
1

Scheduling for Cloud-Based Computing Systems to Support
Soft Real-Time Applications

YUHUAN DU and GUSTAVO DE VECIANA, The University of Texas at Austin

Cloud-based computing infrastructure provides an e�cient means to support real-time processing
workloads, e.g., virtualized base station processing, and collaborative video conferencing. This
paper addresses resource allocation for a computing system with multiple resources supporting
heterogeneous soft real-time applications subject to Quality of Service (QoS) constraints on failures
to meet processing deadlines. We develop a general outer bound on the feasible QoS region for
non-clairvoyant resource allocation policies, and an inner bound for a natural class of policies based
on dynamically prioritizing applications’ tasks by favoring those with the largest (QoS) deficits. This
provides an avenue to study the e�ciency of two natural resource allocation policies: (1) priority-
based greedy task scheduling for applications with variable workloads, and (2) priority-based task
selection and optimal scheduling for applications with deterministic workloads. The near-optimality
of these simple policies emerges when task processing deadlines are relatively large and/or when the
number of compute resources is large. Analysis and simulations show substantial resource savings
for such policies over reservation-based designs.

CCS Concepts: • Computer systems organization → Real-time system architecture; •
Networks → Cloud computing ; • Theory of computation → Scheduling algorithms;

Additional Key Words and Phrases: Soft real-time applications, cloud-computing, non-clairvoyant

resource allocation, feasibility region, largest deficit first, greedy task scheduling, task selection and

optimal scheduling, e�ciency ratio

ACM Reference format:

Yuhuan Du and Gustavo de Veciana. 2017. Scheduling for Cloud-Based Computing Systems to
Support Soft Real-Time Applications. ACM Trans. Model. Perform. Eval. Comput. Syst. 1, 1,
Article 1 (March 2017), 31 pages.
DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

The shift towards delivering compute platforms/services via cloud-based infrastructure is
well on its way. An increasing number of the applications/services migrating to the cloud
involve real-time computation with processing deadlines and where failure to meet the
deadlines degrades user’s Quality of Service (QoS). Such infrastructure allows one to reap
the significant benefits of cloud computing, e.g., reduced cost of sharing computing, hoteling
and cooling resources, along with increased reliability and energy e�ciency. In this paper,

This research was supported by Huawei Technologies Co. Ltd. We thank Alan Gatherer for his support and
feedback on this work.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.

© 2017 ACM. 2376-3639/2017/3-ART1 $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

1:2 Yuhuan Du and Gustavo de Veciana

we focus on Soft Real-Time (SRT) applications which can tolerate occasional violations of
processing deadlines but still need to meet QoS or Service Level Agreements (SLA).

An example of such a platform is the Cloud-based Radio Access Network (CRAN) (Bernar-
dos et al. 2014; China Mobile 2011; Du and de Veciana 2014) being considered for next
generation cellular deployments. Instead of co-locating dedicated compute resources next to
base station antennas, they virtualize compute resources for baseband processing. To do so,
the received uplink signals associated with wireless subframes are sampled and sent from
antennas to the cloud for timely decoding and processing such that downlink signals requiring
timely channel measurements, acknowledgements, etc., can be sent back to antennas for
transmission. This process must happen within several milliseconds as determined by the
cellular system standards. In this setting shared compute resources may occasionally fail to
complete subframe processing on time, but this must happen infrequently, i.e., QoS/SLA
requirements must be met. In fact, di↵erent tasks may have di↵erent QoS/SLA requirements.
For example, failures in subframe baseband processing should be very infrequent whereas
failures for tasks associated with channel measurement/estimation might be acceptable once
every few subframes (Gatherer 2015). Other SRT applications including multi-party collab-
orative video conferencing, multimedia processing, real-time control systems, augmented
reality platforms, etc., have similar characteristics.

The computing infrastructure, e.g. (Verma et al. 2015), to support such applications may
involve a large number of heterogeneous servers, e.g., various generations of processors,
which themselves have multiple cores, special purpose hardware, shared memories/caches,
etc. In other words, a complex collection of resources must be orchestrated to e�ciently
meet applications’ SRT requirements. In this paper we focus on a single computing system,
e.g., managed server/center, shared by a set of users, corresponding to SRT applications,
that periodically generate workloads. The traditional management approach is to allocate
dedicated resources to users to meet their QoS requirements. However, given the typical
uncertainty in users’ workloads and “interference” across shared resources, doing so typically
involves over-provisioning.
Computing systems today are engineered so as to permit prioritization of one user over

another, e.g., production vs. non-production tasks, which in turn translates to priority in
accessing shared compute resources and/or memory. In this paper we consider resource
allocation policies which can dynamically prioritize users in each period. Such dynamic
prioritization of users would typically reduce the required resources vs. static allocations,
and is further flexible to changes in users’ workload characteristics or QoS requirements.

Given a set of users and a computing system, here are some key questions of interest:

• What QoS requirements are feasible?
• Can we design simple e�cient resource allocation policies meeting users’ QoS
requirements and characterize the performance of these policies?

