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Abstract--We consider the stability and performance of a model 
for networks supporting services that adapt their transmission to 
the available bandwidth. Not unlike real networks, in our model, 
connection arrivals are stochastic, each has a random amount of 
data to send, and the number of ongoing connections in the system 
changes over time. Consequently, the bandwidth allocated to, or 
throughput achieved by, a given connection may change during its 
lifetime as feedback control mechanisms react to network loads. 
Ideally, if there were a fixed number of ongoing connections, such 
feedback mechanisms would reach an equilibrium bandwidth al- 
location typically characterized in terms of its "fairness" to users, 
e.g., max-min or proportionally fair. In this paper we prove the sta- 
bility of such networks when the offered load on each link does not 
exceed its capacity. We use simulation to investigate performance, 
in terms of average connection delays, for various fairness criteria. 
Finally, we pose an architectural problem in TCP/IPs decoupling of 
the transport and network layer from the point of view of guaran- 
teeing connection-level stability, which we claim may explain con- 
gestion phenomena on the Internet. 

Index Terms--ABR service, bandwidth allocation, Lyapunov 
functions, performance analysis, proportional fairness, rate 
control, stability, TCP/IP, weighted max-min fairness. 

I. INTRODUCTION 

F UTURE communication networks are likely to increas- 
ingly support elastic or rate adaptive applications that 

permit  varying the data transmission rate to match the available 
network bandwidth while achieving a graceful degradation in the 
perceived quality of service [28]. Transport services compatible 
with such applications are already supported on the Internet. In- 
deed, TCP is based on end-systems adjusting their transmissions 
in response to delayed or lost packets, which can be an implicit  
indicator of  available bandwidth [14]. Similarly, available bit 
rate (ABR) service, defined for ATM networks, draws on both 
the end-systems and network elements to implement such func- 
tionality through adaptive rate control mechanisms that strive 
to allocate the available bandwidth among ongoing connections 
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[5]. Typically such mechanisms represent an efficient way to 
carry traffic corresponding to elastic applications, e.g., today 's  
file transfers and future highly adaptive voice/video applications. 

Since mechanisms to adapt transmission rate typically draw 
on delayed (implicit or explicit) feedback from the network, 
much work has been devoted to establishing their stability. 
These results have usually been developed for networks sup- 
porting afixed number of connections. Stability, in this context, 
is usually interpreted as avoiding queue/delay buildups, and/or 
somewhat loosely as ensuring that transmission rates converge 
to an equilibrium corresponding to a bandwidth allocation 
among ongoing connections [2], [3], [6], [29], [19], [1], [16]. 
An equilibrium bandwidth allocation is usually characterized in 
terms of its "fairness" to users, e.g., max-min  or proportional 
fairness [4], [15]. Thus given a fixed number of  users and 
fixed network capacities, one can typically arrange (through 
an appropriate control mechanism) to achieve an equilibrium 
which represents, according to some criterion, an equitable 
allocation of resources among users [24], [17], [20]. 

By contrast very little is known about network stability and per- 
formance when the number of  ongoing connections is in constant 
flux. Previous work along these lines has focused on studying 
transients, i.e., how quickly will the transmission rates reach a 
new equilibrium. In this paper we consider a novel model  that 
includes stochastic arrivals and departures of  elastic flows/con- 
nections. We abstract the queueing and rate adaptation that would 
be taking place in the network by assuming that an equilibrium, 
and thus appropriate bandwidth allocation is immediately 
achieved upon a change in the number of  ongoing connect ions. '  
Thus, in essence, we assume a separation of time scales between 
the time scale of  connection arrivals and departures and that on 
which rate control processes converge to equilibria. 

Paralleling models used in the circuit switched literature, we 
assume connection arrivals processes are Poisson and that each 
connection has a random, exponentially distributed, amount of  
data to send.~ In contrast to circuit switched models, the band- 
width allocated to each user is a function of  the global state 
of  the network. Indeed, recall that the bandwidth allocated to 
a user depends on the equilibrium achieved by the rate control 
mechanisms and the number of  ongoing connections. Our goal 
in this paper is to determine when this network model  is stable 
and compare connection-level performance for networks using 
different types of  rate control and thus operated under different 
fairness policies. 

In general, one expects work conserving systems to be stable 
when the offered load to each link (queue) in the network 

1This arrival model is reasonable for connections generated by a large popu- 
lation of independent users. The exponential assumption simplifies our analysis 
but is likely not to be critical for the stability results in this paper. 
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does not exceed its capacity. However, given the complex 
network-wide interactions underlying the bandwidth allocation 
mechanism, a demonstration of  this fact was deemed important. 
Indeed, this model  can be said to be "nonwork conserving" 
in the sense that a link supporting active connections may not 
be operating at a full utilization because its connections are 
"bottlenecked" e l sewhere - -a  typical sign of  a potential for 
instability. In this paper we come to terms with this problem 
by showing the stability of  our model  when natural conditions 
are satisfied. 

Since ours is a higher layer model, it is logical to consider net- 
work-level performance, say in terms of  average connection de- 
lays. This is important because the goals of  fairness and low con- 
nection delays may not be compatible, and should be examined 
prior to committing to a particular architecture for large-scale 
broadband networks. Moreover, network designers might want 
to dimension capacities to achieve a reasonable responsiveness, 
say for web browsing, when the network is subject to typical 
loads. Our preliminary simulations suggest that indeed it may 
be of  interest to examine more carefully the impact of  a given 
fairness criterion and topology on the overall network perfor- 
mance. 

Consideration of  the stability of this system model points to 
an insidious architectural problem in networks supporting adap- 
tive services of  this type. To achieve connection layer stability 
we must ensure that connection-level loads do not exceed link 
capacities. This in turn requires that the routing layer be aware 
of  the connection-level offered loads. However, today 's  routing 
algorithms, if  at all, draw on link averages of utilization and/or 
packet delays. Such metrics reflect the connection-level offered 
loads quite poorly, since connections are adapting their trans- 
mission rates depending on link congestion. Loosely speaking, 
the router is indifferent to the fact that a 90% link utilization may 
be due to a single traffic source or a thousand sources transmit- 
ring at a thousandth of  the latter 's  rate. Herein lies yet another 
possible explanation for the types of congestion currently expe- 
rienced on the Internet, i.e., connection-level instability. 

To our knowledge only the work in [27] has attempted to 
tackle this type of  system model. Their work provides an ex- 
plicit analysis of the performance of  linear networks under the 
proportionally fair bandwidth allocation, as well as l imited per- 
formance comparisons via simulation. The authors argue for the 
need to perform light-weight call admission if  performance tar- 
gets are to be met. The main contributions of our work is a rig- 
orous analysis of stability for a general network model  under 
several bandwidth allocation criteria, and additional simulations 
investigating additional performance characteristics for linear 
networks. This paper is an extended version of [8] including 
some additional results for proportional fairness, discussions, 
and simulations. 

