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Abstract

We propose an algorithm for assessing probabilistic performance constraints for systems including
components with uncertain delays. We make a case for designing systems based on a probabilistic
relaxation of performance constraints, as this has the potential for resulting in lower silicon area and/or
power consumption. We consider a concrete example, an MPEG decoder, for which we discuss modeling
and assessment of probabilistic throughput constraints.
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1 Introduction

This paper discusses models and algorithms to support statistical relaxations of worst case constraints on
system performance. Consider, for example, a system which is designed to meet a delay constraint d and
suppose the critical path’s delay Dp is in fact random. A design based on a worst case analysis would ensure
that P�Dp � d� � 0� In our view, for a number of application domains, such designs may be unnecessarily
conservative. For example, suppose the design constraint d can be relaxed in the sense that it can be violated
but only rarely, say P�Dp � d�� 10�6� Such a relaxation of design constraints will in turn allow for a larger
set of acceptable design solutions with hopefully less demanding performance requirements and/or power
consumption. Note that even when performance constraints are truly worst case, in the sense that the system
malfunctions if they are not met, it is reasonable, and possibly beneficial, to still relax the performance
constraints – say, to the same level of certainty as the probability of failure of the system’s components. The
examples in Section 4 suggest that one might expect to benefit significantly from a probabilistic relaxation
of worst case constraints for systems comprising a large number of non-deterministic components.

�The work of G. de Veciana is supported by an NSF Career Grant NCR-9624230. The work of M. Jacome is supported by by
an NSF Career Grant MIP-9624321.
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Uncertainty in the performance of a system’s components may have a variety of origins. For
example, for high-level system representations, such as those used in system level and hardware/software
codesign, uncertainty may be due to a looping index whose exact initial value is unknown, e.g., data depen-
dent [1, 4, 7, 6, 9, 15, 16]. A number of current system-level models use hierarchy and aggregation as a
means of controlling complexity [4, 15]. If such approaches are to succeed, and one is to reason efficiently
about the required performance of such systems during design space exploration, it will become increasingly
critical to capture the performance variability of aggregated system elements.

We propose to use probability distributions to model uncertainty. The distributions may either
be derived from statistical models for the underlying source of variability, estimated based on experimental
data, or gathered through simulation/profiling. Realizing that characterizing distributions is in itself a chal-
lenging and expensive task, in Section 3.1 we propose a crude model based on knowing the mean and upper
and lower bounds on delay. This simple characterization of non-determinism is shown to be conservative
for assessing system performance and eliminates (in some cases) the need for obtaining detailed statistical
information on component delays.

In Section 2 we formulate a probabilistic critical path problem, and propose an approximate
algorithm for assessing probabilistic constraints on systems represented by directed acyclic graphs (DAGs)
with random edge weights. Therein we discuss related work. In Section 3 we discuss modeling distributions
as well as a set of transformations/reductions of typical high-level system models to obtain DAGs which
are in turn amenable to analysis with the proposed algorithm. Synthetic examples exhibiting significant
differences between worst case and probabilistic requirements are presented in Section 4. In Section 5
we discuss a concrete example, showing how our approach might be applied to modeling and assessing
throughput constraints for an MPEG decoder. We conclude with a discussion of research/implementation
directions we are currently pursuing.

2 Algorithm for Assessing Probabilistic Constraints

Consider a weighted directed acyclic graph G�V �E�� Suppose a source node s � V is selected and let Ps
denote the set of paths starting at s� Naturally, a path p is an ordered set of adjacent edges in the graph,
i.e., p � E � The standard critical path problem assumes that edges have fixed weights, and determines the
longest path, in terms of cumulative weight, in Ps. Algorithms to solve this problem are well known and have
a runtime complexity of Θ�jV j� jE j�� Suppose random weights (delays) De, with arbitrary distributions,
are associated with edges e � E of the graph. We pose an analogous probabilistic critical path problem as
follows: given a delay constraint d, identify which path is most likely to violate the constraint and what is
its probability of failure.

Assuming edge delays are mutually independent, a path’s delay, denoted by Dp � ∑e�p De, has
a distribution given by the convolution of its edge’s delay distributions. The probability that a path p fails to
meet the delay constraint d is denoted by

πd�p� � P�Dp � d��

We state the probabilistic critical path problem as follows:

Problem 1 Find p� � Ps, not necessarily unique, such that πd�p�� � πd�p� for all p � Ps� and determine
the probability πd�p�� that the constraint will be violated.

