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Abstract—Weconsider the stabitity and performance of a model for net-
works supporting services that adapt their transmission to the available
bandwidth. Not unlike real networks, in our model connection arrivals

are stochastic and have a random amount of data to send, so the number
of connections in the system changes over time. In turn the bandwidth
allocated to, or throughput achieved by, a given connection, may change
during its tifetime due to feedback control mechanisms that react to con-
gestion and thus implicitly to the number of ongoing connections. Ideally,
for a fixed number of connections, such mechanisms reach an equilibrium
typically characterized in terms of its ‘fairness’ in allocating bandwidth to
users, e.g., max-min fair. In this paper we prove the stability of such net-
works when the offered load on each fink does not exceed its capacity. We
use simulation to investigate the performance, in terms of average connec-
tion delays, for various network topologies and fairness criteria. Fhrally
we pose an architectural problem in TCP/IP’s decoupling of the transport
and network layer from the point of view of guaranteeing connection level
stability, which we claim may explain congestion phenomena on the Inter-
net.

1. INTRODUCTION

Future communication networks are likely to support elastic
applications that permit adaptation of the data transmission rate
to the available network bandwidth while achieving a graceful

degradation in the perceived quality of service [19]. Transport
services that match the flexibility of such applications are al-
ready supported on the Internet via TCP wherein end-systems
adjust their transmissions in response to delayed or lost pack-

ets, i.e., implicit indicators of available bandwidth [11]. Avail-
able Bit Rate service, defined for ATM networks, draws on
both the end-systems and network elements to implement a
similar functionality through adaptive rate control mechanisms
that strive to allocate the available bandwidth among ongo-
ing connections [5]. Typically such mechanisms represent an
efficient way to carry traffic corresponding to elastic applica-
tions, ranging from today’s file transfers to future rate adaptive
voicelvideo applications.

Since mechanisms to adapt transmissions typically draw
on delayed (implicit or explicit) feedback from the network,
much work has been devoted to establishing their stability, par-
ticularly for networks supporting a jixed number of connec-
tions. Stability is usually interpreted as avoiding queueldelay
buildups, andlor somewhat loosely as ensuring that transmis-
sion rates converge to an equilibrium corresponding to a band-
width allocation among ongoing connections, see e.g., [2], [3],
[6], [20], [15], [1], [13]. Such equilibria are in turn usu-

ally characterized in terms of their ‘fairness’ to users, such as
(weighted) max-min fairness or proportional fairness [4], [12].

Thus given a fixed number of users and fixed network capaci-

ties, one can typically arrange (through an appropriate control

mechanism) to achieve an equilibrium which represents, ac-
cording to some criterion, an equitable allocation of resources
among users.

By contrast very little is known about the network’s perfor-
mance when the number of connections in the network is in
constant flux. Previous work along these lines has focused on
studying transients, i.e., how quickly will the transmission rates
reach a new equilibrium. In this paper we consider a novel
model that includes stochastic arrivals and departures, How-

ever it abstracts the queueing and rate adaptation that would
be taking place in the network by assuming that an equilib-
rium, and thus appropriate bandwidth allocation is immediately
achieved. In essence, this corresponds to assuming a separa-
tion of time scales between the time scales of connection ar-
rivals and departures and those on which rate control processes
converge to equilibria. Our focus is on exploring the stability
and performance of this connection-level model for networks
using different types of rate control and thus operated under

different fairness policies.
Paralleling models used in the circuit switched literature, we

assume connection arrivals processes are Poisson and that each

connection has a random, exponentially distributed, amount of
data to send.l In contrast to circuit switched models, the band-
width allocated to each user will be a function of the global
state of the network. Indeed recall that the bandwidth allocated
to a user depends on the equilibrium achieved by the rate con-
trol mechanisms and the number of ongoing connections.

In general, one expects work conserving systems to be stable
when the offered load to each link (queue) in the network does
not exceed its capacity. However given the complex network-

wide interactions underlying the bandwidth allocation mecha-
nism, a demonstration of this fact was an open question. Note
that our model can be said to be ‘non-work conserving’ in the
sense that a link supporting active connections may not be op-
erating at a full capacity because its ccmnections are ‘bottle-
necked’ elsewhere – a typical sign of a potential for instability.
In this paper we come to terms with this problem by showing
the stability of our model when natural conditions are satisfied.

‘Thk work is supported by a National Science Foundation NSF Career
Awards NCR 96-24230 and NCR 95-02582, by Grant ARP-224 of the Texas
Higher Education Coordinating Board, by Southwestern Bell Co., and by an
Intel Technology for Education 2000 equipment grant.

