
Scheduling for Cloud-Based Computing Systems to
Support Soft Real-Time Applications

Yuhuan Du and Gustavo de Veciana
Department of Electrical and Computer Engineering, The University of Texas at Austin

Email: dyhuan123@gmail.com, gustavo@ece.utexas.edu

Abstract—Cloud-based computing infrastructure provides an

efficient means to support real-time processing workloads, e.g.,

virtualized base station processing, and collaborative video con-

ferencing. This paper addresses resource allocation for a com-

puting system with multiple resources supporting heterogeneous

soft real-time applications subject to Quality of Service (QoS)

constraints on failures to meet processing deadlines. We develop

a general outer bound on the feasible QoS region for non-

clairvoyant resource allocation policies, and an inner bound for

a natural class of policies based on dynamically prioritizing

applications’ tasks by favoring those with the largest (QoS)

deficits. This provides an avenue to study the efficiency of two

natural resource allocation policies: (1) priority-based greedy

task scheduling for applications with variable workloads, and

(2) priority-based task selection and optimal scheduling for

applications with deterministic workloads. The near-optimality of

these simple policies emerges when task processing deadlines are

relatively large and/or when the number of compute resources is

large. Analysis and simulations show substantial resource savings

for such policies over reservation-based designs.

I. INTRODUCTION

The shift towards delivering compute platforms/services via
cloud-based infrastructure is well on its way. An increasing
number of the applications/services migrating to the cloud
involve real-time computation with processing deadlines and
where failure to meet the deadlines degrades user’s Quality
of Service (QoS). Such infrastructure allows one to reap the
significant benefits of cloud computing, e.g., reduced cost of
sharing computing, hoteling and cooling resources, along with
increased reliability and energy efficiency. In this paper, we
focus on Soft Real-Time (SRT) applications which can tolerate
occasional violations of processing deadlines but still need to
meet QoS or Service Level Agreements (SLA).

An example of such a platform is the Cloud-based Radio
Access Network (CRAN) [1], [2], [3] being considered for
next generation cellular deployments. Instead of co-locating
dedicated compute resources next to base station antennas,
they virtualize compute resources for baseband processing. To
do so, the received uplink signals associated with wireless
subframes are sampled and sent from antennas to the cloud
for timely decoding and processing such that downlink signals
requiring timely channel measurements, acknowledgements,
etc., can be sent back to antennas for transmission. This
process must happen within several milliseconds as determined
by the cellular system standards. In this setting shared com-
pute resources may occasionally fail to complete subframe

This research was supported by Huawei Technologies Co. Ltd.

processing on time, but this must happen infrequently, i.e.,
QoS/SLA requirements must be met. In fact, different tasks
may have different QoS/SLA requirements. For example,
failures in subframe baseband processing should be very
infrequent whereas failures for tasks associated with channel
measurement/estimation might be acceptable once every few
subframes [4]. Other SRT applications including collaborative
video conferencing, multimedia processing, real-time control,
augmented reality platforms, have similar characteristics.

The computing infrastructure, e.g. [5], to support such
applications may involve a large number of heterogeneous
servers, e.g., various generations of processors, which them-
selves have multiple cores, special purpose hardware, shared
memories/caches, etc. In other words, a complex collection
of resources must be orchestrated to efficiently meet applica-
tions’ SRT requirements. In this paper we focus on a single
computing system, e.g., managed server/center, shared by a set
of users, corresponding to SRT applications, that periodically
generate workloads. The traditional management approach is
to allocate dedicated resources to users to meet their QoS
requirements. However, given the typical uncertainty in users’
workloads and “interference” across shared resources, doing
so typically involves over-provisioning.

Computing systems today are engineered so as to permit
prioritization of one user over another, e.g., production vs. non-
production tasks, which in turn translates to priority in access-
ing shared compute resources and/or memory. In this paper we
consider resource allocation policies which can dynamically
prioritize users in each period. Such dynamic prioritization
of users would typically reduce the required resources vs.
static allocations, and is further flexible to changes in users’
workload characteristics or QoS requirements.

Given a set of users and a computing system, here are some
key questions of interest:

• What QoS requirements are feasible?
• Can we design simple efficient resource allocation poli-

cies meeting users’ QoS requirements and characterize
the performance of these policies?

• Compared with dedicated resource allocation, what kinds
of reductions in resource requirements can one expect
from enabling dynamic resource sharing?

In the sequel we will address these basic questions and
more, but we first turn to related work.

Related Work. There is a substantial body of work on
scheduling real-time tasks. Starting with [6], the community

has established theoretical frameworks to study the scheduling
of hard real-time applications where all tasks need to complete
by deadlines without violation [7], [8]. The results typically
assume worst case execution times/workloads and are too
conservative for SRT applications.

There are different models for the QoS needs of SRT appli-
cations. The work in [9], [10] propose the notion of (m, k)-
firm deadlines requiring at least m out of any k consecutive
tasks complete by their deadlines. But it typically assumes
worst case workloads to get analytical result for such tight
requirements. The authors in [11], [12] consider imprecise
computation models where each task consists of a mandatory
part, which needs to complete by the deadline, and an optional
part which improves the computational results. The work in
[13] aims to guarantee bounded deadline tardiness for all users.
These frameworks and QoS models are incomplete or not
suitable for applications like CRAN and video conferencing
which require that most tasks complete by the deadlines.

This paper focuses on an SRT QoS model where a bound on
the fraction of tasks completed on time is the QoS requirement.
Such a model was first introduced in [14] where the authors
propose a static allocation approach to meet the QoS require-
ments. We shall use this as an evaluation benchmark. More
recently, the authors in [12], [15] adopt this QoS model to
study a wireless access point supporting users that periodically
generate packets which need to be transmitted within that
period, and propose simple “optimal” scheduling policies.
However, their results are limited to the setting where only one
user can transmit at a time and where packet transmissions can
be viewed as tasks with geometrically distributed workloads.