In general this problem is difficult to solve, primarily because the edge weights of a path are not additive
(due to the convolution) and thus cannot be decomposed along the path as is usual when using dynamic
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programming approaches. In fact, by adapting a Lemma 2 in [5], one can show that Problem 1 is NP-hard,
suggesting that one should seek good heuristics.

A word of warning is in order. There are two reasons why the probabilistic critical path prob-
lem should not be interpreted as the equivalent of the standard critical path problem when the weights are
random. First, the problem is predicated on specifying a constraint d with respect to which a probabilistic
critical path is identified. Second, and more subtly, we compare the performance of individual paths with
each other, rather than assessing the maximum of the delays across all paths. Whereas in the case with
deterministic weights these two problems are equivalent, in a graph with random weights they certainly are
not. The discussions on modeling in x3 and examples in x4 further elucidate this point.

2.1 Previous Work

To our knowledge there is no previous work addressing the above problem. Our work was inspired from
recent work in network routing considering the uncertainty in the delay or bandwidth availability at remote
links [5]. The flavor of the approach, in particular our use of the Chernoff bound to perform constraint
analysis for a simple example, can be found in [6][page 112]. However, both our formulation of the proba-
bilistic critical path problem as well as the proposed systematic algorithm are new. We also note that there
are efficient algorithms for determining the most reliable path through a network with unreliable links, a
problem which arises in voice recognition and Viterbi decoding applications. However such problems are
significantly easier (can be reduced to a the traditional shortest paths problems) than the problem we address
here.

2.2 Approximate Algorithm

We propose an algorithm to solve the probabilistic critical path problem based on an approximate formula-
tion as a convex optimization problem. The edge weight distributions De on the DAG are represented via a
parametric weight Λe�θ� � logE exp�θDe� for θ� 0� i.e., the moment generating function of the delay distri-
bution on the edge. This results in a collection of DAGs with deterministic weights Λe�θ� parameterized by
θ� Our algorithm solves an optimization problem over this set of parameterized DAGs by using the standard
critical path algorithm. The derivation of the algorithm has been relegated to Appendix A.

Initialization: check that the problem is “well posed” by verifying that:

1. the constraint d exceeds the critical path delay for the graph where the weights are given by the
mean edge delays;

2. and, the constraint d is bounded by the critical path delay for the graph with weights given by
the maximum (possibly infinite) delay on each edge.

Optimization: determine the maximum f��d� and the optimizers θ̂ and p̂ for the following optimization
problem

f ��d� � sup
θ�0

�θd�max
p�Ps

∑
e�p

Λe�θ�� � θ̂d�∑
e� p̂

Λe�θ̂�� (1)

Note that evaluating maxp�Ps ∑e�pΛe�θ� for some θ requires determining the critical path in a graph
with edge weights Λe�θ��

Result: a guaranteed upper bound on the probability of failure, πd�p�� � exp�� f ��d��, and a candidate
path p̂ most likely to violate the constraint.
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2.3 Algorithm Complexity and Other Remarks

Standard line search methods, see e.g., [12], can be used to determine the supremum, which will be achieved
in the cases of interest, in (1). However some care should taken in selecting an efficient algorithm since each
evaluation of f �θ� � maxp�Ps Λ

p�θ� requires solving a standard critical path problem incurring a runtime
cost Θ�jV j� jE j�. Note that, whatever optimization algorithm is selected, any stopping criterion will yield
an upper bound on the failure probability.

If the edges on the graph have distributions selected from a finite set C then∑e�pΛe�θ� �
∑c�C n�p�c�Λc�θ� where n�p�c� is the number of elements of type c on path p. Such a representation may
be appropriate and improve the algorithm’s efficiency in some cases, particularly when considering a further
optimization over sets of possible implementations, i.e., various parameters c�

Once p̂ is obtained one might attempt to accurately compute the probability of failure for the
path by directly performing the convolution of its edge’s delay distributions. For long paths this might be a
prohibitively expensive operation. Alternatively, if the path achieving the maximum has a large number, n,
of random edges with distributions selected from C , as described above, then one can use the Bahadhur-Rao
estimate to improve upon the Chernoff estimate, see (4) in Appendix A. Moreover it may also be of interest
to examine the sensitivity of the probability of failure to the constraint d. Techniques for performing these
tasks are further discussed in the Appendix B.

