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Abstract—Although electric vehicles are attracting increasing
interest from consumers and automakers, the disadvantages
associated with limited range and the current scarcity of public
recharge stations have played a key role in limiting their large
scale adoption. In this paper, we explore how information
technologies might be used to mitigate ‘range anxiety’ and
further strengthen the potential of electric vehicle integration
with the renewable energy generation and storage. We motivate
several mobile applications/services which would improve the
ownership experience of electric vehicles and flexibility for energy
providers. Our work leverages a previously proposed sensor
platform for collecting travel-time and energy-usage data for a
road network by a community of electric car drivers. Travel-
time and energy-usage on a given road segment may exhibit
substantial variability due to environmental and temporal factors,
e.g., congestion, road’s grade, AC on/off, etc. Such variability in
turn, makes it difficult to accurately predict travel-times as well as
the feasible range of a car given its current energy reserves. How-
ever, by collecting statistical data using cars/mobiles as probes
one can quantify such uncertainty and develop complementary
algorithms to counter the anxiety and time waste associated with
such uncertainty. This paper develops the necessary (routing)
algorithms to support these new classes of applications/services
for electric vehicles.

I. INTRODUCTION

In the last few decades, the environmental impact of the
petroleum-based transportation has led to renewed interest in
electric transportation infrastructure. Not only is the operating
cost of electric vehicles much less than that of traditional
vehicles, but the possibility of integrating an electric fleet with
the smart grid, using demand side management, to make better
use of volatile renewable generation, makes them an attractive
component in building an efficient smart grid.

Various companies have introduced hybrid electric vehi-
cles (HEV) and pure electric vehicles (EV) to enter this
emerging market [1], [2]. Electric vehicles suffer from two
basic problems. First, they have limited range, due to the
low energy density of batteries as compared to fuel used
in internal combustion engines. In fact, most pure electric
vehicles currently have a manufacturer estimated range of
100 miles or so. The range however can vary substantially
depending on driving style and the environment. For example,
the range of the Nissan LEAF varies between 47 and 138 miles
depending drastically on the EV’s speed, traffic conditions,
road type or even the operation of the air conditioner [3].
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Second, the recharging process can be slow and inconvenient
[4], [5]. Recharging takes different amounts of time depending
on the voltage “level” of chargers. A 220V home charging
station may need more than 10 hours to fully charge a battery,
while a higher voltage public charging station may need 10
to 30 minutes to charge a battery that is half depleted. To
make things worse, there are only a few charging stations as
compared to the traditional gas stations. The scarcity of public
charging stations means the electric vehicle owners need
to keep in mind the reachability of charging infrastructure.
Although 75% of Americans commute 40 miles or less round
trip, anxiety associated with the limited range of pure EVs
has been a sore point for adopters. Indeed, this is why hybrid
options have been developed and marketed in the last few
years.

Meanwhile, there are billions of automobiles worldwide
and new automobiles are equipped with hundreds of sensors.
Recent work has shown the feasibility of collecting traffic
information using such sensors, see e.g. [6], [7] or using
smartphones e.g. [8]. The basic mechanism is simple: data is
collected from sensors (accelerometers and location) in phones
or on appropriately outfitted vehicles, and transmitted and
aggregated at servers on Internet, see Fig.1. Such frameworks
provide a means to collect a lot of detailed information on
traffic and/or the road infrastructure.
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Fig. 1. Infrastructure to collect data

In this paper we focus on leveraging such sensor data to
address various challenges associated with EVs, including



mitigating the range anxiety by making more predictable
estimates, better integrating the charging infrastructure, and
other aspects associated with integrating EVs with the power
grid. We will discuss the main applications in detail in Section
II. Briefly speaking, these include: Charge Alert to alert drivers
when they are running out of energy; Route Planner to find
the best path considering time and energy requirements; Trip
Planner and Charge Station Reservation System to help people
plan a long distance EV trip; and Demand Scheduling and
Energy Storage in Smart Grid to help integrate an electric
fleet with the smart grid.

