. The user interface ran
on a Windows PC with an Intel Xeon 2.93GHz CPU and a
24GB RAM. The XGL toolbox interfaced with ATI Radeon
X300 graphics card on the PC to precisely display video
frames without latencies or frame drops, by loading each
video into memory before display. Video sequences were
displayed to the viewers on a 58 inch Panasonic HDTV
plasma monitor at a viewing distance of about 4 times the
picture height. During the play of each video, a continuous
scale sliding bar was displayed near the bottom of the screen.
Similar to the ITU-R ACR scale [19], the sliding bar was
marked with five labels: “Bad”, “Poor”, “Fair”, “Good”, and
“Excellent”, equally spaced from left to right. The subject
could continuously move the bar via a mouse to express his/her
judgment of the video quality as each video is played. The
position of the bar was sampled and recorded automatically
in real time as each frame is displayed (30 fps). No mouse
clicking was required in the study. Fig. 6 shows the subjective
study interface including a frame of a displayed video.

During the training period, each subject first read
instructions describing the operation of the user interface
(see Appendix A), then practiced on the training sequence.
The subject then started rating the test videos (reference video
and five quality-varying videos) shown in random order. The
subjects were unaware of the presence of the reference video.
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Fig. 6. User interface used in the subjective study.

D. Data Preprocessing

Denote the average score assigned by the i subject to the
frames of the ™ chunk of the j™ quality-varying video in the
k™ session by c; j.x[t]. Let the score assigned to the reference
video be denoted by cref[t] The impact of video content was
offseted on the TVSQs of the test videos using

e ] = 100 — ( el — Ci,j,k[f])- )

In (5), we subtracted (cref[t] —Cij, k[t]) from 100 to compute

the RDMOS from COfste‘[t] Let T denote the length of the test
videos and J denote the number of quality-varying videos in
each session. In our experiment, T = 300 and J = 5. Note that
the subjects deliver their quality judgments in real-time as the
test video is being displayed. To avoid distracting the subjects
from viewing the video, we did not require them to use the full
scale of the sliding bar. Moreover, such an instruction may tend
to bias the recorded judgments from their natural response.
Thus, each subject was allowed to freely deploy the sliding
bar when expressing their judgments of TVSQ. To align the
behavior of different subjects, paralleling to prior work such
as [27]-[31], we normalize (c Oﬁse‘) by computing the Z-scores
[32] as follows:

mik =

! offset 2
%ik T 1 ZZ( ik Ll — mi,k) ;

(6)

zijklt] =
Oik

In (6), the values of m;; and o; are respectively the mean
and the variance of the scores assigned by the i subject
in the k™ session. The value of z; jk[t] is the normalized
score. Let I denote the number of subjects. We have I = 25.
Then for the ! second of the Jj th test video, the average and
standard deviation of the Z-scores assigned by the subjects
were computed

wjklt]l = zijk[t];

—_

>—<|>—A
MH

— K, k[t]) )

I
— 2 (2l

i=1

—_—
—_

mlt] =
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Fig. 7. (Upper) the STSQs predicted using Video-RRED. (Lower) the TVSQs
measured in the subjective study.

If g, lt] > gy lt]+20jle] or zi jlt] < pujle] = 2n;le],
z;,jk[t] was marked as an outlier because the Z-score given
by subject i deviates far from the Z-scores given by the other
subjects. The outliers were excluded and the Z-scores were
recomputed using (6). Let Oj, denote the set of subjects
who assigned outlier Z-scores to the /™ chunk of the j® video
in the k™ session. The averaged Z-score of the TVSQ for the

™ chunk is then
> zijaltl. ®)
i¢o_/,k,1

_ 1
2jklt] I—10j 4,1

The 95% confidence interval of the average Z-scores is
Zjk[t1£1.967; k[t]/\/1 = |Oj k.:|. We found that the values of
the averaged Z-scores all lie in the range [—4, 4]. Therefore,
Z;j k[t] was mapped to the range [0, 100] using the following
formula:

Zj klt] +4
8

Correspondingly, the 95% confidence interval of TVSQ is
q}vk[t] + € k[t], where

qi L] = x 100. )

1.967; [t I1-10; 4
5.kl 1/ | j,k,l‘|+ % 100.

€jalt] = (10)

In all, the TVSQ for N = 3 x 5 = 15 quality-varying videos
were measured. In the following, we replace the subscript
(j, k) with a subscript 1 < n < N to index the quality-varying
videos and denote by q}lv[t] and ¢,[f] the measured TVSQ and
the confidence interval of the n™ video, respectively. Similarly,
the STSQ of the nM video predicted by the Video-RRED
algorithm [14] is denoted by g} Ut].

