
Efficiency and Optimality of Largest Deficit First
Prioritization: Resource Allocation for Real-Time

Applications
Yuhuan Du and Gustavo de Veciana

Department of Electrical and Computer Engineering, The University of Texas at Austin
Email: dyhuan123@gmail.com, gustavo@ece.utexas.edu

Abstract—An increasing number of real-time applications with

compute and/or communication deadlines are being supported

on shared infrastructure. Such applications can often tolerate

occasional deadline violations without substantially impacting

their Quality of Service (QoS). A fundamental problem in such

systems is deciding how to allocate shared resources so as to

meet applications’ QoS requirements. A simple framework to

address this problem is to, (1) dynamically prioritize users as a

possibly complex function of their deficits (difference of achieved

vs required QoS), and (2) allocate resources so to expedite users

with higher priority. This paper focuses on a general class of

systems using such priority-based resource allocation. We first

characterize the set of feasible QoS requirements and show the

optimality of max weight-like prioritization. We then consider

simple weighted Largest Deficit First (w-LDF) prioritization

policies, where users with higher weighted QoS deficits are given

higher priority. The paper gives an inner bound for the feasible

set under w-LDF policies, and, under an additional monotonicity

assumption, characterizes its geometry leading to a sufficient

condition for optimality. Additional insights on the efficiency

ratio of w-LDF policies, the optimality of hierarchical-LDF and

characterization of clustering of failures are also discussed.

I. INTRODUCTION

A growing number of real-time applications with compute
and/or communication deadlines are being moved onto shared
infrastructure, e.g., ranging from embedded systems to effi-
cient cloud infrastructure. Such applications include control,
multimedia processing, and/or machine learning components
associated with enabling various types of user services as well
as wireless, intelligent transportation and energy systems. In
many cases such applications can tolerate occasional deadline
violations, i.e., have soft constraints, without impacting the ap-
plication Quality of Service (QoS). For example, applications
with feedback can quickly compensate for errors, or humans
may tolerate occasional failures in video processing since they
can be partially concealed, or wireless base stations can toler-
ate occasional frame losses, since these can be retransmitted.
More generally real-time applications’ long-term QoS may
depend in a complex manner on what was accomplished on
time, e.g., partial completion of a set of tasks, or notions of
video quality.

Enabling efficient sharing of compute/communication re-
sources is a challenging problem. On the one hand, even
for a single resource, tying the sharing model, e.g., round

This research was supported by Huawei Technologies Co. Ltd.

robin, priority schemes, to QoS metrics is generally hard due
to the uncertainty in applications’ workloads and possible
variations in processing speeds. On the other hand, today’s
applications leverage complex networks of heterogeneous
compute/communication resources, e.g., multi-core computers,
embedded network system, or combinations of computation on
mobile devices and the cloud. Consider the example in Fig.1.
User 1 periodically generates a task that needs to be processed
sequentially on Resources A, B, C, D in each period while
User 2 generates tasks to be processed on Resource B then C.
How should one go about designing resource sharing policies
across multiple heterogeneous resources, where parallelism,
task preemption and migration are allowed? Furthermore, how
can one address heterogeneous QoS requirements associated
with real-time applications? For example, User 1’s QoS may
still benefit from partial completions while User 2 only benefits
if all processing is completed. This general class of problems
involving both heterogeneous resources and user QoS require-
ments is the focus of this paper.

User 2

BA C D

User 1

Fig. 1. An example for a network of resources. A, B, C and D represent
compute/communication resources.

The design space of possible solutions to this problem is
huge and has been explored in many research communities.
In this paper we study an approach to resource allocation based
on a decomposition of concerns:

• user priorities are dynamically set based on the history
outcomes;

• and, resources are allocated so as to favor users with
higher priority.

In such a framework there is quite a bit of latitude in choosing
how priorities are set, and in turn how these affect the
allocation of resources. For example, users’ priorities could
be set based on measured deficits, the “difference” of the
required and achieved QoS, i.e., Largest Deficit First (LDF)
prioritization. In turn, for complex systems such as that in
Fig.1, resources could be allocated greedily giving preemptive
access to tasks associated with higher-priority users.

In general an optimal user prioritization strategy could lever-
age detailed information regarding how these priorities will
impact the allocation of resources and completion outcomes
to achieve the best possible user QoS. Such strategies require
excessive amounts of information regarding the underlying
compute/communication resources and resource allocation
mechanism, and thus are generally hard to implement. By
contrast, LDF-based prioritization is quite intuitive. It requires
only tracking of users’ possibly heterogeneous QoS deficits,
in this sense it is truly decoupling user prioritization from the
underlying priority-based resource allocation. Unfortunately, it
is known to be suboptimal in certain settings [1], [2], [3].

A theoretical study of the efficiency and, possibly opti-
mality, of LDF-based prioritization systems supporting real-
time users with heterogeneous QoS requirements is the main
focus of this paper. We note, however, that we do not directly
address the design of the underlying priority-based resource
allocation, although we consider some natural characteristics
it could have to ensure optimality when combined with LDF
user prioritization.

Related Work. There have been many efforts on the study of
such dynamic prioritization policies in the context of specific
resource, workload and/or QoS models.

The authors in [4], [5] propose a framework to model a
wireless access point serving a set of clients that in each period
generate packets which need to be transmitted by the end of
the period. In their model only one client can transmit at a
time and thus the access point can be viewed as a single
resource. Each client transmits its packets over a unreliable
channel which has a fixed probability of success, and thus,
the time to successfully transmit a packet can be modeled as
a geometric random variable. In this setting the authors show
that the LDF policy is “optimal.” However, the results are
restricted to a single resource shared by users with geometric
workloads. In this paper we study the performance of LDF
in a more general setting which includes this prior work as
a special case. This initial set of papers motivated follow-up
work in wireless context, e.g., [6], [7], [8].