There are two basic challenges in making the above appli-
cations a reality: (1) collecting statistical data which reflects
the mean and variability in drive-time and energy-usage on the
roads to enable route computation and estimates that drivers
can rely on; and (2) algorithmic challenges associated with
computing such estimates and routes. Fortunately, as we dis-
cuss below in related work, there has already been substantial
research and experience on building IT infrastructure to collect
such data from a population of participant car drivers. There
have also been efforts in analyzing and devising algorithms to
address the computation of routes most likely to meet a driver’s
desired travel time related to a type of stochastic shortest path
problems. This paper builds on both of these contributions to
address new algorithmic challenges presented by the electric
vehicles. We shall thus devote some time to related work.

A. Related Work

Data collection from a population of vehicles. The under-
lying data collection infrastructure for our work comes from
[6]. This paper proposes CarTel, a mobile sensor computing
system designed to collect, process and visualize data from
sensors on vehicles. The collected data is transferred back to
servers permitting the development of applications based on
diverse types of queries. In a subsequent paper, [8] proposed
a framework which uses sensors in smartphones to efficiently
collect information from a community of users. The frame-
work is fairly generic and intended to permit the collection of
statistical information on the car drive-times on road segments
as well as facilitate the identification of other characteristics
of the road ways, e.g., presence of pot holes by recognizing
the associated car drive patterns from inertial sensors. Clearly
the same infrastructure can be used to collect the data needed
for electric vehicles. For example cars equipped with energy
sensors, could be used to collect statistical data associated with
energy expenditures on road segments, implicitly capturing
variability associated with fluctuations in traffic and/or time-
of-day congestion, uphill/downhill characteristics, car/battery
types, and/or driver style. In this paper we will assume
that using the same type of infrastructure, as well of post
processing of collected data, that distributions for the drive
time and energy expenditures on segments of a road network
are available, representing the typical scenario for drivers at a
particular time of day.

Algorithm development: stochastic shortest path. With
regard to algorithm development, a work closely related to

this paper is [9]. The work is motivated by the following
observation. Due to the uncertainty associated with drive times
along a given route, ‘anxious’ drivers tend to budget much
more time to make a trip than necessary, which leads to an
overall substantial cost in wasted time eventually waiting at
the destination etc. Thus, the critical problem in planning a
route, is not to find the shortest path in terms of distance,
but to find the path which is most likely to meet a target
deadline, e.g., if one needs to make it to the airport by some
time which is the best path? Doing so requires modeling
the variability of the constituent road segments as well as
determining an overall path whose aggregate distribution is
the most favorable. In the above mentioned paper, travel time
of every road segment is modeled by a random variable
and paths are determined to maximize the probability that
the total path travel time does not exceed a given target,
and risks are explicitly assessed. This allows a driver/user
of the application to define his level of tolerance to excess
delay, and in turn the algorithm to take that into account
in determining an appropriate path. In this paper we further
consider the problem of ‘range anxiety’ associated with EV.
This introduces problems which involve tradeoffs between
uncertain drive-time and energy expenditures. We can express
such tradeoffs in terms of additive functions of both time
and energy and/or (probabilistic) constraints on some of the
variables. Algorithmically in this paper we focus on two prob-
lems driven by energy-time tradeoffs: shortest path problem
with constraints, and then to address uncertainty, extend this
to stochastic shortest path with chance constraint problem.
Researchers have already worked on shortest path problems
with constraints in particular fields, e.g. [10] and stochastic
shortest path problem, e.g. [9]. However, we will address more
general problems which are related to electric vehicle-related
services we envisage.