3 Modeling Issues

3.1 Modeling edge delay distributions

In practice it may be difficult to characterize the edge delay distributions, or equivalently the correspond-
ing functions Λe�θ� � logE exp�θDe�� Fact 3.1 below shows that one can find a simple uniform bound on
Λe�θ� � Λ̄e�θ�� given a minimal amount of information on the distribution of De� This in turn allows us to
replace the weights on such edges by an upper bound. By considering (5) it should be clear that the proposed
algorithm would once again give a conservative estimate for the probability of failure.

Fact 3.1 (See e.g., [13, 8]) Suppose that bounds, le � De � ue, are known for the edge (or path) delay, as
well as an upper bound me on the average delay EDe � me � ue� Let D̄e be a Bernoulli random variable on
fle�ueg with mean me, i.e.,

P�D̄e � ue� �
me� le
ue� le

� and P�D̄e � le� � 1�
me� le
ue� le

�

then �θ we have that Λe�θ�� Λ̄e�θ� � logE exp�θD̄e��

3.2 Hierarchical representations and reductions to directed acyclic graphs

In general a hierarchical high-level system model comprises a variety of nodes and arc’s representing com-
putations and flow of control constructs, including branching, looping, and possible synchronization re-
quirements, see e.g., [9, 7, 4, 1, 15]. Rather than formally defining such a framework we will exhibit some
cases that arise and the manner in which they are reduced to a corresponding DAG. Below we show how
the delay weights associated with traversing the nodes in Fig. 1 can be reduced to equivalent path weights.
Generalizations of these cases to more than two non-intersecting (independent) sub-paths should be clear
from the discussions below.
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Figure 1: Probabilistic branching, looping, and synchronization reductions.

3.2.1 Reducing nodes with probabilistic branches.

Consider the left node in Fig. 1. Within the node, a branch is modeled probabilistically, in the sense that one
of the two sub-paths, p1 or p2, is selected at random. Suppose the branching probability is γ then the weight
for the sub-path p through this node is given by

Λp�θ� � γΛp1�θ���1� γ�Λp2�θ��

Note that if a branch is not modeled probabilistically (due to lack of information) then both paths would be
kept in the eventual DAG.

3.2.2 Reducing nodes with iterations or feedback loops.

Consider the middle node in Fig. 1. It represents a node in which there is an uncertain number of iterations
through path p1, which can be modeled via a loop index random variable, say N � 0. Let D�n�� denote the
delay for the nth loop execution. Suppose these delays have a common distribution, D�n� � Dp1 , and are
mutually independent and independent of the loop index N.

The delay Dp for a sub-path through this node is Dp �∑N
n�1 D�n�� i.e., a random sum of random

variables. The weight for the node can be computed by conditioning on N to obtain

Λp�θ� � logE �exp θDp� � logE �E �exp θ
N

∑
n�1

D�n�jN�� � logE ��E �exp θDp1 ��N � � logMN�E �exp θDp1 ���

where MN�z� � E �zN � is the probability generating function of the loop index’s probability mass function.
For example, suppose the loop index, N, is modeled by a geometric distribution with parameter

γ, i.e., after completion of any iteration the probability of looping back is 1�γ� In this case MN�z� �
γz

1�z�1�γ�
and the overall weight for the sub-path through the looping node is

Λp�θ� � log

�
γexp�Λp1�θ��

1� exp�Λp1�θ���1� γ�

�
�

If the loop index is deterministic, i.e., P�N � n� � 1, then the corresponding DAG would unravel the loop,
i.e., the weight for a path through this node would be Λp�θ� � n�Λp1�θ�.
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3.2.3 Reducing nodes with synchronization constraints.

In general synchronization is the most difficult abstraction to handle, particularly in a setup with random
delays. Consider the rightmost example in Fig. 1, where two paths p1 and p2 must synchronize prior to
leaving the node. The delay incurred in this node, Dp, is given by Dp � max�Dp1 �Dp2 �� the maximum of the
delay along the two paths. The weight for this node would be

Λp�θ� � logE exp�θDp� � logE exp�θmax�Dp1 �Dp2 ���

Unfortunately there is no general way to compute this metric, without explicitly computing the distributions
for the maximum of the delays for the two paths.

