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Abstract—Cellular systems using Coordinated Multi-Point
(CoMP) transmissions leveraging clusters of spatially distributed
radio antennas as Virtual Base Stations (VBSs) have the potential
to realize overall throughput gains and, perhaps more impor-
tantly, can deliver substantial enhancement to poor performing
“edge” users. In this paper we propose a novel framework
aimed at fully exploiting the potential of such systems through
dynamic radio resource clustering and user scheduling which
maximize system utility. The dynamic clustering problem is
modeled as a maximum weight clustering problem which is NP-
hard, however, we show that by structuring the set of possible
VBSs to be “2-decomposable” it can be efficiently computed.
We also propose to optimize over a class of power allocation
policies to radio resources, and thus VBSs, which allow dynamic
user scheduling and flexible power allocations depending on
instantaneous channel realizations. We use simulation to compare
our approach with a state-of-the-art baseline which exploits
dynamic frequency reuse and opportunistic user scheduling, but
no clustering, and show edge users’ throughput gains are as high
as 80% without degrading the performance of others.

I. INTRODUCTION

The fourth generation cellular systems based on OFDMA
techniques currently being deployed achieve good coverage
and high system throughput. Still there is interest in realizing
even higher per user throughput, particularly for users at the
edge.

Coordinated Multi-Point (CoMP) techniques provide a path
to address this problem. They can be particularly advantageous
when leveraging spatially distributed radio resources - we
refer to these as Remote Radio Heads (RRHs). By clustering
neighboring RRHs into Virtual Base Stations (VBSs) and
encouraging cooperation among RRHs to reduce or elimi-
nate mutual interference, edge users which were traditionally
poorly served can become “central” to one or more VBSs,
i.e., are well situated relative to their serving VBSs. Ideally, if
there is enough freedom in choosing VBSs each user could be
“central” - we refer to this as a “no-edge” wireless network.

Given the benefits of CoMP and assuming no computational
constraints, one could in principle coordinate across all RRHs
leveraging spatial diversity (in antennas) and removing all
interference. Unfortunately, previous work (see e.g., [1]) has
shown that coordination across the entire system does not
bring as much benefit as expected because of measurement and
signaling overheads. In practice cooperation is only possible,
or desirable, within VBSs of limited size.
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If we cluster RRHs into static sets of VBSs there may still
be users at the edge of neighboring VBSs which suffer from
interference. To realize “no-edge” wireless networks it is thus
necessary to use different VBSs in different sub-bands (or
different times) guaranteeing that each user can be “central” to
a VBS. In the extreme case, on each time slot and sub-band,
the system has the freedom to dynamically cluster RRHs into
VBSs and to schedule users that are “central” to the VBSs. We
call this “dynamic clustering”. Advanced power control and
user selection strategies are also essential to reap the benefits
of CoMP to deliver good performance to every user. While
this concept is attractive, there has not been much work on
how to achieve good clustering and user scheduling in this
setting.

A system employing CoMP and dynamic clustering could
also leverage the current trend towards a Cloud-based Radio
Access Network (C-RAN) compute infrastructure [2]. In addi-
tion to the flexibility to dynamically adjusting VBSs, a C-RAN
based system could facilitate compute workload balancing
among VBSs, is potentially more reliable and energy efficient
by switching on/off RRHs and computational resources ac-
cording to traffic loads.

In this paper, we focus on delay-tolerant best-effort traffic
and propose a framework that enables dynamic clustering and
advanced user scheduling (power control and user selection)
algorithms to realize the promise of CoMP towards “wireless
networks without edges.”

Related Work. Let us briefly introduce CoMP techniques,
see e.g., [3]. CoMP exploits cooperation among RRHs, or
antennas co-located at a RRH, to provide better throughput
to a single user or more aggressively to multiple users si-
multaneously. Dirty Paper Coding (DPC) [4] is known to
be the optimal (capacity achieving) theoretical solution but
is difficult to implement due to high complexity. In this
paper, we consider a suboptimal CoMP technique called zero-
forcing beamforming (ZFBF) that can be easily implemented.
In ZFBF, a precoding vector is computed for each scheduled
user by inverting the channel matrix of all scheduled users
theoretically avoiding intra-VBS interference.

In OFDMA-based cellular systems with Single-Input and
Single-Output (SISO) transmissions, cell edge users often see
interference from adjacent cells, and/or users therein, sharing
the same frequency band – inter cell interference. The dynamic
Fractional Frequency Reuse (FFR) scheme described in [3], [5]
offers perhaps the most efficient and flexible means to mitigate
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inter cell interference for such systems. A virtual scheduler and
a power-control loop are proposed to adapt power across cells
and sub-bands. However, Multi-User Multiple-Input Multiple-
Output (MU-MIMO) techniques are generally employed to
enable higher system capacity. In such systems users may also
see interference associated with transmissions to users within
the same cell – intra-cell interference. The work in [6], [7]
extends the framework in [5] to MU-MIMO scenarios that
adopt a fixed set of beams which limits the flexibility and is
not considered to be efficient. Moreover, cooperation across
RRHs is not considered in these works. This paper aims to
address this challenge.

The work in [5] [6] [7] makes use of the result in [8]
which generalizes the well-known proportional fair scheduler
to an opportunistic gradient scheduling algorithm that aims
to maximize a concave system utility function. This paper
proves the asymptotic optimality of such an algorithm and also
provides a theoretical foundation for our proposed framework.