The paper is organized as follows. In Section II, we present 
our model  and define the max-min ,  weighted max-min  and 
(weighted) proportionally fair bandwidth allocations. Next, in 
Section III we show the stability of  the model by constructing 
appropriate Lyapunov functions. Performance issues are dis- 
cussed in Section IV. In Section V we return to our question 
concerning possible connection-level instabilities in current net- 
works and discuss future work. 

TABLE I 
SUMMARY OF KEY PARAMETERS FOR SYSTEM MODEL 

ct 

~r 

P~ 
M 

n r  
n 

u(n) 

capacity of link ~ E E (bits/sec) 
arrival rate of connections on route r E "R 
(connections/sec) 
mean volume for connections on route r E "R (bits) 
offered load Pr = Arvr to route r E "R (bits/sec) 
route link incidence 0-1 matrix 
state of route r (connections) 
network state vector n = (n. ,  r E ~ )  (connections) 
bandwidth allocated to route r (connections/sec) 
bandwidth allocation vector/.~(n) = (Dr(n), r E 7~) 
(connections/sec) 

II. NETWORK MODEL AND BANDWIDTH ALLOCATION 

SCHEMES 

Table I summarizes the key parameters for our system model. 
Our network model consists of a set of links 12 with fixed capac- 
ities c = (ce, e E 12) in bits/s shared by a collection of  routes 
7~. Routes are undirected and may traverse several links in the 
network. A 0-1 matrix M = (Me~, g E 12, r E 7¢) indicates 
which links a route traverses. In other words, Me~ = 1 if  route 
r uses link g and zero otherwise. 

The dynamics of  the model are as follows. New connections 
are initiated on route r E ~ at random times forming a Poisson 
process A~ with arrival rate A~ connections/s. The collection of  
processes A = {A~, r E 7"¢}, with rates A = (A~, r E 7-¢) are 
assumed to be independent. Each connection on route r E 7-¢ 
has a volume of  data (in bits) to transmit, which is assumed to be 
an exponentially distributed random variable with mean v~ bits. 
We let v = (v~, r E ~ ) .  The random variables representing 
connection volumes are thus i.i.d, and assumed to be indepen- 
dent of  A. We let 

p r : ~ r V r  

denote the offered load along route r ,  expressed in bits/s, and 
let p = (p~, r E 7"¢). 

The "state" of  the network is denoted by n = (n~, r E TO) 
where n~ denotes the number of  ongoing connections on route 
r.  We assume that the bandwidth allocated to each ongoing con- 
nection depends only on the current state n of  the system. Let 
#~(n) denote the total bandwidth allocated to connections on 
route r when the system state is n, expressed as a service rate 
in connections/s. As explained in the sequel # r ( n )  is given by 
the bandwidth in bits/s allocated to route r divided by the mean 
volume v~ for connections on this route. The choice of  the func- 
t ions/~ = (#~: 7/+ n ~ •+, r E 7~) will be described in the 
sequel. If  the state of  the system changes during the sojourn 
of  a connection (e.g., due to the establishment of  a new con- 
nection or the termination of an existing one), then there may 
be a corresponding change (speed-up or slow-down) in its ser- 
vice rate. Indeed, since no arriving connections are blocked, new 
connections must be accommodated by changing the bandwidth 
allocation and when bandwidth becomes available due to de- 
parting connections it is reallocated to the remaining ones. We 
assume that ongoing connections are greedy in the sense that 
they will use whatever network bandwidth is made available to 
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them. Note that in reality a given connection may have a limit on 
the rate at which it can transmit, e.g., may be limited by the ac- 
cess network or network interface card. Herein we shall assume 
that such bottlenecks have been explicitly modeled by incorpo- 
rating limited capacity access links in the network. 

The overall evolution of the system can be defined as follows. 
Recall that Ar (t) denotes the number of connections arriving on 
route r on the time interval (0, t ] - - a  rate-At Poisson counting 
process. We let Dr  (t) be another independent unit rate Poisson 
process associated with departures from route r. Letting N(t )  = 
(Nr(t) ,  r E r E 7"~) denote the random process capturing the 
number of connections on the routes, for r E ~ and t >_ 0, we 
have 

) Nr(t)  = NT(O) + At( t )  - Dr #r (N(s ) )  ds (1) 

i.e., arrivals minus departures. Note that the state dependent 
service rates along each route in the network are captured by 
rescaling the time axis for the departure process, i.e., speeding 
it up or slowing it down depending on the bandwidth I tr(N(s))  
allocated to that route. It should be clear that given an initial 
state N(O), this evolution equation has a unique solution. More- 
over, if the initial condition N(O) is selected independently of  
the arrivals and serrviceprocesses then the ~ - v a l u e d  process 
N = (N(t) ,  t _> 0) is Markovian. 

In the sequel, we describe various bandwidth allocation 
schemes, or, equivalently, various possible functions #. In 
palrticular we will use # ~ ,  #~,  and #P to denote the max-min, 
weighted max-min,  and weighted proportionally fair band- 
width allocation functions, respectively. As will be seen, 
these are functions, of  the state n, the capacity vector c, the 
mean connection sizes v, the routing matrix M,  and the type 
of  rate control used on the network. In contrast to standard 
queueing models, which track packets and queues throughout 
the network, it is through the dependence of the allocated 
bandwidth on the number of  ongoing connections that the 
evolution (1) captures the dynamics of  the system. Also note 
that we have assumed that connections are not rerouted once 
they are initiated. One could in principle account for rerouting 
or splitting of  flows across the network but this will not be 
considered here. Finally, as explained below, we reiterate 
that the allocated bandwidth #r  will be measured in units of  
connections/s rather than bits/s. 

A. Max-Min Fair Bandwidth Allocation 

We first consider max-min fair bandwidth allocation. An al- 
location is said to be max-min fair if the bandwidth allocated to 
a connection cannot be increased without also decreasing that 
of  a connection having a smaller or equal allocation [4]. For 
a single link network this translates to giving each connection 
traversing the link the same amount of bandwidth. In general 
one first determines what would be the maximum minimum 
bandwidth one could assign to any connection in the network 
and allocates it to the most poorly treated connections. One 
then removes these connections and the allocated bandwidths 
from the network, and iteratively repeats the process of  max- 
imizing the minimum bandwidth allocation for the remaining 
connections. More formally the max-min fair allocation can be 

defined in terms of  a hierarchy of optimization problems, de- 
scribed in detail in [12], which are easily solved via the above 
procedure. Below we briefly review how given the state n of the 
network one determines the max-min fair bandwidth allocations 
per connection and in turn determines the bandwidth allocations 
(#~(n ) ,  r E ~ ) p e r  route. 