Notice that whereas for graphs with deterministic delays we need only consider the worst case
path to deal with synchronization, in the case of random path delays, both paths contribute to the charac-
teristics of the synchronization time – it is this coupling that makes such nodes difficult to address. Below
we consider several special cases and propose ad hoc approximations that deal with a limited amount of
synchronization without requiring costly explicit computation of distributions.

Deterministic path combined with random delay path. Consider the case where only one of the paths,
say p1 has “randomness” while the second path p2 has a constant delay dp2 . Assuming the distribution of
Dp1 is known one might consider explicitly computing the node’s weight:

Λp�θ� � logE exp�θmax�Dp1 �dp2 ��

� log �exp�θdp2 ��P�Dp1 � dp2��E �exp�θDp1 �jDp1 � dp2 ��P�Dp1 � dp2� � (2)

� log �exp�θdp2 ��P�Dp1 � dp2�� exp�Λp2�θ�� � � (3)

Two examples where (2) might be used to compute the weight for a synchronization node follow: first,
suppose Dp1 � uniform�l�u� and the non-trivial case where l � dp2 � u then

Λp�θ� � log

�
exp�θdp2 �

dp2 � l
u� l

�
exp�θu�� exp�θdp2 �

u� l

�
;

second, suppose Dp1 � exponential�λ� then

Λp�θ� � log

�
exp�θdp2 ��1� exp��λdp2 ���

λexp��θ�λ�dp2 �

θ�λ�θ�

�
�

The upper bound (3) could be used to simplify computations in other cases.

Paths with delays on bounded intervals and known means. Suppose the delays on p1 and p2 have
upper and lower bounds and known means, i.e., lpi �Dpi � upi with EDpi � dpi for i � 1�2� In this case the
synchronization time satisfies the following inequalities:

l p � max�lp1 � l p2 �� Dp � max�Dp1 �Dp2 �� max�up1 �up2 � � up and EDp � dp � dp1 �dp2 �

Based on Fact 3.1 a conservative approximation for the weight of Dp is that of a Bernoulli random variable
D̄p with

P�D̄p � up� �
min�dp1 �dp2 �up�

up � α� and P�D̄p � l p� � 1�α�
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Prob. of m � 1�2 m � 1�4
failure n � 10 n � 20 n � 80 n � 10 n � 20 n � 80

Exact 1�07�10�2 2�01�10�4 2�69�10�14 2�96�10�5 1�61�10�9 1�35�10�34

Chernoff 2�52�10�2 6�35�10�4 1�63�10�13 7�38�10�5 5�45�10�9 8�81�10�34

Table 1: Probabilities of constraint violation and Chernoff approximations.

More explicitly we have that

Λp�θ� � Λ̄p�θ� � logE exp�θD̄p� � logfexp�θlp��1�α�exp�θ�up � l p���1��g �

By using the delay metric Λ̄p�θ� for this node we can proceed safely knowing we will still obtain an upper
bound on performance. Note that if dp1 � dp2 � up then this reduces to using the worst case upper bound
on synchronization. However when dp1 �dp2 � up we can still glean some information on the probabilistic
behavior of that node.

Last resort conservative bound. If the paths in the node are “short” relative to the critical path of the
graph then a simple upper bound can be devised by noting that, max�Dp1 �Dp2 � � Dp1 �Dp2 � so it follows
that

Λp�θ�� logE exp�θDp1 �� logE exp�θDp2 � � Λp1�θ��Λp2�θ��

This is likely to be conservative in the probabilistic sense, yet may still be reasonable when compared to the
results obtained using the worst case edge delay.

4 Synthetic Examples: Why use probabilistic v.s. worst case critical paths?

For simplicity let us assume that all edge delays are independent and identically distributed Bernoulli random
variables with mean m, i.e., P�De � 1� � m and P�De � 0� � 1�m� Suppose there is a single path through
the DAG representing a system and it has n edges so Dp �∑n

i�1 Di� Clearly the worst case critical path would
have a length of n. A probabilistic analysis might consider the likelihood that the delay exceeds 90 % of the
worst case delay, i.e., P�Dp � 0�9n�� Table 1 exhibits some results for this setup, where both the length n of
the path and the mean m of the edge delays are varied.