In [9] the authors propose the use of different VBSs on
different sub-bands so that each user can be central to its
associated VBS, but the paper only lists a fixed set of VBSs
for each sub-band to guarantee full coverage. They also do not
consider systems which make clustering decisions dynamically
and do not take into account opportunistic user scheduling.

Additional motivating work includes [10] which focuses on
a single cell with multiple antennas that supports ZFBF. They
propose an efficient semi-orthogonal user selection (SUS)
algorithm that selects semi-orthogonal users for simultaneous
transmission and prove that their ZFBF-SUS framework can
achieve the same asymptotic sum rate as DPC when the
number of users is large. However, it does not extend to larger
systems and does not distinguish edge users and central users.

Our Contributions. To our knowledge, this is the first work
to propose a framework leveraging CoMP, via dynamic cluster-
ing and opportunistic user scheduling aimed at maximizing the
overall system utility. To address the large number of degrees
of freedom associated with solving highly-coupled problems
of RRH clustering, user selection and power control, along
with transmission precoding, and meet real-time computational
constraints, we propose a decomposition of this complex
problem, along with new structural properties that lead to
efficient computation.

We provide an efficient solution to finding “optimal” clus-
ters. In particular dynamic clustering is reduced to a Maximum
Weight Clustering (MWC) problem which is proven to be
NP-hard. However, in the wireless context where cooper-
ation would happen amongst RRHs that are close by, we
propose to structure the set of possible VBSs to satisfy “2-
decomposability” property under which dynamic clustering
in each sub-band can be solved efficiently with complexity
O(|R|1.5) where |R| is the number of RRHs in the system. In
our approach, dynamic clustering computation is centralized
while the user scheduling for single VBSs can be decentralized
and solved at possibly distributed computational resources
associated with VBSs.

To exploit opportunistic gains associated with user selection

and power control without increasing computational complex-
ity, we propose a “flexible” power allocation policy which
adapts power levels across radio resources and sub-bands.
With these in hand, our scheduler can choose to assign power
levels opportunistically to scheduled users. This enables the
system to achieve good FFR patterns and at the same time
allows the scheduler more flexible use of power to serve users
and thus more freedom to achieve opportunistic benefits.

Finally, we provide an initial performance evaluation based
on simulations. By comparing with an aggressive benchmark
that does not exploit dynamic clustering but does perform
dynamic soft FFR (see e.g. [5]) and opportunistic user schedul-
ing, we show that dynamic clustering improves the rate of edge
users by 80.4% without degrading the performance of others.
Moreover and interestingly, we show how dynamic clustering
is prone to move “edges” to other locations.

Paper Organization. The paper is organized as follows:
Section II introduces our system model, the problem we
aim to solve and the conceptual overview of our approach.
Section III discusses our problem decomposition and structural
constraints to ensure efficient solution of dynamic clustering
and user scheduling while Section IV addresses the adaptation
of the power allocation policy. Simulation results are exhibited
in Section V and Section VI points to future work.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, a vector x is by default a row vector. We
use x∗ to denote the conjugate, xT the transpose and xH the
conjugate transpose of vector x.

We consider the downlink of a multi-user multi-RRH
OFDMA-based cellular network. The operational frequency
band is divided into equal sub-bands of size WHz; J denotes
the set of sub-bands. σ2 is the noise power in a sub-band. The
system operates in discrete time, over time-slots t = 0, 1, · · · .
U and R represent finite sets of users and RRHs, respec-

tively. We let |S| denote the cardinality of the set S. The
RRHs are indexed from 1 to |R|. At time t, each r ∈ R
is associated with a set of users U{r}(t) ⊂ U . An example
association policy1 would be u ∈ U{r}(t) iff r is the closest
RRH to u at time t. In each sub-band an RRH r ∈ R could
work by itself (in which case {r} is a singleton VBS) or
cooperate with neighboring RRHs to form a VBS. There may
be constraints on forming VBSs, for example, the maximum
number of RRHs in a VBS or the maximum distance between
RRHs in a VBS. We denote by V the collection of all
allowed VBSs. A VBS V ∈ V is a set of RRHs that can
coordinate their transmissions. (Without loss of generality,
we assume that all antennas of an RRH belong to the same
VBS at a certain time in a given sub-band.) For example, let
V = {r1, r2} ∈ V denote a “VBS V containing RRH r1 and
r2” and UV (t) =

⋃
r∈V

U{r}(t) denote the “set of users that

could be served by VBS V at time t”.

1Other association policies could be considered, or in fact no such policy
needs to be specified. Yet this simplifies description of the setting for now.
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We let Pt,j denote a partition of R based on sets in V for use
at time t in sub-band j, in other words, for any V1, V2 ∈ Pt,j ,

if V1 6= V2 then V1 ∩ V2 = ∅,
and ⋃

V ∈Pt,j

V = R.

The set of all possible partitions of R induced by V is denoted
P(R,V). Note that each user can be associated with more than
one VBS but it can only be served by one at a given time per
sub-band.

Suppose each RRH is equipped with nt transmit antennas
and each user has nr receive antennas. In this paper we
assume nr = 1. ZFBF is employed to enable simultaneous
transmissions to multiple users. In particular, k (< nt) users
per RRH can be served at the same time, thus, up to k · |V |
users can be served simultaneously by VBS V in a given sub-
band.

For simplicity we assume flat and fast fading, i.e., the
same fading is experienced in all sub-bands but can vary
across slots - the framework of this paper can be ex-
tended to frequency-selective fading scenarios. Let h

{r}
u (t) =

(hr,1u (t), . . . , hr,nt
u (t)) represent the complex channel vec-

tor from RRH r to user u at time t and hRu (t) =

(h
{1}
u (t), . . . ,h

{|R|}
u (t)) to be the channels from all RRHs to

u. We also define hVu (t) = (h
{r}
u (t)|r ∈ V ) to be the channel

vector from VBS V to user u at time t2. Note that hVu (t) is
the signal channel if u ∈ UV (t) and an interference “channel”
otherwise.