In this paper we consider policies that use the idea un-
derlying longest-queue-first policies, whose performance are
studied in [16], [17], [18] but in different settings. Moreover,
the scheduling problem we consider is more than just one of
ordering users according to some policies like largest-deficit-
first. We also need to design the task scheduler to allocate
resources to tasks across a computing system’s cores.

Additional related work includes the problem of stochastic
scheduling [19], and those studying the mixing of real-time
and non real-time traffic, see e.g., [20], [21], [22].

Our Contributions. In this paper, we consider a com-
puting system consisting of multiple resources and study the
scheduling of SRT users’ random workloads subject to QoS
constraints on timely task completions. To our knowledge, we
are the first to give a theoretical characterization of the feasi-
bility region for this general SRT framework and to consider
performance and near-optimality of simple efficient scheduling
policies. The contributions of this paper are threefold.

First, we propose a general framework for SRT user
scheduling on multiple resources, albeit we assume the work-
loads are New Better than Used in Expectation (NBUE) type.
In this framework, we develop an outer bound for the set
of feasible QoS requirements for all possible non-clairvoyant
resource allocation policies.

Second, we study resource allocation policies which pri-
oritize users based on Largest “Deficit” First (LDF) in each

period and schedule tasks accordingly. We develop a general
inner bound for the feasibility region for this class of policies.
This enables us to study the efficiency of two policies: (1)
LDF-based greedy task scheduling for users with variable
workloads, and (2) LDF-based task selection and optimal
scheduling for users with deterministic workloads. These sim-
ple policies are near-optimal when the deadlines are relatively
large, and/or the number of resources is large.

Finally, we evaluate the performance of the proposed poli-
cies in terms of the required number of resources to fulfill a
given set of users’ QoS requirements. We exhibit substantial
savings versus a traditional reservation-based approach in
various system settings. We also discuss generalizations of our
results when the resources have different processing speeds.

Paper Organization. The paper is organized as follows:
Section II introduces our system model and Section III
describes a reservation-based approach and a general outer
bound for the feasibility region. Section IV discusses two
prioritization-based policies and studies their efficiency ratios.
Simulation results are exhibited in Section V. Section VI
discusses generalizations and Section VII concludes the paper.

II. SYSTEM MODEL

We first introduce our user, system and QoS models.

A. Soft Real-Time (SRT) User Model
We consider a computing system shared by a set of users

N = {1, 2, · · · , n}. The system operates over discrete periods
t = 1, 2, · · · . We denote by � the length of a period. In
each period each of the n users generates exactly one task.
These tasks are available for processing at the beginning of the
period, and need to complete by the end of the period. Tasks
not completed on time are dropped, i.e., cannot be processed
in subsequent periods. Here we assume a task is the unit of
scheduling, i.e., a task cannot be processed in parallel.

The workload of a task will refer to its resource requirement
or service time. If a task’s workload is large it may not be
possible to complete on time. A task’s workload is modeled
by a random variable whose distribution captures variability in
its resource requirement and/or uncertainty in the computing
system, e.g., caused by memory contention across the cores.
We assume task workloads for a given user are independent
and identically distributed across periods and workloads from
different users are independent, possibly with different distri-
butions. Let Wi be a random variable denoting the workload
of a task from user i and let µi = E[Wi]. Next we introduce a
further assumption on task workloads which seems reasonable
for SRT users and will enable theoretical analysis.

Definition 1: A non-negative random variable W is said to
satisfy New Better than Used in Expectation (NBUE) if for
all t > 0,

E[W � t|W > t] E[W]. (1)

In this paper we shall assume all task workloads are NBUE.
The NBUE property characterizes many workload distribu-

tions of interest. [23] provides a discussion of NBUE distribu-
tions which include, but are not limited to, exponential, gamma

with shape parameter k � 1 and deterministic distributions. A
common class of distributions that are not NBUE is the heavy-
tailed one. However since tasks need to complete within a
period1, we are not likely to encounter tasks with such tails
in the settings under consideration.

As a QoS requirement, each user i requires a minimal long-
term average number of tasks completed on time per period,
denoted by qi where qi 2 [0, 1]. We let q = (q

1

, q

2

, · · · , qn)
and assume qi’s are rational.

Let us consider some examples. An SRT user might cor-
respond to the processing associated with a set of co-located
cellular antennas in the CRAN context or an end user in video
conferencing. Accordingly, the period � would correspond to
a wireless subframe or the length of a group of video frames,
respectively. For SRT users, it is generally useless to process
a task after its deadline. For example, in video conferencing
it is not desirable to display an out-of-date frame. This is why
in this model tasks not completed on time are dropped. In
the extended version of this paper [24], we discuss possible
generalizations where users may generate tasks with different
periods and where a task may further consists of sub-tasks.

B. Computing Infrastructure

A computing system can be very complex consisting of
diverse, heterogeneous resources. In this paper, for simplicity
of explanation we start with a computing system comprising
of m identical resources (cores)—a simple but relevant model.
In Section VI we discuss generalizations where cores have
different processing speeds.

Given m identical cores, a task processed on any core
requires the same processing time and each core can process
only one task at a time. In each period, the computing system
dynamically schedules tasks according to a given strategy.
Given the resource limit and the randomness of workloads,
some tasks complete on time and some may fail.

Unless otherwise specified we allow task preemp-
tion/migration, i.e., interrupting a task being processed and
resuming later on the same/different core. We shall ignore the
overheads of these operations. But in practice these operations
involve context switching, and therefore, policies with minimal
preemption and migration are desirable.

A resource allocation policy is said to be non-clairvoyant if
it does not make use of information regarding future events,
such as tasks’ workload realizations, which are not generally
known until the tasks complete. However, a non-clairvoyant
resource allocation policy may still have knowledge of a user’s
task workload distribution, which can be obtained from the
history events or repeated experiments. We shall only consider
non-clairvoyant resource allocation policies.