B. Our Contributions

In this paper we propose new types of services/applications
for plugin electric vehicles leveraging information technology
infrastructure. These services can make the ownership of
electric vehicles a better experience and a competitive choice
as compared to traditional petroleum-based transportation and
less costly than hybrid EVs. The services can also serve as
a basis for other innovative mechanisms for EV based energy
demand scheduling and buffering in smart grid. Data collection
to enable the design of such systems can easily be carried
out via either vehicle or mobile-phone based infrastructures,
examples of which were discussed above. Our focus is also
on the algorithmic side of things in particular in looking to
mitigate uncertainty in drive-time and energy expenditures,
and thus the anxieties associated with these. We propose a
new set of algorithms to realize tradeoffs, amongst drive-time,
energy expenditures and risks of failing to meet users’ needs.

We use a graph-based model in which the edges (corre-
sponding to road segments) have multiple associated parame-
ters which can either be constant values or random variables
with known distribution. We start with a simple problem,
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where each edge has constant parameters associated with the
expected travel time and energy consumption and a path cost
function is a convex function of the overall path’s travel time
and energy consumption. We convert this problem to one of
solving a traditional shortest path problem with linear path
cost function. We then introduce constraints on this problem,
which could, for example, correspond to requirements on
the total travel time or energy expenditure. To determine
shortest paths which also satisfy such constraints, we propose
in iterative algorithm that at each step maintaining a one-
dimensional “path feasibility” vector and modify Dijkstra’s
algorithm accordingly.

Next we consider models which capture the role of un-
certainty in such a network, by studying stochastic shortest
path problems which, for example, account for variability in
travel time and energy consumption. Our starting point is the
stochastic shortest path (SSP) problem considered in [9] but
we introduce chance constraints. In particular we model the
travel time and energy expenditures associated with the graph’s
edges as random variables and set the goal of maximizing the
probability of reaching the destination within a deadline while
simultaneously meeting a chance constraint on the energy
consumption on the selected path. In other words finding a
path that meets a risk requirement on energy depletion, and at
the same time maximizes the likelihood of arriving on time.
We consider the case where random variables are normally
distributed, which is likely a reasonable model in most cases
of interest. In both cases, our algorithms have a worst case
running time O(n(logn)), where n is the number of nodes in
the road way graph model described below.

In summary the paper advances the state-of-the-art, by
introducing a framework to enable the computation of reliable
estimates for the distances EVs with limited battery resources
can travel. This is achieved by collecting travel-time and
energy expenditure statistics from a community/network of
in-car or car bound mobile phone sensors and devising a new
classes of algorithms to support path computation.

C. Paper Organization

This paper is organized as follows: Section II describes
our proposed applications. Section III introduces our system
model. Section IV develops our solution to the deterministic
shortest path problem with constraints while Section V ad-
dresses the stochastic case. Section VI concludes the paper
and points to some future work.

II. APPLICATIONS

This section introduces several mobile based applications
for EVs and associated challenges.
Charge Alert. Because of the current scarcity of electric
charging stations, it is possible for an EV to inadvertently
run out of energy without access to a closeby public charging
station. To avoid this a ‘charge alert’ application can be
devised which leverages a priori knowledge of the available
charging stations in a region and likely energy consumption
on different road segments to alert the driver if there is trouble