We focus on best-effort traffic, so each user u has an
associated concave, strictly increasing utility function Uu(X̄u)
of its long-term time average rate X̄u. The choice of utility
functions Uu may take into account fairness, quality of service
and priorities among different users. Additional requirements
such as meeting a minimum throughput per user could also
be included in our setting.

Our goal is to find a dynamic clustering and user scheduling
strategy that maximizes the system utility given by

U =
∑
u∈U

Uu(X̄u)

and more generally tracks changes in the system while at-
tempting to meet this goal.

A. Gradient Scheduler

Inspired by proportional-fair scheduler, [5], [8] introduced
a gradient algorithm to tackle general utility maximization
problems such as the above. For our setting, let dj denote
a clustering and user scheduling decision in sub-band j
and D denote a finite set3 of possible decisions. Also let
{x̄u(t)|u ∈ U} denote the long term average rate estimates up

2For consistency, the complex numbers in hV
u (t) have the same orders as

they appear in hR
u (t).

3Although power is a continuous value, we can consider power as a discrete
variable that has a large number of possible values.

to time t and Ruj(dj , t) denote the rate user u would achieve
at time t in sub-band j under decision dj . The algorithm and
the main theoretical result developed in [8] as applied to our
problem is stated below.

Theorem 1: Suppose the channels from the RRHs to users
have stationary distributions and Uu(·) are concave increasing
utility functions. In the convex set of all feasible long-term
achieved rate vectors, let x̄opt = (x̄ opt

1 , . . . , x̄ opt
|U |) be the

optimal vector maximizing system utility U .
If at each time t and in sub-band j, the system chooses a

decision d opt
j such that

d opt
j ∈ arg max

dj∈D

∑
u∈U

∂Uu
∂X̄u

∣∣∣∣
x̄u(t)

Ruj(dj , t),

and for all u the average rate estimate x̄u(t) is updated as:

x̄u(t+ 1) = (1− β)x̄u(t) + βJRuj(d
opt
j , t),

with arbitrary initial value x̄u(0). Then, as β → 0 and t→∞,
both the estimate rate x̄u(t) and the achieved average rate X̄u

converge to x̄ opt
u for every user u.

Underlying each decision d at each time t and sub-band j,
we need to:
• Select a partition Pt,j ∈ P(R,V) corresponding to a

collection of VBSs.
• Select up to k · |V | users for each VBS V in Pt,j .
• Assign power to each scheduled user.
• Determine precoding vectors for all scheduled users as-

sociated with a VBS.
Although we listed these four items sequentially, they

correspond to coupled decisions and the challenge is to find
computationally efficient approach that can be used in practice.

B. Parameterizing Power Allocation Policy

To decouple the dynamic clustering and user scheduling
decisions across sub-bands and VBSs we will fix a power
allocation policy but adapt its parameters.

Definition 1: A feasible power allocation policy is a pair
(P, Φ). The RRH sub-band power allocation matrix P is

P = (pj,r|j ∈ J, r ∈ R),

where pj,r denotes the power allocated to RRH r on sub-band
j and must satisfy

∑
j∈J

pj,r ≤ p where p is the power constraint

per RRH. The power available to a VBS V on sub-band j
is then given by pVj =

∑
r∈V

pj,r. Recall that V may serve

up to k · |V | users simultaneously, for which it will need to
assign transmit power levels. The VBS sub-band power level
allocation matrix Φ is given by

Φ = (φVj,l|j ∈ J, V ∈ V, l = 1, . . . , k · |V |),

where φVj,l is the ratio of the lth highest power level for VBS
V in sub-band j to the total available power pVj and must

satisfy
k·|V |∑
l=1

φVj,l ≤ 1 and φVj,l1 ≥ φVj,l2 for l1 < l2.
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Under such a policy the scheduler can flexibly decide which
users to serve and what power levels they will use allowing it
to opportunistically exploit channel variations.

It may be desirable to turn off an RRH if there are few or
no users associated with it. In this case the power allocation
policy could set the associated allocation for that RRH to zero.

C. Conceptual Overview of Our Approach
Our approach contains two main “components” as shown

in Fig.1.

!!!!!!!!!!!!!!!1)!!Dynamic!Clustering!&!
!!!!!!!!!!!!!!!!!!!!!!User!Scheduling!

8  Instantaneous!channels!

!!!!!!!!!!!2)!!Adap>ng!Power!Alloca>on!Policy!
8  System!model!based!on!average!
channels!

Average!channels’!
characteris>cs!

Power!!
Alloca>on!!
Policy!

Fig. 1. Overview of Approach

The first component takes as inputs a power allocation
policy for the system and performs dynamic clustering and
user scheduling. To exploit channel variations and achieve
opportunistic gains, it makes use of the instantaneous channels
that are fed back from users to the RRHs.

The second component adapts the power allocation policy
across radio resources and sub-bands. To do so, it approxi-
mates the gradients of system utility to the power allocation
parameters and performs a gradient ascent algorithm.

III. DYNAMIC CLUSTERING AND USER SCHEDULING

In this section, we assume we are given a power allocation
policy (P, Φ), the current long term average rate estimates
(x̄u(t)|u ∈ U) for users up to time t and instantaneous channel
measurements (hRu (t)|u ∈ U). Our goal is to make a clustering
and user scheduling decision for each sub-band j. To simplify
notation, we will suppress the time index.