• Compared with dedicated resource allocation, what kinds of reductions in resource
requirements can one expect from enabling dynamic resource sharing?

In the sequel we will address these basic questions and more, but we first turn to related
work.

Related Work. There is a substantial body of work on scheduling real-time tasks.
Starting with (Liu and Layland 1973), the community has established theoretical frameworks
to study the scheduling of real-time applications where tasks are subject to hard deadlines,
see e.g., (Carpenter et al. 2004; Davis and Burns 2011a; Leung 1989; Liu 2000). The results

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

Scheduling for Cloud-Based Computing Systems to Support Soft Real-Time Applications 1:3

typically assume worst case execution times/workloads and are too conservative for SRT
applications.
Di↵erent models have been introduced for the QoS needs of Soft Real-Time (SRT)

applications. The work in (Bernat and Burns 1997; Hamdaoui and Ramanathan 1995;
Ramanathan 1999) proposes the notion of (m, k)-firm deadlines requiring at least m out of
any k consecutive tasks complete by their deadlines. But many services do not need such
tight requirements and the analytical results typically require deterministic workloads. The
authors in (Hou and Kumar 2013; Liu et al. 1987) consider imprecise computation models
where each task consists of a mandatory part, which needs to complete by the deadline, and
an optional part which improves the computational results. This is a reasonable model for
tasks like artificial intelligence computation since additional optional iterations improve the
results. However, many real-time tasks do not contain optional part and some of these tasks
can miss the deadlines up to some degree. The work in (Liu and Anderson 2009) aims to
guarantee bounded maximum deadline tardiness for all users. However, these frameworks
and QoS models are not suitable for applications like CRAN and video conferencing where
it is useless to process a task after its deadline and it is better to simply drop the task if it
misses the deadline.

This paper focuses on an SRT QoS model where a bound on the fraction of tasks completed
on time is the QoS requirement. Such a model was first introduced in (Atlas and Bestavros
1998) where the authors propose a static allocation approach to meet such a QoS requirements.
We shall use this as an evaluation benchmark. More recently, the authors in (Hou and Kumar
2012a, 2013) adopt this QoS model to study a wireless access point supporting users that
periodically generate packets which need to be transmitted within that period, and propose
simple “optimal” scheduling policies. However, their results are limited to the setting where
only one user can transmit at a time and where packet transmissions can be viewed as tasks
with geometrically distributed workloads.

In this paper we consider prioritization policies that use the idea underlying longest-
queue-first policies, whose performance has been studied in (Dimakis and Walrand 2006;
Joo et al. 2007a; Kang et al. 2013) but in di↵erent settings. Moreover, the scheduling
problem we consider is more than just one of ordering users according to a policy such as
largest-deficit-first. We also need to design the task scheduler to allocate resources to tasks
across a computing system’s cores.

Work on stochastic scheduling, e.g., (Ahmadizar et al. 2010; Allahverdi and Sotskov 2003;
Blazewicz et al. 1986; Bruno et al. 1974; Lawler et al. 1993; Pinedo 2012) considers how to
schedule a set of tasks with random workloads on multiple cores and aims to find a single
schedule to minimize some objective function. Most of this type of work does not consider
task completion deadlines and focuses on minimizing the expected completion time of the
last task or the average expected completion time of all tasks. Moreover, such work typically
assumes exponential workloads in order to get analytical results.
Additional related work include those studying the mixing of real-time and non real-

time tra�c, see e.g., (Jaramillo and Srikant 2011; Patil and de Veciana 2007; Shakkottai
and Stolyar 2001), and those studying user/job management, see e.g., (Amir et al. 2000;
Delimitrou and Kozyrakis 2014; Mars et al. 2011).

Our Contributions. In this paper, we consider a computing system consisting of
multiple resources and study the scheduling of SRT users’ random workloads subject to
QoS constraints on timely task completions. To our knowledge, we are the first to give a
theoretical characterization of the feasibility region for this general SRT framework and

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

1:4 Yuhuan Du and Gustavo de Veciana

to consider performance and near-optimality of simple e�cient scheduling policies. The
contributions of this paper are threefold.
First, we propose a general framework for SRT user scheduling on multiple resources,

albeit we assume the workloads are New Better than Used in Expectation (NBUE) type. In
this framework, we develop an outer bound for the set of feasible QoS requirements for all
possible non-clairvoyant resource allocation policies.
Second, we study resource allocation policies which prioritize users based on Largest

“Deficit” First (LDF) in each period and schedule tasks accordingly. We develop a general inner
bound for the feasibility region for this class of policies. This enables us to study the e�ciency
of two policies: (1) LDF-based greedy task scheduling for users with variable workloads, and
(2) LDF-based task selection and optimal scheduling for users with deterministic workloads.
These simple policies are near-optimal when the deadlines are relatively large, and/or the
number of resources is large.
Finally, we evaluate the performance of the proposed policies in terms of the required

number of resources to fulfill a given set of users’ QoS requirements. We exhibit substantial
savings versus a traditional reservation-based approach in various system settings. We also
discuss generalizations of our results when the resources have di↵erent processing speeds.