When m � 1�2 and the path is relatively long, say n � 20�80 the probability of failure are
O�10�4� and O�10�14� respectively, possibly small enough to be neglected. Thus a delay constraint which
is 90 % of the worst case, is very likely to be met. For m � 1�4 even a path with a moderate number of
elements n � 10 has a small probability of failure O�10�5� again showing that a probabilistic relaxation of
the constraint is likely to be advantageous.

Based on this simple example it should be clear that as we consider increasingly large systems
with many uncertain elements, the gains of a probabilistic relaxation of constraints will accrue. Moreover
if the delay distributions are such that the average performance is significantly smaller than the worst case
bounds, e.g., 75 % smaller when m � 1�4, then probabilistic constraints are likely to allow a significant
relaxation over the worst case critical path. The failure probabilities in Table 1 were computed exactly
based on Bernoulli distributions and via the Chernoff bound used by our algorithm. Clearly the results
compare favorably, and as expected the Chernoff bound gives an upper bound on the failure probability. In
summary these examples show that if indeed there is sufficient uncertainty in the performance of elements
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on a reasonably large graph, the proposed method is likely to pay off handsomely if one can allow for a
probabilistic relaxation of constraints.

Figure 2: Probabilistic versus worst case critical paths.

In general the probabilistic and conventional critical paths need not coincide. Indeed, con-
sider the graph in Fig. 2, where three edges have independent Bernoulli distributions on f0�1g with means
1�2�1�2�1�8 and the fourth is deterministic with mean 1�2. The worst case critical path is obviously p2 with
a delay of 2�2. Now, given a delay constraint d � 1�5 one can easily show that the probability of violation
is largest on p1, i.e., P�Dp1 � 1�5� � 1�4 � 1�8 � P�Dp2 � 1�5�� This suggests that a designer optimizing
a system based on worst case information may be addressing the wrong path, at least when a probabilistic
relaxation of system constraints is possible.

5 Assessing Probabilistic Constraints for MPEG Video Decoders

In this section we illustrate the practical interest of the proposed algorithm for probabilistic constraint anal-
ysis by considering MPEG video decoders [10, 16, 2, 11]. The MPEG decoder was chosen because of the
presence of non-deterministic (data dependent) delays in some of the key decoding sub-tasks. This exam-
ple illustrates how the inherently variable nature of these tasks makes it interesting to assess probabilistic
throughput constraints.

5.1 Background on MPEG-2

A video stream consists of a sequence of pictures or frames sampled at a given rate. Three basic types
of pictures are defined: intra-coded pictures, which are coded without reference to other pictures; for-
ward/backward predictively coded pictures, which can use motion prediction from a past/future picture;
and bidirectionally-predictively coded pictures, which can use motion prediction from both past and future
pictures. These are referred to as I, P and B pictures respectively.

Pictures are in turn subdivided into a number of macroblocks - a 16 by 16 pixel region. De-
pending on the picture type, a good match might be sought between its macroblocks and other pictures in
the sequence, based on computing motion vectors. Thus a macroblock can be:

	 causal (forward coded): defined from a previous picture, – allowed for macroblocks within P and
B-pictures;

	 non-causal (backward coded): defined from a future picture – allowed for macroblocks within B-
pictures only;
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	 interpolative (bidirectionally coded): defined from a past and a future picture – allowed for mac-
roblocks within B-pictures only.

Non-motion compensated macroblocks, are allowed for all types of pictures, and are said to be intra-coded.
As the MPEG-2 decoder reads the bitstream, it identifies the start and type of a coded picture,

and then decodes each macroblock in the picture, as shown in Fig. 3.

Figure 3: Macroblock decoding in an MPEG decoder.

type of macroblock coding
frame type fraction skip intra-coded forward/backward bidirectional

I 1/15 0 1 0 0
P 4/15 0.0173 0.0658 0.9169 0
B 10/15 0.0848 0.0050 0.2226 0.6876

Table 2: Estimates of branching probabilities for MPEG macroblock decoding.