E. Preliminary Observations

Since (q*) is the predicted STSQ, we expect (q*') to contain
useful evidence about the TVSQ. The (q*) and the corre-
sponding ( W) of the 6™ quality-varying video from r = 61
to 1 = 150 is plotted in Fig. 7. It is seen that both the (q*) and
the (") follow the similar trend of variation. But it should be
noted that the relationship between (q*') and (") cannot be
simply described by a static mapping. For example, at point A
(t = 29) and point B (¢ = 85), the g*'[¢] takes similar values.
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But the corresponding q'V[¢] is lower at point A than point B.
This observation could be explained by the hysteresis effects.
Prior to point A, q*[¢] is around 40 (see (q%),,,q)- But,
prior to point B, q*[¢] is around 65 (see (q%),¢g,)- Thus,
the previous viewing experience is worse at point A, which
gives rise to a lower TVSQ. Such hysteresis effects should be
considered in HTTP-based rate adaptations. For example, if
the “previous viewing experience” is bad (such as point A),
the server should send the video segment of higher quality
to counterbalance the impact of bad viewing experience on
the TVSQ.

It may be observed that the q*[¢] experiences the similar
level of drop in region C and region D. The drop of q*[¢]
in region C results in a significant drop in q"[¢]. But, in
region D, q*![¢] is not as affected by the drop of ¢*[¢]. In other
words, the sensitivity of TVSQ to the variation in (q*) is
different in region C and region D. This is probably due to the
non-linearities of human behavioral responses. Including such
nonlinearities is critical for efficient HTTP-based adaptation.
Specifically, when the TVSQ is insensitive to the STSQ (such
as in region D), the server may switch to a lower streaming
bitrate to reserve some resources (such as transmission time)
without hurting the TVSQ. Those reserved resources can then
be used to maintain a good TVSQ when the TVSQ is sensitive
(such as region C).

In sum, quantitatively modeling the hysteresis effects and
the nonlinearities are critical for TVSQ-optimized rate adapta-
tions. This motivate us to propose a non-linear dynamic system
model, which is described in more detail below.

III. SYSTEM MODEL IDENTIFICATION

In this section, the model for TVSQ prediction is presented
in Section III-A. Then, the algorithm for model parameter
estimation is described in Section III-B. The method for model
order selection is introduced in Section III-C.

A. Proposed Model for TVSQ Prediction

Due to the hysteresis effect of human behaviorial responses
to quality variations, the TVSQ at a moment depends on the
viewing experience prior to the current moment. A dynamic
system model can be used to capture the hysteresis effect
using the “memory” of the system state. The simplest type
of dynamic system is a linear filter. The human vision sys-
tem, however, is non-linear in general [33]-[35]. Although
introducing intrinsic nonlinearities into the dynamic system
model could help to capture those nonlinearities,? the dynamic
system would become too complicated to provide guidance
on the design of TVSQ-optimized rate-adaptation algorithms.
More specifically, due to the randomness of channel condi-
tions, the TVSQ-optimized rate-adaptation algorithm design
is essentially a stochastic optimization problem. For a linear
dynamic model with input (x), its output (y) is given by
(y) = (h)*(x), where (h) is the impulse response. Due to the
linearity of expectation, the expectation of the TVSQs can be

3we say a nonlinear system has intrinsic nonlinearity if its current system
state is a nonlinear function of the previous system state and input. Otherwise,
we say the system has extrinsic nonlinearity.
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Fig. 8. Proposed Hammerstein-Wiener model for TVSQ prediction.

characterized using E[y] = |/h||1E[x]. For a dynamic model
with intrinsic nonlinearities, however, linearity of expecta-
tion cannot be applied and analyzing the average behavior
of the TVSQ becomes difficult. Therefore, we employed a
Hammerstein-Wiener (HW) model [36], which captures the
nonlinearity with extrinsic nonlinear functions. The model is
illustrated in Fig. 8. The core of the HW model is a linear
filter (see [36]) which is intended to capture the hysteresis.
At the input and output of the HW model, two non-linear
static functions are employed to model potential non-linearities
in the human response. We call these two functions input
nonlinearity and output nonlinearity, respectively.
The linear filter has the following form:

VIrl = D bault —dl+ D favlt —d]
d=0 d=1

= b;(u) +17(v) (11)

where the parameter r is the model order and the coefficients
b= (by,...,b)" and £ = (fi,..., )7 are model parame-
ters to be determined. At any time ¢, the model output v[z]
depends not only on the previous r seconds of the input u[z],
but also on the previous r seconds of v[t] itself. Thus this
filter has an infinite impulse response (IIR). We employed
this model rather than a finite impulse response (FIR) filter
because the IIR filter can model the long-term impact of
quality variations with a lower model order and thus using
fewer parameters. To train a parameterized model, the size of
the training data set increases exponentially with the number
of the parameters [36]. Therefore, it is easier to train an
IIR model. A drawback of the IIR filter (11) is its dependency
on its initial state. Specifically, to compute (v),_ . the initial
r seconds of output (v), need to be known. But (v) . is the
TVSQ of the user, which is unavailable. Actually, it can be
shown that this unknown initial condition only has negligible
impact on the performance of the proposed model. A more
detailed analysis is presented in Section IV-B.