In our model a “core” represents the minimum unit of
compute resource such as physical computing core, specialized
hardware, or hyper-thread as appropriate. The computing sys-
tem could be a cloud-based cluster of machines or a centralized
server with a collection of processors/cores. There are many

1In fact, we only require (1) to be true for 0 < t �.

possible non-clairvoyant resource allocation policies which
may involve exploiting knowledge of workload distributions,
exploiting history events, preempting tasks at appropriate
times, dynamically prioritizing tasks, etc.

C. SRT QoS Feasibility
Given a requirement vector q, a computing system and a

non-clairvoyant resource allocation policy, how do we verify
if q is feasible? To keep track of the deficit among users’
QoS requirements and actually completed tasks, for each user
i 2 N and period t+ 1, we define2

Xi(t+ 1) = [Xi(t) + qi � Yi(t+ 1)]

+

, (2)

where [x]

+

= max[x, 0] and Yi(t+1) is an indicator random
variable which takes value 1 if user i’s task completes in period
t+1. The deficit vector X(t) = (X

1

(t), X

2

(t), · · · , Xn(t)) is
a summary of the history of events up to period t.

We shall say that the long-term QoS requirement qi for user
i is met if and only if Xi(t) is “stable”. Formally, in this paper
we consider non-clairvoyant resource allocation policies under
which the process {X(t)}t�1

is a Markov chain3. We assume
the initial state X(0), the QoS requirements q and the policy
make {X(t)}t�1

an irreducible Markov chain.
Definition 2: We say the QoS requirement vector q is

feasible if there exists a non-clairvoyant resource allocation
policy ⌘ under which the Markov chain {X(t)}t�1

is positive
recurrent, i.e., this policy fulfills q. We denote by F⌘ the
feasibility region of policy ⌘, i.e., the set of QoS requirement
vectors fulfilled by policy ⌘. The union of F⌘ over all
allowable policies gives the system feasibility region F .

We shall refer to this model as SRT-Multiple Identical Cores
(SRT-MIC) with NBUE workloads and the aim is to devise
non-clairvoyant resource allocation policies that fulfill q.

In summary, the SRT-MIC model with NBUE workloads is
an abstract system model which captures a family of systems
supporting SRT users with random workloads. To summarize,
the SRT-MIC model with NBUE workloads is parameterized
by the number of cores m, number of users n, period length
�, QoS requirements q, and the NBUE workload distributions.

III. RESERVATION-BASED STATIC SHARING AND OUTER
BOUND FOR THE SYSTEM FEASIBILITY REGION

In this section we introduce a reservation-based policy
and a general outer bound for the system feasibility region
F which applies to any non-clairvoyant resource allocation
policy. These serve as benchmarks which enable us to evaluate
the performance of the policies proposed in the sequel.

A. Reservation-Based Static Sharing Policies
A straightforward and commonly adopted approach to meet

users’ QoS requirements q is to allocate dedicated resources,
i.e., core time, to each user. For user i, with task workload Wi

2We truncate the deficit at 0 via [x]+ simply for the convenience of defining
feasibility. Removing the truncation does not change the results in the paper.

3All the results in this paper can be generalized to a broader range of
non-clairvoyant policies and q’s with irrational values, see [24].

and the requirement qi, we let wi(qi) represent the minimum
core time reservation needed to ensure the requirement is met.
Specifically, wi(qi) is given by

Pr(Wi wi(qi)) = qi,

and thus, when qi is close to 1, wi(qi) will approach the worst-
case workload for user i.

Reservation-based static sharing policies allocate core time
wi(qi) to each user i in each period and the tasks from users
are only processed in the corresponding allocated time. Fig.1
exhibits an example with 2 cores. Note that in this example
User 3’s task first executes on Core 2 and later continues on
Core 1. Therefore, a reservation-based static sharing policy,
although seemingly simple, can be aggressive in requiring
task preemption/migration and knowledge of workload dis-
tributions to compute wi(qi) for all users.

Core 1

Core 2

Fig. 1. An example of the reservation-based approach.

Note that since a task cannot be processed in parallel, if
wi(qi) exceeds the period length �, the requirement for user
i cannot be met. In this paper, we assume the task workloads
and requirements q are such that wi(qi) is bounded by �.

For a system with m identical cores, the feasibility region
FRB of reservation-based static sharing is given by

FRB = {q 2 Rn
+

| q � 1,

X

i2N

wi(qi) m�},

where q � 1 means qi 1 for all i 2 N .
This approach was perhaps first proposed in [14] and is also

loosely used in reservation based schemes adopted in modern
cloud infrastructure, see e.g., [5]. Cores are not used efficiently
under such a policy. When the realization of a task workload is
smaller than the allocated time, the remaining time is wasted
and cannot be used to process other real-time tasks.

B. Outer Bound for the System Feasibility Region F

Ideally we wish to devise a policy that can fulfill all feasible
QoS requirement vectors. More formally, a non-clairvoyant
resource allocation policy ⌘ is said to be feasibility optimal if
its feasibility region F⌘ is such that int(F⌘) ✓ F ✓ cl(F⌘),
where int(F⌘) and cl(F⌘) is the interior and closure of F⌘ ,
and thus is equivalent to F for practical purposes.

Given the heterogeneity and randomness of tasks’ work-
loads and the large number of possible non-clairvoyant re-
source allocation policies, a feasibility optimal policy is un-
known except for very specific resource and workload models,
see e.g., [15]. To solve this and to provide a benchmark
to evaluate other resource allocation policies, we develop a
simple outer bound ROB for the system feasibility region F .
Formally, we have the following theorem.

Theorem 1: For the SRT-MIC model with NBUE work-
loads, the system feasibility region F is such that

F ✓ ROB ⌘ {q 2 Rn
+

| q � 1,

X

i2N

qiµi m�}.