Let the vector a* = (%*, r E 7~) be the max-min fair allo- 
cation where a~* denotes the bandwidth, in bits/s, allocated to 
a single connection on route r. Notice that we have suppressed 
the dependence of  a* on n. Since all connections on the same 
route get the same allocation so # ~ ( n )  -1 • = vr n r %  now mea- 
sured in connections/s. We determine a* as follows. First for 
all routes r E 7Z such that nr  = 0 we set a ;  = 0 and thus 
/z~(n) = 0. Next we solve a hierarchy of  optimization prob- 
lems starting with 

:=  L a x / m i n a r :  E Mernrar < g 6 12} (2) f(1)(n) 
l 

r67Z _ eg~ 
rE?~  ) 

which co~esponds to maximizing the minimum bandwidth per 
connection subject to the link capacity constraints. It can be 
shown, see [12], that the solution to this problem is given by 

( i )  ( i )  C£ 
f(1)(n) = min f~ (n) with f~ ( n ) . - -  (3) 

gEE E Mirnr 
rrT~ 

where fe(1)(n) can be thought of  as the fair share at link g, 
i.e., the bandwidth per connection at link g if its capacity were 
equally divided among the connections traversing the link. 

(1) Let 12(1) be the set of  links ~ such that f~ (n) = f(1)(n).  
This is the set of first-level bottleneck links. The set of  first-level 
bottleneck routes T~ (1) is the set of  routes traversing a link in 
12(1). These two sets make up the first-level of  the bottleneck 
hierarchy. Finally, for each route r 6 7~ (1), let a :  = f ( i ) (n ) .  
The remaining, if any, components of  a* are determined by re- 
peating this process on a reduced network as explained next. 

In the second step, if it arises, the algorithm replaces the sets 
12 and 7~ by 12 \ 12(1) and T~ \ 7~ (1), respectively where, A \ B 
is the difference of  between sets A and B.  The new state of the 
system is simply the projection (nr, r E T~ \ 7~(1)), and a new 
link capacity vector, e (1) is defined on £ \ 12(1), where ce is 
reduced to 

c ~ l ) = c e -  E Me * ' n r f (1 ) (n )=c e - f (1 ) (n )  E Mernr. 
r ETa,( 1 ) r ET~.( 1 ) 

From (2) and the definition of  £(1) it is clear that the reduced 
capacities are nonnegative. A new problem paralleling (2) but 
on the reduced network (with reduced sets or routes and links, 
reduced state, and reduced capacities--as described above) is 
then defined and solved to obtain a new value f(2)(n),  and 
second-level bottleneck sets 12(2) and 7:~ (2). Finally, for r E 
T~ (2) we set %* = f(2)(n).  If  necessary, this process is once 
again repeated, but, since the sets T~ (1) , 7~ (2) , . . .  are nonempty, 
it terminates in a finite number of  steps, uniquely specifying the 
vector a* and thus/ t  "~ (n). 

Notice that, in the above procedure, n need not be integer 
valued, hence #m (n) can be easily extended for real-valued ar- 
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guments. We shall use the same notation to denote the extension 
of  ,a~ from Z~ to R~.  Some straightforward properties of  this 
function are summarized below. 

Proposition 2.1." The function ,am: R~ ~ R~ is radially 
homogeneous, in the sense that 

= , a m ( x ) ,  x • . > o. 

In the interior of the positive orthant R~, the function ,a~ is 
continuous, and has strictly positive components. Finally, ,am is 
bounded. 

The proof of this proposition can be shown by induction on 
the bottleneck hierarchy, considering the dependence on x of  
the max-min fair bandwidth allocation. 

Notice that although the bandwidth allocation policy re- 
flected in ,am is max-min fair this may not lead to an "optimal" 
network performance, say in terms of  connection delays. In 
general to address this issue one might want to give different 
priorities to connections based on their routes, whence, in 
the next section we briefly discuss weighted max-min fair 
bandwidth allocations. 

B. Weighted Max-Min Fair Bandwidth Allocation 

Let w = (w~, r • 7~) be positive "weights" associated with 
qA)* each route in the network, and a ~* = (% , r • ~ )  denote the 

weighted max-min fair bandwidth allocation vector. For a given 
state n we determine a ~* in  a similar fashion to the max-rain 
fair allocation. First for all routes r • 7~ such that n~ = 0 set 
ar ~* = 0. Next, replace (2) with 

fO), ZO(n ) 

: =  m a x  l < c" e • C} 

which can again be solved by first defining the weighted fair 
share on link g as 

fe (1)' W(n) . -  

and then setting fO)'W(n) 

C~ 

• M e ~ w r n ~  

r C T ~  

(4) 

= mine~c f~l)'W(n). Paral- 
leling the max-rain fair case, the first-level bottleneck links 
and routes, denoted £ 0 ) , ~  and 7¢ (1), w respectively, can be 
defined, and one can proceed iteratively to determine the 
bandwidth allocation for connections on all routes. We will 
let ,a~ (n) denote the vector of bandwidths allocated to each 
route where ,a~(n) = w~v~ln~a~ * connections/s, and let 

= R+,  ,. • n ) .  
One can again extend ,aw for real-valued arguments, i.e., from 

Z~ to R~, and show that 

,aW(x) = #m(Dx) (5) 

where ,um corresponds to the unweighted max-min fair alloca- 
tion discussed in the previous section, and D = diag(w), i.e., a 
square matrix with components (w~, r • 7~) along its diagonal. 
Thus one way to view the weighted max-min fair allocation is 

as a max-min fair allocation where the "effective number" of  
ongoing connections is Dx. Moreover, one can easily see that 
the results in Proposition 2.1 also apply to ,a~. 

A weighted max-rain fair allocation can be used to differ- 
entiate among connections following different routes and thus 
give priority based on geographic, administrative, or service re- 
quirements by grouping like connections on a route. However, in 
order to do so specific criteria for the selection of  weights need 
to be developed. In principle one can consider control policies 
which adjust the weights based on the state of the network--a  
simple example is briefly considered in [18]. 

C. Proportionally Fair Bandwidth Allocation 

As a final alternative we consider a framework where utility 
functions U~: R+ ~ R, r • 7¢ have been associated with users 
whose connections follow particular routes. Here U~ (at)  is the 
utility to a user/connection on route r of a bandwidth allocation 
a~. A bandwidth allocation policy which maximizes the total 
network utility when the state is n can be obtained by solving 
the following optimization problem: 

max I Z n~U,,(ar): E Mern~ar _< ce, g • £ }  (6) 
a > 0  k rETd. rET~ 

where we assume that the utility functions are strictly concave 
and so the optimizer is unique. This approach to allocating band- 
width is pleasing in the sense that it finds an appropriate com- 
promise between the resources required by a user's connection 
and the overall network utility. 

In general it is unclear what types of  utility functions would 
appropriately model the users. However, [15] and others, have 
considered the case where Ur (a~) = wr log a~. In this case they 

p* have shown that the maximizer a p* = (a T , r • corre- 
sponds to a (weighted)proportionally fair bandwidth allocation, 
in the sense that the optimal allocation satisfies the link capacity 
constraints, and for any other feasible rate a ~ = (@, r • 7¢), 
the aggregate weighted proportional change is nonnegative, i.e. 

t p *  
a t - a n  < 0 .  (7) 

W r n  r p-------~----- __ 
a r  

r E ' R .  