To model the input and output nonlinearities of the HW
model, we have found that if the input and output static
functions are chosen as generalized sigmoid functions [37],
then the proposed HW model can predict TVSQ accurately.
Thus, the input and output functions were set to be

1

t—r:t t—rit—12

t]=p3+ R 12
uft] = B3 541 o B+ ) (12)
and
1
= 13
W=t e o+
where 8 = (ﬂl,...,ﬂ4)T and y = (yl,...,y4)T are model

parameters and q is the predicted TVSQ.
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Let 0 = (b',fT, ﬂT, ¥ )T be the parameters of the pro-
posed HW model, and let q be regarded as a function both of
time ¢t and parameter 6. Thus, in the following, we explicitly
rewrite q as q(z,0). To find the optimal HW model for
TVSQ prediction, two things need to be determined: the model
order r and the model parameter #. In the following, we
first show how to optimize the model parameter 6 for given
model orders. Then, we introduce the method for model order
estimation.

B. Model Parameter Training

This section discusses how to optimize the model parame-
ter @ such that the error between the measured TVSQ and
the predicted TVSQ can be minimized. In system identifi-
cation and machine learning, the mean square error (MSE)
is the most widely used error metric. Denoting the predicted
TVSQ of the n™ video by G,(t, #), the MSE is defined as
% 25:1 ZtT:1 (Gn(2,0) — qﬁ,v[t])z. The MSE always assigns
a higher penalty to a larger estimation error. For the purposes
of tracking TVSQ, however, once the estimated TVSQ devi-
ates far from the measured TVSQ, the model fails. There is no
need to penalize a large error more than another smaller, yet
still large error. Furthermore, since the g [7] is just the average
subjective quality judgment, the confidence interval of TVSQ
€,[t] (see the definition in (10)) should also be embodied in
the error metric to account for the magnitude of the estimation
error. We chose to use the outage rate, also used in [18], as the
error metric. Specifically, the outage rate of a TVSQ model is
defined as the frequency that the estimated TVSQ deviates by
at least twice the confidence interval of the measured TVSQ.
More explicitly, outage rate can be written as

N T
E@©) = % 2 1[G, 0) - q)'11] > 264007), (14)
n=1t=1
where 1(-) is the indicator function.

Gradient-descent parameter search algorithms are com-
monly used for model parametrization. In our case, however,
the gradient of the indicator function 1(-) in (14) is zero
almost everywhere and thus the gradient algorithm cannot be
applied directly. To address this difficulty, we approximated
the indicator function 1(|x| > 2¢) by a penalty function

U, (x, €) = h(x,v, —2¢) + (1 — h(x, v, 2¢)), (15)

where h(x,a,) = 1/(1+exp(—a(x +¢)) is a logistic
function. In Fig. 9, U, (x, €) with different configurations of
the parameter v are plotted. It can be seen that, as v — oo,
U, (x, €) converges to 1 (]x| > 2¢). The outage rate E(f) can
thus be approximated by E(#) = lim, _, o, E;**(#), where

N T
E”(0) = % 2.2 U (@(t.0) = q)lrlelr]). (16)

n=1 t=1
The iterative algorithm used for model parameter identification
is described in Algorithm 1. In the i iteration, a gradient-
descent search algorithm is applied to minimize E5™(9).
The obtained parameter @' is then used as the starting point
for the gradient-descent search in the (i + 1)™ iteration.
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Fig. 9. U, (x,€) with v =0.5, 1 and 5.

Algorithm 1 Parameter Optimization Algorithm

Input: o5'[t], q'V[t], €n[t], i =1, and v = 0.8
1: while v < 20 do

2: 0' = argming E?P* (@) via gradient-descent search
starting from 6"~ !.