Intuitively, if qi tasks of user i are completed each period,
the expected time spent on user i is roughly given by qiµi.
To make q feasible, the total time spent on all users

P

i2N
qiµi

cannot exceed the total available core time given by m�. This
informal argument is perhaps deceptive. Note that in fact the
expected time to complete the qi tasks for user i in each period
might be smaller than qiµi since completed tasks might tend
to have smaller workloads. This seems to imply that m� could
be smaller than

P

i2N
qiµi for some feasible q. This is where

the NBUE assumption on workloads is critical to the result.
See Appendix A for a detailed proof.

This simple outer bound applies to any non-clairvoyant
resource allocation policy in any specific SRT-MIC system
with NBUE workload distributions. Note however the result
does not necessarily hold for non-NBUE workloads. See the
extended version of this paper [24] for an illustrative example.

IV. LARGEST DEFICIT FIRST (LDF) BASED POLICIES

Our aim is to devise a non-clairvoyant resource allocation
policy that is easy to implement and whose feasibility region
is near optimal. In this section we consider a specific class
of policies, called prioritization-based resource allocation
policies, which decompose resource allocation into two sub-
problems, see Fig.2:

1) User prioritization: in each period the system dynami-
cally prioritizes users based on the history of events.

2) Task scheduler: the system schedules users’ tasks on
cores based on their priorities.

There are still many options for each sub-problem. For ex-
ample, task scheduling might be done greedily by simply
scheduling the task with the highest priority, or using the
priorities to first select a subset of tasks and then process that
task subset via optimal scheduling policies.

User Prioritization

Task Scheduler

Priority Decisions
Feedback
History
Events

User-Level QoS

Fig. 2. The framework for prioritization-based resource allocation policies.

For user prioritization, we shall adopt the Largest Deficit
First (LDF) policy which is defined as follows.

We let d = (d

1

, d

2

, · · · , dn) denote a priority decision
where dk is the index of the user with k

th highest priority
and D denote the set of all possible priority decisions.

Definition 3: The Largest Deficit First (LDF) policy is
such that, given the users’ deficit vector X(t) at period t+1,
it picks a priority decision d that satisfies

Xd1(t) � Xd2(t) � · · · � Xdn(t),

with ties broken arbitrarily (possibly randomly). In other
words, it sorts the deficits and assigns priorities accordingly.

The LDF user prioritization can be combined with different
approaches of task scheduling. In the sequel we will explore
such combinations and characterize their performance.

A. Inner Bound for Feasibility Region of LDF+X
Given a task scheduling policy X , we let LDF+X refer

to the resource allocation policy that combines LDF user
prioritization and task scheduler X . In this subsection, we
provide an inner bound for its feasibility region FLDF+X .

We start with some further notation. Given a task scheduler,
in each period, the task completions depend on the selected
priority decision. We let pi(d) denote the expected number of
tasks completed in a period for user i under priority decision d

and let p(d) = (p

1

(d), p

2

(d), · · · , pn(d)). Note that different
task schedulers will correspond to different sets of vectors
P = {p(d)|d 2 D}. We denote by x � 0 a positive vector x
with xi > 0 for all i 2 N . For all subsets of users S ✓ N , we
let |S| be the number of users in S and we define D(S) to
be the set of all priority decisions that assign the highest |S|
priorities to users in S. Now we have the following theorem.

Theorem 2: Given a task scheduler X and thus the X
dependent expected completion vectors P = {p(d)|d 2 D},
an inner bound for the feasibility region of the policy LDF+X
is given by int(RIB) ✓ FLDF+X , where

RIB ⌘ {q 2 Rn
+

| 9↵ � 0 such that 8S ✓ N,

X

i2S

↵iqi min

d2D(S)

X

i2S

↵ipi(d)}.

Intuitively, q is in RIB and is feasible under the LDF+X
policy if there is a weight vector ↵ � 0 such that for any
subset of users S, if the users in S are given the highest
priorities, the weighted sum of the requirements

P

i2S
↵iqi

does not exceed the least weighted sum of the “service rate”
P

i2S
↵ipi(d). Again, different task schedulers X will have

different vectors P and thus different inner bounds RIB. For
a detailed proof, see the extended version of this paper [24].

Next we explore specific task schedulers and use Theorem
2 to study their performance.

B. Performance Analysis of LDF+Greedy Scheduling
Given an LDF-based user priority decision in each period,

a natural way to allocate resources is to greedily process tasks
from highest to lowest priority. Specifically, to start by putting
the m tasks with the highest priority on the m cores and, once
one of these tasks completes, continue by processing the task
with priority m+ 1 on the available core, etc.

We let LDF+Greedy refer to the resource allocation policy
that combines LDF and such a greedy task scheduler. Note
this is easy to implement and does not require any a-priori
knowledge of the tasks’ workloads. Also this policy does not
use task preemption or migration.

Next we characterize the performance of LDF+Greedy. To
that end, we introduce a metric called the efficiency ratio, see

e.g., [17]. The efficiency ratio of a non-clairvoyant resource
allocation policy ⌘ is defined as

�⌘ = sup{�|�F ✓ F⌘}.

Clearly �⌘ characterizes the performance gap between a policy
⌘ and the best possible way of orchestrating the scheduling of
multiple tasks across multiple cores. Also �⌘ equals to 1 if
and only if policy ⌘ is feasibility optimal.

Theorem 3: For the SRT-MIC model with NBUE work-
loads, the efficiency ratio of LDF+Greedy exceeds �

1

where

�

1

= 1�
max

i2N
µi

�

.

The intuition underlying this result is as follows. We say a
task is unfinished if it starts processing but does not complete
in a period. The time spent on an unfinished task goes to
waste since it does not contribute to a task completion. For
LDF+Greedy, in one period, at most 1 task is unfinished per
core and thus the wasted time on each core is expected to
be less than max

i2N
µi. Given the period is of length �, the gap

between LDF+Greedy and optimality is bounded by
max

i2N
µi

� .
Note that again this argument is deceptively simplified since
unfinished tasks might tend to have larger workloads. Also as
for Theorem 1, this result does not necessarily hold for non-
NBUE workloads. A sketch of the proof of this result using
Theorem 2 is included in Appendix B and detailed proof is
provided in the extended version of this paper [24].