Paper Organization. The paper is organized as follows: Section 2 introduces our system
model and Section 3 describes a reservation-based approach and a general outer bound
for the feasibility region. Section 4 discusses two prioritization-based policies and studies
their e�ciency ratios. Simulation results are exhibited in Section 5. Section 6 discusses
generalizations and Section 7 concludes the paper. Some of the proofs are provided in the
Appendix.

2 SYSTEM MODEL

We first introduce our user, system and QoS models.

2.1 Soft Real-Time (SRT) User Model

We consider a computing system shared by a set of users N = {1, 2, · · · , n}. The system
operates over discrete periods t = 1, 2, · · · . We denote by � the length of a period. In each
period each of the n users generates exactly one task. These tasks are available for processing
at the beginning of the period, and need to complete by the end of the period. Tasks not
completed on time are dropped, i.e., cannot be processed in subsequent periods. Here we
assume a task is the unit of scheduling, i.e., a task cannot be processed in parallel.
The workload of a task will refer to its resource requirement or service time. If a task’s

workload is large it may not be possible to complete on time. A task’s workload is modeled
by a random variable whose distribution captures variability in its resource requirement
and/or uncertainty in the computing system, e.g., caused by memory contention across the
cores. We assume task workloads for a given user are independent and identically distributed
(i.i.d.) across periods and workloads from di↵erent users are independent, possibly with
di↵erent distributions. Let Wi be a random variable denoting the workload of a task from
user i and let µi = E[Wi]. Next we introduce a further assumption on task workloads which
seems reasonable for SRT users and will enable theoretical analysis.

Definition 2.1. A non-negative random variable W is said to satisfy New Better than

Used in Expectation (NBUE) if for all t > 0,

E[W � t|W > t]  E[W]. (1)

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

Scheduling for Cloud-Based Computing Systems to Support Soft Real-Time Applications 1:5

In this paper we shall assume all task workloads are NBUE.
The NBUE property characterizes many workload distributions of interest. (Müller and

Stoyan 2002) provides a discussion of NBUE distributions which include, but are not limited
to, exponential, gamma with shape parameter k � 1 and deterministic distributions. A
common class of distributions that are not NBUE is the heavy-tailed one. However since
tasks need to complete within a period1, we are not likely to encounter tasks with such tails
in the settings under consideration.
We shall assume that each user i has a QoS requirement given by a minimal long-term

average number of tasks completed on time per period, denoted by qi where qi 2 [0, 1]. We
let q = (q1, q2, · · · , qn) and assume qi’s are rational2.

Let us consider some examples. An SRT user might correspond to the processing associated
with a set of co-located cellular antennas in the CRAN context or an end user in video
conferencing. Accordingly, the period � would correspond to a wireless subframe or the
length of a group of video frames, respectively. For SRT users, it is generally useless to
process a task after its deadline. For example, in video conferencing it is not desirable to
display an out-of-date frame. This is why in this model tasks not completed on time are
dropped. In Section 6, we discuss possible generalizations where users may generate tasks
with di↵erent periods and where a task may further consists of sub-tasks.

2.2 Computing Infrastructure and Space of Policies

A computing system can be very complex consisting of diverse, heterogeneous resources.
In this paper, for simplicity of explanation we start with a computing system comprising
of m identical resources (cores)—a simple but relevant model. In Section 6 we discuss
generalizations where cores have di↵erent processing speeds.
Given m identical cores, a task processed on any core requires the same processing time

and each core can process only one task at a time. In each period, the computing system
dynamically schedules tasks according to a given strategy. Given the resource limit and the
randomness of workloads, some tasks complete on time and some may fail.

In this paper we only consider stationary3 non-clairvoyant resource allocation policies. A
resource allocation policy is said to be non-clairvoyant if it does not make use of information
regarding future events, such as tasks’ workload realizations, which are not generally known
until the tasks complete. However, a non-clairvoyant resource allocation policy may still have
knowledge of a user’s task workload distribution, which can be obtained from the history of
events or repeated experiments.
Unless otherwise specified we allow task preemption/migration, i.e., interrupting a task

being processed and resuming later on the same/di↵erent core. We shall ignore the overheads
of these operations. But in practice these operations involve context switching, and therefore,
policies with minimal preemption and migration are desirable. There are many possible
non-clairvoyant resource allocation policies which may involve exploiting knowledge of
workload distributions, exploiting history of events, preempting tasks at appropriate times,
dynamically prioritizing tasks, etc.

In our model a “core” represents the minimum unit of compute resource such as physical
computing core, specialized hardware, or hyper-thread as appropriate. The computing

1In fact, we only require (1) to be true for 0 < t  �.
2All the results in this paper can be generalized to q’s with irrational values. For simplicity in the proof we
do not consider that level of generality.
3A policy is stationary if the system is ergodic under this policy.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

1:6 Yuhuan Du and Gustavo de Veciana

system could be a cloud-based cluster of machines or a centralized server with a collection
of processors/cores.