3: 1:=1+1

4 v:=12v

5: end while

Algorithm 2 Gradient-Descent Algorithm

Input: *'[t], q*V[t], €[t], v, and j =1
1: while E2P*(6'7') — E2P* (67) > 107° do
2 AG = —VeEwx (%)
3 while E2PX (07 + wA0) > E2P* (/) — 0.1w||A8)|[3
or p(f) > 1 do

4 w:=0.7Tw

5 end while

6 67T =07 1 wAl
7 ji=j+1

8: end while

At the end of each iteration, the parameter v is increased by
v := 1.2v.% Using this algorithm, the penalty function U, (x, €)
is gradually modified to 1(|x| > 2¢) such that the estimated
TVSQ is forced into the confidence interval of the measured
TVSQ. Note that when v > 20, U,(x,€) is very close to
1 (Jx| > 2¢€). Hence, the iteration is terminated when v > 20.°

The gradient-descent mechanism in Algorithm 1 is
described by Algorithm 2. The algorithm contains two loops.
In the outer loop, # is moved along the direction of neg-
ative gradient —VyE;™" (0) with a step-size . The loop is
terminated when the decrement of the cost function between
consecutive loops is less than a small threshold . On our
database, we found that setting 6 = 107> is sufficient.

4The choice of the multiplicative factor 1.2 is to balance the efficiency and
accuracy of the algorithm. Any number less than 1.2 gives rise to similar
performance. Any number larger than 1.2 results in worse performance.

5Since E(@) is not a convex function of 6, gradient-descent can only
guarantee local optimality.
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The inner loop of Algorithm 2 is a standard backtracking line
search algorithm (see [38]), which determines an appropriate
step-size o. To calculate the gradient VoEi**(#), we have

VoE (0)

1 S L[ duy (x, enlt])
aoRI e

n=1

:| V()an (t» 0)~

A7)

x=qn (,0)—q}[¢]

m (17, 99

. X ~ . . .
calculation of Vpq,(z,0) is not straightforward since
the dynamic model has a recurrent structure. Specifically, the
input-output relationship of the HW model can be written as:

G0 =2 (0. @), 0r- (0)),)-

where the function g(-) is the combination of (11), (12),
and (13). The model output G, (¢, ) depends not only on
0 but also on previous system outputs (qn) +—1:4—p» Which
depend on @ as well.® Denoting by 6; the i™ component of 6,
differentiating both side of (18), we have

can be directly derived from (15). The

(18)

ut.0) _0g 0 Oz S —dO) o
00; 00 = 0q,(r—d.6) a0
Because of the structure of (19), computing %92’0) is equiv-

alent to filtering % by a filter with a transfer function
1
H(z) = ; (20)

1> %Zid

If @ is not appropriately chosen, the filter H(z) can be unstable.
The computed gradient % could diverge as t increases.
It is proved in Appendix B that, if the root radius’ p(f) of
the polynomial z" — >_, fuz" =% is less than 1, the filter
H(z) is stable. Therefore, in the line search step Algorithm 2,
the step-size w is always chosen to be small enough such
that the condition p(f) < 1 is satisfied (see line 3-5 in
Algorithm 2). For further details about the calculation of

aa,égi,o) , see Appendix B.

C. Model Order Selection

Using Algorithm 1, the optimal parameter @ for a given
model order r can be determined. This section discusses how
to select the model order. First, a possible range of model
orders is estimated by inspecting the correlation between the
input and output of the HW model, i.e., (q*),.; and (q"),.;.
Then, the model order is determined in the estimated range
using the principle of Minimum Description Length.

The TVSQ at any time depends on the previous viewing
experience. In the proposed TVSQ model (18), ¢,.[t] =

T
((q“)lr:t , (q“’);rfr:tfl) has been employed as the model
input to capture the previous viewing experience. Thus, iden-
tifying the model order r is essentially estimating how much

YHere (Gy) also depends on (g). But in parameter training, (q*!) is treated
as a known constant.

"The root radius of a polynomial is defined as the maximum radius of its
complex roots.
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Fig. 10. Model order selection via (a) Lipschitz quotient and (b) description
length.

previous viewing experience is relevant to the current TVSQ.
In [39], the Lipschitz quotient was proposed to quantify the
relevance of ¢, by

Q"P(r) = max
1<t;<t,<T

tv Aty
lq¥[1] — qV[z]| | o
¢, [11] — ¢, [2211]2

A large QUP(r) implies that a small change in ¢, could cause
a significant change in q% and thus ¢, is relevant to TVSQ.
Conversely, if Qlip (r) is small, the model order r may be larger
than necessary. Using Q'"P(r), the necessary model order can
be estimated. In Fig. 10(a), the Lipschitz quotients for different
values of r are plotted. It can be seen that, as the model
order increases, the corresponding Lipschitz quotient decreases
significantly when r is less than 10. This means the viewing
experience over the previous 10 seconds is closely related to
the TVSQ. Therefore, the model order r should be at least 10.