Definition 2: A clustering and user scheduling decision
dj for sub-band j consists of a partition P(dj) ∈ P(R,V)
for sub-band j and a user scheduling decision sV (dj) for
each VBS V ∈ P(dj). A user scheduling decision sV for
VBS V is a power allocation vector sV = (l1, l2, . . . , l|U |) ∈
{0, 1, . . . , k · |V |}|U | where

lu =

{
l, if u ∈ UV and u is assigned power level l in sV ,

0, otherwise.

We require that no two users be assigned the same power level
and thus sV has at most k · |V | non-zero elements.

Let D denote the finite set of possible clustering and user
scheduling decisions and D(V ) denote the finite set of user
scheduling decisions for VBS V . Following the result in
Theorem 1, our goal is to find a decision satisfying

d opt
j ∈ arg max

dj∈D

∑
u∈U

∂Uu
∂X̄u

∣∣∣∣
x̄u

Ruj(dj). (1)

A key issue here is to compute the achieved rate Ruj(dj)
for user u ∈ V under a given decision dj . In particular,
given sV ′(dj) for VBS V ′ and using ZFBF, we can compute
the precoding vector wu′(sV ′(dj)) (see e.g., [10]) for each
scheduled user u′ in V ′ using 0 for u′ that are not scheduled.
For user u along with u′ ∈ V ′ (where it is possible that
u = u′), we define

gV
′,u′

u (sV ′(dj)) = ||hV ′u wu′(sV ′(dj))
T||2

to be the effective gain from VBS V ′ to user u under the
precoding vector of user u′ associated with decision sV ′(dj).
Let puj(sV (dj)) denote the power assigned to user u in sub-
band j under decision sV (dj). Thus, puj(sV (dj)) equals to
pVj φ

V
j,l if l is the power level assigned to user u and equals to

0 if u is not scheduled under decision sV (dj).
Since multiple precoding vectors are used simultaneously,

there may be some intra-VBS interference I intra
u,j from users

in the same VBS and inter-VBS interference I inter
u,j from other

VBSs. However, I intra
u,j should close to 0 if channel measure-

ments are accurate and perfect ZFBF is used. So we have

Ruj(dj) = W log2(1 +
gV,uu (sV (dj))puj(sV (dj))

σ2 + I intra
u,j + I inter

u,j

), (2)

where

I intra
u,j =

∑
u′∈UV ,u′ 6=u

gV,u
′

u (sV (dj))pu′j(sV (dj)),

I inter
u,j =

∑
V ′∈P(dj),V ′ 6=V

∑
u′′∈UV ′

gV
′,u′′

u (sV ′(dj))pu′′j(sV ′(dj)).

Problem (1) is difficult to solve because the number of
decisions |D| is large and the user scheduling decisions
in different VBSs are coupled. Instead, we will explore a
decomposition of this problem.

A. Decoupling Dynamic Clustering and User Scheduling

Note that the achieved rate Ruj(dj) for user u ∈ V not
only depends on sV (dj) but also depends on the clustering
decision P(dj) and the user scheduling decisions in other
VBSs through I inter

u,j . Our approach is to find an approximation
for I inter

u,j and thus for Ruj(dj) such that problem (1) can
be decomposed into sub-problems which in turn can be
efficiently solved. The optimal decision d̃ opt

j determined under
our approximation should still generate a large value for (1).

Suppose each RRH r /∈ V transmits independently, i.e.,
without mutual cooperation, then an achievable upper bound
for I inter

u,j is given by

Ĩ inter
u,j ,

∑
r/∈V

||h{r}u ||2pj,r. (3)

We argue that Ĩ inter
u,j is a good estimate, because our algorithm is

geared at choosing appropriate clustering and user scheduling
decisions to make I inter

u,j small in the first place which means a
small error in I inter

u,j should not lead to a large bias in Ruj(dj).
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By replacing I inter
u,j with Ĩ inter

u,j , we get the approximation for
instantaneous achieved rate for user u served by VBS V that
depends only on sV (dj), i.e., decisions local to VBS V rather
than all decisions across the network, i.e.,

R̃uj(sV (dj)) = W log2(1 +
gV,uu (sV (dj))puj(sV (dj))

σ2 + I intra
u,j + Ĩ inter

u,j

).

(4)

Now the problem to be solved can be approximated and
written as

d̃ opt
j ∈ arg max

dj∈D

∑
V ∈P(dj)

∑
u∈UV

∂Uu
∂X̄u

∣∣∣∣
x̄u

R̃uj(sV (dj)), (5)

i.e., a sum over VBSs in partition P(dj) of the marginal
utilities under user scheduling decision sV (dj).

Let us define

wj(V ) = max
sV ∈D(V )

∑
u∈UV

∂Uu
∂X̄u

∣∣∣∣
x̄u

R̃uj(sV )

to be the weight of VBS V in sub-band j which captures
the maximum marginal utility for VBS V , then solving (5)
is equivalent to finding a weight for each VBS and finding a
partition that gives maximum sum weight.

In Subsection III-B we tackle the problem of picking a
partition assuming “weight” for each VBS is known and in
Subsection III-C we propose a suboptimal scheme to compute
approximations of the VBSs’ weights.