The performance of LDF and similar policies has also
been studied in [1], [2], [3]. The authors in [1] consider the
generalized switch model and were the first to propose the
notion of “local pooling” as a sufficient condition for the
Longest Queue First (LQF) policy to be throughput optimal.
Subsequently, the work in [2] considers a multi-hop wireless
network under a node-exclusive interference model and shows
that the efficiency ratio of the greedy maximal matching
policy, which is essentially LQF, equals to the “local pooling”
factor of the network graph. More recently, the authors in [3]
consider real-time traffic in ad hoc wireless networks under
a link-interference model and also characterize the efficiency
ratio of the LDF policy.

The results in [1], [2], [3] depend on the constant service
rate model and the specific interference model, i.e., where the
set of links/queues that can be scheduled simultaneously is
restricted. These models may be appropriate in some wire-
less/queueing networks but do not necessarily hold in our

broader context, e.g., soft real-time applications with stochas-
tic workloads. Also, [1] lacks a performance analysis of LQF
when it is not optimal and the works in [2], [3] focus on the
efficiency ratio of LDF-like policies but lack a characterization
of the full capacity region of these policies. Moreover, when
the system can deliver more than the requirements, either
the QoS requirements for real-time traffic or the throughput
requirements for queueing systems, there is no discussion of
how to manage the allocation of the “excess capacity” across
users.

The authors in [9], [10], [11], [12] propose max weight
scheduling policies for different queueing systems and show
them to be throughput optimal via the approaches summarized
in [13], [14]. As we will see in the sequel we too discuss a
max weight-like scheduling policy, but it suffers from the usual
complexity problems when the decision space is large and it
requires excessive amounts of information, motivating us to
consider simpler policies.

Additional related work includes modeling and scheduling
real-time tasks, see e.g., [15], [16].

Our Contributions. In this paper, we contribute to the
theoretical understanding and performance characterization of
the Largest Deficit First (LDF) policy with applications to
resource allocation to support real-time services. We make
three key contributions.

First, we propose a novel general model for a class of sys-
tems supporting priority-based resource allocation and study
different dynamic prioritization policies. This model is general
in terms of the “impact” the priority decisions can have on
the QoS payoffs. Specifically, in each period the payoffs
under a priority decision are modeled by a random vector,
which includes as special cases the single resource model,
the geometric/constant workload and/or specific interference
model adopted in prior work. For this general model, we
propose a general inner bound RIB for the QoS feasibility
region of LDF prioritization policy.

Second, with an additional property, monotonicity in pay-
offs, we characterize the geometry of the inner bound RIB.
Based on this, we further propose a sufficient condition for the
optimality of the LDF policy and characterize the efficiency
ratio of LDF. In practice, understanding the geometry of RIB
enables us to understand and identify possible bottlenecks in
the priority-based resource allocation infrastructure. We also
show the LDF/hierarchical-LDF is optimal when there are two
users or two classes of exchangeable users.

Finally, we also consider the class of weighted LDF policies,
which enable us to explore the allocation of “excess payoffs”
when the system has “excess” capacity. Simulation results are
exhibited to show the impact of weights and to characterize
the clustering of failures.

Paper Organization. The paper is organized as follows:
Section II introduces our general model for systems supporting
priority-based resource allocation. Section III develops theoret-
ical results and characterizes the performance of the weighted
LDF policies while Section IV presents some examples for
the optimality of the weighted LDF/hierarchical-LDF policies.

Section V discusses some practical issues while the impact of
weights is exhibited via simulation in Section VI. Section VII
concludes the paper and points to future work.

II. SYSTEM MODEL

We consider applications which periodically generate ran-
dom workloads with the same period and specify long-term
QoS requirements. In the sequel we let a user denote a specific
instance of such an application.

We begin by introducing a general model for systems that
allocate resources in each period based on the following
decomposition: (1) users are assigned priorities dynamically,
e.g., at runtime, according to a function of the past history, and
(2) the system allocates resources based on these priorities.

For the most part in this paper, the manner in which (2)
is carried out will not be our concern. Instead our focus will
be on how to perform dynamic user prioritization to achieve
optimal (or near-optimal) system performance when combined
with a given underlying mechanism for (2).

A. General Model for Systems Supporting Priority-Based Re-
source Allocation

We consider an abstract system that serves n users indexed
from 1 to n. Let N = {1, 2, · · · , n} be the user set. The system
operates in discrete time, over periods t = 1, 2, · · · . In each
period, it picks a user priority decision d = (d1, d2, . . . , dn)
where dm is the index of the user with mth highest priority. We
let D denote the set of all possible priority decisions and let
|D| represent the number of possible decisions, thus, |D| = n!

In each period, given the priority decision d passed to the
underlying resources, since there are intrinsic uncertainties
in users’ workloads, each user i achieves a non-negative
random QoS payoff, denoted by Vi(d). We let V(d) =

(V1(d), V2(d), · · · , Vn(d)). We assume the payoffs are inde-
pendent across periods. The distribution of V(d) depends on
the selected priority decision d and the expected payoff vector
given d 2 D is denoted by p(d) = E[V(d)]. We assume all
possible payoff vectors form a finite rational set.

Each user requires a long-term average QoS payoff qi � 0

as the QoS requirement. We let q = (q1, q2, · · · , qn) and
assume qi’s are rational1. We denote by d(t) the priority
decision at period t. To keep track of the deficits between
required and achieved QoS payoffs, for each user i 2 N and
period t+ 1, we define2

Xi(t+ 1) = [Xi(t) + qi � Vi(d(t+ 1))]

+, (1)

where [x]+ = max[x, 0].
The goal is thus to devise user prioritization policies which

will meet users’ long-term payoff requirements.
Definition 1: A user prioritization policy is a stationary

policy that picks a priority decision d(t + 1) 2 D at period
t+ 1 based on the following:

1All the results in this paper can be generalized to models with irrational
values. For simplicity in the proof we do not consider that level of generality.