Determining the maximizer of  (6) for log utility functions can 
be done explicitly for simple networks. Alternatively, as with 
max-min fairness, one can design rate control mechanisms that 
converge to the associated bandwidth allocation [16]. We will 
let 

,a~(n) = wrv~-lnra~ * 

denote the total bandwidth allocated to connections along route 
r • 7"4, in connections/s, and ,aP(n) = (,a~(n), r • 7-4). Again 
,aP can be easily extended for real-valued arguments. We shall 
use the same notation to denote the extension of ,aP from Z~ to 

Proposition 2.2: The function ,aP: R~ ~ R~ is radially 
homogeneous, in the sense that 

,ap( x) = ,ap(x) ,  x • > 0. (8) 
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In the interior of the positive orthant R~, the function U p is 
continuous, and has strictly positive components. Finally, U p is 
bounded. 

Proof" The continuity of U p follows by considering the 
functional dependence on x of  the proportionally fair bandwidth 
allocation. The radial homogeneity can be shown as follows. 
Consider a change of variables br = Xrar in (6) for the case 
of weighted logarithmic utility functions. Here b,. denotes the 
bandwidth, in bits/s, allocated to route r. With this change of  
variables one finds that 

(9) 

from which it follows that b* (c~x) = b* (x) and since U~(x) = 
WrV~-%~*(x) it follows that UP(c~x) = UP(x). • 

III.  STABILITY OF THE STOCHASTIC NETWORK 

In this section we will consider the stability of the stochastic 
network model defined in Section II for various types of  band- 
width allocation. Assuming {A,., Dr,  r E ~ }  are independent 
Poisson processes on [0, oc), where Ar has rate Ar and Dr  has 
rate 1, the evolution equation (1) defines a Markov chain in Z~ 
with transition rates 

At, m = n + er, r E ~ 
q ( n , m ) =  u~(n), m = n - e  r , r E T ¢  (10) 

O, otherwise 

f o r m  ~ n with e r = (~ ,se  r E 7~) a n d e s  ~ = l ( r  = s), 
and where 1( ) denotes the indicator function. Thus, when the 
state is n, route r sees arrivals with rate Ar and departures with 
rate ur (n) .  Note that when nr = 0 we have U,.(n) = 0, thus 
q(n, n - e ~) = 0, and so the rates are supported on the positive 
orthant. 

We use the notation Q for the infinitesimal generator (viz., 
rate matrix) of  this continuous-time Markov chain. For a func- 
tion cp: R~ --+ R, we write 

Q (n) := Z 
m E Z ~  

= E q(n, m)[~(m)  - 9~(n)] (11) 
m E Z ~  

where the latter equality follows from the fact that Q is conser- 
vative: 

ra¢n 

Note that Q#(n) can be interpreted as the expected drift, i.e., 
the change in ~(U(t))  when U(t)  = n. 

Clearly the Markov chain {N(t ) ,  t _> 0} is irreducible, and 
we say that it is stable, if and only if it is positive recurrent. 
We will show positive recurrence by constructing a Lyapunov 

function [23], [10]. For our system, a Lyapunov function is any 
function V: 7/~ --+ R+ such that there exists a finite set K C_ 
Z+ ~,  where 

sup QV(~) < 0 (12) 
nf[K 

with QV as defined in (11). Using our formula (10) for the tran- 
sition rates we can rewrite QV as 

OV(,~) = ~ {Ar[V(n + er) _ V(n)] 
r E ~  

+ u ~ ( ~ ) [ v ( ~  - ~ ' )  - v ( ~ ) ] } .  (13) 

Intuitively, (12) means that when the process N(t)  lies outside 
K,  it is such that on average V(N( t ) )  is decreasing, i.e., has 
negative drift. Searching for appropriate Lyapunov functions 
can be a tedious procedure. Particularly in our case since the 
transition rates of  our Markov chain are defined via optimiza- 
tion problems associated with the various bandwidth allocation 
criteria to be considered. 

A. Stability Under Max-Min Fair Bandwidth Allocation 

We first consider the stability of the network when bandwidth 
is allocated according to the max-min fair criterion and thus the 
dynamics of the system are captured by (1) with # replaced by 
#m as defined in Section II-A. 

We begin by proposing the following candidate Lyapunov 
function: 

which can be interpreted as the maximum time to finish off the 
work load on any link in the network. For convenience we in- 
troduce the vectors 

(e = (~.e r E 7~), ~~ :=  c~-lMerv,., .g E £ (14) 

and let ~e(x) = (¢e, x), G /2 where (., .) denotes the standard 
inner product in R n .  With this notation we have that 

V(x )  = max ~ye(x) = ma,x (~e, x ) .  (15) 
£EE gEE 

Thus V is a piecewise linear function. Since the vectors ~e have 
nonnegative components, the sets {x E R~:  V(x)  <_ a} are 
compact convex polytopes, for all ~ >_ 0. For a fixed x, one 
or more of the indices g achieve the maximum in (15)--these 
are the first-level bottleneck links defined earlier. We will use 
£(1)(x) to denote the dependence of the first-level bottleneck 
links on x. Similarly ~(1)(x)  will denote the first-level bottle- 
neck routes and e (1) (x) the remaining available capacity when 
the network state is x, see Section II-A. 

Since for first-level bottleneck links the link capacity is fully 
utilized among ongoing connections, we would expect that, on 
average, the number of  connections ~ r E n  Mernr on such a 
link will decrease as long as the average arrival rate does not 
exceed the link capacity. The following lemma makes this clear. 

Lemma 3.1." Assume that the stability condition Mp < e, 
i.e., Y~rE~MerArvr < ce, for all g E /2 holds. Then, 
there is acons tan t  d > 0, such that for all x E R~,  and 
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all g* E a rgmaxeEc  ~pe(x), i.e., first-level bottleneck links 
g* E £(1)(x), we have 

@pe*(x)= @e', A-t~m(x) } _< -d. (16) 

Note that g* depends on x, but we suppress this dependence in 
our notation @S* (x). 

Proof" First, using (13) and the definition (14) of  ~e we 
have that 

QV e• ( x ) =  ~ ~r (At - # :?(x))  = @e*, A - . re(X)} 

rET~ 

rET~ 

Next, since g* is a first-level bottleneck link, it follows that for 
routes r traversing link g* we have # ~ ( x )  = v~-lx~a; where 
a ;  is given by (3). Thus 

* i~e*rxrc,e* I 

sETS / 

=ee-21 x~enE Me*~p~ - ce*) < - d  

where d :=  maxeec  {c[l(ce - ~rEn  Me~p~)} is positive by 
the stability condition. • 

Despite the promise of  Lemma 3.1 it is unclear whether V 
is an appropriate Lyapunov function. Indeed, the lemma only 
suggests that as long as the state makes transitions on regions 
having the same first-level bottleneck links, V(N(t)) will ex- 
perience a negative drift. To make this more precise we will ex- 
plicitly identify these regions and for clarity present an example 
in Section III-C. Let .A4 be a nonempty subset of/2 and let 

C~ = {x E R~: £O)(x) = A d } .  (17) 

It is clear that if a > O, x E CM ~ ax E C34, i.e., these sets 
are cones, and that 

U 
Me_c, 34¢0 

Suppose that n E C ~ ,  for some nonempty A4, then the drift 
Q V (n) can easily be computed [see (13)], provided n + e ~ , n - 
e ~ E C ~ ,  for all r E ~ .  In this case, with g any element of  
.M, we have QV(n) = (~e, A - # ~ ( n ) )  _< - d ,  by Lemma 
3.1. However, when n and (n + e T or n - e ~) belong to dif- 
ferent cones an explicit verification of the negative drift require- 
ment becomes difficult. Indeed, when this is the case a transition 
causes a change in the links that are bottlenecked, i.e., we are 
"crossing the boundary" of  one of the cones. 