According to the parameterizations of the HW model
in (11), (12), and (13), models of lower order are special
cases of the model of higher order. Therefore, in principle, the
higher the order, the better performance can be achieved by the
model. A large model order, however, may result in over-fitting
the model to the training dataset. To select an appropriate order
for the HW model, we employed the Minimum Description
Length (MDL) criterion, which is widely used in the realm of
system identification [36], [40]. The description length of an
r-order model is defined in [36] as

LYS(r) = E(8%) (1 FQr+ 1)w), 22)

N(T—r)
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TABLE II
PERFORMANCE OF THE PROPOSED MODEL ON THE DATABASE
# 7] Ex) # #5 #6 # #3 # #10 | #11_ [ #12 [ #13 [ #14 [ #15 | mean

outage rate(%) || 12.15 | 1146 | 9.38 | 18.06 | 9.72 | 4.17 | 10.76 | 833 | 833 | 833 | 382 | 764 | 1.74 | 625 | 069 | 8.06

Tinear correlation || 0.868 | 0.897 | 0.862 | 0.785 | 0.919 | 0.936 | 0.859 | 0.896 | 0.845 | 0.863 | 0.938 | 0.898 | 0.892 | 0.916 | 0.906 | 0.885

rank correlation || 0.881 | 0.857 | 0.875 | 0.814 | 0.897 | 0.943 | 0.872 | 0.901 | 0.833 | 0.859 | 0.911 | 0.899 | 0.870 | 0.927 | 0.866 | 0.880
where @) is the model parameter of the r-order model 80
determined through Algorithm 1. The first multiplicative term
in (22), which is defined in (14) as the outage rate, represents
the ability of a model to describe the data. The second
multiplicative term increases with the number of parameters
(2r 4+ 1) and decreases with the size of training set N(T —r).
Thus, this term roughly indicate whether the training set is
sufficiently large for training a r-order model. The definition
of (22) balances the accuracy and the complexity of the model.
In Fig. 10(b), the description lengths of the proposed models 3ol Measured TVSQ (5% CI) ]

. . — Initial conditions known
un.djcr different .mgdel orders are plotted. It is seen that the - - _Initial conditions unknown
minimum description length is achieved at r = 12. Therefore, 20, 20 20 50 30 100
r = 12 was selected. t / second
IV. MODEL EVALUATION AND ANALYSIS Fig. 12. An illustration of the impact of initial state on predicted TVSQ.

In this section, the efficiency of the proposed HW model is
studied first. Then, four important properties of the proposed
model are studied. They are the impact of the initial state,
the stability for online TVSQ prediction, the input and output
nonlinearities, and the impulse response of the IIR filter.
Finally, we analyze the computational complexity of the model
for realtime TVSQ prediction.

A. Model Evaluation and Validation

The model parameters were trained using our database via
Algorithm 1. Table II list the outage rate of the trained model
on all of the 15 test videos. The average outage rate is 8.06%.
This means that the model can accurately predict 91.94%
of the TVSQs in the database. Furthermore, Table II also
list the linear correlation coefficient and the Spearman’s rank
correlation coefficient between the predicted TVSQ and the
measured TVSQ values. The average linear correlation and
rank correlation achieved by our model is 0.885 and 0.880,
respectively. In Fig. 11, the predicted TVSQs and the 95%
confidence interval of the measured TVSQs are plotted. The
proposed model effectively tracked the measured TVSQs of
the 15 quality-varying videos.

In the proposed method, the TVSQ is estimated by
the Hammerstein-Wiener model using the RRED-predicted
STSQs of the previous twelve seconds. In Table III, the pro-
posed method is compared with several basic pooling methods,
i.e., the maximum, the minimum, the median, and the mean of
the RRED-predicted STSQs in the previous twelve seconds.
It is seen that the proposed method achieves a significantly
lower outage rate and a much stronger correlation with the
measured TVSQs.

Table IV shows the performance of the proposed TVSQ
prediction method when the STSQ predictor is PSNR,
MS-SSIM, and RRED. It may be seen that the RRED-based
model outperforms both the MS-SSIM-based model and the

Dashed Line: Initial condition (v). is set to be zero. Solid Line: Initial

where

condition is assumed to be known, ie., (V). = (k;l(qtv))1 ,
r

(@™),,, is the measured TVSQ in the subjective study.

PSNR-based model. This can be attributed to the high accuracy
of RRED in STSQ prediction. It can also be observed that
the performance of the MS-SSIM-based model is close to
that of RRED. Since MS-SSIM has lower complexity, it may
be attractive as a low-complexity alternative to RRED in the
TVSQ prediction model if slightly lower prediction accuracy
is acceptable.