2.3 SRT QoS Feasibility

Given a requirement vector q, a computing system and a non-clairvoyant resource allocation
policy, how do we verify if q is feasible? We shall say q is feasible if the requirement vector q
is dominated by the ”service rate” vector. More formally, to keep track of the deficit among
users’ QoS requirements and actually completed tasks, for each user i 2 N and period t+ 1,
we define4

Xi(t+ 1) = [Xi(t) + qi � Yi(t+ 1)]+, (2)

where [x]+ = max[x, 0] and Yi(t+ 1) is an indicator random variable which takes value 1 if
user i’s task completes in period t+ 1. We let X(t) = (X1(t), X2(t), · · · , Xn(t)) denote the
deficit vector. X(t) is a summary of the history of events up to period t.
We shall say that the long-term QoS requirement qi for user i is met if and only if Xi(t)

is “stable”5 . Formally, in this paper we consider non-clairvoyant resource allocation policies
under which the process {X(t)}t�1 is a Markov chain6. We assume the initial state X(0),
the QoS requirements q and the policy make {X(t)}t�1 an irreducible Markov chain.

Definition 2.2. We say the QoS requirement vector q is feasible if there exists a non-
clairvoyant resource allocation policy ⌘ under which the Markov chain {X(t)}t�1 is positive
recurrent, i.e., this policy fulfills q. We denote by F⌘ the feasibility region of policy ⌘, i.e.,
the set of QoS requirement vectors fulfilled by policy ⌘. The union of F⌘ over all allowable
policies gives the system feasibility region F .

We shall refer to this model as SRT-Multiple Identical Cores (SRT-MIC) with NBUE
workloads and the aim is to devise non-clairvoyant resource allocation policies that fulfill q.

In summary, the SRT-MIC model with NBUE workloads is an abstract system model
which captures a family of systems supporting SRT users with random workloads. To
summarize, the SRT-MIC model with NBUE workloads is parameterized by the number of
cores m, number of users n, period length �, QoS requirements q, and the NBUE workload
distributions.

3 RESERVATION-BASED STATIC SHARING AND OUTER BOUND FOR THE
SYSTEM FEASIBILITY REGION

Clearly simple policies like Earliest Deadline First (EDF) do not apply in our setting. Indeed
in our problem statement all users generate tasks which have the same deadline at the start
of the scheduling interval. In fact in the sequel (see Section 6) we will see that even if users
generate tasks with di↵erent deadlines EDF performs poorly because it does not take the
soft QoS requirements q into account.

4We truncate the deficit at 0 via [x]+ simply for the convenience of defining feasibility. Removing the
truncation does not change the results in the paper.
5 Our QoS model is essentially the same as those used in prior work (Atlas and Bestavros 1998; Dimakis
and Walrand 2006; Hou and Kumar 2012a, 2013; Joo et al. 2007a).
6 All the results in this paper can be generalized to a broader range of non-clairvoyant resource allocation
policies under which some variation of X(t) is a Markov chain. For example, if a resource allocation policy
depends on the deficit vectors in the past two periods, then {(X(t),X(t+ 1))}t�1 is a Markov chain. For

simplicity of explanation, we assume {X(t)}t�1 is a Markov chain.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

Scheduling for Cloud-Based Computing Systems to Support Soft Real-Time Applications 1:7

In this section we introduce a reservation-based policy and a general outer bound for the
system feasibility region F which applies to any non-clairvoyant resource allocation policy.
These serve as benchmarks which enable us to evaluate the performance of the policies
proposed in the sequel.

3.1 Reservation-Based Static Sharing Policies

A straightforward and commonly adopted approach to meet users’ QoS requirements q is to
allocate dedicated resources, i.e., core time, to each user. For user i, with task workload Wi

and the requirement qi, we let wi(qi) represent the minimum core time reservation needed
to ensure the requirement is met. Specifically, wi(qi) is given by

wi(qi) = min
w

{w|Pr(Wi  w) � qi},

and thus, when qi is close to 1, wi(qi) will approach the worst-case workload for user i.
Reservation-based static sharing policies allocate core time wi(qi) to each user i in each

period and the tasks from users are only processed in the corresponding allocated time.
Figure 1 exhibits an example with 2 cores. Note that in this example User 3’s task first
executes on Core 2 and later continues on Core 1. Therefore, a reservation-based static sharing
policy, although seemingly simple, can be aggressive in requiring task preemption/migration
and knowledge of workload distributions to compute wi(qi) for all users.

Core 1

Core 2

Fig. 1. An example of the reservation-based approach.

Note that since a task cannot be processed in parallel, if wi(qi) exceeds the period length
�, the requirement for user i cannot be met. In this paper, we assume the task workloads
and requirements q are such that wi(qi) is bounded by �.

For a system with m identical cores, the feasibility region FRB of reservation-based static
sharing is given by

FRB = {q 2 Rn
+ | q � 1,

X

i2N

wi(qi)  m�,

wi(qi)  �, 8i 2 N}, (3)

where q � 1 means qi  1 for all i 2 N . Clearly q � 1 comes from the fact that each user
generates only one task in each period.