Theorem 3 provides a lower bound on the efficiency ratio
of LDF+Greedy, denoted by �LDF+Greedy. The bound is tight in
the sense that for any ✏ > 0, there exists an SRT-MIC system
with NBUE workloads such that �LDF+Greedy < 1�

max

i2N
µi

� + ✏.
Such a system is also detailed in [24].

It follows that if � � max

i2N
µi, then �

1

is close to 1, i.e.,
LDF+Greedy is close to optimal. This is true when the task
workloads are small relative to the core processing speed.

However, when � is comparable to max

i2N
µi, the efficiency

ratio lower bound �

1

is small, although in some scenarios
LDF+Greedy may still be efficient. For example, LDF+Greedy
is feasibility optimal if the task workloads of all users follow
the same exponential (or geometric) distribution, see [24], or
prior work in [15]. Still in some scenarios where we know
more about the task workloads it is interesting to explore
other simple policies that perform better than LDF+Greedy,
especially when � is comparable to the maximum mean
workload. That motivates the discussion in the next subsection.

C. Performance Analysis of LDF+TS/LLREF Scheduling un-
der Deterministic Workloads

In this subsection, we consider systems where users generate
tasks with deterministic, but possibly different, workloads, i.e.,
Pr(Wi = µi) = 1 for all i 2 N . Even for deterministic
workloads, the scheduling of tasks in different periods to
meet soft QoS requirements is not straightforward. Note
deterministic workloads satisfy the NBUE property. Also note
that for deterministic workloads, non-clairvoyant policies have

knowledge of workload realizations. We shall once again
prioritize users using LDF prioritization. Intuitively, the greedy
task scheduler wastes time on multiple cores if multiple tasks
are unfinished at the end of a period, so we will devise a
task scheduler that orchestrates across cores so as to “reduce”
wasted core time to finish more tasks.

For deterministic workloads, we are able to assess how
many tasks we can complete prior to initiating processing.
Indeed, it is intuitive, and established in [25], that one can
complete all tasks in a user subset S in a period by some op-
timal scheduling if and only if

P

i2S
µi m�. We consider one

such optimal algorithm: Largest Local Remaining Execution
time First (LLREF) [25]. Let us briefly describe how LLREF
would work in the SRT-MIC model and then introduce a task
scheduler that combines the idea of task selection and this
optimal scheduling.

To that end we introduce some terminology used in [25].
Consider a period starting at time t� and ending at time (t+

1)� , at any time ⌧ 2 [t�, (t + 1)�], the Local Remaining
Execution time (LRE) of user i is defined as the remaining
time needed to complete its task. The LRE decrements as the
task is processed. Further, the laxity of user i is defined as
the remaining time before the deadline of user i’s task, i.e.,
(t+ 1)� � ⌧ , minus the current LRE of user i. Thus, if some
user has zero laxity at some time, one needs to start processing
the task immediately to complete it by its deadline.

Definition 4: For the SRT-MIC model with deterministic
workloads, the Largest Local Remaining Execution time

First (LLREF) policy is such that, given a selected user subset
S for the period, it does the following:

1) At the beginning of the period, m tasks associated with
users in S are chosen to be processed according to
largest LRE first.

2) When a running task completes, or a non-running task
reaches a state where it has zero laxity, again the m tasks
in S with largest LRE are selected to be processed.

Note that the LLREF policy uses task preemption and possibly
migration. A review of variants of LLREF aimed at reducing
task preemptions is provided in [8].

Definition 5: The Task Selection/LLREF (TS/LLREF)

task scheduler is such that, given the user priority decision
d for a period, it does the following:

1) Task selection: it greedily selects users based on d until
the sum workload exceeds m�. More formally, it selects

j(d) = max

n

j|
j

X

i=1

µdi m�

o

. (3)

Let J(d) = {d
1

, d

2

, · · · , dj(d)} represent the selected
user subset.

2) LLREF for J(d): the system uses LLREF scheduling
for tasks in J(d) in this period.

By [25], it follows that all tasks from J(d) will complete.
Paralleling Theorem 3, we have the following result for the

LDF+TS/LLREF resource allocation, i.e., the combination of
LDF user prioritization and TS/LLREF task scheduling.

Theorem 4: For the SRT-MIC model with deterministic
workloads, the efficiency ratio of LDF+TS/LLREF exceeds
�

2

where

�

2

= 1�
max

i2N
µi

m�

.

Intuitively, under TS/LLREF, the task selection rule guaran-
tees that in any given period the wasted time m��

P

i2J(d)

µi is

less than max

i2N
µi. Given the total available core time m�, the

gap between LDF+TS/LLREF and optimality is again bounded
by the fraction of wasted time, i.e.,

max

i2N
µi

m� . A formal proof of
this result is similar to that of Theorem 3 and is provided in
the extended version of this paper [24].

The efficiency ratio lower bound �

2

in this theorem is better
than �

1

obtained in Theorem 3, specifically the dependence on
m is much stronger. For a system with a large number of cores
m, �

2

is close to 1, i.e., LDF+TS/LLREF is close to feasibility
optimal even if � is comparable to max

i2N
µi.

Although LDF+TS/LLREF is designed for deterministic
workloads, we envisage it will work well for workloads with
small variability by using the expected workload, or some
more sophisticated workload estimation w

est
i . Specifically, TS

makes selections based on w

est
i and LLREF computes local

remaining execution time and laxity by assuming Wi =

w

est
i . Note that this heuristic LDF+TS/LLREF is still non-

clairvoyant. This will be explored in the simulation section.

D. Resource Requirements

So far we have analytically characterized the efficiency
ratios of two LDF-based resource allocation policies. Another
metric of interest is the resource requirements in terms of
the number of cores m needed to fulfill a set of users’ QoS
requirements. To that end in this subsection we shall explore
the required m given n, �, the random workload distributions
and the requirement vector q. A policy that requires a smaller
m is better in that it saves compute resources and/or energy.