Intuitively one might argue that this effect is negligible, since 
it occurs at a relatively small fraction of  points in the state space. 
To make this intuition into a rigorous statement observe that 
Lemma 3.1 also implies that there is a c > 0, such that 

(VV(x) ,  A -  ~ ( x ) )  < - d  (18) 

for all x at which the gradient VV(x)  :=  (OV(x)/Ox~, r E 7~) 
exists. It is easy to see that this gradient exists almost every- 
where, and, when it exists, it equals ~e, for some g. In order to 
obtain an appropriate Lyapunov function in Lemma 3.2 below 
we follow the result of  [9] which is based on showing the exis- 
tence of  a smoothened version W of the function V that satisfies 
a drift condition in the sense of  (18) for all x E R~. The proof 
of this lemma follows [9] and can be found in [18]. 

Lemma 3.2: If  Mp < c, then there is a nonnegative function 
W,  defined on R~ \ {0}, that is at least twice-continuously 
differentiable, has a Hessian VZW(x) ,  such that V 2 W(x)  ~ 0, 
as Ixl ~ o~, and which satisfies the following drift condition: 
there is a d > 0, such that 

(VW(x), A -  urn(x)) < -d  

for all x # 0. The Hessian VZW(x)  is the ITS] x In l  matrix 
with entries {(02W/Ox~Ox~)(x), r, s E 7~}. 

Given this results we can show that the network is indeed 
positive recurrent as follows. 

Theorem 3.1: I fMp < c then the Markov chain {N(t ) ,  t > 
0} associated with the max-min fair bandwidth allocation is 
positive recurrent. 

Proof" Since W is twice differentiable it follows by the 
Mean Value Theorem that for n, m E ;Y~ there exists a 0, 0 < 
0 < 1 such that 

w ( n  + .~) - w(n)  

= (vw(n) ,  ~ )  + ½ ~ v 2 w ( ~  + 0~).~ 

:= (vw(n ) ,  ~ )  +/3(n, ~) .  

Recall that V 2 W ( n )  ~ 0 and thus/3(n, z) -~ 0 as Inl ~ o~. 
Now, using this approximation to compute QW, as in (13), we 
have 

QW(~) = (vw(n ) ,  A - ~'~(~)) + ~ q(~, .~)~(n, ~ - n )  
m 

It follows by Lemma 3.2 that the first term is at most - d .  The 
second term, is a sum of a finite number of  terms, and can be 
made smaller than d/2 for all Inl sufficiently large. Thus noting 
that suPlnl>~ QW(n) < 0, for sufficiently large 7, and letting 
K = {~: Inl _< "r} we satisfy the drift condition (12) which as 
discussed earlier implies positive recurrence. • 

B. Stability Under Weighted Max-Min Fair Bandwidth 
Allocation 

While the previous result is intuitive, in that the number of 
connections on bottleneck links must be decreasing, it is not 
easily extended to show the stability of networks under weighted 
max-min fair bandwidth allocation. Thus, we develop an alter- 
native approach which, instead of  focusing on links, focuses on 
the relative states of  each route. Suppose that a set of  weights w 
is selected and the network is operated subject to the bandwidth 
allocation function/z w defined in Section II-B. We will let 

~ ( x )  = p~-lWrXr, r E 7~ 
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and consider a candidate Lyapunov function 

V(x) = max ~ ( x )  = max {p~-lwrx~}. (19) 
r E ~  rE~- 

The following lemma shows why this particular function is 
useful. The proof has been relegated to the Appendix. 

Lemma 3.3." Assume that Mp < c then there is a 
constant d > 0, such that for all z E R~ and for all 
r* E a r g m a x r c n  ~p~(x) we have 

(x) = - , 5  (x)) < -d .  

Theorem 3.2: I f M p  < c then Markov chain {N(t ) ,  t _> 0} 
associated with weighted max-min fair bandwidth allocation is 
positive recurrent. 

Proof." Based on Lemma 3.3, and the technique used in 
Lemma 3.2, it should be clear that an appropriately smooth Lya- 
punov function W can be constructed from V in (19). Positive 
recurrence then follows as in Theorem 3.1. • 

Note that since max-min fairness is a special case of  weighted 
max-min fairness, Theorem 3.2 also establishes the stability of  
both. These results establish that Mp < c is a sufficient condi- 
tion for stability. In fact, ignoring equality (M.k = c), this is a 
necessary condition. A brief argument can be made as follows. 
Say there exists a link ~ such that ~ 7 ~  Me~p > ce. Clearly 
such a link in isolation is unstable, i.e., on average will tend to 
drift off to infinity. When the link is incorporated within a net- 
work, the situation can in fact only get worse, since other links 
can only slow down the departures for connections on L 

C. Example Network 

In this example we consider max-min fair bandwidth alloca- 
tion for the network shown in Fig. 1. It consists of  two routes 
7~ = {1, 2} and three links, £ = {1, 2, 3}, as shown in the 
figure. Fig. 2 shows the vector field A - / z  m (x) corresponding 
to the case with A = (1.5, 1.5), v = (1, 1) and c = (5, 6, 4). 
We have shown the boundaries Xl = 5x2 and 2xl = x2 be- 
tween three cones C{1}, C{2} and C{a} corresponding to links 
1, 2, or 3 being bottlenecks, respectively. Also shown on the 
figure is a level set of  the function V. From the figure it is clear 
that on each cone the network dynamics push inwards, i.e., have 
negative drift with respect to V. By smoothing V as in Lemma 
3.2 we obtain a Lyapunov function W from which the stability 
of  the system follows. 

D. Stability Under Proportionally Fair Bandwidth Allocation 

Unlike max-min fair bandwidth allocations that aim at max- 
imizing the worst-case individual utility/performance criteria 
such as (weighted) proportional fairness attempt to maximize 
the overall network utility at any point in time. This is reflected 
in our candidate Lyapunov function: 

r E ~  rE'~ 

where ut i l i ty functions are logarithmic i.e., G.(a~) = 
w~ log(an). Note that W is continuous and twice differentiable, 
thus there is no need for the smoothing process required used 
previously. In Lemma 3.4 and Theorem 3.3 below we show 

Linkl Link2 Link3 

c 1 c 2 c 3 

Fig. 1. Example network with three links and two routes. 