1Tfis ~vaIs model is a typical and a reasonable assumption for connections

generated by a la’ge population of independent users. The exponential assump-
tion simplifies our analysis but is likely not to be critical for the stabitity results
in thk paper.
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Since ours is a higher layer model, it is logical to consider
network-level performance, say in terms of average connection
delays. This is important because the goals of fairness and low
connection delays may not be compatible, and should be exam-
ined prior to committing to a particular architecture for large-
scale broadband networks. Moreover network designers might
want to dimension capacities to achieve a reasonable respon-

siveness, say for web browsing, when the network is subject to
typical loads. Our preliminary simulations suggest that indeed
it may be of interest to examine more carefully the impact of

a given fairness criterion and topology on the overall network
performance.

Based on our model we point out an insidious architectural
problem in networks supporting adaptive services of this type.
To achieve connection layer stability we must ensure that con-
nection level loads do not exceed link capacities. Clearly this
then requires that the routing layer be aware of the connection
level offered loads. However, typical routing algorithms draw
on short term link averages of utilization or packet delays. Such
metrics reflect the connection level offered loads quite poorly,
since connections are adapting their transmission rates depend-
ing on link congestion. Loosely speaking, the router is indif-
ferent to the fact that a 90 % link utilization may be due to
a single traffic source or a thousand sources transmitting at a
thousandth of the latter’s rate. Herein lies a possible explana-
tion for the congestion currently experienced on the Internet,
i.e., connection level instability.

The paper is organized as follows. In ~11, we present our
model and define the max-min, weighted max-min and propor-

tionally fair bandwidth allocations. Next, in fjIII we show the
stability of the model by constructing appropriate Lyapunov
functions. Performance issues are discussed in $IV. In $V we
return to our question concerning possible connection level in-
stabilities in current networks and discuss future work.

II. NETWORK MODEL AND BANDWIDTH ALLOCATION

SCHEMES

Our network model consists of a set of links L with fixed
capacities c = (cl, i? c Z) in bits/see shared by a collection
of routes 7?. Routes are undirected and may traverse several
links in the network.2 A O-1 matrix A = (Alr, 1 c Z, T G R)

indicates which links a route traverses. In other words, AtT = 1
if route T uses link 1 and zero otherwise.

The dynamics of the model areas follows. New connections
are initiated on route r c 7? at random times forming a Pois-
son process IIr with rate ~. connections/see. The collection
of processes H = {II., r c 7?}, with rates A = (A., r c 7?)
are assumed to be independent. Each connection has a volume

of data (in bits) to transmit, which is assumed to be an expo-
nentially distributed random variable with mean b bits. The pa-
rameter b is the same for all connections, irrespective of route
or arrival time, This assumption simplifies the description of

2our model is at the connection level, so we can assume undirected routes

without loss of generality.

the system state and, consequently, its analysis. The random
variables representing connection volumes are thus i.i.d. and
also independent of II. We let ~e = ctb-- 1 denote the capacity
of link 1 expressed in connectionslsec, and let v = (~e, 1 E 4).

The “state” of the network is denoted by n = (n,, r c 73)
where nr is the number of connections currently on route
r. We assume that the bandwidth allocated to each ongoing

connection depends only on the current state n of the sys-
tem. Let pr (n) denote the total bandwidth allocated to con-
nections on route r when the system state is n, expressed as

a service rate in connectionslsec. The choice of the functions

p = (p, : .Z~ -+ IF+-, r c 7?) will be described in the sequel.
If the state of the system changes during the sojourn of a con-
nection (e.g., due to the establishment of a new connection or
the termination of an existing one), then, there may be a cor-
responding change (speed-up or slow-down) in its service rate.
Indeed since no arriving connections are blocked, new connec-
tions must accommodated by changing the bandwidth alloca-
tion, whereas bandwidth made available by departing connec-
tions is reallocated to the remaining ones. We assume that on-
going connections are greedy in the sense that they will use
whatever network bandwidth is made available to them. Note
that in reality a given connection may have a limit on the rate
at which it can transmit, e.g., maybe limited by the access net-
work or network interface card. Herein we shall assume that
such bottlenecks have been explicitly modeled by incorporat-
ing limited capacity access links in the network.

Let II, (t) denote the number of connections arriving on
route r on the time interval (O, t], This is a rate-~r Poisson

counting process, Let @r(t) be another independent unit rate
Poisson process. Letting {lVT(t), t > Cl}be the random pro-
cess corresponding to the number of ccmnections on route r,
we have

(J

t
N,(t)=N,(o)+II.(t)– 0,

)
pr(lv(s)) ds , (1)

o

where r G l?, t > 0,which captures the state dependent ser-
vice rates along each route in the netwc)rk. It should be clear
that given an initial state NT(0), this evolution equation has a
unique solution. Moreover, if the initial condition (Nr (0), r E

‘R) is selected independently of the arrivals and service pro-
cesses then the Z~–valued process N(t) = (N,(t), r c 7?) is
Markovian.