This approach was perhaps first proposed in (Atlas and Bestavros 1998) and is also loosely
used in reservation based schemes adopted in modern cloud infrastructure, see e.g., (Verma
et al. 2015). Cores are not used e�ciently under such a policy. When the realization of a
task workload is smaller than the allocated time, the remaining time is wasted and cannot
be used to process other real-time tasks. Typically , e.g. (Verma et al. 2015), the resources
are then used to support best e↵ort tra�c.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

1:8 Yuhuan Du and Gustavo de Veciana

3.2 Outer Bound for the System Feasibility Region F

Ideally we aim to devise a policy that can fulfill all feasible QoS requirement vectors. More
formally, a non-clairvoyant resource allocation policy ⌘ is said to be feasibility optimal if its
feasibility region F⌘ is such that F ✓ cl(F⌘), where cl(F⌘) is the closure of F⌘. We know
by definition of F that int(F⌘) ✓ F where int(F⌘) is the interior of F⌘, and thus F⌘ is for
practical purposes equivalent to the system feasibility region F .
Given the heterogeneity and randomness of tasks’ workloads and the large number of

possible non-clairvoyant resource allocation policies, a feasibility optimal policy is unknown
except for very specific resource and workload models, see e.g., (Hou and Kumar 2012b).
To solve this and to provide a benchmark to evaluate other resource allocation policies, we
develop a simple outer bound ROB for the system feasibility region F . Formally, we have
the following theorem.

Theorem 3.1. For the SRT-MIC model with NBUE workloads, the system feasibility

region F is such that

F ✓ ROB ⌘ {q 2 Rn
+ | q � 1,

X

i2N

qiµi  m�}.

Intuitively, if qi tasks of user i are completed each period, the expected time spent on
user i is roughly given by qiµi. To make q feasible, the total time spent on all users

P

i2N
qiµi

cannot exceed the total available core time given by m�. This informal argument is perhaps
deceptive. Note that in fact the expected time to complete the qi tasks for user i in each
period might be smaller than qiµi since completed tasks might tend to have smaller workloads.
This seems to imply that m� could be smaller than

P

i2N
qiµi for some feasible q. This is

where the NBUE assumption on workloads is critical to the result.
Note this simple outer bound applies only to non-clairvoyant resource allocation policies

for a specific SRT-MIC system with NBUE workload distributions. A formal proof of the
theorem is given below.

Proof. Given a feasible QoS requirement vector q � 1, the goal is to show
P

i2N
qiµi  m�.

Suppose q is fulfilled by a non-clairvoyant resource allocation policy ⌘, by definition
{X(t)}t�1 is positive recurrent and therefore, there exists a stationary distribution. We
consider a typical period where the deficit vector X(t) follows the stationary distribution
and introduce further notation associated with period t+ 1. To simplify notation, we will
suppress the period index in this proof.
For each user i, we define Yi to be the indicator random variable that the task from

user i completes in a typical period. By the Ergodic Theorem, E[Yi] also represents the
time-averaged number of task completions per period for user i. If we view Xi(t) as a queue,
the average arrival qi should not exceed the average departure E[Yi]. For each user subset
S ✓ N , we define US to be a random variable denoting the total core time spent on users in
S in a typical period. Clearly, E[US] cannot exceed the total available core time m�. To show
P

i2N
qiµi  m�, it su�ces to show that

P

i2N
E[Yi]µi  E[UN]. To that end we first develop an

equation connecting
P

i2N
E[Yi]µi and E[UN], and then use the NBUE assumption to show

the inequality.
We say a task is unfinished if it starts processing but does not complete in a given period.

Let Ai be the indicator random variable that user i’s task is unfinished in a typical period.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

Scheduling for Cloud-Based Computing Systems to Support Soft Real-Time Applications 1:9

Now if Yi +Ai = 1 it indicates that user i’s task starts processing in the period though it
may not have completed. For each user i, we further define Ei = Ai(Wi � U{i}). Intuitively,
Ei represents the “residual workloads for user i’s unfinished tasks”. Note that these random
variables and their means depend on the policy ⌘.

For each user subset S ✓ N , the total time spent on users in S can be written as

US =
X

i2S

(Yi +Ai)Wi �
X

i2S

Ei,

and by taking expectations, we get

E[US] =
X

i2S

E[(Yi +Ai)Wi]�
X

i2S

E[Ei]. (4)

Clearly Yi + Ai, which indicates that user i’s task starts processing, is independent of
Wi. Indeed this follows from the requirement that the resource allocation policy be non-
clairvoyant, and the independence among users’ task workloads. In a typical period under
policy ⌘, the event that user i’s task starts may depend on the workloads of others’ tasks,
but not on Wi.

Note that although Yi+Ai is independent of Wi, in general Yi which indicates user i’s task
completes may depend on Wi, i.e., E[YiWi] 6= E[Yi]µi. To better understand this, consider an
extreme example. If Wi > �, clearly the user i’s task cannot complete implying that Yi = 0.
Thus, E[Yi|Wi > �] = 0 6= E[Yi]. Similarly, we can argue Ai is not independent of Wi.