B. Maximum Weight Clustering Problem

Picking an optimal partition is called a Maximum Weight
Clustering Problem which we define as follows:

Maximum Weight Clustering (MWC) Problem: The Max-
imum Weight Clustering (MWC) Problem (V,wj), where V
is the collection of allowed VBSs and wj = (wj(V )|V ∈ V)
represents the associated non-negative weights for VBSs, is to
determine a partition P opt

j such that

P opt
j ∈ arg max

P∈P(R,V)

∑
V ∈P

wj(V ).

Fig.2 exhibits an MWC Problem. The sets R, V and two
possible partitions P1,P2 are shown while the weights are
not given in the figure. For this simple example, P(R,V) =
{P1,P2}. The goal is to find which partition has maximum
weight.

Theorem 2: MWC is an NP-hard problem.
Proof: MWC can be transformed from the problem of

three-dimensional matching [11] which is NP-hard.
In general, a brute-force algorithm which goes over all

possible partitions in P(R,V) would have a time complexity
of O(2|V|). Knuth’s Algorithm X [12] provides a backtracking
algorithm that finds all possible partitions. However, the time
complexity is still exponential in |V| which is not sufficiently
efficient to be applied each time slot on each sub-band.

To simplify the solution to dynamic clustering, we consider
constraining the set of possible VBSs, V , so that MWC can be

1 2 

5 6 

1 2 

5 6 

3 4 

7 

3 4 

7       User 
      RRH 

Fig. 2. An example MWC Problem.

solved efficiently. Some definitions are needed to understand
our approach.

Definition 3: Two RRHs r1 and r2 are equivalent under
V , written as r1

V∼ r2, iff ∀ V ∈ V, if r1 ∈ V and |V | >
1, then r2 ∈ V.

In other words, for any possible partition in P(R,V), r1 and
r2 are either singletons or in the same VBS. For the example
in Fig.2, RRH 2 and RRH 5 are equivalent. In P1, they belong
to VBS {2, 5, 6} and in P2 they are in {1, 2, 5}. RRH 3 and
RRH 7 are also equivalent.

Collorary 1: The above equivalence relation is reflexive,
symmetric and transitive, so it partitions R into a set of
equivalence classes EV = {E1, E2, . . . } where
• EV is a partition of R,
• and ∀i and ∀r1, r2 ∈ Ei, r1

V∼ r2.
Note that although EV is a partition of R it need not be in

P(R,V). For the example in Fig.2, there are five equivalence
classes, i.e. E1 = {1}, E2 = {2, 5}, E3 = {6}, E4 =
{3, 7}, E5 = {4}.

Definition 4: A collection of VBSs V is said to be 2-
decomposable if for any V ∈ V , there exists Ei, Ej ∈ EV
such that V ⊆ Ei ∪ Ej .

Theorem 3 below shows the benefit of satisfying this
property. It is proven in the Appendix.

Theorem 3: Given a MWC Problem (V,wj), if V is 2-
decomposable, then it is equivalent to a maximum weight
matching problem which is solvable in polynomial-time.

For the example in Fig.2, V is 2-decomposable.
Constructing the set of VBSs V that satisfy 2-

decomposability still allows flexibility towards achieving a
“no-edge” network and thus realizing the benefits of dy-
namic clustering. First, including all singleton VBSs to a 2-
decomposable V would maintain this property but provide
freedom to the scheduler. Second, this property allows VBSs
including more than two RRHs, such as VBS {1, 2, 5} in
Fig.2. As mentioned in Section I, VBSs of interest gener-
ally have limited size making it more likely they satisfy 2-
decomposability.

Taking Fig.2 as an example, by switching between P1 and
P2, all four users can be scheduled and served by VBSs
with respect to which they are central. By including more
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VBSs in V without losing 2-decomposability, for example,
all singleton VBSs and VBS {2, 5, 3, 7}, more areas can be
guaranteed good coverage. Thus, “no-edge wireless network”
can increasingly be achieved under this choice of V in this
example.

The maximum weight matching problem is well studied in
graph theory and can be solved efficiently using Edmond’s
matching algorithm (see e.g., [13]). The analysis in the Ap-
pendix shows the time complexity would be O(|R|1.5).

C. User Scheduling for Each VBS

We refer to the computation of the weight wj(V ) for VBS
V in sub-band j as a User Scheduling Problem. Recall that the
weights for all V ∈ V serve as inputs to the MWC Problem
considered in the previous subsection.

User Scheduling (US) Problem: The User Scheduling (US)
Problem (pj ,φ

V
j , x̄,h, UV ), where pj = (pj,r|r ∈ R), φVj =

(φVj,l|l = 1, . . . , k · |V |), x̄ = (x̄u|u ∈ UV ) and h = (hRu |u ∈
UV ), is to determine an optimal decision s opt

V consisting of an
optimal user group Sopt and power level assignment that gives
a maximum weight

wj(V ) = max
sV ∈D(V )

∑
u∈UV

∂Uu
∂X̄u

∣∣∣∣
x̄u

R̃uj(sV ).

Solving this requires an exhaustive search over all possible
user groups. The time complexity for this task would be
k·|V |∑
i=1

(|UV |
i

)
C(i, |V |) where C(i, |V |)4 captures the complexity

of evaluating a user group of size i in a VBS of size |V |, i.e.,
determining precoding vectors and power level assignments.
Thus, a suboptimal algorithm that is easy to implement is of
interest.

We propose a two phase approach. In Phase 1 we use a
greedy algorithm to select user group S0 and in Phase 2 we
find the optimal power level assignment for S0. As a result,
we compute the marginal utility for this decision which is only
an approximation for wj(V ).