2 x I = x 2 
10 

8 

2 5 x 2 

O Y - - ~  ~ ~ ~ ~ 

0 2 4 6 8 10 
x I 

Fig. 2. A vector field of the example network. 

that this function is indeed a Lyapunov function and show 
the stability of  the Markov Chains associated with (weighted) 
proportionally fair bandwidth allocations. 

Lemma 3.4: Assume that Mp < c. Then given an e > 0 
there exists a constant d > 0 such that for all x E R~ \ {0} the 
following holds 

' ( P r )  (Ar -# ' ( x ) )  < -d .  (VW(x),  A-uP(x))  = ~ v,.U; 7~ 
frETS 

Proof." Let U(x, b) -- ~ r C n  xrU~(br/x~) denote the 
overall network utility of  a network supporting x~ users sharing 
a bandwidth allocation b~ on route r. Note that U(x, b) is 
strictly concave in b and has a unique maximizer b* (x) over 
all feasible bandwidth allocations, see (9). Also note that 
b*(x) ~ p for any x ~ 0. Indeed, although p is feasible, 
i.e., Mp < c, it can not correspond to a utility maximizing 
vector since each route must have at least one botflenecked 
link. Thus U(x, b*(x)) > U(x, p) and in fact the function 
U(x, ap + (1 - c~)b*(x)) for c~ E [0, 1] is strictly concave and 
decreasing in c~, thus 

OU(x, ap + (1 - oz)b*(z)) 

0 0 /  o~=1 

= E u;  Z rET~ 

rET~ 

So for a given x ¢ 0 by continuity of ( V W ( x ) ,  A - #P(x)) 
in x there exists ~ and d(x) such that for all y in a ball Ily - 
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x[[ < 6(x), we have (VW (y) ,  A - ,UP(y)) < -d (x ) .  The 
same property can be shown to hold uniformly on a compact 
set given by a sphere intersected with the positive orthant, i.e., 
( V W ( x ) ,  A - ,UP(x)) < - d  for all x E S(0, e) A R~. This 
uniformity can in turn be extended to the set R~ \ {0} using the 
following property. For c~ > 0 

( V W ( ~ x ) ,  A - ,UP(~x)) = ~ ( V W ( x ) ,  A - ,uP(x)) 

since OW(x)/Ox~ = w~x~/A,, whence V W ( a x )  = a V W ( x )  
and by radial homogeneity of  ,u p . It follows that 

(VW(x) ,  A -  ,UP(x)) < - d  

for all x in R~ \ {0} and a constant d > O. • 
Theorem 3.3: If  Mp < c the Markov chain {N(t ) ,  t > O} 

associated with proportionally fair bandwidth allocation is pos- 
itive recurrent. 

Proof." The method of proof for this theorem is analogous 
to that of our previous results. Since W is twice differentiable it 
follows by the Mean Value Theorem that for n, m 6 Z~ there 
exists a O, 0 < 0 < 1 such that 

W ( n + m ) - W ( n )  = ( V W ( n ) ,  m ) + ½  m T v ~ W ( n + 0 m ) m .  

Noting that the Hessian is diagonal i.e., 

V2W(x)  = diag(w~/A~, r E 7~), 

and ra = e ~ in (11) we have 

QW(n)  = ( V W ( n ) ,  A - ,UP(n)) + (h, A - ,UP(n)), 

where h = (w~/ZA~, r E 7~). By Lemma 3.4 for n 6 Z~ \ {0} 
we have that 

QW(o  ) = - + ( h ,  - 

= c~(VW(n), A - #P(n)) + (h, A - #P(n)} 

_< + ( h ,  

_< -c~d + lTZl/2, 

where a > 0 and 17zl/2 is a finite constant. Thus for suffi- 
ciently large a or equivalently Inl, the drift can be made neg- 
ative. Letting K = {n: Inl _< 7} with large enough 7, we have 
SUPn~K QW(n)  < 0, which satisfies the drift condition (12) 
and implies positive recurrence. 

The vector field corresponding to proportionally fair band- 
width allocation on the network in Fig. 1 along with a level set 
for the function W are exhibited in Fig. 3 when A = (1.5, 1.5), 
v = (1, 1), c = (5, 6, 4) and w = (1, 1). 

IV.  PERFORMANCE 

Quantifying the performance of  dynamic networks sup- 
porting services with adaptive bandwidth allocations is a 
challenging task. Nevertheless this is an exceedingly inter- 
esting problem that network designers will eventually need 
to face. In this section we resort to simulation in an effort to 
further investigate the performance implications of various 
bandwidth allocation criteria. We focus on average connection 
delay as our performance metric. This metric is of  interest 

10 

8 

6 

4 

10 
x 1 

Fig. 3. 
the example network. 

A vector field corresponding to proportional bandwidth allocation of 

L ink  1 L ink  2 L ink  K 

V 1 V 2 V K 

Fig. 4. A network for simulations. 

TABLE II 
SIMULATION ENVIRONMENT (SYMMETRIC LOADS ON ALL ROUTES) 

Load 
Light 

Moderate 
Heavy 

Ar [ Vr Pr e l  
(conn./see) [ (kbits) (kbps) (kbps) 

0.2 32 6.4 76.8 
2 32 64 192 

20 32 640 1344 

in dimensioning networks to provide a reasonable call-level 
quality of  service. 

We shall consider a network consisting of  K links in se- 
ties; see Fig. 4. A long route traverses each link in the net- 
work, while short single-link routes, model "cross traffic." This 
basic network serves to study the impact of  short (local) on long 
(transit) traffic and vice versa. To investigate the degradation 
in performance as connections traverse an increasing number 
of links we have simulated several configurations with K = 
2, 3, 4, and 5. To assess the impact of  the bandwidth allocation 
mechanism we simulated networks operated under max-rain, 
weighted max-rain, and proportionally fair bandwidth sharing. 
In the case of  weighted max-min fairness, short and long con- 
nections were given weights 1 and 2, respectively, i.e., w~ = 
1, r = 1, . . . ,  K and WK+I = 2. Thus priority was given 
to connections traversing several links as they are likely to ex- 
perience the poorest performance. We considered various sym- 
metric load conditions wherein long and short routes have the 
same traffic loads, i.e., A~ = As, V r, s E 7~. The load condi- 
tions are summarized in Table II. 

Average overall connection delays as well as those on short 
and long routes, under max-min, weighted max-rain, and pro- 
portionally fair allocation were measured as the number of  links 
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0.68 

0.66 

0.64 
W 
Y~ 
>,0.62 

0.6 

0.58 ~ 

0.5~ 

o o Max-nfin / 
x ~ W. max-min . 
0 0 Prop. 

215 3 315 4 415 5 
No. of links 

Fig. 5. 

0.62 

0.6 

0.58 

, . ~ 0 . 5 6 i  

 o.54 
0.52 

o.5~ 

0.482 

Average overall delay (moderate load). 

_.___.__.._.--------4( " 
J 

i 0 Max-rain 
× W. max-min 
0 Prop. 

0 0 

25 ; ;5 45 
No. of links 

Fig. 6. Average delay on short routes (moderate load). 