ahead. The key element in such a system would be the ability
to accurately estimate the energy expenditures to reach the
‘closest’ charging station given the current location and/or
desired destination of a vehicle. Given the uncertainty involved
with driving relatively long distances (e.g., until the next
charge point) and variability in congestion and possibly driver
style, car energy expenditures, the driver should be alerted in a
reliable manner as to the risk, without at the same time being
too conservative and thus seriously limiting flexibility.
Route Planner. For electric vehicles the shortest path may
not always be the most energy efficient. For example, driving
on a highway involves cruising at higher speed but energy
consumption increases dramatically with speed. If a car’s
battery is close to depleted, it may be preferable to take
local roads where one can drive more slowly, and to avoid
steep hills. Leveraging the above mentioned information one
can design a route planner that suggests the best route based
on different requirements. If the driver wants to go from
s to d, and has an energy budget e0, the application can
choose a path that achieves a desirable tradeoff between time
and energy consumption. For example, a path with a high
likelihood of reaching the destination within the time deadline,
and negligible risk of energy depletion. This involves solving
a shortest path problem with constraints.
Trip Planner and Charge Station Reservation System. Al-
though most electric vehicles are used in and around town,
EV owners may occasionally wish to travel long distances.
In this case recharging along the way will be unavoidable
and thus should play a key role in planning the overall trip,
with charging stops along the way. Further since recharging
an electric vehicle can take a long time [4] and the facilities
are limited, particularly in rural areas, a good trip plan might
include making a reservation to charge the car ahead of time
at a likely arrival time, so that upon arrival a charging spot
is available. This could help the customers avoid long waits
in accessing limited resources and help the charging station
providers increase profits.
Demand Scheduling and Energy Storage in Smart Grid.
An electric grid shared by a large population of electric
vehicles presents new opportunities for integrating renewable
generation. Indeed renewable generation, e.g., wind and solar,
may be highly variable, but when a large population of EVs are
plugged in (e.g., at work/home/public parking with chargers),
one can schedule their aggregate load on the network to match
the generation. Such scheduling demand could in principle
take into account constraints placed by drivers on the timing,
and next destination to ensure drivers do not subsequently
suffer by not being able to reach their desired destination.
Additionally, more aggressive concepts involve possibly al-
lowing the grid to subsequently take energy from the cars.
Although possibly not efficient, this effectively allows storage
of energy. Again discharging of a car’s battery, should be
subject to the drivers near term goals, e.g., will need to go
home, so reasonable energy budget should be left to allow for
it. Once again the essence here is to ensure energy reserves
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are present to reliably guarantee the vehicle will be able to
reach the desired destination, e.g., home or work.

Next we will describe the system model and algorithms to
implement such applications.

III. SYSTEM MODEL

A. Model Abstraction

We model the map of a regions a graph. Intersections are
nodes and road segments are modeled as edges. Each edge
is associated with several non-negative parameters which are
either constants or random variables with known distribution.
In this paper the parameters correspond to travel time and
energy consumption. The constants will represent the expected
values while the random variables represent the travel time or
energy consumption when different vehicles pass the same
road segment at a given time of day. The problems of interest
are expressed in terms of this graph. More explicitly, consider
a graph G = (V,E), with |V | = n nodes and |E| = m
edges. We have a source s and a destination d, s, d ∈ V .
Formally speaking, a path p in graph G is a sequence of nodes
such that from each of its nodes there is an edge to the next
node in the sequence. Psd represents the set of all the paths
from s to d. Each edge i has two non-negative parameters:
denoted ei and ti if constants or Ei and Ti if random variables,
where ‘ei’, ‘Ei’ are energy related parameters and ‘ti’, ‘Ti’ are
associated with travel times. For random variables, we assume
Ei ∼ N(µe(i), σ

2
e(i)), Ti ∼ N(µt(i), σ

2
t (i)). The problem of

interest will be either to find the shortest path subject to a
constraint on the path or to find stochastic shortest path subject
to a chance constraint.

B. Previous Results

We shall introduce some definitions and results from [9],
[11] which serve as a starting point for our work.

Definition 1: A set S is said to be convex if for all x, y ∈ S
and α ∈ [0, 1], αx+ (1− α)y is in S.

Definition 2: The convex hull for a set of points X is the
smallest convex set containing X .

Definition 3: Let C be a convex set. A function f : C → R
is quasi-convex if all its lower level sets, i.e. Lγ = {x|x ∈
C, f(x) ≤ γ} for γ ∈ R, are convex.