Phase 1 - Suboptimal User Selection: Inspired by [10], we
claim that in dense networks where there are many users in
each VBS, the optimal user group Sopt consists of users that
have nearly orthogonal channels, i.e., the precoding vectors for
such users have similar direction as their channels, resulting
in large effective gains and thus large rates. If users were
perfectly orthogonal, the precoding vectors would be hV

u
∗

||hV
u ||

.

By using hV
u
∗

||hV
u ||

as precoding vectors in (4) and assuming
total power pVj equally split among M = min[k · |V |, |UV |]
users, we get an estimate R′uj(S) for the rate of user u ∈ S
when user group S is selected,

R′uj(S) = W log2(1 +
||hVu ||2

pVj
M

σ2 + I ′intra,j + Ĩ inter
u,j

),

4A reasonable estimate would be that computing precoding vectors takes
O((i · nt · |V |)3) and power assignment takes O(i4).

where

I ′intra,j =
∑

u′∈S,u′ 6=u

EI(hVu ,h
V
u′)
pVj
M
,

with

EI(hVu ,h
V
u′) = ||hVu

hVu′
H

||hVu′ ||
||2, (6)

representing the Effective Intra-VBS interference (EI) to u
generated by u′ and Ĩ inter

u,j given in (3). In this computation

we may generate non-zero I ′intra,j by using hV
u
∗

||hV
u ||

as precoders.
However, once user group S0 is determined, we can afford to
compute actual precoding vectors which gives zero intra-VBS
interference in the power assignment process.

Further, we define

w′j(V, S) =
∑
u∈S

∂Uu
∂X̄u

∣∣∣∣
x̄u

R′uj(S),

to be the estimate of marginal utility if user group S is selected
and power is equally split among M users.

The suboptimal user group S0 is constructed as below: We
start with an empty S0. At each step we pick a user uopt such
that

uopt ∈ arg max
u∈UV \S0

w′j(V, S0 ∪ {u})

and let S0 ← S0∪{u}. The algorithm terminates when |S0| =
M .

Phase 2 - Power Level Assignment: In Phase 2, the user
selection S0 is determined and we can compute the precoding
vector for each u ∈ S0. Since I intra

u,j is 0, R̃uj(sV ) in (4)
depends on sV only through the power level assigned to user
u under scheduling decision sV . In this phase we use R̃ujl to
denote R̃uj(sV ) for sV that assigns power level l to user u.

We construct a bipartite graph [14] G = (S0, Y, L) where
S0 is the suboptimal user group, Y is the set of power levels
and there is an edge in L connecting each user u and each

power level l with associated weight ∂Uu

∂X̄u

∣∣∣∣
x̄u

R̃ujl. The power

assignment problem in Phase 2 now becomes that of finding
the maximum weight matching (definition can be found in
Appendix) in the bipartite graph G which can be efficiently
solved using Hungarian algorithm (see e.g., [15]). Finally we
compute the marginal utility of this suboptimal decision and
pass it to MWC.

Now we analyze the complexity of our approach. In Phase 1,
there are at most k ·|V | iterations and in each iteration it needs
O(|UV |) operations. So time complexity is O(k · |V | · |UV |). In
Phase 2, the computation for edge weights takes O(k2 · |V |2)
and solving maximum weight matching takes O(k4 · |V |4).
Thus, time complexity for user scheduling for VBS V in each
sub-band is O(k · |V | · |UV |+ k4 · |V |4).

IV. ADAPTATION OF POWER ALLOCATION POLICY

Our goal in this section is to adapt the power allocation
policy (P, Φ) so as to increase system utility. Doing so
requires computing the gradients of system utility to the power
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allocation policy’s parameters. This is hard because utility
and gradients depend on stochastic channel variations. To
address this we introduce a virtual system based on average
channel measurements and estimate the gradients for the
virtual system. This is still difficult because power affects
system utility implicitly through average rates which in turn
depend on dynamic clustering, opportunistic user selection
and power assignment. Let Dj,r and DV

j,l be the gradient
estimates of virtual system utility to pj,r and φVj,l, respectively.
Given a clustering and user scheduling decision, it is easy
to express achievable rates as a function of power allocation
parameters and thus easy to compute gradients under this
decision. However, the virtual system utility is maximized
by taking each decision with some fraction of time and thus
estimating Dj,r and DV

j,l requires averaging the gradients for
each decision by the time fraction it will be taken.

The work in [5] provides a solution to this problem. The
virtual system runs virtual scheduler which implicitly captures
the time fractions associated with decisions and computes
fraction-weighted gradients.

Specifically, the virtual scheduler runs a fixed number nv
virtual slots. On each virtual slot in sub-band j, it uses average
channels to make a clustering and user scheduling decision
d̂ opt
j and computes virtual rates R̂uj(d̂

opt
j ) according to (2).

It then uses small averaging parameters β1 and β2 to update
virtual average rate x̂u for each u,

x̂u = (1− β1)x̂u + β1JR̂uj(d̂
opt
j ),

and Dj,r for each r ∈ R,

Dj,r = (1− β2)Dj,r + β2

∑
u∈U

∂Uu
∂X̄u

∣∣∣∣
x̂u

∂R̂uj(d̂
opt
j )

∂pj,r
,

and DV
j,l for each V ∈ V and l = 1, . . . , k · |V |,

DV
j,l = (1− β2)DV

j,l + β2

∑
u∈U

∂Uu
∂X̄u

∣∣∣∣
x̂u

∂R̂uj(d̂
opt
j )

∂φVj,l
.