In the sequel, we describe various bandwidth allocation
schemes, or, equivalently, various possible functions p. In
particular we will use Vm, pw and pp to denote the max-min,
weighted max-min and proportionally fair bandwidth alloca-
tion functions. Notice that these functions, of the state n, de-
pend on the capacity vector v, the routing matrix A, and the
type of rate control used on the network. By contrast with stan-
dard queuing models, which track packets and queues through-
out the network, it is through this dependence that the evolu-
tion (1) models the dynamics of the network. Also note that we
have assumed that connections are not rerouted once they are
initiated. One could in principle account for rerouting or split-
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ting of flows across the network but this will not be considered

here. Finally, and to avoid possible confusion, bandwidth will

be measured in units of connectionslsec rather than bitslsec –
see above discussion.

A. Max-rein fair bandwidth allocation

We first consider max-min fair bandwidth allocation. An al-
location is said to be max-min fair if the bandwidth allocated to
a connection cannot be increased without also decreasing that
of a connection having a less than or equal allocation [4]. For
a single link network this translates to giving each connection
traversing the link the same amount of bandwidth. In general

one first determines what would be the maximum minimum

bandwidth one could assign to any connection in the network
and allocates it to the most poorly treated connections. One

then removes these connections and the allocated bandwidths
from the network, and iteratively repeats the process of max-
imizing the minimum bandwidth allocation for the remaining
connections, More formally the max-min fair allocation can be
defined in terms of a hierarchy of optimization problems, de-
scribed in detail in [10], which is easily solved via the above
procedure. Below we briefly review how given the state n of
the network one determines the max-min fair bandwidth allo-
cations per connection and in turn determines the bandwidth
allocations (p~ (n), r e 7?) per route.

Let the vector a* = (a:, r E 7?) be the max-min fair al-
location where a; denotes the bandwidth, in connectionslsec,
allocated to a single connection on route r. Notice that we have
suppressed the dependence of a* on n. All connections on the
same route get the same allocation so p?(n) = nra~. We de-
termine a* as follows. First for all routes r E 7? such that
nv=Oweseta~= O and thus p~ (n) = O. Next we solve a
hierarchy of optimization problems starting with

which corresponds to maximizing the minimum bandwidth per
connection subject to the link capacity constraints. It can be
shown, see [10], that the solution to this problem is given by

where ~~1)(n) can be thought of as the fair share at link 1,
i.e., the bandwidth per connection at link 1 if its capacity were
equally divided among the connections traversing the link.

Let Z(l) be the set of links 1 such that f~l) (n) = ~(l) (n).
This is the set of first-level bottleneck links. The set of first-
level bottleneck routes X?(l) is the set of routes traversing a link
in Z(l). These two sets make up the first-level of the bottleneck
hierarchy. Finally, for each route r ~ A?(l), let a: = f(l) (n).
The remaining, if any, components of a“ are determined by
repeating this process on a reduced network as explained next.

In its second step, if it arises, the algorithm replaces the sets
L and ‘R by .C\ L(l) and 1? \ X!(l), respectively. The new state

of the system is simply the projection (n., r e 7? \ T?,(l)), and
a new link capacity vector, v(l) is defined on L \ L(l), where
Vt is reduced to

From (2) and the definition of L(l), it is clear that the re-
duced capacities are non-negative. A new problem paralleling
(2) but on the reduced network (with reduced sets or routes
and links, reduced state, and reduced ci~pacities-as described
above) is then defined and solved to obtain anew value f (2J(n),
and second-level bottleneck sets Z(2) and ‘j’7,(2). Finally for
r E 7?(2) we set a; = ~(2) (n). If necessary this process
is once again repeated, but, since the sets R(l), 7?(2), . . . are

nonempty, it terminates in a finite number of steps, uniquely

specifying the vector a’ and thus pm (n).
Notice that in the above procedure n need not be integer val-

ued, hence pm(n) can be easily extended for real-valued argu-
ments. We shall use the same notation to denote the extension
of pm from Z: to R$. Some straightforward properties of this
function are summarized below.

Proposition II. 1: The function pm : E+$ --+ R? is radially
homogeneous, in the sense that

In the interior of the positive orthant IR~, the function pm is
continuous, and has strictly positive components. Finally, pm
is bounded.
The proof of this proposition can be shown by induction on the
bottleneck hierarchy and considering the dependence on x of
the max-min fair bandwidth allocation.

Notice that the bandwidth allocation policy reflected in pm
satisfies the link capacity constraints, is fair in the max-min fair
sense, but the performance, e.g., in terms of connection delays,
may be poor. In the next section we discuss the weighted max-
min fair bandwidth allocation which allows some latitude in
controlling performance by giving different priorities to con-
nections based on their routes.