Definition 4: A point x is an extreme point of a convex set
C if it cannot be represented as a convex combination of two
other points in C, i.e., x is an extreme point if when

x = αy + (1− α)z for y, z ∈ C ,α ∈ (0, 1) then y = z = x

Definition 5: The dominant of a set S where S ⊂ Rm is
the set of all points that are greater than a point in S,

{x ∈ Rm|x ≥ y for some y ∈ S},

S need not be convex.
Theorem 1: Let C ⊂ R2 be a convex set, and f : R2 →

R be a quasi-convex function which is monotone increasing
(decreasing) in both parameters, then f attains the minimum
(maximum) over C at some extreme point of the dominant of
C.

Let us consider our graph-based model where we are given
a source s and destination d in the graph, and each edge i has
two non-negative parameters ei, ti, associated with it.

Definition 6: Suppose each edge i is associated with a
parameter dependent weight λei + ti where λ ∈ R+. Clearly
the graph has a parameter λ dependent shortest path from s
to d. We define breakpoints as the values of λ at which the
shortest path changes. The parametric shortest path problem
is to determine all such breakpoints.

Theorem 2: (Carstensen [11]) There are at most nO(logn)

breakpoints for the parametric shortest path problem with
parameter lengths λei + ti, where i ∈ E and λ ∈ R+.

Definition 7: The projection of a path p onto the plane
spanned by

∑
i∈p

ei and
∑
i∈p

ti (or projection of path p for short)

is the point with coordinate (
∑
i∈p

ei,
∑
i∈p

ti). The projection of

all the paths is the point set which contains the projection of
every path from s to d.

Theorem 3: Let X denote the projection of all the paths (or
all the feasible paths) from s to d. As shown in Fig. 2, for each
λ we can find a shortest path and the projection of this path
is an extreme point of the dominant of the convex hull of X .
Further, [9] shows that there is a one-to-one correspondence
between the extreme points of the dominant of the convex
hull of X and the breakpoints of the parametric shortest
path problem with parameter length λei + ti and the time
complexity to find all extreme points is O(n(logn)).

IV. SHORTEST PATH WITH CONSTRAINTS

This section introduces the main idea to implement Route
Planner application. We begin by introducing a class of
problems and associated algorithms that address multiparamter
shortest path problems on graphs, where edge parameters do
not exhibit uncertainty or are based on means.

A. Multi-Parameter Shortest Path Problem without Con-
straints

Let us start by considering a shortest path problem without
constraints, but with multiple edge weights on which the cost
function depends.

We are motivated by scenarios where different people may
wish to achieve different tradeoffs between energy and travel
time. Some want to minimize travel time, some want to min-
imize energy consumption and others may want to minimize
the sum of travel time and square root of energy consumption.
The cost functions of interest here are monotone increasing
in total energy and travel time. Further, we assume the cost
function is quasi-convex, which is reasonable in most cases.
This problem is also the basis for more complicated problems
considered in the sequel.

Consider a graph G = (V,E), with |V | = n nodes and
|E| = m edges. We have a source s and a destination d.
Each edge i has two weights ei and ti. In this subsection, we
consider the following problem:
Multi-parameter Shortest Path (MSP)
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arg min
p
{f(
∑
i∈p

ei,
∑
i∈p

ti) | p ∈ Psd},

where Psd denotes the set of paths between s and d and f :
R2 → R is a quasi-convex and monotone increasing function.

Fig. 2. The extreme points of the dominant of the convex hull of the
projection of all the feasible paths from s to d and the process to get p3
after obtaining p1 and p2.

If f is not linear, this problem can not be directly solved via
Dijkstra’s algorithm. However, by Theorem 1 in Section III.B,
the solution must be associated with an extreme point of the
dominant of the convex hull of the projection of the feasible
paths Psd. In turn, each extreme point is the projection of the
solution to a shortest path problem

arg min
p
{
∑
i∈p

(λei + ti) | p ∈ Psd}

for some λ ∈ R. Such problems are easily solved via Dijkstra’s
algorithm.