In Fig. 3, N represents the number of macroblocks in a picture – for the streams being con-
sidered a picture is comprised of 330 macroblocks. The shaded ellipses in Fig. 3 represent basic flow of
control decisions taken during the decoding of each macroblock within a picture. Table 2 shows estimates
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of branching probabilities for these decision points. These estimates were generated by running a software
decoder on a collection of MPEG video traces. The first two columns in Table 2 identify the type of picture
(I, P, or B) and the percentage of occurrence of that particular type of picture in the fixed sequence of pictures
considered for our MPEG-2 decoder. The third column in the table gives the branching probability for the
first decision point in Fig. 3, i.e., the probability that a macroblock will be skipped within a P or a B picture
(note that all macroblocks within an I pictures are intra-coded). The three last columns in Table 2 give the
probability that a given macroblock will be intra-coded, forward/backward coded, or bidirectionally coded,
for I, P and B pictures.

The performance of an MPEG-2 decoder is determined by the individual performance of five
key modules: Variable Length Decoding (VLD), Inverse Quantization (IQ), Inverse DCT (IDCT), Pixel
Interpolation (PI), and Pixel Add (PA) [10]. However not all the modules are executed for every macroblock.
In particular, as shown in Fig. 3, none of the modules is executed for non-coded (or skipped) macroblocks,
and the PI and PA Modules are not executed for intra-coded macroblocks. Moreover, the processing done
by the PI and PA Modules for bidirectionally coded macroblocks is twice of that required by forward or
backward coded macroblocks, since one additional reference macroblock needs to be considered in the first
case. (This extra-processing is the reason for the separation of bidirectionally coded macroblocks from the
two other types of motion compensated macroblocks in the control flow graph shown in Fig. 3.)

The algorithm-level descriptions of the MPEG-2 modules referred to above have been the focus
of extensive studies on optimizations/transformations geared towards performance enhancement [10, 2]. In
our example, we have adopted the set of highly optimized algorithmic descriptions derived by Lee and Kim
[10]. In these behavioral descriptions, the VLC and IQ modules are merged in order to save on write/read
cycles to memory.

5.2 Using Probabilistic Constraint Analysis to Guide the Design of an MPEG2 video De-
coder

The objective in this example is to define/specify the RTL architecture (functional units and registers/memory)
for the key MPEG-2 decoder modules referred to above, so as to derive a decoder supporting a throughput
of 30 frames/sec (which translates into a 33.3 ms decoding time per picture).

Design Option 1 The modules’ RTL descriptions of our initial design, referred to as Option 1, were di-
rectly derived from the modules’ algorithmic descriptions given in [10]. The scheduling of operations within
each module was strictly performed based on data dependencies, i.e., the performance of such modules is
never compromised by resource sharing. Memory blocks were assumed to be implemented by RAMs with
a single read port (with two cycle read operations) and a single write port.

Table 3 shows the resulting execution delays (in # cycles) for the various MPEG-2 decoding
modules. As mentioned previously, the execution delays of the PI and PA modules are given separately for
bidirectionally coded and for forward/backward coded macroblocks.

A crucial observation needs to be made with respect to the numbers shown in Table 3 for the
VLD+IQ Module. The execution delay of that module for each macroblock depends on the number of
non-zero DCTs per macroblock, and is thus data dependent. In [10], the average size of VLCs in typical
MPEG-2 bitstream was reported to be about 4.5 bits which in turn translates to an average of 30 non-zero
DCTs per macroblock, i.e., an average of 484 cycles per macroblock for Option 1. We have used a crude
model for the delay of the VLD+IQ module given by a Gaussian distribution with this mean (see Table 3)
and a standard deviation of 20 % of the mean, to account for the variability in the stream.
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macroblock Option 1 Option 2
prediction type

VLD + IQ (Average) any 484 436
IDCT any 2,304 1,152
Pixel forward/backward 320 160

Interpolation bidirectional 640 320
Picture forward/backward 512 256

Add bidirectional 1024 512

Table 3: Time estimates (# cycles per macroblock) for MPEG modules.