1) Resource Requirements for Reservation-Based Static
Sharing:

Based on the definition of FRB in III-A, the required
number of cores to fulfill the users’ QoS requirements q under
reservation-based static sharing is given by

mRB =

l

P

i2N
wi(qi)

�

m

, (4)

where dxe is the ceiling of x.
2) Lower Bound on Resource Requirements:
For any non-clairvoyant resource allocation policy ⌘, we

let m⌘ denote the required number of cores to fulfill users’
QoS requirements under policy ⌘. By Theorem 1, we know
m⌘ must satisfy m⌘� �

P

i2N
qiµi , giving the following lower

bound on the required number of cores:

m ⌘
l

P

i2N
qiµi

�

m

. (5)

3) Resource Requirements Estimate for LDF+Greedy:
Ideally one would like a tight upper bound for the required

resources mLDF+Greedy for LDF+Greedy. By Theorem 3 we
know that LDF+Greedy may expect to waste up to max

i2N
µi

time on each core in a period because of unfinished tasks.
Thus, to complete an “effective” workload

P

i2N
qiµi, we pro-

pose an estimate for mLDF+Greedy as follows,

m

est
LDF+Greedy ⌘

l

P

i2N
qiµi

� �max

i2N
µi

m

. (6)

If � � max

i2N
µi, this estimate is close to the lower bound m.

One can analytically show that indeed m

est
LDF+Greedy �

mLDF+Greedy when � and n are large, see the extended version
of this paper [24]. We observe that the inequality holds true
in the various simulation settings considered next.

V. SIMULATIONS

In this section we address through simulation some of the
questions that are still open:

1) What are possible resource savings of adopting
LDF+Greedy versus reservation-based static sharing?
Are they close to optimal when � is large? How do they
depend on the QoS requirements q?

2) Our theorems on the lower bounds on efficiency ratios
imply that LDF+TS/LLREF is better than LDF+Greedy
for small � and deterministic workloads. Is it true that
LDF+TS/LLREF is more efficient?

3) For workloads with small variability, can one use
LDF+TS/LLREF and get gains over LDF+Greedy?

Our simulation setup is as follows. We start with an initial
deficit vector X(0) = (0, 0, · · · , 0). In each period, we
independently generate a task workload realization for each
user and simulate the specified policy to evaluate if tasks
complete. All simulations are run for 3000 periods. A QoS
requirement vector q is feasible if for all users i the fraction
of task completions over the 3000 periods exceeds qi.

A. Near-Optimality of LDF+Greedy for Large �

To evaluate the resource savings of LDF+Greedy for large
period length �, we consider an SRT-MIC system model with
n = 200 and � = 50, serving homogeneous users that have the
same QoS requirement q and generate tasks with Gamma(5, 1)
workloads, i.e., a sum of 5 independent exponential random
variables with parameter 1. The probability density function
is shown in the top panel in Fig.3. We choose this NBUE
workload distribution as a representative one.

In the bottom panel in Fig.3, we show the simulated
resource savings of LDF+Greedy versus the reservation-based
static sharing, i.e., 1 � mLDF+Greedy

mRB
, and the computed upper

bound on resource savings 1� m
mRB

as the QoS requirement q
increases from 0 to 1. The lines are not smooth because we
take ceilings when computing m and mRB.

It can be seen that the savings under LDF+Greedy is close to
the upper bound in this setting. The “U” shape of the exhibited

results depends on the workload distribution. Intuitively, in
this homogeneous-user scenario, if we ignore the ceilings in
(4) (5), the upper bound on savings becomes,

1� m

mRB
' 1� qµ

w(q)

, (7)

where µ is the common mean workload and w(q) is the
common required static allocation. For high q, w(q) is like
a worst-case workload and this is an improvement from worst
case to average which is as high as 60-70% for Gamma(5, 1)
distribution. For medium q ⇠ 50%, qµ is around 0.5µ while
w(q) is roughly µ, giving a 50% resource savings. For low q,
qµ is much smaller compared to w(q) and the savings can be
up to 80-90%.

0 2 4 6 8 10 12 140

0.5

1
Probability Density Functions

Gamma(5, 1)
Gamma(100, 0.05)

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Requirement q

Sa
vi

ng
s

Savings for Large Period

Upper Bound
LDF+Greedy

Fig. 3. Top: the probability density functions for Gamma(5, 1) and
Gamma(100, 0.05). Bottom: the resource savings for large period.

B. LDF+Greedy vs. LDF+TS/LLREF for Deterministic Work-
loads and Small �

To compare LDF+Greedy and LDF+TS/LLREF for short
periods � and deterministic workloads, we consider a system
where n = 30 and � = 9 and where users are homogeneous
and generate tasks with deterministic workloads µ = 5. In the
top panel in Fig.4, we exhibit the upper bound of resource
savings and the resource savings under LDF+Greedy and
LDF+TS/LLREF as the requirement q changes from 0 to 1.

As can be seen, LDF+TS/LLREF can achieve the upper
bound on savings while LDF+Greedy does not perform as
well. For high q, the savings for LDF+Greedy is even negative
implying that LDF+Greedy is worse than the reservation-
based approach. This is because we chose µ and � such
that LDF+Greedy wastes a significant amount of time on
unfinished tasks. Observe that the savings are monotonically
decreasing in q, which is different from the “U” shape ex-
hibited in Fig.3. Intuitively, this is because for deterministic
workloads, by (7) we know w(q) equals to µ and thus we get

1� m

mRB
' 1� q.

0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

Requirement q

Sa
vi

ng
s

Savings for Deterministic Workloads

0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

Requirement q

Sa
vi

ng
s

Savings for Workloads with Small Variabilities

Upper Bound
LDF+TS/LLREF
LDF+Greedy

Upper Bound
Heuristic LDF+TS/LLREF
LDF+Greedy

Fig. 4. Top: the resource savings under deterministic workloads. Bottom: the
resource savings under random workloads with small variability.