By letting λ vary from 0 to +∞, one can determine all
the extreme points. As shown in Fig. 2, we start from two
endpoints: the leftmost point p1, which corresponds to the
solution of min

p
{
∑
i∈p

ei | p ∈ Psd} (or λ1 → ∞) and the

rightmost point p2, which corresponds to the solution of
min
p
{
∑
i∈p

ti | p ∈ Psd} (or λ2 = 0). Suppose p1 = (p1e, p1t)

and p2 = (p2e, p2t). Let λ3 = − p1t−p2t
p1e−p2e , which represents the

inverse of the slope of the line passing p1 and p2, we get an
extreme point p3. If p3 is the same as p1, this means all the λ
between λ1 and λ3 will obtain the same extreme point. If p3
is different from p1, we can repeat this to find a new extreme
point between p1 and p3. By repeating this process one can
find all the extreme points.

By Theorem 3 the total time complexity is O(n(logn)).
After obtaining all the extreme points, one need only eval-

uate f(·, ·) at these points to find the solution to the problem.

B. Shortest Path Problem with Constraints
Next we introduce the problem with constraints. In our

context, for example, the constraint may be not running out
of energy for the selected path or the total travel time not
exceeding a deadline. By solving this we can implement a
basic version of Route Planner service.

Consider the system model described above with constants
as edge weights. In this case we consider the Multi-parameter
Shortest Path with Constraints (MSPC) problem:

arg min
p
{f(
∑
i∈p

ei,
∑
i∈p

ti) | p ∈ Psd,
∑
i∈p

g(ei, ti) < δ},

where f : R2 → R is quasi-convex and monotone increasing
in both parameters and g : R2 → R can be any function.

As in the previous section, the solution to MSPC is also
associated with an extreme point. The problem can be solved
by first solving

arg min
p
{
∑
i∈p

(λei + ti) | p ∈ Psd,
∑
i∈p

g(ei, ti) < δ}.

If we can solve this, we can follow the same approach as
in the previous subsection. Specifically, we can first vary the
value of λ to find all the “feasible” extreme points and then
substitute them in f to find the best solution.

However, the parametric shortest path problem with con-
straints is different from the problem considered previously,
which could be solved using Dijkstra’s algorithm. The shortest
path found by Dijkstra’s algorithm may not be “feasible”. Here
we propose a simple modification of Dijkstra’s algorithm to
solve the shortest path problem with constraints.

To describe our approach, we use MFPsd to represent
the feasible path from s to d with minimal cost function. In
Dijkstra’s algorithm, we actually explore the shortest paths
from s to all other nodes until we find the shortest path from
s to d. However in our algorithm, we explore the shortest
“possibly feasible” shortest paths to all other nodes until we
find MFPsd.

Note that a path pst from s to t is possibly part of MFPsd,
i.e. possibly feasible, if and only if the summation of cost
on pst with regard to g and minimal cost with regard to g
needed to travel from t to d is less than δ. At the same time,
since we want to minimize the cost with regard to λei + ti,
we should implement Dijkstra’s algorithm by considering the
cost as λei+ti but check the feasibility at each step according
to the above observation.

The algorithm details are described in Algorithm 1.
We note that the one-dimensional matrix

LengthToDestFrom[] is the key to dealing with the
problem with constraints, where LengthToDestFrom[j]
records the shortest length from j to d by considering
the length of edge i as g(ei, ti). As long as we can build
LengthToDestFrom[] in the initialization step of the
algorithm, the problem with constraints can be solved. If
there were more than one constraint, we need only keep track
of different LengthToDestFrom[] associated with different
constraints.
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Algorithm 1 Shortest Path with Constraints
1: Initialization: the shortest path tree SPT is null. Use

Dijkstra’s algorithm to build the one-dimension matrix
LengthToDestFrom[], where LengthToDestFrom[j]
records the shortest length from node j to d by considering
the length of edge i as g(ei, ti).