However, unlike the SISO scenario in [5], in the ZFBF
context we select users (in III-C) to exploit instantaneous
orthogonality by using normalized channels as precoding
vectors while in virtual scheduler the orthogonality between
average channels may not be representative for real world. The
challenge is to capture the degree of instantaneous orthogonal-
ity based on average channels. For example, users with nearly
orthogonal average channels (e.g., in VBS {r1, r2} a user close
to r1 and a user close to r2) are very likely orthogonal while
users with non-orthogonal average channels are less likely to
remain so.

Let us divide [0, π2 ] into m angle ranges. Let (U1, U2, V 1,2)
be a random triplet representing a “typical” pair of users
concurrently scheduled on the same VBS V 1,2. We use
hV

1,2

U1 ,hV
1,2

U2 and h̄V
1,2

U1 , h̄V
1,2

U2 for their instantaneous and
average channels, respectively. Let θU1,U2 denote the an-
gle of their average channels computed by θU1,U2 =

arccos(
||h̄V 1,2

U1 h̄V 1,2H
U2 ||

||h̄V 1,2

U1 ||·||h̄V 1,2

U2 ||
). We define

γi = E

[
EI(hV

1,2

U1 ,hV
1,2

U2 )

EI(h̄V 1,2

U1 , h̄V
1,2

U2 )

∣∣∣∣∣ θU1,U2 ∈
[

(i− 1)π

2m
,
iπ

2m

)]
,

where the function EI is given in (6) and
[

(i−1)π
2m , iπ2m

)
is the

ith angle range. The vector γ = (γ1, . . . , γm) represents a set
of averaged quantities that the system keeps track of for use
in the virtual system.

Given a pair of users u and u′, we let γ(θu,u′) = γi where
θu,u′ falls into the ith angle range. Now in virtual scheduler
to find d̂ opt

j , when we select suboptimal user group S0 in VBS
V , we replace EI(hVu ,h

V
u′) with

ÊI(h̄Vu , h̄
V
u′) = ||h̄Vu

h̄V H
u′

||h̄Vu′ ||
||2γ(θu,u′).

Adaptation of Power Allocation Policy
Given the gradient estimates, we update (P, Φ) as below.
1) Update pj,r: for each RRH, we increase the power

allocated to the sub-band with largest positive gradient
and decrease the power allocated to the sub-band with
smallest negative gradient. (see [5] for details).

2) Update φVj,l: for each VBS V and sub-band j, we find
the level lsmall with smallest gradient and level llarge with
largest gradient and exchange a small amount between
them while maintaining the ranking of the power levels.

V. SIMULATIONS

We consider a grid of 7 RRHs as shown in Fig.3. It is
easy to check that the set of VBSs V exhibited in Fig.3 is 2-
decomposable and there are four equivalence classes, i.e. E1 =
{1}, E2 = {2, 3}, E3 = {4, 5}, E4 = {6, 7}. The propagation
and transmission parameters are listed in Table I.

1 2 5 

6 

3 4 

7 

Fig. 3. RRH setup and set of VBSs used in simulations.

Suppose the operational bandwidth is divided into 3 sub-
bands. We randomly and uniformly generate the locations of
100 users which are stationary. The full buffer model where
all users always have traffic to send is used in all simulations.
We assume flat and fast Rayleigh fading conditions and use
the log utility function. An averaging parameter β = 0.01
is used in the actual scheduler. All simulations are run for
3000 time slots. The power allocation policy is adapted every
10 time slots and nv = 30 virtual slots are performed in
virtual scheduler. The two averaging parameters are chosen
to be β1 = 0.005, β2 = 0.01.
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Parameters Values
Inter-RRH Distance 1 Km

Path Loss Model L = 133.6 + 35 log10(d)
Bandwidth 1 MHz

Noise Power Density -174 dBm/Hz
Tx Power per RRH 40 dBm
Tx Antenna Gain 15 dB
Rx Antenna Gain 76 dB
Rx Noise Figure 7 dB

Num of Antennas per RRH (nt) 2
k 2

TABLE I
PROPAGATION AND TRANSMISSION PARAMETERS IN SIMULATIONS.

We use PC to signify a system that adapts the power
allocation policy to achieve good FFR patterns and DC to
represent a system using dynamic clustering. Our approach
is thus denoted PC/DC. To evaluate the benefits of these we
consider three baseline systems.
PC/NO-DC: This system uses PC but no DC. This represents
an aggressive state-of-the-art approach which supports ZFBF,
explores dynamic soft FFR and opportunistic user scheduling,
similar to e.g., [5].
NO-PC/DC: This system uses DC but no PC.
NO-PC/NO-DC: This system uses neither PC nor DC.

For NO-DC systems we assume no cooperation among
RRHs and for NO-PC systems we set the power allocation
policy such that power p for a RRH is split equally among
sub-bands and then further equally split among power levels.

Note the channel realizations are the same in all systems
for comparison.

Moving Edges: Suppose the 10 users experiencing the worst
throughput under each system roughly represent the “location”
of the edges. Fig.4 shows the edges for three simulated
systems. The edge users in NO-PC/NO-DC can be seen to
be at traditional edges lying at the borders between RRH
cells. PC/NO-DC aims to mitigate interference by exploiting
soft FFR patterns but does not change the locations of edge
users by much. Under our PC/DC, most of the traditional edge
users are well covered, thus dynamic clustering “moves” the
“edges” to other locations. These new “edges” depend on the
selected set of VBSs V . By adding more VBSs to V without
breaking 2-decomposability, we can provide good coverage
to any location such that even “edge” users could get high
throughput.