2We truncate the deficit at 0 for the convenience of defining feasibility in
the sequel. Removing the truncation won’t change the results in the paper.

• users’ payoff requirement vector q;
• expected payoff vectors P = {p(d)|d 2 D};
• and, the deficits X(t) = (X1(t), X2(t), · · · , Xn(t)).
The process {X(t)}t�1 is a Markov chain under any such

policy. We assume the initial state X(0), the requirements q,
the set of all possible payoff vectors and the user prioritization
policy make {X(t)}t�1 an irreducible Markov chain.

Definition 2: A payoff requirement vector q is said to be
feasible if there exists a user prioritization policy ⌘ under
which the Markov chain {X(t)}t�1 is positive recurrent. We
also say this policy fulfills this requirement vector.

The expected payoff vectors P = {p(d)|d 2 D} could in
principle be statistically inferred from the history events or
by repeated experiments. However, in a practical setting this
can be challenging and it is of interest to find a policy that
performs well and uses little a-priori information regarding the
exponential set of expected payoff vectors P .

Note that this model is general in the sense that the “impact”
of priority decisions d 2 D on the QoS payoff vectors P is at
this point general, whereas the specific resource and workload
models in prior work, e.g., [1], [2], [3], implicitly impose
properties on P and therefore restrict the results significantly.

B. Example: Centralized Computing System for Real-Time
Applications

Our model can for example capture a centralized computing
infrastructure supporting Soft Real-Time (SRT) applications
where the n users share compute resources. In a cloud-
based collaborative video conferencing context, a user might
correspond to an individual end user and the period length
might correspond to the length of a group of video frames.

The users generate streams of tasks periodically. Specifically
in each period a user generates several tasks. A task may
further consist of a graph of possibly dependent sub-tasks with
(possibly) random processing requirements, i.e., workloads.
These tasks/sub-tasks need to be fully completed before the
end of the period. For real-time services, it is generally useless
to process a task after its deadline. For example, in the
video conferencing context it is not desirable to present an
out-of-date frame. Therefore, we assume tasks/sub-tasks not
completed on time are dropped.

In each period t, the user prioritization policy picks a user
priority decision d(t), based on which compute resources are
allocated to process tasks. Given the task processing results, a
payoff Vi(d(t)) is achieved for each user i based on whether
the tasks were successfully processed, or how much of the task
graphs were completed. In general, Vi(d(t)) may represent any
user-specific QoS payoff per period, that can be averaged over
time, e.g., the quality/resolution of video frame processing,
or the number of task completions. Accordingly the vector q

represents the long-term average QoS requirements.

C. General Model for Complex Resources and Applications
As indicated in the introduction, our model also applies to a

complex network of heterogeneous compute and communica-
tion resources, as long as users periodically and synchronously

generate tasks that require timely processing on diverse re-
sources and moving around in the network, e.g., as shown in
Fig.1.

Given the priority decision in each period, the network of re-
sources coordinate according to some priority-based resource
allocation mechanism to accelerate the processing of tasks
with high priorities, by reducing the communication/queueing
delays, processing with higher processor speed, allocating
more shared resources, etc.

Again, different users can define their payoffs in different
ways and specify their QoS requirements accordingly.

III. PERFORMANCE ANALYSIS

In this section we shall develop theoretical results for such
systems. To save space we have deferred proofs of these
results to the extended version of this paper available at [17].
Some of these results are similar to prior work but in the
more general model while other results are completely new.
For completeness we shall develop a self-contained theoretical
framework.

A. System Feasibility Region and Feasibility Optimal Policy
The set of all feasible long-term payoff requirement vectors

will be referred to as the system feasibility region F . We let
F⌘ denote the feasibility region of a user prioritization policy
⌘. To characterize F we introduce some further notation.

A vector x is said to be dominated by a vector y if xi  yi
for all i and is denoted by x � y. We define x � y, x ⌫ y

and x � y in a similar manner.
Given the set of priority decisions D and the expected

payoff vectors P = {p(d)|d 2 D}, we let C be the set of
requirement vectors q 2 Rn

+ which are dominated by a vector
in the convex hull of P denoted Conv(P), i.e.,

C ⌘ {q 2 Rn
+ | 9x 2 Conv(P) such that q � x}. (2)

Fig.2 exhibits C for a two-user (left figure) and three-user
(right figure) setting. In the two-user setting, the points labeled
p(d1) and p(d2) are the expected payoff vectors of two
priority decisions, i.e., where User 1 or User 2 has higher
priority, respectively. The shadowed area represents C. In the
three-user setting, the circles represent the 6 possible expected
payoff vectors, and the region dominated by their convex hull
is C. Note that in a n-user scenario where n � 3, as displayed
the expected payoff vectors need not be on a hyperplane in
the n-dimensional space. As we will see this is essentially the
source of complexity in studying such systems.

Clearly, for any requirement vector q in the interior of C,
denoted by int(C), one can achieve q if one is allowed to do
probabilistic time sharing among priority decisions by picking
decisions according to a pre-computed probability distribution
whose mean payoff dominates q. Therefore, int(C) ✓ F . We
can also show the following result.

Lemma 1: The system feasibility region F is such that

F ✓ cl(C),

where cl(C) is the closure of C.

Fig. 2. Examples of set C when n = 2 and n = 3.