In the upper part of Fig. 4, we show the decoding time distributions for I, P, and B pictures
for design Option 1, derived using the execution delays per macroblock (in # cycles) given in Table 3,
the branching probabilities given in Table 2, and the previously mentioned model for the VLC+IQ block.
Table 4 shows the corresponding average and worst case decoding times (in # cycles) for the three types of
pictures, and also the worst case and average decoding time considering all picture types (given on the last
row of the table).
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Figure 4: Decoding time distributions, for I,P and B Frames for Options 1 and 2

The maximum combinatorial delay for our module’s RTL descriptions was determined to be 43
ns (for a 0.7 µm standard-cell library). So, for a 43 ns clock, our Option 1 design led to an average delay
per picture of 52.6 ms (i.e., the decoder would only sustain a throughput 19 pictures per second), which is
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frame type Option 1 Option 2
I 9.200 / 10.159 5.399 / 6.357

Average / Maximum P 11.559 / 12.500 6.564 / 7.506
(�105) B 12.807 / 13.684 7.134 / 8.011

all 12.234 / 13.684 6.866 / 8.011

Table 4: Average and worst case decoding times, in # cycles for I,P and B frames.

below the target of 33.3 ms per picture (i.e., the desired throughput of 30 pictures per second). Moreover,
the resulting design exhibited a worst case picture decoding delay of 58.8 ms. Option 1 was thus clearly
insufficient in terms of performance, and was dropped.

Design Option 2 A second implementation, which we will call Option 2, was then developed, taking
advantage of the fact that the computations performed by the IDCT, the PI, and the PA Modules can be
easily parallelized. A new design was developed that: (1) has two parallel IDCT units (i.e., can compute
simultaneously two 8x8 2-D IDCTs, each of which is done as a loop whose body computes an 8-point
IDCT); (2) has two parallel pixel interpolation and pixel add units1; and (3) uses RAMs with two parallel
read ports (still with a two cycle read operation).

Table 3 shows the resulting execution delays (in # cycles) for the various decoder modules for
Option 2. The bottom part of Fig. 4 shows the decoding time distributions for I, P, and B pictures for the
new design. Table 4 shows the resulting average and worst case picture decoding delays for the three types
of pictures, and also the worst case and average decoding delays for all picture types.

The maximum combinatorial delay was determined to be 46 ns, using the same standard-cell
library, thus leading to an average decoding delay per picture of 31.5 ms, now below the target delay of 33.3
ms per picture, and to a worst case delay of 36.5 ms. Note, however, that the (relative) gap between the
average and the worst case delays for Option 2 has increased significantly with respect to that for Option
1 (see last row of Table 4). Indeed, in the Option 2 design we have increased the decoder performance by
introducing some parallelism in the IDCT, PI, and PA Modules. As a result, the relative percentage of time
spent on the heavily data dependent VLD+IQ Module, with respect to the total decoding time, has increased
significantly, leading to more significant delay variations across pictures.

It is in cases such as the above that the interest of the systematic algorithm for assessing prob-
abilistic constraints proposed in this paper becomes obvious. Indeed, in order to adequately evaluate the
suitability of the decoder design under discussion, a key piece of information (to be given to the designer) is
the probability that the target delay of 33.3 ms will be exceeded by the particular decoder design. Note that,
based on such a probability, and depending on the specific timing requirements of the application for which
the MPEG-2 decoder is being developed, the outcome of the evaluation might be radically different. Specif-
ically, the Option 2 design could be considered an adequate solution, could be an unnecessarily expensive
solution (in terms of area and/or average power consumption), or could still require further performance
improvements. Table 5 shows the probability of violating the decoding time constraint and the Chernoff
bound, for I, P and B frames and overall obtained by our algorithm. The exact numbers are exhibited to
show the quality of the approximations (upper bound) provided by the algorithm. Based on these numbers,

1Such parallelization is quite inexpensive in terms of silicon area, since the computations performed by those two modules are
very simple.
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the designer would proceed, either by performing yet another iteration at the RTL level, or by starting the
physical design of the decoder.

frame type Exact Chernoff
I P�Delay � 33�3ms� � 0 N/A
P P�Delay � 33�3ms� � 8�364x10�12

P�Delay � 33�3ms� � 1�162x10�10

B P�Delay � 33�3ms� � 5�095x10�4
P�Delay � 33�3ms� � 4�103x10�3

all P�Delay � 33�3ms� � 3�397x10�4
P�Delay � 33�3ms� � 2�735x10�3

Table 5: Probabilities of violating decoding time constraint for Option 2, given a 46 ns clock.

6 Conclusions

In this paper we have formulated a probabilistic critical path problem on a DAG with random weights
and proposed a novel approximate algorithm for determining the likelihood that a constraint is satisfied.
Through a discussion using synthetic and real examples, we have made a case for the importance/relevance
of assessing probabilistic constraints on system performance, whenever the application domain is amenable
to some level of constraint relaxation. Specifically, the ability to analyze the system model so as to derive
less aggressive performance requirements on its various components has the potential to reduce the final
cost and power consumption of the system.