B. Weighted max-minfair bandwidth allocation

Let w = (W7, r ~ l?) be positive “weights” associated with
each route in the network, and aw* = (a~*, r c R,) denote
the weighted max-min fair bandwidth allocation vector. For a
given state n we determine a w* in a similar fashion to the max-
min fair allocation, First for all routes r c 7? such that nr = O

set a?* = O. Next, replace (2) with

which can again be solved by first defining the weighted fair
share on link 1 as

(4)
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‘l) ’W(n). Parallel-and then setting j(lJ’W(n) = minlcz$4

ing the max-min fair case, the first-level bottleneck links and
routes, denoted L(l) ‘w and l?(l) ‘w respectively, can be defined,
and one can proceed iteratively to determine the bandwidth al-

location for connections on all routes. We will let UW(n) de-
note the vector of bandwidths allocated to each route where

p:(~) = wr.nr.a~ *, and let pw = (Py:~:+m, TER).
One can again extend pw for real-valued arguments i.e., from

ZZ~ to R@, and show that

p~(%) = p~(lh), (5)

where Urn corresponds to the unweighed max-min fair alloca-
tion discussed in the previous section, and D = diag(w), i.e., a
square matrix with components (wT, r 6 7?) along its diagonal.
Thus one way to view the weighted max-min fair allocation is
as a max-min fair allocation where the “effective number” of
ongoing connections is Dx. Moreover one can easily see that
the results in Proposition II. 1 also apply to pw.

A weighted max-min fair allocation can be used to differ-
entiate among connections following different routes and thus
give priority based on geographic, administrative, or service re-
quirements by grouping like connections on a route. However
specific criteria for the selection of weights need to be devel-
oped – this is discussed in $IV. In principle one can consider
control policies which adjust the weights based on the state of
the network – a simple example is briefly considered in ~111-D

C. Proportionally fair bandwidth allocation

As a final alternative we consider a framework where util-
ity functions UT : & -+ R, r E R have been associated with
connections following various routes, Here UT(ar) is the util-
ity to a userlconnection on route r of a bandwidth allocation
ar.3 A bandwidth allocation policy which maximizes the total
network utility when the state is n can be obtained by solving
the following optimization problem:

maxa

{ }
~n.U.(a.):~ Aw.a~<vj,16 L;a >0, (6)— —

Tel? rGR.

where we assume that the utility functions are concave and so
the optimizer is unique. This approach to allocating bandwidth
is pleasing in the sense that it finds an appropriate compro-
mise between the extent to which users value bandwidth and
the overall user “satisfaction.”

In general it is unclear how to select utility functions.
However, [12] and others, have considered the case where

U, (ar) = log a, and shown that in this case the maximizer
a$” = (a;”, r c l?) corresponds to a proportionally fair band-
width allocation in the sense that the vector is feasible, i.e.,

satisfies the link capacity constraints, and for any other feasi-
ble rate a’ = (a;, r c 7Z), the aggregate proportional change is

negative, i,e.,

E

a; — a~*
nr <0.

a$?*rcz

Determining the maximizer of (6) for log utility functions
can be done explicitly for simple networks, Alternatively, as
with max-min fairness, one can design rate control mechanisms
that converge to the associated bandwidth allocation [13]. We
will let p;(n) = nra~’ denote the total bandwidth allocated

to connections along route r c R and pr’ (n) = (N;(n), r c

%?) be the bandwidth allocations per route when proportional
fairness is used.

III. STABILITYOF THE STOCHASTIC NETWORK

In this section we will consider the stability of the stochastic
network model defined in ~11, for various types of bandwidth
allocation. Assuming {IIr, 0., r E 7?} are independent Pois-
son processes on [0, m), where IIr has rate & and @r has rate
1, the evolution equation (1) defines a Markov chain on Z?
with transition rates

{

A m=n-t-er, rGl?
q(n, m) = p;~n), rn=n-e T,~CR , (7)

o, otherwise

for m # n, where e“ = (ej, s ~ ‘R), e: = l(r = s). Thus,
when the state is n, route r sees arrivals with rate & and de-
partures with rate p,(n). Note that when n. = O we have

p,(n) = O, thus q(n, n – e“) = O, ancl so the rates are sup-
ported on the positive orthant.

We use the notation Q for the infinitesimal generator (viz,,
rate matrix) of this continuous-time Markov chain. For a func-
tion p : R~ -+ ~ we write4

where the latter equality follows from the fact that Q is con-
servative: q(n, n) = – ~m+n q(n, m). Note that Qp(n) can
be interpreted as the expected drift, i.e., the change in p(N(t))
when N(t) = n.