'U 

1.5 j 
o o Max-min 
× × W. max-min 

Prop. 

0.52 215 3 315 4 415 5 
NO. of links 

Fig. 7. Average delay on long routes (moderate load). 

K increases; see Figs. 5-7 for networks with moderate loads. 
All the simulations were conducted using an event-driven sim- 
ulation program written in C. In our simulations, the 95% con- 
fidence interval of  average connection delay was within range 
of  0.001-0.005 seconds of  the sample mean. Not surprisingly, 
the results suggest that as traffic load becomes heavier, and long 

12 

10 

~ 8  

"~ 6 

4 

~ 2  

Fig. 8. 

F 

-2, 

o o Light 
A A Moderate 

© © 

215 3 3'.5 4 4.5 
No. of links 

Change in delays, prop. over max-min (overall). 

~ - 1 0  

-15 

Fig. 9. 

-20 

o o Light 
l& A Moderate 

2'.5 3 315 4 4'.5 5 
No. of links 

Change in delays, prop. over max-min (short routes). 

routes traverse a larger number of  links, average overall connec- 
tion delay becomes large, regardless of  the bandwidth allocation 
policy. 

We first contrast the performance of max-rain fair bandwidth 
allocation, which strives to maximize the worst-case individual 
performance versus proportional fairness, which strives to max- 
imize the overall network utility. The latter tends to give more 
bandwidth to connections crossing a small number of  links, as 
they are more efficient in terms of their resource requirements. 
As a result long routes may linger in the network possibly de- 
grading the overall performance. For example, for K = 5 and 
moderate load, the relative change in delays for proportional 
versus max-min fair bandwidth allocation is - 1 0 %  on short 
routes, +46% on long routes, and -t-5% overall; see Figs. 8-10. 

This result demonstrates that the max-min outperforms the 
proportionally fair allocation in terms of  delays on long routes 
and overall delays. The same observation is made in [27]. More- 
over, the change in delays for proportional versus max-min be- 
comes larger as the size of  network grows and the load of  traffic 
becomes heavier. This suggests that maximizing the overall net- 
work utility is not necessarily compatible with minimizing con- 
nection delays. Note that as the number of links increases, pro- 
portional fairness leads to a surprisingly flat average delay on 
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60 ~D 

~ 40 

2( 
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No. of links 

Fig. 10. Change in delays, prop. over max-min (long routes). 

short routes, while long routes see a linear growth in average 
delay; see Figs. 6 and 7. Thus the overall delay is not linear 
since it is an average of  delays on short and long routes. Since 
the relative total load on short versus long routes is increasing 
with K ,  the overall delay behavior does not grow linearly. This 
suggests that proportional fairness may provide a clean perfor- 
mance differentiation among routes that have different lengths. 

To make this point clearer we considered the impact that using 
a weighted max-min  fair bandwidth allocation has on delays, if 
weights are selected so as to expedite connections on long routes. 
Clearly, weighted max-min  fair allocation can provide additional 
flexibility in allocating bandwidth over max-min  fair allocation. 
Continuing with our example, when K = 5 and the networkload 
is moderate, the relative change in delays for the weighted versus 
the max-min  fair bandwidth allocation is + 9 %  on short routes, 
- 3 3 %  on long routes, and - 2 %  overall. Thus, one can not only 
dramatically improve the delays experienced on long routes, but 
also marginally improve the overall performance. 

In order to see the impact of weight selection on network 
performance, we have measured the performance of  a network 
with fixed K = 2 and load condition as weights for long routes 
vary. It turns out that overall performance is not continuously 
improved in proportion with the increase of weights given to long 
routes, although average delay on long routes decreases. For the 
moderate load condition and K = 2, performance is illustrated 
in Figs. 11-13. The overall delay is minimized when the weight 
w3 -- 3, and then degrades as the weight w3 increases. This 
result shows that there is a tradeoff between improving delay 
performance for long connections and maximizing the overall 
delay performance, which can be achieved by optimizing weights 
(priorities). 

These results exhibit the potential impact that a fairness cri- 
teflon selected by designers may have on network performance. 
However, a better characterization of  network performance and 
tools to "optimally" select weights, or route connections, will 
need to be developed if a call-level quality of service such as 
that considered here is deemed important in future networks. 
Also note that one could in theory introduce weights on a pro- 
portionally fair allocation in order to also enhance the perfor- 
mance seen on long connections. Hence our results do not sug- 

0.585 

0.58 

0.575 

\ 

i J J . ! ~  I ~ - -  ~ -  ~ • 

, J J ~  

i i i 

0'570 2 4 6 8 10 
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Fig. 11. Overall delay as the weight on a long route increases (moderate load, 
/ ( = 2 ) .  
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Fig. 12. Average delay on short routes as the weight on a long route increases 
(moderate load, 1~ = 2). 
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Fig. 13. Average delay on long routes as the weight on a long route increases 
(moderate load, K = 2). 

gest that a particular mechanism is best, we merely suggest that 
a consideration of  these issues is warranted. 
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W. COULD THE INTERNET BE UNSTABLE? 

Internet traffic has been growing dramatically for the last few 
years. As of July 2000, the number of hosts advertised in the 
Domain Name Server (DNS) reached more than 93 million [30]. 
In many places the increase in demand is outpacing resources, 
leading to congestion and degradation in performance. Since 
performance of Internet traffic is closely linked to the behavior 
of TCP congestion avoidance algorithm [ 13], [22], it is crucial to 
understand the impact of TCP on the macroscopic network-level 
performance. 

However, due to complicated interactions of Internet traffic 
and TCP transport algorithms [26], most research on the per- 
formance of TCP has relied on simulations for various TCP 
mechanisms. In an attempt to quantify throughputs of TCP con- 
nections more precisely and predictably, some researchers have 
started to consider analytical models and throughputs of TCP 
connections under various operating conditions, see e.g., [13], 
[11], [22], [25]. Recently, this approach has drawn much atten- 
tion and relevant work is ongoing. 

Mathis et al. [22] formulate a simple TCP model under the as- 
sumptions that 1) TCP is running over lossy path with constant 
Round Trip Time (RTT), and 2) packet loss is random with con- 
stant probability ofp. The TCP throughput, BW(p), is derived as 

1 ~ p  (packets/s). B w ( p )  = 

The model is shown to match with real traffic when assump- 
tions 1) and 2) hold. This model does not apply in some sit- 
uations, e.g., when "timeout" behavior is dominant or for the 
case of short connections which require only a few cycles of 
congestion avoidance. In fact, real-life Internet traffic exhibits 
many timeouts compared with congestion avoidance behavior, 
i.e., retransmission. 