Still given the independence of Yi +Ai and Wi, we have that

E[(Yi +Ai)Wi] = E[Yi +Ai] · E[Wi] = (E[Yi] + E[Ai])µi.

So (4) becomes

E[US] =
X

i2S

E[Yi]µi +
X

i2S

E[Ai]µi �
X

i2S

E[Ei]. (5)

This equation holds for all non-clairvoyant resource allocation policies and for all subsets of
users S ✓ N .

Now let S = N . To show
P

i2N
E[Yi]µi  E[UN], by (5) it su�ces to show E[Ai]µi � E[Ei]

for all users i 2 N . We will show this is true under the NBUE workload assumption in the
discrete-time scenario and it is straightforward to generalize the proof to the continuous-time
scenario.

Recall that we denote by � the length of a period. Suppose each period contains � discrete
time units. For all i and for c = 1, 2, · · · , �, we let Ai,c denote the indicator random variable
that user i’s task is unfinished and is processed for c time units in a typical period. Clearly,

Ai =
�
P

c=1
Ai,c and E[Ai,c] = Pr(Ai,c = 1). By the law of total probability, the expected

residual workload E[Ei] for user i can be written as

E[Ei] =
�

X

c=1

E[Ei|Ai,c = 1]Pr(Ai,c = 1) =
�

X

c=1

µi,c E[Ai,c], (6)

where µi,c = E[Wi � c|Wi > c]. This is because under the non-clairvoyant design the event
Ai,c = 1 tells nothing about Wi except that Wi > c.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

1:10 Yuhuan Du and Gustavo de Veciana

By the NBUE workload assumption we know that µi,c  µi for c > 0 and therefore, we
get the following inequality,

E[Ei] 
�

X

c=1

µi E[Ai,c] = µi E[Ai]. (7)

Note that the equality holds if all users’ task workloads follow geometric distributions (or
exponential distributions in continuous-time scenario), possibly with di↵erent parameters.

To summarize, by (5) and (7) we know that given a feasible requirement vector q, for all
user subsets S ✓ N ,

X

i2S

qiµi 
X

i2S

E[Yi]µi  E[US]  m�, (8)

which by letting S = N implies
P

i2N
qiµi  m�, and thus, F ✓ ROB. ⇤

A key part of this argument is the inequality (8), stating that for a feasible q the “e↵ective”
workload

P

i2S
qiµi for any user subset S should not exceed the total time spent on users in

S, which is bounded by m�. This holds under the NBUE workload assumption but may
not be true if users have non-NBUE task workloads. Intuitively, for non-NBUE workloads
it is possible to design policies that exploit the workload distributions, e.g., by stopping
at di↵erent times to maximize the “payo↵s”, and to achieve a larger feasibility region. For
example, suppose all users generate tasks with non-NBUE workloads as follows,

Wi =

⇢

1 with probability 0.5
9 with probability 0.5.

Clearly, the mean workload is µi = 5. Let us consider such a policy. In each period, the
system processes each task for exactly 1 time unit and stops if the task does not complete
because given its workload distribution we know this task will require 8 more time units to
complete. Suppose m and � is such that m� = n and therefore, the system can process each
task for 1 time unit per period. Under such a policy we know qi = 0.5 for all user i and the
total time spent per period is UN = n. Therefore,

X

i2N

qiµi = 2.5n > n = E[UN] = m�,

which is not consistent with (8) and Theorem 3.1. Non-NBUE workloads are beyond the
scope of this paper. Yet for real-time computing workloads we expect NBUE to be a good
assumption.

4 LARGEST DEFICIT FIRST (LDF) BASED POLICIES

Our aim is to devise a non-clairvoyant resource allocation policy that is easy to implement
and whose feasibility region is near optimal. In this section we consider a specific class of
policies, called prioritization-based resource allocation policies, which decompose resource
allocation into two sub-problems, see Figure 2:

(1) User prioritization: in each period the system dynamically prioritizes users based
on the history of events.

(2) Task scheduler: the system schedules users’ tasks on cores based on their priorities.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

Scheduling for Cloud-Based Computing Systems to Support Soft Real-Time Applications 1:11

There are still many options for each sub-problem. For example, task scheduling might be
done greedily by simply scheduling the task with the highest priority, or using the priorities
to first select a subset of tasks and then process that task subset via optimal scheduling
policies.

User Prioritization

Task Scheduler

Priority Decisions
Feedback
History
Events

User-Level QoS

Fig. 2. The framework for prioritization-based resource allocation policies.

In this paper we shall prioritize users based on the Largest Deficit First (LDF) policy
which is defined as follows.

We let d = (d1, d2, · · · , dn) denote a priority decision where dk is the index of the user
with k

th highest priority and D denote the set of all possible priority decisions.