Clearly the Markov chain {N(t), t ~ O} is irreducible, and
we say that it is stable, iff it is positive recurrent. We will show
positive recurrence by constructing a Lyapunov function [17],
[9]. For our system, a Lyapunov function is any function V :
Z? + I& with the sole property that there exists a finite set
K ~ Z?, such that

sup QV(n) <0, (9)
n#K

3If there ~xi~t connections with different utility functions that follow the

same path, one can define several routes carrying connections that share the
same utifity function.

4Notice that the sums in (s) have a finite number of terms, since the ch~n

has only local transitions, i.e., arrivals and departures for every route, thus there
are no restrictions on the function @ for Qq(n) to be well defined.
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where QV is defined as in (8). Using our formula (7) for the

transition rates we can rewrite QV as

QV(n) = ~{&[V(n + e“) - V(n)]

T@?

+p.(n)[V(n – e’) – V(n)]}. (10)

Intuitively (9) means that when the process N(t) lies outside
K, it is such that on average V(N(t)) is decreasing, i.e., has
negative drift.

Searching for such a Lyapunov function can be a tedious
procedure, particularly since the transition rates of our Markov
chain are defined via the optimization problem associated with

the various fairness criteria. Below we consider the stability of
networks subject to various types of max-min bandwidth allo-

cation. Stability for the case of proportionally fair bandwidth
allocation has been shown via a quadratic function [14], but has
been omitted due to space constraints.

A. Stabili~ under max-min fair bandwidth allocation

We first consider the stability of the network when band-
width is allocated according to the max-min fair criterion and
thus the dynamics of the system are captured by (1) with p re-
placed by pm as defined in $11-A.

We will begin by considering a candidate Lyapunov func-
tion, related to the max-min fairness criterion. Let V(n) be the
reciprocal of ~tll (n) defined in (2) and extend it from Z? to

R?, namely,

For convenience we introduce the vectors

and let p~ (z) = (&, z), Y c Z where (., .) denotes the standard

inner product in RR. With this notation we have that

(12)

Thus Visa piecewise linear function. Since the vectors& have
non-negative components, the sets {z c R? : V(x) ~ a} are

compact polytopes, for all a ~ O. For a fixed ~, one or more
of the indices 1 achieve the maximum in (1 2)– these are the
first-level bottleneck links defined earlier. We will use L(l) (x)
to denote the dependence of the first-level bottleneck links on
z. Similarly 77,(1J(z) and v(l) (z) will be used to indicate such
dependencies in the sequel.

Since for first level bottleneck links the link capacity is
fully utilized among ongoing connections, we would expect
that, on average, the number of connections on such a link
~T~R AE,n. will decrease as long as the average arrival rate
does not exceed the link capacity. The following lemma makes
this clear.

Lemma 111.1: Assume that AA < u, i.e., ~TcR At~& <

vi, for all 1 c ,C.5 Then, there is a constant c > 0, such that
for all z c E!$, and all 1* E argmaxtel:p~ (x), i.e., first-level

bottleneck links /* E L(l) (~), we have

Prooj First, using (10) and the definition (11) of f~ we have
that

Next, since 1“ is a first-level bottleneck link, it follows that for
routes r traversing link/* we have p~ (x) = ~.a~ where a; is
given by (2). Thus,

where c := maxlec{v~l (.vt – ~r,-n A/~&)} is positive by

the stability condition. ■

Despite the promise of Lemma III. 1 it is unclear whether V
is an appropriate Lyapunov function. Indeed the lemma only
suggests that as long as the state makes transitions on regions
having the same first level bottleneck links, V(N(t)) will ex-
perience a negative drift. To make this more precise we will
explicitly identify these regions and for clarity present an ex-
ample in ~111-C.Let M be a nonempty subset of ,C and let

C,bf={%e R: : .@)(%)l = M}. (14)

It is clear that if Q >0, x E CM +- ax ~ CM, i.e., these sets
are cones, and that

u CM = ~’:.
M~L,M#O

Suppose that n c 6’M, for some nonempty M, then the drift
QV(n) can easily be computed (see (10)), provided n+er, n –

eT E CM, for all r ● 1?. In this case, with 1 any element of

M, we have QV(n) = (&e,A – pm(n)) s –c, by Lemma
III. 1. However when n and n + e“ or n – e“ belong to differ-
ent cones an explicit verification of the negative drift require-
ment becomes difficult. Indeed when this is the case a transi-
tion causes a change in the bottleneck links – alternatively we
are “crossing of a boundary” of one of the cones. Intuitively
we may rwgue that this effect is negligible, since it occurs at a
relatively small fraction of points in the !state space.

5In the sequel this will be referred to as the stability condition.
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Lemma III. 1 also implies there is a c >0, such that

(W(z), A- pm(z))< -c, (15)

for all z at which the gradient VV(Z) := (dV(z)/~z,, r s

7?) exists. It is easy to see that this gradient exists almost ev-
erywhere, and, when it exists, it equals ~e, for some/, We will
start by showing that there exists a smoothened version W of
the function V that satisfies a drift condition in the sense of
(15) for all z ~ R?.