Intuitively, if q is feasible, it is fulfilled by some user
prioritization policy that in the long-term picks each priority
decision some fraction of the time and thus, q is dominated
by some point in the convex hull of P . This is similar to prior
work, e.g., [9]. See the extended version of this paper [17]
for the proof. In other words, C is different from F by at
most a boundary, and therefore, characterizes F for practical
purposes. Thus, in the sequel we will also refer to C as the
system feasibility region.

Ideally, it is desirable to devise an “optimal” policy that
can fulfill all feasible requirements. More formally, a user
prioritization policy ⌘ is said to be feasibility optimal if
int(C) ✓ F⌘ ✓ cl(C). Similar to prior work [9], [10],
the following max weight-like policy is one such feasibility
optimal policy.

Definition 3: The deficit-based max weight (MW) prior-
itization policy is such that, at period t + 1, given the deficit
vector X(t) computed by (1), it picks a priority decision
d(t+ 1) that satisfies

d(t+ 1) 2 argmax

d2D
hX(t),p(d)i, (3)

where hx,yi is the inner product of two vectors.
Theorem 1: The feasibility region of the MW policy FMW

is such that

int(C) ✓ FMW ✓ cl(C),

and therefore, the MW policy is feasibility optimal.
See the extended version of this paper [17] for the proof.
However, the MW policy and time sharing policies require

full knowledge of P which is challenging in complex practical
systems. Moreover, these policies are hard to implement since
they involve solving fairly complex optimization problems,
i.e., Eq (3). Changes in the user set or payoff requirement
vector q will also impact the realization of these policies. In
summary, the requirements in terms of a-priori knowledge, the
computational complexity and lack of flexibility to changes
make them hard to use in practice. This motivates the policies
considered in the next subsection.

For ease of reference, Table I provides a summary of the
notation used to denote various regions used in the rest of the
paper—some of these are introduced in the sequel.

TABLE I
NOTATION OF REGIONS.

Regions Description

F System Feasibility Region.
Conv(P) Convex hull of the expected payoff vectors.

C Region dominated by Conv(P).
Fw-LDF Feasibility region of the w-LDF policy.
RIB An inner bound for Fw-LDF
B Dominant of the convex hull.
R Region characterizing the geometry of RIB.

B. Weighted LDF Policies and Associated Feasibility Regions
The LDF user prioritization policies require no a-priori

knowledge of the system, are simple to implement and adapt
easily to changes in q or the user set. In particular we
shall characterize the feasibility regions of these policies by
providing an inner bound.

Definition 4: Given a vector w = (w1, w2, · · · , wn) � 0,
the weighted Largest Deficit First (w-LDF) user prioritiza-
tion policy is such that, at period t+1, given the deficit vector
X(t), it picks a priority decision d that satisfies

wd1Xd1(t) � wd2Xd2(t) � · · · � wdnXdn(t),

with ties broken arbitrarily (possibly randomly). In other
words, it sorts the weighted deficits of users and assigns
priorities accordingly. Let 1 ⌘ (1, 1, · · · , 1). We refer to the
policy with w = 1 the Largest Deficit First (LDF) policy.

Clearly, the w-LDF prioritization policies do not require
knowledge of the expected payoff vectors P . Note that we
still use deficit feedback to stabilize the system. In terms of
computational complexity, solving (3) is O(n!) while sorting
weighted deficits only requires O(n log n). It also allows
us to further differentiate the performance across users by
assigning different weights. The impact of weights is discussed
in Section VI.

Prior work has established that the LDF policy need not be
feasibility optimal. Therefore, a key question is whether the
feasibility regions for the w-LDF policies are acceptable and
to characterize the gap between their feasibility regions and
the system feasibility region F . To that end, we first provide
an inner bound, denoted by RIB, for the feasibility region of
any w-LDF policy.

Theorem 2: For any w � 0, an inner bound for the
feasibility region of the w-LDF policy Fw-LDF is given by
int(RIB) ✓ Fw-LDF, where

RIB ⌘ {q 2 Rn
+ | 9↵ � 0 such that 8S ✓ N,

X

i2S

↵iqi  min

d2D(S)

X

i2S

↵ipi(d)} (4)

where D(S) denotes the set of all priority decisions that assign
the highest |S| priorities to users in S.

In other words, if q 2 RIB, it is feasible under all w-
LDF policies except perhaps boundary points. The underlying
intuition for this bound is as follows. A vector q is in RIB if

there is a weight vector ↵ � 0 such that for any subset of
users S, and decisions giving users in S the highest priorities,
the weighted sum of payoff requirement

P
i2S

↵iqi will not

exceed the least sum weighted payoff
P
i2S

↵ipi(d). Based on

↵, we can construct an appropriate Lyapunov function to show
feasibility for q and each w. See the extended version of this
paper [17] for the proof.

Understanding the geometry of RIB enables us to charac-
terize the performance gap between w-LDF and feasibility
optimal policies. Let us informally consider the geometry of
RIB for the two special cases in Fig.2. In the two-user case
in Fig.2, RIB is the same as C and thus, the w-LDF policies
are always feasibility optimal. However, in the three-user case
in Fig.2, this need not be true. Indeed, in this setting, the
region RIB corresponds to C minus the convex hull of P ,
modulo some boundary points. This is exhibited in Fig.3. In
the next subsection, we will formalize these observations and
show under what conditions they hold true.

_ =

Fig. 3. Visualizing RIB for the three-user scenario in Fig.2. In this example,
RIB = cl(C � Conv(P)).

C. Geometry of RIB under Monotonicity in Payoffs
In order to formally characterize the geometry of RIB we

will add a further natural requirement to the general model.
We define Si(d) to be the set of users that have higher

priorities than user i under decision d.
Definition 5: The system with expected payoff vectors P =

{p(d)|d 2 D} is said to satisfy monotonicity in individual

expected payoff if, for any two priority decisions d1 and d2

and any user i such that Si(d1) ✓ Si(d2), it is true that
pi(d1) � pi(d2). We call this monotonicity in payoffs for
short.