Definition 4.1. The Largest Deficit First (LDF) policy is such that, given the users’
deficit vector X(t), the priority decision d for period t+ 1 is such that

Xd1(t) � Xd2(t) � · · · � Xdn(t),

with ties broken arbitrarily (possibly randomly). In other words, it sorts the deficits and
assigns priorities accordingly.

The LDF user prioritization can be combined with di↵erent approaches of task scheduling.
In the sequel we will explore such combinations and characterize their performance.

4.1 Inner Bound for Feasibility Region of LDF+X
Given a task scheduling policy X , we let LDF+X refer to the resource allocation policy that
combines LDF user prioritization and task scheduler X . In this subsection, we provide an
inner bound for its feasibility region FLDF+X .
We first introduce some further notation. Given a task scheduler, in each period, the

task completions depend on the selected priority decision. We let pi(d) denote the expected
number of tasks completed in a period for user i under priority decision d and let p(d) =
(p1(d), p2(d), · · · , pn(d)). Note that di↵erent task schedulers will correspond to di↵erent sets
of vectors P = {p(d)|d 2 D}. We denote by x � 0 a positive vector x with xi > 0 for all
i 2 N . For all user subsets S ✓ N , we let |S| be the number of users in S and we let D(S)
denote the set of all priority decisions that assign the highest |S| priorities to users in S.
The following theorem gives an inner bound on FLDF+X .

Theorem 4.2. Given a task scheduler X and thus the X dependent expected completion

vectors P = {p(d)|d 2 D}, an inner bound for the feasibility region of the resource allocation

policy LDF+X is given by int(RIB) ✓ FLDF+X , where

RIB ⌘ {q 2 Rn
+ | 9↵ � 0 such that 8S ✓ N,

X

i2S

↵iqi  min
d2D(S)

X

i2S

↵ipi(d)}.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

1:12 Yuhuan Du and Gustavo de Veciana

Intuitively, q is in RIB and is feasible under the LDF+X policy if there is a weight vector
↵ � 0 such that for any subset of users S, if the users in S are given the highest priorities,
the weighted sum of the requirements

P

i2S
↵iqi does not exceed the least weighted sum of

the “service rate”
P

i2S
↵ipi(d). Again, di↵erent task schedulers X will have di↵erent vectors

P and thus di↵erent inner bounds RIB. A proof is provided in Appendix 8.1. Note that
Theorem 4.2 applies beyond the SRT-MIC model when the LDF policy is used but in a
general setting where p(d) represent the expected payo↵s under priority decision d and
users require long-term time-averaged payo↵ q per period. The LDF policy can also be
generalized to a class of weighted LDF policies. This general result is further developed in
(Du and de Veciana 2016).

Next we explore specific task schedulers and use Theorem 4.2 to study their performance.

4.2 Performance Analysis of LDF+Greedy Scheduling

Given an LDF-based user priority decision in each period, a natural way to allocate resources
is to greedily process tasks from highest to lowest priority. Specifically, to start by putting
the m tasks with the highest priority on the m cores and, once one of these tasks completes,
continue by processing the task with priority m+ 1 on the available core, etc.

We let LDF+Greedy refer to the resource allocation policy that combines LDF and such
a greedy task scheduler. Note this is easy to implement and does not require any a-priori
knowledge of the tasks’ workloads. Also this policy does not use task preemption or migration.

Next we characterize the performance of LDF+Greedy. To that end, we introduce a metric
called the e�ciency ratio, see e.g., (Joo et al. 2007b). The e�ciency ratio of a non-clairvoyant
resource allocation policy ⌘ is defined as

�⌘ = sup
�
{�|�F ✓ F⌘}.

Clearly �⌘ characterizes the performance gap between a policy ⌘ and the best possible way
of orchestrating the scheduling of multiple tasks across multiple cores. Also �⌘ equals to 1 if
and only if policy ⌘ is feasibility optimal.

Theorem 4.3. For the SRT-MIC model with NBUE workloads, the e�ciency ratio of

LDF+Greedy exceeds �1 where

�1 = 1�
max
i2N

µi

�

.

Further, �1 is a tight lower bound in the sense that for any ✏ > 0, there exists an SRT-MIC

system with NBUE workloads such that the e�ciency ratio of LDF+Greedy for this system

is smaller than �1 + ✏.

The intuition underlying this result is as follows. We say a task is unfinished if it starts
processing but does not complete in a period. The time spent on an unfinished task goes to
waste since it does not contribute to a task completion. For LDF+Greedy, in one period,
at most 1 task is unfinished per core and thus the wasted time on each core is expected to
be less than max

i2N
µi. Given the period is of length �, the gap between LDF+Greedy and

optimality is bounded by
max
i2N

µi

� . Note that again this argument is deceptively simplified
since unfinished tasks might tend to have larger workloads. Also as for Theorem 3.1, this
result does not necessarily hold for non-NBUE workloads. The formal proof is given below.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

Scheduling for Cloud-Based Computing Systems to Support Soft Real-Time Applications 1:13

Proof. First we show that �1 is a lower bound for the e�ciency ratio of LDF+Greedy,
denoted by �LDF+Greedy.