Lemma 111.2([8]) If AA < v, then there is a non-negative
function W, defined on R! \ {O}, that is at least twice-
continuously differentiable, has a Hessian ‘, V2 W(r), such that

V2 W(x) -+ O, as Ial -+ co, and which satisfies the following
drift condition: there is a d >0, such that

(VW($), A - p~($)) < -d, for all z # O.

Next we show that the network is indeed positive recurrent.
Theorem 111.1: If AA < v then the Markov chain

{N(t), t z O} associated with the max-min fair bandwidth

allocation is positive recurrent.

Prooj Since W is twice differentiable it follows by the Mean
Value Theorem that for n, m c Z: there exists a 9,0<6<1
such that

W(n+m)–w(rt)=(Vw(n),m)+~m%aw(n+Orn)rn
:=(Vw(n),?n)+p(rl,nl).

Recall that V2W(n) + O and thus /3(n, .z) + O as lnl + co.
Now, using this approximation to compute Q W, as in (10), we
have

Qw(~) = (vw(~), ~ – pm(~)) + ~q(%m)p(%m – ~).
m

It follows by Lemma 111.2that the first term is at most –d. The
second term, is a sum of a finite number of terms, and can be
made smaller than d/2 for all [n I sufficiently large. Thus noting

that suplnl>~ Q W(n) <0, for sufficiently large T, and letting
K = {n : Inl ~ ~} we satisfy the drift condition (9) which as
discussed earlier implies positive recurrence. ■

B. Stability under weighted max-minfair bandwidth allocation

While the previous result is intuitive, in that the number
of connections on bottleneck links must be decreasing, it is
not easily extended it to show the stability of networks un-
der weighted max-min fair bandwidth allocation. Thus, we de-
velop an alternative approach which, instead of focusing links,
focuses on the relative states of each route. Suppose that a set
of weights w is selected and the network is operated subject
to the bandwidth allocation function pw defined in $11-B. We

. . .. . . . ... . . ,.
will let @($) = ~;l Wrxr, r c 7? and consider the candidate
function

v(z) =IIlllxp”(z) =:=ax{A;lwrzr}. (16)

The following lemma shows why this particular function is use-
ful.

Lemma 111.3: Assume that AA < v then there is a con-

stant c > 0, such that for all z c IK$ and for all T* E

argmaxre~pr (z) we have

Prooj! Suppose the the network state is x and let T* E

argmaxrGR{A;lw.z.} then for all r E 7?, we have that

or equivalently that AT.WrXT < ATwT*x~, . Now summing

over all routes traversing a link/ e Z we have that

which one can rearrange to show that

Given (17) and the stability condition one can easily show the
existence of a positive lower bound, E >0, for the term on the
right-hand side :

>—

Thus we have that

A,* < Wr.%..fj’)’w(x) - &

where we recognize a term corresponding to the fair share

‘Here V2 W(x) denotes the \7Z[ x l’k?\ matrix with entries

{*(’))W ~ ~}

~~l)’W(x) at link 1, see (4). Moreover since this is true for all 1
we have that

A.* < W.. $.. f(lw(x)x) – E (18)

‘l) ’W($) is the fair share at firstwhere .f(l)’w(x) = min~=~ ~e
level bottleneck links ,C(l)’W(x).

Now if r“ is a first level bottleneck route, i.e., r“ ~
R,(l)’W(x), then ~~. (x) = wT. x,. $(lJW (x), and it follows by

(18) that ~T. – L$. (x) < –&. If r* is not a first level bottle-
neck route, we will show that its bandwidth allocation must
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exceed ZOT.Zr.fIIJ’W(Z) and so again by (18) we have that

A,* – p:* (2) < –E.
We begin by showing that ~(2)’W(x) ~ ~IIJIw (z). Suppose

1 ~ ,C \ L(l)’w(z) and note that

so it follows that

I.bk 1 LW2 Lbk3

“1 “* v,

Fig. 1. Example network with three
links aud two routes.

Fig. 2. A vector field of the example
network.

Rearranging terms and recalling the definition of fair share for
the links in the second level of the bottleneck hierarchy we have

that

fj2qx)=
Jw(x)

zw7\7w)!w(.) Aerwrxr

VI—f(l) ’w(~)~r=R(l),~(m)Arwrxr

—
— >p’w(x).

Zre7Z\7UlJ)W(%) ‘erwr% –

Thus ~(2)’w(z) = minl~c ~/z) ’W(z) ~ ~(l)w(x). Similarly
it follows by induction that ~ ‘+l)W (z) ~ ~(i)’W(x), until the
bottleneck hierarchy is exhausted.