2: • If LengthToDestFrom[s] ≥ δ, there will be no
solution for this problem. Go to the step 10.

• Otherwise, continue to step 3.
3: For each edge i, compute fi = (λei + ti), gi = g(ei, ti).
4: Assign to every node a fLength value and a gLength

value: set them to zero for s and to infinity for all other
nodes.

5: Mark all nodes unvisited. Set s as current. Create a set of
the unvisited nodes called the unvisited set consisting of
all the nodes.

6: For the current node a, consider all of its unvisited
neighbors one by one in the following way:
For a neighbor i, first compute its gLength value tempi,
i.e. the gLength value of node a plus gk for the edge k
from a to i.
• If tempi+LengthToDestFrom[i] < δ, compute its
fLength value and update fLength and gLength if
we get a smaller fLength. For example, if the current
node a has fLength = 6, and the edge k connecting
it with neighbor i has fk = 2, then fLength value
of i (through a) will be 6 + 2 = 8. If this value
is less than the previously recorded fLength value,
then overwrite fLength and gLength (with tempi)
for node i. After these, go to the next neighbor of a.
If this is the last neighbor, go to step 7.

• Otherwise, directly go to the next neighbor of a. If
this is the last neighbor, go to step 7.

Note, even though a neighbor has been examined, it is
not marked as visited at this time, and it remains in the
unvisited set.

7: When we are done considering all of the neighbors of the
current node, mark the current node as visited, remove it
from the unvisited set and add it to the SPT .

8: • If all the unvisited nodes have infinity fLength value,
there is no solution for this problem. Go to step 10.

• Otherwise, set the unvisited node marked with the
smallest fLength value as the next “current node”
– If the current node is d, add it to the SPT , then

the problem is solved. Go to step 9.
– If the current node is not d, go back to step 6.

9: The problem is solved. Refer to the SPT and output the
shortest path with constraints from s to d.

10: There is no solution for this problem.

V. STOCHASTIC SHORTEST PATH WITH “CHANCE”
CONSTRAINTS

We now will consider the stochastic shortest path problem.
Since factors such as travel speed, congestion and road grade
may influence the travel time and energy consumption of
electric vehicles traversing a given road segment, it is mean-
ingful to model both the travel time and energy consumption
associated with edges as random variables.

The stochastic shortest path (SSP) problem without con-
straints was considered in [9]. Here we consider a version
with “chance” constraints associated with energy or travel time
requirements.

Such a problem arises naturally in practice when a user
wants to maximize the probability of arriving on time while
ensuring the probability of expending too much energy re-
mains low, i.e. on budget.

Consider the system model described above with random
variables as edge parameters. The random variables associated
with different edges are assumed to be independent of each
other, i.e., E1 and E2 are independent, but E1 and T1 need not
be independent. Suppose we have a time deadline α, i.e. we
want to find a path maximizing the probability that we reach
the destination within α minutes. Further, there is a “chance”
constraint δ ∈ (0, 1) that we consume no more than β units
of energy along the path. Formally, the problem of Stochastic
Shortest Path with Constraints (SSPC) is to solve

arg max
p
{P (

∑
i∈p

Ti ≤ α) | p ∈ Psd, P (
∑
i∈p

Ei ≤ β) > δ},

where α represents a time deadline and β represents an energy
budget for the trip that should not be exceeded, such as the
initial battery level.

In Section III, we assumed that for each edge i, Ei ∼
N(µe(i), σ

2
e(i)), Ti ∼ N(µt(i), σ

2
t (i)), and for any path p,

let mt(p) =
∑
i∈p

µt(i) and vt(p) =
∑
i∈p

σ2
t (i), similarly we

define me(p) and ve(p). Now

P (
∑
i∈p

Ti ≤ α) = P


∑
i∈p

Ti −mt(p)√
vt(p)

≤ α−mt(p)√
vt(p)


= Φ

(
α−mt(p)√

vt(p)

)
,

where Φ denotes the cumulative distribution function (CDF)
of the standard normal distribution and

P (
∑
i∈p

Ei ≤ β) = P


∑
i∈p

Ei −me(p)√
ve(p)

≤ β −me(p)√
ve(p)


= Φ

(
β −me(p)√

ve(p)

)
.