Throughput Improvement for Traditional Edge Users: To
quantitatively evaluate the throughput gains achieved by dy-
namic clustering for traditional edge users, we focus on the
worst 10 users under PC/NO-DC and compare those same
users’ rates under PC/DC. By ranking the users according
to their average rates under PC/NO-DC, Fig.5 exhibits the
average rates for all users in PC/NO-DC and PC/DC and
zooms in the comparison for worst 10 users. We can see that
dynamic clustering substantially improves the throughput of
edge users in PC/NO-DC without degrading the performance
of others. More precisely, the mean throughput of 10 edge
users is increased by 80.4% and 81 users get better rates in
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Fig. 4. “Edge” users’ positions in three systems.

PC/DC while there are only 3 users whose rates decrease by
more than 5%. The Jain’s fairness of average user rates also
increases from 0.65 to 0.73.
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10 edge users under
PC/NO−DC

Fig. 5. Average rates for users in PC/NO-DC and PC/DC.

Benefits of DC vs. Benefits of PC: Both DC and PC aim at
improving the edge throughput which in turn results in higher
fairness. We use 10-percentile mean throughput (i.e. the mean
throughput of worst 10% users) as a measure of the edge
throughput for a system. To evaluate and compare the benefits
of DC and PC separately, we compute the 10-percentile mean
throughput and Jain’s fairness of all users’ average rates in four
systems and compare the gains of adding DC or PC in Fig.6.
It turns out that both techniques bring significant benefits to
edge users but DC provides the higher gain for our simulation
setup.

We note that the above results are representative of different
realizations of fading channels for uniformly distributed users.
However, it will of interest to investigate the results for non-
uniform user distributions.

VI. FUTURE WORK

There are several interesting topics for future work. Since
we focused on downlink and delay-tolerant best-effort traffic,
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NO-PC/NO-DC 
Edge throughput: 0.13 

Fairness: 0.65 

NO-PC/DC 
Edge throughput: 0.20 

Fairness: 0.71 

PC/NO-DC 
Edge throughput: 0.17 

Fairness: 0.65 

PC/DC 
Edge throughput: 0.27 

Fairness: 0.73 

Throughput gain: 54% 
Fairness gain: 0.06 

Throughput gain: 31% 
Fairness gain: 0.00 

Throughput gain: 35% 
Fairness gain: 0.02 

Throughput gain: 59% 
Fairness gain: 0.08 

Fig. 6. 10-percentile mean throughput and Jain’s fairness in four systems.
The unit for edge throughput is 106bps.

it would be of interest to integrate CoMP and network layer
scheduling for uplink and other types of traffic. Evaluating
the framework by taking into account user mobility and non-
uniform user distribution are also goals for future work.

APPENDIX
PROOF OF THEOREM 3

We begin by introducing maximum weight matching prob-
lem.

Definition 5: In an edge-weighted graph G = (N,L)
where N is the set of vertices and L represents the set of edges,
a matching is a collection of edges without common vertices.
And a Maximum Weight Matching (MWM) is defined as
the matching that has the maximum sum weights of the edges
in the matching.

As shown in the left figure of Fig.7, the edges in dashed
lines form a matching.

a(E1)

a(E2)

a(E3)

a(E4)

a(E5) b(E5)

b(E1)
wj({1})

wj({4})

wj({1, 2, 5})

wj({2, 5, 6})

wj({3, 6, 7})

wj({3, 4, 7})

Fig. 7. A matching in a general graph and the converted graph for the MWC
Problem in Fig.2.

Suppose we are given Maximum Weight Clustering (MWC)
Problem (V,wj) where V is 2-decomposable. A set E ∈ EV
is said to be singleton-decomposable if ∀r ∈ E, {r} ∈ V , i.e.,
each RRH in E is a candidate VBS in V . We define a new

set of weights ω(E) for each E ∈ EV as below,

ω(E) =



If E ∈ V and E is singleton-decomposable,
max[

∑
r∈E

wj({r}), wj(E)].

If E ∈ V and E is not singleton-decomposable,
wj(E).

If E /∈ V and E is singleton-decomposable,∑
r∈E

wj({r}).

If E /∈ V and E is not singleton-decomposable,
0.

Next, we construct a graph G = (N,L) for this MWC
Problem as follows. The right figure in Fig.7 is the graph for
the example problem in Fig.2.
• For each element E ∈ EV that has an positive weight
ω(E), we add two vertices a(E) and b(E) to N .

• For each element E ∈ EV whose ω(E) is 0, we add only
one vertex a(E) to N .

• For each element E ∈ EV that has an positive weight
ω(E), we put an edge between a(E) and b(E) and
associate weight ω(E) to that edge. For example, the
edge between a(E1) and b(E1) in Fig.7.

• For each VBS V ∈ V , if V is the union of two
equivalence classes, say V = Ei ∪ Ej , we add an edge
to connect a(Ei) and a(Ej) with weight wj(V ). For
example, the edge between a(E1) and a(E2) in Fig.7.

After constructing the graph, we claim that solving MWM
in graph G gives us the answer for the MWC problem. It is
not difficult to prove this claim and we omit it to save space.

Let m denote the number of vertices and n denote the num-
ber of edges in a graph, the time complexity for solving MWM
is O(n

√
m). In our scenario, m ≤ 2×|EV | ≤ 2×|R| = O(|R|),

n ≤ |EV | + |V| ≤ |R| + |V|. In practical systems of interest,
an RRH cooperates with neighboring RRHs rather than RRHs
that are far away which means each RRH belongs to a small
number of VBSs. Thus, |V| = O(|R|) which results in time
complexity in our scenario becoming O(|R|1.5).
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