To rule out the risk of over-fitting the model to the
TVSQ database, a leave-one-out cross-validation protocol
were employed to check whether the model trained on our
database is robust. Each time, the 5 videos corresponding to
the same reference video were selected as the validation set
and trained the model parameters on the other 10 videos. This
procedure was repeated such that all the videos are included
once in the validation set. The results are summarized in
Table V. Comparing with the models trained on the whole
database, the performance of the models in the cross-validation
is only slightly degraded. Therefore, the model obtained from
our database appears to be robust.

B. Impact of Initial State

As indicated in Section III-A, the initial conditions (v)lzr
are required to estimate TVSQ. For online video streaming
applications, however, (V)I:r is unavailable because (V)I:r is
given by (q“’)ltr and the latter is the TVSQ of the first r
seconds of the video. This section studies the impact of the
unavailability of the initial conditions.

The transfer function of the linear filter is

r b —d
H(z) = 2 =0 baz

=ToST  d ST el (23)
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Fig. 11. The predicted TVSQ and the 95% confidence interval (CI) of the TVSQs measured in the subjective study. Since the Hammerstein-Wiener model
predicts TVSQs using the STSQs of previous 12 seconds, the plots start from ¢ = 13. (a) Video #1. (b) Video #2. (c) Video #3. (d) Video #4. (e) Video #5.
(f) Video #6. (g) Video #7. (h) Video #8. (i) Video #9. (j) Video #10. (k) Video #11. (1) Video #12. (m) Video #13. (n) Video #14. (o) Video #15.

According to classical results from system theory, if the root
radius of the denominator polynomial z — > 5, faz' 74, is
less than 1, the impact of the initial condition fades to O
as t — oo exponentially fast. Denoting by p(f) the root
radius of 7" — >_, fuz" %, the fading speed is p(f). Here,
we define the quantity 7(f) = —3/1In p(f). Over every 7 (f)

seconds, the impact of the initial state fades to e~ &~ 5% of
its original level. Therefore, 7 (f) indicates the delay before
our TVSQ model starts to track TVSQ. For the model trained
on the TVSQ database, 7 (f) = 15.1895 seconds. This means
that our model cannot accurately predict the TVSQs of the
first 15.1895 seconds of the video. For quality monitoring of
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TABLE III
PERFORMANCE COMPARISON WITH DIFFERENT
TVSQ POOLING METHODS

max min median | mean | proposed
outage rate(%) 3426 | 32.06 | 26.76 2222 | 8.06
linear correlation || 0.497 | 0.541 | 0.589 0.702 | 0.885
rank correlation 0.475 | 0.515 | 0.611 0.693 | 0.880
TABLE IV

PERFORMANCE OF THE TVSQ PREDICTION MODEL
WITH DIFFERENT STSQ PREDICTORS

STSQ predictors PSNR | MS-SSIM | RRED
outage rate(%) 21.8 11.5 8.06
linear correlation 0.754 0.855 0.885
rank correlation 0.744 0.862 0.880

long videos, this delay is tolerable. In Fig. 12, the impact
of the initial state on one of the quality-varying videos is
illustrated. The figure shows the predicted TVSQ when the
initial state (v)lzr is simply set to zero. For comparison, the
predicted TVSQs when the initial state is assumed to be
perfectly known is also shown in the figure. It can be seen that
the predicted TVSQs in both cases coincide with each other
when ¢ > 15 seconds. It also justifies that, for long videos,
the impact of the initial condition diminishes over time.

C. Stability for Online TVSQ Prediction

The goal of our TVSQ model is for the online TVSQ
prediction. Different from our video database, where each
video is 5 minutes long, the videos streamed over HTTP can
be much longer. Therefore, it is necessary to check the long-
term stability of the proposed model. Specifically, for any
quality-varying video, the estimated TVSQ should be bounded
within the RDMOS scale of [0, 100]. Since the filter is a linear
system, we have (v)lzT = (h)lzT * (u)lzT, where h[?] is the
impulse response of the linear filter. It is well-known that
[IVlloo = ||h][1]]u]|cc, i.€., that the dynamic range of v[¢] is a
dilation of the dynamic range of v[t]. For our TVSQ model,
we found that ||h||; &~ 0.3853. Given that the dynamic range
of @®[t] is [0, 100], then the dynamic range of q[¢] is found
to be [10.2661, 78.9525]. Therefore, the proposed model has
bounded output in RDMOS scale.

D. The Input and Output Nonlinearities

In Fig. 13(a), the input nonlinearity of the TVSQ model is
plotted. As the input q*'[¢] increases, the gradient of the input
nonlinearity diminishes. In particular, the slope of the input
nonlinearity is much larger when g®[t] < 50. As discussed
in Section II-A, an RDMOS of 50 indicates acceptable STSQ.
Therefore, the concavity of the input non-linearity implies that,
the TVSQ is more sensitive to quality variations when viewers
are watching low quality videos. This also explains why the
TVSQ is more sensitive in region C than region D in Fig. 7
(see section II-E).