Since Φ is monotone increasing, SSPC is equivalent to

arg max
p

{
α−mt(p)√

vt(p)
| p ∈ Psd, Φ

(
β −me(p)√

ve(p)

)
> δ

}
,
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which in turn is equivalent to

arg max
p

{
α−mt(p)√

vt(p)
| p ∈ Psd,

β −me(p)√
ve(p)

> φδ

}
,

where φδ is a constant such that Φ(φδ) = δ.
If α < min

p
{mt(p) | p ∈ Psd}, it means the time deadline

is even smaller than the mean time needed to get to the
destination d. This is not the case of interest here, we will
assume α ≥ min

p
{mt(p) | p ∈ Psd}.

Let f(m, v) = α−m√
v

and note that this is a quasi-convex,
monotone decreasing function, so by Theorem 1, this problem
can once again be solved by finding the “feasible” extreme
points, i.e., solving

arg min
p

{
λmt(p) + vt(p) | p ∈ Psd,

β −me(p)√
ve(p)

> φδ

}
,

for λ ∈ R+.
This is equivalent to

arg min
p∈Psd

{λmt(p) + vt(p)}

s. t. me(p) + φδ ×
√
ve(p) < β

Using the algorithm we proposed to solve the MSPC, we can
build the matrix LengthToDestFrom[] associated with the
constraint to tackle the problem, i.e. to check the feasibility
at each step. Building the matrix LengthToDestFrom[] is
equivalent to solving

min
p
{me(p) + φδ ×

√
ve(p) | p ∈ Pjd},

for each node j.
Let h(m, v) = m + φδ ×

√
v and note that h is a quasi

convex and monotone increasing function, thus we recognize
that this problem is similar to MSP that was tackled in Section
IV.A. Using the solutions to MSP, we need to solve

arg min
p
{λme(p) + ve(p) | p ∈ Pjd},

for each node j and for “all” λ from 0 to +∞.
Next we analyze the complexity of the solutions. Since

there are n nodes in the graph and for each node j the
time complexity is O(n(logn)), the total time complexity is
O(n× n(logn)) = O(n1+logn) = O(n(logn)).

In practice, we find that the actual computation is much
less than n times that for a single node. Since the graph is
undirected, the problem is equivalent to considering d as the
source and node j varying across all possible destinations.
When we solve the problem for a fixed node j which is far
from d and a fixed λ, we have also solved it for many other
nodes and the same λ because we have explored many other
nodes as we find the shortest path from d to j.

VI. CONCLUSION AND FUTURE WORK

In this paper we showed how we could leverage sensor
data regarding variable vehicles drive times and energy ex-
penditures on a road network to address some of the current
challenges associated with EVs: range anxiety and scarcity of
public charging stations. By considering energy constraints in
the problem setup, our algorithms leverage measurements to
provide a basis for reliable range-energy estimates and plan-
ning for energy-feasible routes, which would in part mitigate
range anxiety for EV owners and also enable integrating EVs
with a smart grid. Systems and applications built on these
would judiciously manage energy needs and availability, while
meeting drivers and consumers goals. There are several inter-
esting topics for future work. Trip planning over longer ranges
requires determining when and where to stop for EV recharge.
It would be nice to integrate this problem with our existing
algorithms. Our premise is that an electric vehicle fleet can
benefit significantly from information technologies enabling
their deployment, yet this is still a relatively unexplored area.
As such we have access to only limited data. Obtaining data
to conduct an experimental evaluation of the proposed ideas
on a mid-size EV fleet is our goal for future work.
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