Now since p~. (z) = WT.z.. ~(~)’w (z) for some level
j in the bottleneck hierarchy, it follows that p:. (z) ~
Wr.XT.~(l)W(Z) and so AT* - p:. (z) < -e. The lemma fol-
lows by selecting c = e min.c~{~;l w.}. ■

Theorem ZZZ,2: If AA < v then Markov chain {N(t),t ~
O} associated with weighted max-min fair bandwidth alloca-
tion is positive recurrent.

Proof Based on Lemma 111.3, and the technique used in
Lemma 111.2, it should be clear that an appropriately smooth
Lyapunov function W can be constructed from V in (16). Pos-
itive recurrence then follows as in Theorem III. 1. ■

Note that since max-min fairness is a special case of
weighted max-min fairness, Theorem 111.2establishes the sta-

bility of both. The two different Lyapunov functions we have
introduced, based on links and routes, may be of interest in
further studies of performance. These results establish that
AA < v is a sufficient condition for stability. In fact, it is

a necessary condition. Say there exists a link t such that
~ren Alr& > VI. Clearly such a link in isolation is unsta-
ble, i.e., on averagewill tend to drift off to infinity. When the
link is incorporated within a network, the situation can in fact
only get worse, since other links may slow down the departures
for connections one.

C. .Example network

In this example we consider max-min fair bandwidth alloca-
tion for the network shown in Fig, 1 – it consists of two routes
7? == {1,2} three links, ,C = {1, 2,3}, as shown in the figure.
Fig. 2 shows the vector field A – pm(x) corresponding to the
case with A = (1.5, 1.5) and v = (5, 6,4). We have shown

the boundaries xl = 5x2 and 2X1 = X2 between three cones

C{l), C’IZ) and C{3] corresponding to links 1,2 or 3 being bot-
tlenecks respectively. Also shown on the figure is a level set of
the function V. From the figure it is clear that on each cone the
network’s dynamics push inwards, i.e., have negative drift with
respect to V. By smoothing V as in Lemma 111.2we obtain a
Lyapunov function W from which the stability of the system
follows.

D. Stabili~ under a state dependent weighted max-min fair

control policy

In this section we briefly consider a simple extension to our
model with weighted max-min fair allocation, wherein a con-
trol policy is implemented by letting the weights depend on the
network state. Let w = (w, : Z? + ~, r G l?) now denote
functions where w(n) = (WT(n), r E ‘R) are understood to be
the weights associated with each route when the network state
is n. Assume that when the system is in state n bandwidth is
allocated to routes according to a weighted max-min fair allo-

cation with weights w(n). Let pW(n) (n) = (~~(n) (n), r E 7?,)
denote the bandwidths allocated to each route in the network
when the state is n. Our interest in this type of model, was mo-
tivated by work on stability of Generalized Processor Sharing
networks [18]. Without delving into the details of their model,
we remind the reader that in such networks a connection is as-
signed a weight at each node (representing a queue) which de-
termines the fraction of the available capacity it receives at that
node. The authors showed the queue/delay stability of non-
acyclic networks of this type when connections received a con-
sistent relative treatment. By analogy here, we will say that
a state dependent weight based control policy gives routes a
uniform relative treatment if Vn E Z? and r,s E l?,

(19)

An example one on such control policy would be w.(n) =
A,ln, for n. # O. Thus upon admitting or tearing down a con-
nection along a given route the network controller would need
to adjust the weight associated with that route. The following
lemma shows that subject to the natural stability condition, a
weight based control policy that gives routes uniform relative
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treatment is stable.

Lemma 111.4: Assume AA < v and a weight based control

policy w(.) that gives routes a uniform relative treatment is
used to allocate bandwidth in the network. Then Vn c Z:

and Vr E 7? such that nr >0 we have

It follows that the network is positive recurrent.
The proof of this lemma is almost identical to that of Lemma
111.3. Positive recurrence follows since the number of connec-
tions on every route has negative drift if it is not empty.

IV. PERFORMANCE

In this section we use simulation to briefly evaluate network
performance, in terms of average connection delays, based on

our model. This type of metric might be of interest in dimen-
sioning networks to provide a reasonable call-level quality of
service. One might also wish to design network control mech-
anisms, e.g., assign priorities (weights) to different routes, or
spread the call level loads across the network in a manner that
improves the individual or overall delays experienced in the
network.

Fig. 3. A network for simulations.

We shall consider a network consisting of K links in series,
see Fig. 3. A long route traverses each link in the network,
while short, single link routes, model “cross traffic.” To investi-
gate the degradation in performance as connections traverse an
increasing number of links we simulated several configurations
where K = 2,3,4 and 5. Herein we will only present results
for a symmetric, moderate load, scenario where the arrival rate
on each route was 2 connectionslsec and the capacity of each
link was 6 connectionslsec. We simulated max-min, weighted
max-min, and proportionally fair bandwidth allocation mecha-
nisms in order to assess their impact on connection delays. In
the case of weighted max-min fairness, short and long connec-
tions were given weights 1 and 2 respectively, i.e., priority was
given to connections traversing several links as they are likely
to experience the poorest performance. Figures 4- 6, show
the average connection delays on short routes, long routes, and
overall, for the various types of fairness and as the number of
links K h the network increases. These results suggest the
trends discussed below.