In Fig. 13(b), the output nonlinearity of our TVSQ model
is plotted. It can be observed that, when 30 < q[s] < 70,
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the function is almost linearly increasing with the input.
This observation inspired us to further simplify the model
by replacing the sigmoid output nonlinearity function with a
linear function. Table VI shows the performance of the model
when the output nonlinearity is replaced by

qlt] = av[r] + b, (24)

where @ = 0.7013 and b = 49.9794. Comparing with Table II,
it can be seen that the outage rate is increased slightly but that
the linear correlation coefficients and Spearman’s rank corre-
lation coefficients are almost the same. Hence, the simplified
model can also predict TVSQ reasonably well. An important
advantage of this simplified model is its concavity. Indeed,
since the input nonlinearity function is a concave function and
the filter is linear, then at any time ¢, the mapping between
q*[¢] and q[¢] is also concave. Hence, the simplified model can
thus be easily incorporated into a convex TVSQ optimization
problem, which can be easily solved and analyzed.

E. Impulse Response of the IIR Filter

The impulse response of the IIR filter in the simplified
Hammerstein-Wiener model is shown in Fig. 14. Denoting the
impulse response by h[d], we have v[¢] = Zzozoh[d]u[t—d].
Thus, h[d] indicates to what extent the current TVSQ depends
on the STSQ of the d seconds prior to the current time.
In Fig. 14, it can be seen that h[d] is maximized at d = 2.
This means that there is a 2 seconds delay before the viewers
respond to a variation in STSQ. That is a natural physiological
delay, or latency, between a human subject’s observation of
STSQ variations and her/his manual response that is given via
the human interface. Fig. 14 also shows that h[d] takes very
small values when d > 15. This implies that the current TVSQ
value depends mainly on the STSQs over the immediately
preceding 15 seconds. In other words, the visual memory of
TVSQ perception on the videos in our database is around
15 seconds. This observation coincides with our analysis that
the impact of the initial states of the IIR filter persists for
about 15 seconds.

FE. Computational Complexity

The proposed model can predict the TVSQ for HTTP-based
video streaming in realtime. Since the video source is stored at
the server, the STSQs of each second of the video source can
be computed off-line before video transmission starts. During
video transmission, the proposed Hammerstein-Wiener model
can predict the TVSQ in realtime using the pre-computed
STSQs.

For example, on a computer with Intel - Xeon X5680
CPU (6-Core, 3.33GHZ) and 12GB RAM, RRED takes
49.9 seconds to predict the STSQ of one second of 720p
video. Since RRED is used for offline STSQ prediction, this
speed is acceptable. Using the same computer, the proposed
Hammerstein-Wiener model takes 9.9 x 107> seconds to
predict the TVSQ of one second of video. Thus the proposed
model is suitable for real-time TVSQ prediction.
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TABLE V
RESULTS OF LEAVE-ONE-OUT CROSS-VALIDATIONS. HERE {n1,...,np} DENOTES THE SET OF VIDEO SEQUENCES WITH SEQUENCE NUMBERS

FROM 11 TO np. THE PERFORMANCE OF THE MODELS OBTAINED IN CROSS-VALIDATION IS SHOWN IN BOLDFACE. THE PERFORMANCE

OF THE MODEL THAT IS TRAINED ON THE WHOLE DATABASE IS ALSO LISTED FOR COMPARISON

validation set {1....5} {6...,10} {11,...,15}
training set {1,.,15} {6,..,15} {1,..,15} {1,.5.11,.,15} {1,..,15} {1, 11}
outage rate (%) 12.154 13.75 7.98 10.00 4.03 5.00
Tinear correlation 0.866 0.860 0.881 0.875 0.910 0.903
rank correlation 0.864 0.862 0.882 0.879 0.895 0.889
TABLE VI
PERFORMANCE OF THE MODEL IF OUTPUT NONLINEARITY IS REPLACED WITH A LINEAR FUNCTION
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 mean
outage rate(%) 12.00 | 1091 | 10.55 | 16.00 | 9.82 5.45 10.18 | 11.64 | 10.55 | 10.18 | 4.00 1091 | 1.45 6.91 1.09 8.78
linear correlation || 0.840 [ 0.896 | 0.864 | 0.787 | 0.920 | 0.930 | 0.869 | 0.876 | 0.854 | 0.842 | 0.937 | 0.886 | 0.883 | 0.914 | 0.897 | 0.879
rank correlation 0.866 | 0.845 | 0.876 | 0.818 | 0.906 | 0.939 | 0.883 | 0.887 | 0.851 | 0.840 | 0.916 | 0.890 | 0.853 | 0.935 | 0.853 | 0.877
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Fig. 13. Input and output nonlinearities of the HW model. (a) Input
nonlinearity. (b) Output nonlinearity.