C. LDF+TS/LLREF for Workloads with Small Variability

For workloads with small variability, we envisage that the
heuristic LDF+TS/LLREF described in Section IV-C is a
good non-clairvoyant policy. Consider a SRT-MIC system
with homogeneous users where n = 30 and � = 9 and
where the task workload distributions are Gamma(100, 0.05)
exhibited on the top panel in Fig.3. Note that the distribution
Gamma(100, 0.05) has the same mean µ = 5 but a small
variance. In this setting, we shall estimate the workload to be
w

est
= 1.1µ and use our proposed heuristic LDF+TS/LLREF

in Section IV-C. We conduct the same analysis for resource
savings and exhibit the results in the bottom panel in Fig.4.

As can be seen, the heuristic LDF+TS/LLREF indeed
performs better than LDF+Greedy. However, the performance
of the heuristic LDF+TS/LLREF degrades for high q. This is
due to the fact that some selected tasks fail to complete since
their workloads are larger than w

est. One approach to solve
this is to increase w

est as q becomes bigger.
Although we only considered homogeneous users, the above

observations were found to be robust for heterogeneous users.

VI. GENERALIZATIONS TO CORES WITH DIFFERENT
PROCESSING SPEEDS

In this section we summarize generalizations of our results
to systems consisting of cores with different processing speeds.
Let C = {1, 2, · · · ,m} denote the set of cores. Suppose all
cores are of the same type and each core c 2 C has processing
speed sc, i.e., cores are “uniform”, see the taxonomy in,
e.g., [8]. A task with workload w processed on core c has a

processing time w
sc

. Let s =

P
c2C

sc

m be the average processing
speed. In the model we have considered, sc = 1 for all c 2 C.

In this setting, the outer bound ROB in Theorem 1 becomes

ROB ⌘ {q 2 Rn
+

| q � 1,

X

i2N

qiµi
X

c2C

sc · �}.

For LDF+Greedy, given that cores have different process-
ing speeds, one may want to migrate tasks to faster cores
if possible. Therefore, depending on whether task preemp-
tion/migration is allowed, there are two types of LDF+Greedy.
In Type 1, the task scheduler greedily and preemptively
schedules tasks with the highest priority on the fastest cores. In
this setting, �

1

in Theorem 3 becomes �
1

= 1�
max

i2N
µi

s·� . In Type
2, the task scheduler greedily places tasks on available cores
by priority but does not allow preemption/migration. Here �

1

becomes �

1

= 1�
max

i2N
µi

min

c2C
sc·� .

We can also generalize LDF+TS/LLREF and Theorem 4
with additional natural assumptions. See the extended version
of this paper [24] for more details and other generalizations.

VII. CONCLUSION

We have considered a computing system with multiple re-
sources supporting soft real-time applications and established
analytically and through simulation that simple resource allo-
cation policies like LDF+Greedy are near-optimal and achieve
substantial resource savings, except when the real-time con-
straints are tight, i.e., the period length is similar to the service
time for a user’s task. In this case, LDF+Greedy may not work
well and it is worth exploring other policies. For workloads
with small variability, we have proposed the LDF+TS/LLREF
policy which indeed outperforms LDF+Greedy. For future
work, a more detailed exploration of systems consisting of
possibly different types of resources is of interest.

REFERENCES

[1] China Mobile, “C-RAN The Road Towards Green RAN,” Oct 2011.
[2] C. J. Bernardos et al., “An architecture for software defined wireless

networking,” IEEE Wireless Communications, vol. 21, no. 3, 2014.
[3] Y. Du and G. de Veciana, “Wireless Networks Without Edge: Dynamic

Radio Resource Clustering and User Scheduling,” in INFOCOM 2014.
[4] Personal communication with Alan Gatherer.
[5] A. Verma et al., “Large-scale cluster management at Google with Borg,”

in Proc. of EuroSys 2015.
[6] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogram-

ming in a Hard Real-Time Environment,” J. of the ACM, 1973.
[7] J. W. S. Liu, Real-Time Systems. Prentice Hall, April 2000.
[8] R. I. Davis and A. Burns, “A Survey of Hard Real-Time Scheduling for

Multiprocessor Systems,” ACM Computing Surveys, vol. 43, 2011.
[9] M. Hamdaoui et al., “A Dynamic Priority Assignment Technique for

Streams with (m, k)-Firm Deadlines,” IEEE Trans. Comput., 1995.
[10] P. Ramanathan, “Overload management in real-time control applications

using (m, k)-firm guarantee,” IEEE Trans. Parallel Distrib. Syst., 1999.
[11] J. W. Liu, K.-J. Lin, and S. Natarajan, “Scheduling Real-time, Periodic

Jobs Using Imprecise Results,” in Proc. of RTSS 1987.
[12] I.-H. Hou and P. R. Kumar, Packets with Deadlines: A Framework for

Real-Time Wireless Networks. Morgan & Claypool Publishers, 2013.
[13] C. Liu and J. H. Anderson, “Task Scheduling with Self-Suspensions in

Soft Real-Time Multiprocessor Systems,” in Proc. of RTSS 2009.
[14] A. Atlas and A. Bestavros, “Statistical Rate Monotonic Scheduling,” in

Proc. of RTSS 1998.
[15] I.-H. Hou and P. R. Kumar, “Queueing systems with hard delay

constraints: a framework for real-time communication over unreliable
wireless channels,” Queueing Systems, 2012.

[16] A. Dimakis and J. Walrand, “Sufficient Conditions for Stability of
Longest-Queue-First Scheduling: Second-Order Properties Using Fluid
Limits,” Advances in Applied Probability, vol. 38, no. 2, June 2006.

[17] C. Joo et al., “Performance Limits of Greedy Maximal Matching in
Multi-hop Wireless Networks,” in IEEE Conf Decis Control, 2007.