We first contrast the performance of max-min fair bandwidth
allocation, which strives to maximize the worst case individual
performance versus proportional fairness which strives to max-
imize the overall network utility. The latter tends to give more
bandwidth to connections crossing a small number of links, as

they are more efficient in terms of their resource requirements.
As a result long routes may linger in the network possibly de-

grading the overall performance. This effect is aggravated as
the number of links in the network increases. For example, for

K = 5, the relative change in delays for proportional versus
max-min fair bandwidth allocation is -10 YO on short routes,
+46 % on long routes, and +5% overall. This suggests that
for networks supporting a larger number of longer routes one
might find that max-min outperforms proportionally fair allo-
cations in terms of delays on long routes as well as overall de-
lays. Finally note, that as the number of links increase, propor-
tional fairness leads to a surprisingly flat average delay on short
routes, while long routes see a linear growth in average delay,
see Figs. 4 and 5.7 This suggests that proportional fairness may
provide a clean performance differentiation among routes that
have different lengths.

m06
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Fig. 4. Average delay on short
routes.
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Fig. 5. Average delay on long
routes.
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Fig. 6. Average overall delay,

Next, we consider the impact that using a weighted max-min
fair bandwidth allocation will have on delays, if weights are se-
lected so as expedite connections on long routes. Continuing
with our example, when K = 5, the relative change in delays
for the weighted versus the max-min fait- bandwidth allocation
is +9 Yoon short routes, -33 % on long routes, and -2910overall,
Thus, one can not only dramatically improve the delays expe-
rienced on long routes, but also marginally improve the overall
performance.

These results exhibit the potential impact that a the fairness
criterion selected by designers may have on network perfor-
mance. However, a better characterization of network perfor-

7The overall delay is not linear since it is an average of delays on Shofi
and long routes. Since the relative totrd load on short versus long routes is
increasing with K, the overall delay behavior is not linear.

0-7803-5420-6/99/$10.00 (c) 1999 IEEE



mance and tools to ‘optimally’ select weights, or route connec-
tions, will need to be developed if a call level quality of service
such as that considered here is deemed important in future net-
works. Also note that one could in theory introduce weights on

a proportionally fair allocation in order to also enhance the per-
formance seen on long connections. Hence our results do not
suggest that a particular mechanism is best, we merely suggest
that a consideration of these issues might be warranted.

V. COULD THE INTERNET BE UNSTABLE ?

In this paper we have considered the stability and perfor-
mance of an idealized model for a network supporting services
that adjust their transmissions to network loads, The model
is only a rough caricature of the Internet today, in that it as-

sumes TCP operates efficiently by immediately achieving an
average throughput related to a weighted proportionally fair

bandwidth allocation. 8 So a connection’s throughput is dic-
tated by a weighted allocation of resources at congested or bot-

tleneck links. Average round-trip time experienced by connec-
tions and loss rate can be captured by weights given to connec-
tions which in turn impact the equilibrium throughput achieved
by TCP connections. This model parallels the one proposed
and validated via simulation in [16]. We also assume that pack-
ets associated with a given TCP connection typically follow

the same route, and connections send data in a greedy manner
and depart. Subject to these, perhaps fanciful assumptions, one
can show that network stability cannot be guaranteed unless the
connection-level offered loads do not exceed the network’s link
capacities.

While this result is not entirely surprising, it presents an in-
teresting architectural dilemma for future networks. Since rout-
ing algorithms on the Internet base their decisions on short term
measures, i.e., are not explicitly tracking the long-term aver-

ages required to assess the connection level offered loads, there

is no reason to believe that the Internet would satisfy a connec-
tion level stability requirement. Instability would be perceived
by users as an unacceptably low throughput, or inordinate de-
lays, and typically cause them to abandon, thus in some sense
solving the problem. To avoid such extremes one might over-
provision the network. Unfortunately, this may result in a net-
work which is still unstable, resulting in sporadic long lasting
congestion events that are challenging to explain.

Currently we are researching using methodologies similar to
those we have used to prove stability, to explore performance
issues and consider in more depth the compromises one might
make to achieve good performance at the connection level. It
would of course be interesting to look at congestion patterns
on the Internet today and attempt to explain them in terms of a
ccmnection-level instability. However, given the typically non-
stationary demands on today’s networks and the detailed data
that would be required to provide a conclusive answer to this

question this appears to be a challenging task.
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