V. CONCLUSION AND FUTURE WORK

In this paper, a TVSQ prediction model is proposed for the
rate-adaptive videos transmitted over HTTP. The model was
trained and validated on a new database of quality-varying
videos, which simulate the true rate-adaptive videos commonly
encountered in HTTP-based streaming. Two important con-
clusions are drawn based on our model. First, the behavioral
response of viewers to quality variation is more sensitive
in the low quality region than in the high quality region.
Second, the current TVSQ can affect the TVSQ in the next

Fig. 14. The impulse response of the IIR filter in the first 30 seconds.

15 seconds. Based on our analysis of the proposed model,
the mapping from STSQ and TVSQ is not only monotone
but also concave. This property is desirable in solving TVSQ
optimization problems.

The proposed TVSQ model can be used to characterize
the mapping between video data rate and TVSQ. The rate-
adaptation algorithm can then use the rate-TVSQ mapping to
select an optimal video data rate that not only avoids playback
interruptions but also maximizes the TVSQ.

In this paper, we focus on modeling the impact of qual-
ity fluctuations on TVSQ. Of course, frame freezes and
re-buffering events caused by playback interruptions can also
significantly affect the viewer’s QoE. These events, however,
are quite distinctive in their source and effect on QoE relative
to the types of distortions studied herein. Studying the impact
of playback interruptions on TVSQ is an important future
work, but is certainly beyond the scope of the work presented
here.

APPENDIX A
INSTRUCTIONS FOR SSCQE

You are taking part in a study to assess the quality of videos.
You will be shown a video at the center of the monitor and
there will be a rating bar at the bottom, which can be controlled
by a mouse on the table. You are to provide feedback on
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how satisfied you are with your viewing experience up to and
including the current moment, i.e., by moving the rating bar
in real time based on your satisfaction. The extreme right on
the bar is ‘excellent’ and the extreme left is ‘bad’. There is
no right or wrong answer.

APPENDIX B
GRADIENT CALCULATION FOR MODEL IDENTIFICATION
For the parameter p, we have V,q"[f] =
aqvr] aq™ir] 2qVIr] oq™Iel\
( o1 0 oy 0 o3 0 om ) » where
0q™It] _ pavitlexp(=(y1vit]l + 72))
oy (L+exp(—=(nvit]+y))*
0q™tl  yaexp(=(y1vIt] + 72))
o72 (I +exp(=(Bivlr] + )’
Q] _
0y3 o
0q'V[¢ 1
qal _ . (25)
0y4 1 +exp (—(y1vlzl + 72))
For the parameter b, f and 8, we have
0q"[1]
Veq™[1] = Vev(t
£q (7] I ev[t]
— t
_ _n1yaexp(=(ivli] + y2)) Vevltl,  (26)

(1 +exp(=(y1vIz] + 72)))?
where & can be b, f or 8. Thus we only need to compute
Vgv[t]. For b and f, we have

VvIr] = @D —1y—r + D fa VoVl —d]

d=1

Vevlil = (V- + D, faVevlE — dl.

d=1

27
For B, we have

Vpvltl =D baVgult —dl+ D faVgvit —d],  (28)
d=0 d=1

T
where Vgu[r] = (%, a;ﬁ[;]’ ?ﬁ[:], %) can be computed

similarly as (25).

It may be seen from (27) and (28) that Vpv[t], Viv[t]
and Vgv[t] can be recursively computed. The stability of the
recursions can be ensured by the following lemma.

Lemma 1 (Stability of recursive gradient calculation). If
the roots of polynomial 1 — Y ), faz~? are confined within
the unit circle of the complex plane, the recursive gradient
calculation is stable.

Proof: In (27) and (28), the gradients of Vpv[¢], Viv([¢]
and Vgv|[t] are actually the outputs of IIR filters, where the
denominator of the transfer functionis 1—_), faz~¢. Thus the
roots of 1 =Y/, f4z~¢ determines the stability of the recursive
calculation process and the lemma is proved. ]
To calculate the gradient using (19), we also need to know the

initial values of (q(t, 0))17 to calculate (%)1_ . For the

r
purpose of model training, we simply set (ﬁ(t,ﬂ)) =

1:r
(q¥(z,9)),,,- Thus, we have %0 _ oqtld _ 0,Vt<r.
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