A recently developed model by Padhye et al. [25] improves 
upon the previous one. The model captures not only congestion 
avoidance but also timeout behaviors that many real-life TCP 
traces exhibit. Moreover, their model is shown to fit a wider 
range of operating conditions, i.e., loss regimes. They assume 
that packet losses are correlated based on the fact that most cur- 
rent Internet employs drop-tail queueing policy and thus packets 
are likely to be lost again once previous packets experienced 
losses due to a full buffer. Their approximate model for TCP 2 
throughput BW(p), in packets/s, as a function of loss proba- 

bility is given by 

min (_W . . . .  i ) 

/ RTT ' R T T v ~ + r o m i n ( 1 , 3 V ~ ) p ( l + 3 2 p 2  ) 

where Wmax is the maximum congestion window size, b is the 
number of packets that are acknowledged by a received ACK, 
and To is the time interval a sender waits before it starts re- 
transmitting unacknowledged packets when a timeout occurs. 

2They model TCP-Reno which is the most popular implementation of TCP 
in the Internet. 

Although the model may not fit all TCP traces under different 
implementations such as TCP-Tahoe or the Linux TCP imple- 
mentation, it has been shown to match a broad range of real TCP 
traces and to predict the TCP throughput. 

These models have focused on finding throughput of TCP 
connections given loss rates and RTTs. It is of interest to 
consider performance of a model for networks with stochastic 
arrivals and departures since connections are likely to be 
dynamically setup or terminated. In this paper, we have con- 
sidered the stability and performance of an idealized model for 
a network supporting services that adjust their transmissions 
to network loads. The model is only a rough caricature of 
the Internet today, in that it assumes TCP operates efficiently 
by immediately achieving an average throughput related to 
a (weighted) proportionally fair bandwidth allocation. For 
a single congested link, weighted max-min or weighted 
proportionally fair allocation can model TCP appropriately 
[22], [7]. Indeed, it has been shown in [21] that a flow control 
mechanism with linear increase and multiplicative decrease 
(e.g., TCP) results in (weighted) proportionally fair bandwidth 
allocation. So a connection's throughput is dictated by a 
weighted allocation of resources at congested or bottleneck 
links. The average RTT experienced by connections and loss 
rate can be captured by weights given to connections which 
in turn impact the equilibrium throughput achieved by TCP 
connections. This model also parallels the one proposed and 
validated via simulation in [22]. We also assume that packets 
associated with a given TCP connection typically follow the 
same route, and connections send data in a greedy manner and 
depart. Subject to these, perhaps fanciful assumptions, one can 
show that network stability cannot be guaranteed unless the 
connection-level offered loads do not exceed the network' s link 
capacities. 

While this result is not entirely surprising, it presents an inter- 
esting architectural dilemma for future networks. Since routing 
algorithms on the Internet base their decisions on short term 
measures, i.e., are not explicitly tracking the long-term averages 
or number of ongoing connections required to assess the con- 
nection-level offered loads, there is no reason to believe that the 
Internet would satisfy a connection-level stability requirement. 
Instability would be perceived by users as an unacceptably low 
throughput, or inordinate delays, and typically cause them to 
abandon, thus in some sense solving the problem. To avoid such 
extremes one might overprovision the network. Unfortunately, 
this may result in a network which is still unstable, resulting in 
sporadic long-lasting congestion events that are challenging to 
explain. 

The simulations we have presented also suggest that there is a 
need to consider other types of performance objectives such as 
minimizing overall connection delays in addition to providing 
fairness among connections. However, which performance ob- 
jective we should choose in a dynamic network environment 
may depend on various aspects, e.g., network topology, applica- 
tion types, and priorities to connections. It would of course be 
interesting to look at congestion patterns on the Internet today 
and attempt to explain them in terms of a connection-level insta- 
bility. However, given the typically nonstationary demands on 
today's networks and the detailed data that would be required 
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to provide a conclusive answer to this question, this appears to 
be a challenging task. 

APPENDIX A 
PROOF OF LEMMA 3.3  

Start proof by observing that, due to (13) 

Q~r(x ) = Wr (At - # r ( x ) ) .  (20) 
Pr 

Suppose the network state is x and let 

r* E a r g m a x  {p~-lw~x~} 
rET~ 

then for all r E 7~, we have that 

WrXr Wr* Xr* 
- -  _< - -  (21) 

Pr Pr. 

or equivalently that p< w~x~ <_ prwr* x~*. NOW summing over 
all routes traversing a link g E £ we have that 

rET~ rET~ 

which one can rearrange to obtain 

Wr* Xr* 

rET~ 

'//Jr* Xr* 

- N-" Merwrxr ce 
rE'R. 

c e -  E Me.p,. . 
Z Merwrxr rET~ 
rE77~ 

Given (21) and the stability condition one can easily show the 
existence of a positive lower bound, e > 0, for the second term 
on the fight-hand side 

rETg 

__> min  min / Me~p~ ( c e _ E M ~ r p r ) } = e "  

ETZ 

Thus we have that 

. ( i ) ,w,  pr* _< wr*xr* y e ~x) - e, 

where we recognize a term corresponding to the fair share at 
(1) . . . .  

link g, f~ ' (x); see (4). Moreover, since this is true for all g, 
and multiplying through by %21 we have that 

A~. _< wr*v~-.lx~*f(1)'W(x) - Vr-.le (22) 

where f(1), W(x ) = mineez  fe (1)' ~ (x)  is the fair share at first- 
level bottleneck links £;(1), W(x). 

= 

Now if r* is a first-level bottleneck route, i.e., 
r* E 7~(Z)'w(x), then #~. (x)  = Wr*V,S.lXr* f(Z)'W(X), 
and it follows by (22) that At. - #~. (x) < -v~-.ze. I f  r* is not 
a first-level bottleneck route, we will show that its bandwidth 
allocation must exceed w~. v~-.Zx~, f(z), ~ (x)  and so again by 
(22) we have that A~. - #~. (x) _< -v~-.ze. 

We begin by showing that f(2), ~ (x )  _> f(1), ~(x) .  Suppose 
g E £ \ £(1), ~ (x )  and note that 

E Merw~x~S(z)'w(x) < E ""  ,(1) . . . . .  _ lvXerWrXr.l~ t x) = Ce 
rE77. rE77. 

so it follows that 

ce - f ( l ) ' ~ ( x )  E Merw,.xr 
r E']~,(1), W(x) 

> s(1),W(x) Merw x . 

rET~\~(1), ~(x)  

Rearranging terms and recalling the definition of fair share for 
the links in the second level of  the bottleneck hierarchy, we have 
that 

c~l)'W (x) 

E Me~wrX~ 
r e~\~(1),w (X) 

ce - f(1)'W(x) E Me~wrxr 
= reV¢(1)'~(~) _> fO)'W(x). 

E Merw,.x~. 
rE7~\7~(1),'° (x) 

Thus f(2) 'W(x) = mineec  fe (2)'w(x) > /(Z)'W(x). Similarly 
it follows by induction that f(i+l)'W(x) > f(1)'~(x), until the 
bottleneck hierarchy is exhausted. 

Now since #~'. (x) = Wr* v~-*lx~* f(J) '  w (x) for some level j 
in the bottleneck hierarchy, it follows that 

#~ (x) _> wr.v~-.lx~, fO), W(x ) 

and so A~. - #~. (x) < -v~-.ze. The lemma follows by selecting 
d = e Ininrev¢ {~r-lWr} and by (20). 
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