In other words, a user i can expect to get a higher payoff
if some users with higher priority are re-assigned lower
priorities. This property characterizes in a broad sense how
priorities impact the expected payoffs when the underlying
system allocates resources. It is a natural condition but need
not hold in general.

We shall define B to be the set of payoff requirement vectors
q which dominate a vector in the convex hull of P , i.e.,

B ⌘ {q 2 Rn
+ | 9x 2 Conv(P) such that q ⌫ x}.

We call B the dominant of the convex hull. Contrast this to
the definition of C in (2).

For the special cases in Fig.2 and 3, B \ C equals to
Conv(P), but in general it can be larger than Conv(P). Fig.4

shows a conceptual picture of what could happen. The three
circles represent three possible expected payoff vectors. Here,
the whole shadowed area B \ C is larger than the region
Conv(P) which is the triangle formed by the three circles.
Note that this is only a conceptual example to help visualize
B\C in higher dimensions. In reality for two dimensions, i.e.,
systems with two users, we know there are only 2 expected
payoff vectors as shown in Fig.2.

Fig. 4. An example where B \ C is larger than Conv(P).

In the sequel we will see that given monotonicity in payoffs,
RIB is obtained by “removing” B\C, rather than just Conv(P)

from C. To develop this result we need some further notation
associated with each subset of users S ✓ {1, 2, · · · , n}.

The projection of a vector x on the subspace of S is denoted
by x

S , i.e.,

xS
i =

⇢
xi if i 2 S
0 otherwise.

We let PS ⌘ {pS
(d)|d 2 D(S)} represent the projections

of expected payoff vectors corresponding to decisions in
D(S), i.e., which assign the highest priorities to users in S.

Given a subset S and PS , we define the feasibility region
CS and the dominant of the convex hull BS as follows.

CS ⌘ {qS 2 Rn
+ | 9xS 2 Conv(PS) such that qS � x

S},
BS ⌘ {qS 2 Rn

+ | 9xS 2 Conv(PS) such that qS ⌫ x

S}.
Note that CS and BS are not necessarily the same as

projecting C and B on the subspace of S, respectively. This
is because in the definitions of CS and BS , we only focus on
a subset of decisions D(S) rather that the full decision set D.

Let us now define a region R which will help characterize
the geometry of the inner bound RIB.

Definition 6: Let R be defined as follows:

R ⌘ {q 2 Rn
+ | 8S ✓ N,qS 2 CS \BS},

where CS \ BS
= {qS |qS 2 CS ,q /2 BS}. In other words,

any q 2 R satisfies that for any user subset S, its projection
on the subspace of S belongs to the set CS \BS , which is the
feasibility region CS minus the dominant of the convex hull
BS .

One can visualize obtaining the set R as a process of
removing BS\CS from CS in all subspaces corresponding to
all subsets S. The geometry of RIB is then captured as follows.

Theorem 3: If the system satisfies monotonicity in payoffs,
then the inner bound region RIB is such that

int(R) ✓ RIB ✓ cl(R).

See the extended version of this paper [17] for this some-
what technical proof.

D. Sufficient Condition for w-LDF’s Optimality
By Theorem 2 and Theorem 3, we immediately get

int(R) ✓ int(RIB) ✓ Fw-LDF. (5)

Since R is obtained by removing BS \ CS from CS for
each S, if what is removed is nothing more than a boundary,
the difference between R and C is at most a boundary and
thus w-LDF policies are feasibility optimal. It is easy to see
this happens when vectors in PS lie on a hyperplane for each
subset of users S. This can be formalized as follows.

Definition 7: The system with expected payoff vectors P =

{p(d)|d 2 D} is said to satisfy subset payoff equivalence if
for each subset of users S the vectors in PS

= {pS
(d)|d 2

D(S)} lie on a hyperplane, i.e., there exists a nonzero ↵S ⌫ 0

such that for all d1,d2 2 D(S),

h↵S ,pS
(d1)i = h↵S ,pS

(d2)i.

Theorem 4: If the system satisfies monotonicity in payoffs
and subset payoff equivalence, then

int(C) ✓ Fw-LDF ✓ cl(C),

and therefore, the w-LDF policies are feasibility optimal.
The conditions in this theorem are akin but not equivalent

to the conditions introduced in [1] for the generalized switch
model. See the extended version of this paper [17] for the proof
of the theorem and a discussion of the difference between
our proposed conditions and those implicitly imposed by the
model in [1].

If the system has only two users, then clearly subset payoff
equivalence is satisfied since the two expected payoff vectors
are always on a line. Therefore, we get the following corollary.

Corollary 1: If the system has two users and satisfies
monotonicity in payoffs, then w-LDF policies are feasibility
optimal.

Note that in a two-user scenario, the property of monotonic-
ity in payoffs simply means a user gets higher payoff under
the higher priority than its payoff under the lower priority. In
Section IV-B we will consider systems serving two classes
of exchangeable users and use this corollary to show the
optimality of LDF-like policies.

E. Efficiency Ratio Analysis
When the conditions in Theorem 4 do not hold, one can

still study the efficiency ratio, see e.g., [2], to evaluate the
performance of w-LDF policies.

Definition 8: The efficiency ratio of the w-LDF policy is
defined as

�w-LDF = sup{�|�F ✓ Fw-LDF}.

Clearly �w-LDF equals to 1 if and only if the w-LDF policy is
feasibility optimal.