[18] X. Kang et al., “On the Performance of Largest-Deficit-First for Schedul-
ing Real-Time Traffic in Wireless Networks,” in MobiHoc 2013.

[19] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 2012.
[20] S. Shakkottai and A. L. Stolyar, “Scheduling algorithms for a mixture

of real-time and non-real-time data in HDR,” in Proc. of ITC 2001.
[21] J. J. Jaramillo and R. Srikant, “Optimal Scheduling for Fair Resource

Allocation in Ad Hoc Networks With Elastic and Inelastic Traffic,” IEEE
Trans. on Networking, vol. 19, 2011.

[22] S. Patil and G. de Veciana, “Managing Resources and Quality of Service
in Heterogeneous Wireless Systems Exploiting Opportunism,” IEEE
Trans. on Networking, 2007.

[23] A. Müller and D. Stoyan, Comparison Methods for Stochastic Methods
and Risks. Wiley, March 2002.

[24] Extended version. [Online]. Available: http://arxiv.org/abs/1601.06333
[25] H. Cho, B. Ravindran, and E. D. Jensen, “An Optimal Real-Time

Scheduling Algorithm for Multiprocessors,” in Proc. of RTSS 2006.

APPENDIX

A. Proof of Theorem 1
Given a feasible QoS requirement vector q � 1, the goal is

to show
P

i2N
qiµi m�.

Suppose q is fulfilled by a non-clairvoyant resource alloca-
tion policy ⌘, by definition {X(t)}t�1

is positive recurrent and
therefore, there exists a stationary distribution. We consider a
typical period where the deficit vector X(t) follows the sta-
tionary distribution and introduce further notation associated
with period t+ 1. To simplify notation, we will suppress the
period index in this proof.

For each user i, we define Yi to be the indicator random
variable that user i’s task completes in a typical period. By
the Ergodic Theorem, E[Yi] also represents the time-averaged
number of task completions per period for user i. If we view
Xi(t) as a queue, the average arrival qi should not exceed
the average departure E[Yi]. For each user subset S ✓ N , we
define US to be a random variable denoting the total time spent
on users in S in a typical period. Clearly, E[US] cannot exceed
the total available core time m�. To show

P

i2N
qiµi m�, it

suffices to show that
P

i2N
E[Yi]µi E[UN]. To that end we

first develop an equation connecting
P

i2N
E[Yi]µi and E[UN],

and then use the NBUE assumption to show the inequality.
We say a task is unfinished if it starts processing but does not

complete in a given period. Let Ai be the indicator random
variable that user i’s task is unfinished in a typical period.
Now if Yi + Ai = 1 it indicates that user i’s task starts
processing in the period though it may not have completed.
For each user i, we further define Ei = Ai(Wi � U{i}).
Intuitively, Ei represents the “residual workloads for user i’s
unfinished tasks”. Note that these random variables and their
means depend on the policy ⌘.

Now for each user subset S ✓ N , the total time spent on
users in S can be written as

US =

X

i2S

(Yi +Ai)Wi �
X

i2S

Ei. (8)

Clearly Yi + Ai, which indicates that user i’s task starts
processing, is independent of Wi. Indeed this follows from the
non-clairvoyance of the policy ⌘ and the independence among
users’ task workloads. In a typical period under policy ⌘, the
event that user i’s task starts may depend on the workloads of
others’ tasks, but not on Wi.

Note that although Yi+Ai is independent of Wi, in general
Yi which indicates user i’s task completes may depend on
Wi. To better understand this, consider an extreme example.
If Wi > �, clearly the user i’s task cannot complete implying
that Yi = 0. Thus, E[Yi|Wi > �] = 0 6= E[Yi].

Still given the independence of Yi +Ai and Wi, we have

E[(Yi +Ai)Wi] = E[Yi +Ai] · E[Wi] = (E[Yi] + E[Ai])µi.

By taking expectations on both sides of (8), we get

E[US] =

X

i2S

E[Yi]µi +

X

i2S

E[Ai]µi �
X

i2S

E[Ei]. (9)

This equation holds for all non-clairvoyant resource allocation
policies and for all subsets of users S ✓ N .

Now let S = N . To show
P

i2N
E[Yi]µi E[UN], by (9) it

suffices to show E[Ai]µi � E[Ei] for all users i 2 N . We will
show this is true under the NBUE workload assumption in the
discrete-time scenario and it is straightforward to generalize
the proof to the continuous-time scenario.

Suppose each period contains � discrete time units. For all
i and for c = 1, 2, · · · , �, we let Ai,c denote the indicator ran-
dom variable that user i’s task is unfinished and is processed

for c time units in a typical period. Clearly, Ai =

�
P

c=1

Ai,c and

E[Ai,c] = Pr(Ai,c = 1). By the law of total probability, the
expected residual workload E[Ei] for user i can be written as

E[Ei] =

�
X

c=1

E[Ei|Ai,c = 1]Pr(Ai,c = 1) =

�
X

c=1

µi,cE[Ai,c],

where µi,c = E[Wi � c|Wi > c].
By the NBUE workload assumption we know that µi,c µi

for c > 0 and therefore, we get the following inequality,

E[Ei]
�

X

c=1

µiE[Ai,c] = µiE[Ai]. (10)

To summarize, by (9) and (10) we know for all S ✓ N ,
X

i2S

qiµi
X

i2S

E[Yi]µi E[US] m�, (11)

which implies
P

i2N
qiµi m�, and thus, F ✓ ROB.

B. Sketch of Proof of Theorem 3
Given a feasible q, the goal is to show that �

1

q 2
cl(FLDF+Greedy). By Theorem 2, it suffices to show �

1

q 2 RIB.
We pick ↵ = (µ

1

, µ

2

, · · · , µn) � 0 and it suffices to show
for all user subsets S and priority decisions d 2 D(S) that

X

i2S

µipi(d) � �

1

X

i2S

µiqi. (12)

This is shown by results similar to (9), (11).