Our algorithm is currently being implemented in Sky [15], a tool for assisting algorithm and
architecture-level design space exploration during system level design. We also plan to implement the
proposed algorithm on a reuse tool currently on its preliminary stage of development.
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A Algorithm Derivation

The algorithm is based on maximizing an upper bound on the probability of failure over paths in Ps� For a
fixed θ � R, Chernoff’s bound gives the following estimate on the probability that a path p, with delay Dp,
fails to meet the constraint:

πd�p� � P�Dp � d�� exp��θd �Λp�θ���

where Λp�θ� � logE exp�θDp� is a convex function [3]. Since edge delays are assumed to be independent,
it follows that

Λp�θ� � logE exp�θ∑
e�p

De� � log∏
e�p

E exp�θDe� � ∑
e�p

Λe�θ��

an additive metric along the path.
Now maximizing the bound over the paths in Ps we obtain

πd�p�� � maxp�Psπd�p�� exp��θd �maxp�PsΛ
p�θ�� � exp��θd � f �θ���
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where f �θ� � maxp�Ps Λ
p�θ� is convex since it is a maximum of convex functions. Furthermore, by mini-

mizing over θ, we obtain the tightest such bound, i.e.,

πd�p��� inf
θ

exp��θd � f �θ�� � exp��sup
θ
�θd� f �θ��� � exp�� f��d��� (4)

where f ��d� � supθ�θd� f �θ��, known as the convex dual of f �θ�, is an (extended) convex function [3].
The proposed algorithm is based on determining f��d�� which in turn requires solving the fol-

lowing, possibly unbounded, convex optimization problem:

f ��d� � sup
θ
�θd� f �θ��� (5)

The initialization step ensures that the problem is “well posed” in the sense that, both, the optimization in (5)
is bounded, and the delay constraint is meaningful. Standard arguments concerning convex dual functions
of random variables lead to the two following requirements, which are used to initialize the algorithm and
limit the search space to θ� 0 [3][page 27]:

1. If d is greater than the critical path delay for the graph in which edge metrics are the average delays,
EDe , then we need only to optimize over θ� 0;

2. The optimization problem is bounded, as long as the delay constraint d can be achieved by some path
in the network. In particular, if any edge on a path in Ps has a distribution with unbounded support
R
� , e.g., exponential distributions, this will automatically be true. Prior to initiating the optimization

one should ensure that d is less than the critical path delay on the graph with weights given by the
maximum achievable2 delay for each edge.

If these conditions are satisfied, (5) is bounded, the resulting maximizerθ̂ is unique, and there is an asso-
ciated path p̂, not necessarily unique, such that f �̂θ� � maxp�Ps Λ

p�θ̂� � Λp̂�θ̂�� As a result one obtains a
guaranteed upper bound (4) and a candidate path p̂ for the one most likely fail the constraint.

B Bahadur-Rao and Sensitivity Estimates

Consider the framework suggested in Section 2.3. Suppose that Λ�θ��∑c�C
n� p̂�c�

n Λc�θ� where n�∑c�C n� p̂�c��

and σ̂2 � d2Λ�θ̂�
d2θ � If the path p̂ resulting from the optimization in (5), has a large number of elements n the

Bahadhur-Rao estimate [3] gives the first approximation below

P�∑
e� p̂

De � d�

1p

2πnθ̂2σ̂2
exp�� f ��d��


1p
4π f ��d�

exp�� f ��d���

The second approximation is a heuristic proposed in [14] requiring no further computation beyond the
original exponent obtained from the optimization. In either case the new estimates for πd� p̂� are likely to be
more accurate, but are no longer guaranteed to be upper bounds for the probability of failure πd�p���

It is also of interest to asses changes in the probability of failure upon varying the delay con-
straint d� To this end one could construct a parametric fit, e.g., quadratic, for the convex function f���� based

2We can define this rigorously as, de � supfdjP�De � d�� 0g.
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on evaluating the function at several points. Notice that f���� determines the probability of failure through
the exponent, so function approximation errors would translate to even larger errors on the estimates of
the failure probability. Nevertheless we believe this can be useful to quickly assess the sensitivity of the
probability of failure to the system constraint d�
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