If a system does not satisfy subset payoff equivalence, i.e.,
for some subset of users S the vectors in PS are not on the
same hyperplane, we can characterize the “heterogeneity” of
these vectors based on the following notion.

Definition 9: Given a subset of users S ✓ N , the subset

payoff ratio �S for S is defined as

�S = max

↵S⌫0

↵S 6=0

min

d2D(S)
h↵S ,pS

(d)i

max

d2D(S)
h↵S ,pS

(d)i . (6)

The optimal ↵S is such that the projections of the vectors in
PS on ↵S are as close to each other as possible.

Clearly if the vectors in PS are on the same hyperplane,
then �S = 1 and the optimal ↵S is the normal vector to the
hyperplane. Intuitively, �S characterizes the degree to which
the vectors in PS deviate from being on the same hyperplane.

This notion enables us to characterize the efficiency ratio
of w-LDF for a given system.

Theorem 5: If the system satisfies monotonicity in payoffs,
the efficiency ratio of the w-LDF policy is such that

�w-LDF � min

S✓N
�S .

See the extended version of this paper [17] for the proof.
Intuitively, the bottleneck of the efficiency ratio is the subset
S where �S is the smallest.

Note that by picking any ↵ � 0, we can get lower bounds
on �S for all subsets S ✓ N by placing its projection ↵S into
(6). Thus, any ↵ � 0 enables us to construct a lower bound
on �w-LDF. A trivial option is ↵ = 1, where for each subset S
the value of h1S ,pS

(d)i represents the sum payoff of users
in S under decision d.

We have shown that the efficiency and optimality of the w-
LDF policies is related to RIB. Understanding and analyzing
the geometry of RIB can in principle enable us to provide
feedback to the designers of priority-based resource allocation
mechanisms regarding which specific priority decision or set
of priority decisions are problematic and bottlenecks for the
system so that the designers can focus on improving the re-
source allocation for these problematic decisions. For example,
in the conceptual setting shown in Fig.4, the priority decision
corresponding to the lower left circle is the “bottleneck” of the
system and should be targeted to make the dominant of the
convex hull as small as possible. This is of particular interest
for some practical systems where it is possible to get explicit
knowledge of P which reflect the underlying priority-based
resource allocation, e.g., by collecting data over a long time.

A priority decision is problematic if the associated under-
lying resource allocation suffers from resource contention,
blocking among users/applications, or even deadlocks on com-
pute resources, etc. Based on feedback regarding the bottle-
necks, the designer could improve the associated resource allo-
cation schemes, e.g., by increasing the processing speed of the
certain computing resources, spending more energy, reducing
the contention, and/or resolving the blocking/deadlock, and
thus, improve the efficiency of the overall system under the
w-LDF prioritization policies.

IV. EXAMPLES FOR w-LDF’S OPTIMALITY

Theorem 4 gives a sufficient condition for w-LDF to be
feasibility optimal. One example system that satisfies these

conditions is the model considered in prior work [4] which,
as mentioned in Section I, can be viewed as a single-resource
geometric-workload model. In this section we consider more
system settings and show how our results provide useful
insights in practice.

A. Exchangeable Expected Payoffs
We start by considering systems with underlying symmetry.
Definition 10: A subset of users S is said to have exchange-

able expected payoffs if, for all priority decisions d 2 D and
all i, j 2 S, if we switch the priorities of user i and j and use
d

0 to represent the resulting new priority decision, then

pk(d
0
) =

8
<

:

pk(d) if k 6= i, j
pj(d) if k = i
pi(d) if k = j.

In other words, exchanging the priorities of two users in S will
simply exchange their expected payoffs without impacting that
of other users. This would be true if the priority-based resource
allocation were symmetric for users in S and the users generate
tasks with identically distributed or exchangeable workloads.

If the user set N have exchangeable expected payoffs, we
can verify the property of subset payoff equivalence by picking
↵S

= 1

S for each subset of users S. Therefore, by Theorem
4 we get the following corollary.

Corollary 2: If the set of users N have exchangeable
expected payoffs and the system satisfies monotonicity in
payoffs, then the w-LDF policies are feasibility optimal.

See the extended version of this paper [17] for the proof.

B. Multiple Classes of Exchangeable Users and Hierarchical-
LDF

In this subsection, we first consider a system supporting two
classes of exchangeable users. Formally, a class of users is
exchangeable if they have exchangeable expected payoffs and
the same QoS requirement. The users in different classes may
have distinct payoffs and QoS requirements. In some contexts
it is of practical interest to first prioritize the classes and then
prioritize users in each class, respectively. We refer to such
schemes as using class-based hierarchical prioritization.

In practice, depending on whether the priorities of classes
can change dynamically, there are two types of class-based
hierarchical prioritization: Type 1 where the class priorities
are fixed, and Type 2 where one is allowed to dynamically
prioritize classes of users.

The first type of hierarchical prioritization might correspond
to a setting where the users/applications are separated into
human-interactive/high-QoS and background-processing/low-
QoS categories [18], and it is always desirable to first process
high-QoS users. In this setting, the problem is reduced to a
collection of independent user prioritization problems similar
to the one considered in this paper. By Corollary 2, w-LDF
is feasibility optimal to prioritize users in each class.

The second type of dynamic hierarchical prioritization
might be of interest in systems where switching between
processing different user classes involves overheads, and/or

where it is inefficient to mix the processing of different user
classes, probably because of resource contention or deadlocks.

In this setting, we propose a hierarchical-LDF policy that in
each period works in two steps by (1) prioritizing classes by
LDF based on the aggregate deficits, i.e., the sum of deficits for
users in the same class, and (2) prioritizing users in each class
according to LDF based on individual users’ deficits. Note that
here LDF can be replaced by w-LDF for any w � 0 and the
following result would hold.

Theorem 6: In a system with two classes of exchangeable
users, if the property of monotonicity in payoffs is satisfied,
the hierarchical-LDF policy is feasibility optimal among all
possible class-based hierarchical prioritization policies.

Intuitively, by Corollary 1 we know the class-based LDF
policy is optimal to set priorities amongst the two classes and
by Corollary 2 we know the LDF-based user prioritization is
also optimal for the exchangeable users in each class. We omit
the proof here to save space.

More generally, for systems serving multiple (more than
two) classes of exchangeable users, one can view each class
as a “super user”, and define the aggregate payoff and QoS
requirement for a super user to be the sum of payoffs and
QoS requirements for users in that class, respectively. Then
the dynamic prioritization of super users can be viewed as
the problem considered in this paper. Therefore, by Theorem
4, if the system with the super users’ expected aggregate
payoffs satisfies monotonicity in payoffs and subset payoff
equivalence, the LDF policy is feasibility optimal to prioritize
super users and thus, the hierarchical-LDF policy is feasibility
optimal among all class-based hierarchical prioritization poli-
cies. Indeed, all the results we have introduced, e.g., Theorem
1-5, still hold for the prioritization of these super users.

V. SOME PRACTICAL ISSUES

In practice, besides meeting minimum payoff requirements,
users may be willing to pay for additional payoffs, e.g.,
better video quality in the video conferencing setting, albeit
at possibly different prices. Given the requirements q and the
achieved average payoffs p = (p1, p2, · · · , pn), we call pi�qi
the excess payoff for each user i. While using w-LDF policies
to fulfill users’ payoff requirements, we also want to manage
the allocation of excess payoffs across users, perhaps with the
aim of maximizing the benefits to the system or users.

However, the non-negative definition of deficit (1) makes it
hard to track excess payoffs. For example, consider a model
with 2 users and suppose the payoff is always 1 for the high
priority user and 0 for the low priority user. Suppose the payoff
requirement vector is q = (0.1, 0.5). Since 1 > 0.1 + 0.5,
we know q is feasible and the system can deliver 0.4 excess
payoff. Suppose we use the LDF policy, starting from X(0) =

(0, 0) it is easy to verify3 that the system will switch giving
high priority to these two users, and thus the achieved average
payoff vector is p = (0.5, 0.5). Clearly User 1 gets 0.4 excess

3Since the payoffs are deterministic, we can verify this by evaluating
the deficits for the first few periods and we will observe that the process
{X(t)}t�1 evolves in a periodic pattern.

payoff while User 2 gets nothing. This happens because X1(t)
and X2(t) are frequently forced to 0 from different negative
values, which causes the “unfairness” between these two users.

To solve this problem, we modify the deficit definition for
each user i and period t+ 1 as follows,

X 0
i(t+ 1) = X 0

i(t) + qi � Vi(d(t+ 1)), (7)

i.e., we allow X 0
i(t) to be negative.

Now for the simple example above, if we adopt LDF
but based on the possibly negative deficits X

0
(t) =

(X 0
1(t), X

0
2(t), · · · , X 0

n(t)), we can get achieved average pay-
off vector p = (0.3, 0.7). We observe that the two users
equally split the excess payoff.

Intuitively, for each user i the modified deficit X 0
i(t)

changes roughly linearly as t increases with the slope being
qi � pi. Since w-LDF policy aims to balance weighted deficit
wiX

0
i(t), we know wi(pi�qi) is roughly the same for all users.

We will verify this observation in the simulation section and
based on this we can manage the excess payoffs across users
by picking the appropriate weight vector w.

Note that for completeness we will need to modify the
feasibility definition since the process {X0

(t)}t�1 is no longer
positive recurrent as it may keep decreasing or increasing.
Refer to the extended version of this paper [17] for details.

VI. SIMULATIONS

In this section we explore via simulation the impact of
weights of w-LDF policies.

Consider an illustrative system with single computing re-
source serving 3 soft real-time users. In each period of length
� = 10, each user generates one task that need to complete by
end of the period. We let the non-negative workload, i.e., task
service time, distributions for three users be Gamma(12, 0.5),
Gamma(4, 1) and Gamma(10, 0.1), respectively. We pick these
workload distributions to make them general and heteroge-
neous. In each period, the payoff for user i is 1 if user i’s
task completes and is 0 otherwise. Accordingly, user i’s QoS
requirement qi represents the long-term task completion ratio.

We start with initial deficit X

0
(0) = (0, 0, 0). In each

period, we independently generate task workloads for users
and simulate the w-LDF policy based on X

0
(t) to pick a

priority decision. The single resource sequentially processes
users’ tasks from highest to lowest priority. Tasks not com-
pleted on time are dropped. All simulations are run for 30000
periods. A requirement vector q is feasible if it is dominated
by the achieved task completion ratio vector p over the 30000

periods. The vectors q and w are specified in various settings
in the sequel.

Note that in this setting monotonicity in payoffs is satisfied
while subset payoff equivalence is not.

A. Impact of Weights on Long-Term Completion Ratios
In Table II we consider a requirement vector q that is

feasible under the w-LDF policies and display the achieved p

under two different weight vectors w. For each weight vector
w, we verify that wi(pi � qi) is the same for all three users.

Contrasting the two lines in Table II, we can see that for a
system which can deliver more than required, changing the
weight vector reallocates the excess payoffs and gives more
excess payoffs to users with smaller weights.

TABLE II
ACHIEVED COMPLETION RATIO VECTORS UNDER TWO WEIGHT VECTORS.

q w Achieved p wi(pi � qi)

0.8, 0.6, 0.4
(1, 1, 1) 0.85, 0.65, 0.45 0.05
(10, 1, 1) 0.809, 0.69, 0.49 0.09

B. Characterization of Clustering of Failures and Impact of
Weights

If a user’s task is not completed in a period, we call it a
failure event. The requirement vector q focuses on long-term
task completion ratio, but it would likely be undesirable for
a user to experience consecutive or clustered failure events.
Fig.5 gives an example of failure events. In this subsection we
consider the same q = (0.8, 0.6, 0.4) used above and explore
the clustering of failures under two w-LDF policies.

Isolated
Failure

Consecutive
Failures

Inter-Failure Intervals

Fig. 5. Characteristics of clustering of failures.

We consider Inter-Failure Intervals (IFIs) between typical
failures. IFI is supported on the set {1, 2, 3, · · · }. To quantita-
tively evaluate the clustering of the failures, we focus on the
standard deviation (SD) of the IFIs for each user. One extreme
case is that failures happen strictly periodically and therefore,
the SD is 0. Intuitively, a user with a smaller IFI SD implies
that the user experiences less clustered failures.

Next we introduce an evaluation benchmark. For each user i,
we know 1�pi represents the time-averaged failure ratio. If the
failure happens in each period independently with probability
1�pi, the IFI can be modeled by a geometric random variable
supported on the set {1, 2, 3, · · · } with the parameter being
1 � pi. We use the SD of such a geometric random variable
as a benchmark.

Under some w-LDF policy, we define SD ratio of user i
to be the ratio of user i’s IFI SD to the SD of the geometric
random variable with parameter 1 � pi. Table III shows the
SD ratios of three users under two different weight vectors w.
Under w = (1, 1, 1), the ratios are less than 1, indicating that
the failures under the LDF policy are less clustered compared
to the scheme where failure event happens i.i.d. in each period.
The last two columns in Table III indicates that increasing the
weight of user i reduces the degree of failure clustering for
user i but at the price of other users’ more clustered failures.
Thus, the users’ sensitivities to clustered failures is another
factor to consider when one assigns weights to users.

TABLE III
CHARACTERIZATION OF CLUSTERING OF FAILURES.

SD ratio under SD ratio under

w = (1, 1, 1) w = (10, 1, 1)
User 1 88% 39%
User 2 77% 97%
User 3 92% 107%

VII. CONCLUSION

Resource allocation in complex systems supporting real-
time users with general QoS requirements can be “easy”.
One can in principle design the system to allow priority-
based resource allocation and adopt simple w-LDF policies to
dynamically prioritize users/applications. Our theory provides
guidance towards understanding the suboptimality and even
optimality of such solutions and how to improve the system
design. For future work, it would be interesting to explore the
management of real-time users across systems and/or sharing
with non real-time traffic.

REFERENCES

[1] A. Dimakis and J. Walrand, “Sufficient Conditions for Stability of
Longest-Queue-First Scheduling: Second-Order Properties Using Fluid
Limits,” Advances in Applied Probability, vol. 38, no. 2, June 2006.

[2] C. Joo, X. Lin, and N. B. Shroff, “Performance Limits of Greedy Max-
imal Matching in Multi-hop Wireless Networks,” in IEEE Conference
on Decision and Control, 2007, pp. 1128–1133.

[3] X. Kang, W. Wang, J. J. Jaramillo, and L. Ying, “On the Performance
of Largest-Deficit-First for Scheduling Real-Time Traffic in Wireless
Networks,” in Proc. of MobiHoc 2013.

[4] I.-H. Hou and P. R. Kumar, “Queueing systems with hard delay
constraints: a framework for real-time communication over unreliable
wireless channels,” Queueing Systems, vol. 71, 2012.

[5] ——, Packets with Deadlines: A Framework for Real-Time Wireless
Networks. Morgan & Claypool Publishers, May 2013.

[6] ——, “Scheduling Heterogeneous Real-Time Traffic over Fading Wire-
less Channels,” IEEE Trans. on Networking, vol. 22, 2014.

[7] S. Munir et al., “Addressing burstiness for reliable communication and
latency bound generation in wireless sensor networks,” in IPSN, 2010.

[8] J. J. Jaramillo and R. Srikant, “Optimal Scheduling for Fair Resource
Allocation in Ad Hoc Networks With Elastic and Inelastic Traffic,” IEEE
Trans. on Networking, vol. 19, 2011.

[9] L. Tassiulas and A. Ephremides, “Stability Properties of Constrained
Queueing Systems and Scheduling Policies for Maximum Throughput
in Multihop Radio Networks,” IEEE Trans. on Automatic Control, 1992.

[10] ——, “Dynamic Server Allocation to Parallel Queues with Randomly
Varying Connectivity,” IEEE Trans. on Information Theory, 1993.

[11] N. McKeown et al., “Achieving 100% Throughput in an Input-Queued
Switch,” IEEE Trans. on Communications, 1999.

[12] A. L. Stolyar, “Maxweight Scheduling in a Generalized Switch: State
Space Collapse and Workload Minimization in Heavy Traffic,” The
Annals of Applied Probability, vol. 14, no. 1, February 2004.

[13] D. Down and S. Meyn, “A Survey of Markovian Methods for Stability
of Networks,” in 11th International Conference on Analysis and Opti-
mization of Systems, 1994.

[14] ——, “Piecewise linear test functions for stability and instability of
queueing networks,” Queueing Systems, 1997.

[15] L. Sha et al., “Real Time Scheduling Theory: A Historical Perspective,”
Real-Time Systems, 2004.

[16] R. I. Davis and A. Burns, “A Survey of Hard Real-Time Scheduling for
Multiprocessor Systems,” ACM Computing Surveys, vol. 43, 2011.

[17] Extended version. [Online]. Available: http://arxiv.org/abs/1601.06331
[18] Personal communication with Alan Gatherer.