Given a requirement vector q fulfilled by resource allocation policy ⌘, by (8) we know for
all subsets of users S ✓ N ,

X

i2S

qiµi  E[US],

where E[US] represents the time-averaged core time spent on users in S per period under
policy ⌘.
During each period, the total time US spent on users in S is bounded by the total

task workload
P

i2S
Wi of users in S and the total available core time m�. We define TS =

min



P

i2S
Wi,m�

�

and therefore, for all user subsets S, we have that

X

i2S

qiµi  E[US]  E[TS]. (9)

Thus, for a vector q satisfying (9) the aim to show �LDF+Greedy � �1 which is equivalent
to showing �1q 2 cl(FLDF+Greedy). By Theorem 4.2, it su�ces to show that �1q 2 RIB. In
LDF+Greedy, the expected vector p(d) described in Section 4.1 represents the expected
numbers of timely completions under greedy task scheduler under priority decision d.
Therefore, �1q 2 RIB follows if one can find a vector ↵ � 0 such that for all S ✓ N ,

X

i2S

↵i�1qi  min
d2D(S)

X

i2S

↵ipi(d).

We will show ↵ = (µ1, µ2, · · · , µn) � 0 satisfies the above condition. Intuitively, this means
for any subset of users S, if the users in S are given the highest priorities, then �1 times the
”workload requirements”

P

i2S
µiqi does not exceed the least ”workload weighted service rate”

P

i2S
µipi(d).

By (9) it su�ces to show for all S,

�1 E[TS]  min
d2D(S)

X

i2S

µipi(d),

which is equivalent to showing for any given user subset S and priority decision d 2 D(S)
that

X

i2S

µipi(d) � �1 E[TS] = E[TS]�
max
i2N

µi

�

E[TS]. (10)

First we rewrite
P

i2S
µipi(d) by similar approach used to obtain (5). Specifically, as in the

proof of Theorem 3.1, for each subset of users S ✓ N and each user i 2 N , we let US(d),
Ai(d) and Ei(d) denote the time spent on users in S, the indicator random variable that
user i’s task is unfinished and the residual workload of user i’s unfinished tasks in a period
under the greedy task scheduler with priority decision d, respectively.

By (5), for the given S and d, we have that

E[US(d)] =
X

i2S

pi(d)µi +
X

i2S

E[Ai(d)]µi �
X

i2S

E[Ei(d)].

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

1:14 Yuhuan Du and Gustavo de Veciana

Recall that intuitively this means for the any user subset S, the total time spent on S equals
to ”workloads of S’s started tasks” minus the ”residual workloads of S’s unfinished tasks”.
Reordering the equations gives the following,

X

i2S

pi(d)µi = E[US(d)] +
X

i2S

E[Ei(d)]�
X

i2S

E[Ai(d)]µi.

Now (10) follows by showing that

E[US(d)] +
X

i2S

E[Ei(d)] � E[TS] (11)

and

X

i2S

E[Ai(d)]µi 
max
i2N

µi

�

E[TS], (12)

respectively.
To demonstrate (11), it su�ces to show for each workload realization,

uS(d) +
X

i2S

ei(d) � tS ,

where uS(d), ei(d), tS are realizations of US(d), Ei(d), TS , respectively.
If uS(d) = m�, clearly uS(d) +

P

i2S
ei(d) � m� � tS . Otherwise, uS(d) < m�. Since

d 2 D(S) assigns the highest priorities to users in S, by greedy task scheduler uS(d) < m�

implies that at the end of the period no task from users in S is waiting to be scheduled, i.e.,
all tasks from users in S start processing and therefore, uS(d) +

P

i2S
ei(d) �

P

i2S
wi � tS ,

where wi represents the realization of workload Wi. Therefore, (11) is verified.
Now it remains to show (12). Clearly we have that

X

i2S

E[Ai(d)]µi  max
i2N

µi ·
X

i2S

E[Ai(d)].

Thus, to demonstrate (12) it su�ces to show that

X

i2S

E[Ai(d)] 
E[TS]

�

. (13)

We define AS(d) =
P

i2S
Ai(d) to be the number of unfinished tasks in a period from

users in S under greedy task scheduler under priority decision d. Since there are at most m
unfinished tasks, we have AS(d)  m.
Under greedy task scheduling, for d 2 D(S) we claim AS(d) = k implies TS � k� for

k = 0, 1, · · · ,m. This is true because AS(d) = k means there are k unfinished tasks on k

di↵erent cores, implying these k cores are busy processing tasks from users in S throughout
the period. Therefore,

P

i2S
Wi � k� and thus TS � k�.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

Scheduling for Cloud-Based Computing Systems to Support Soft Real-Time Applications 1:15

By this claim, we can get that

E[TS] =
m
X

k=0

E[TS |AS(d) = k] · Pr(AS(d) = k)

�
m
X

k=0

k� · Pr(AS(d) = k)

= �

m
X

k=0

k · Pr(AS(d) = k)

= � E[AS(d)]

= �

X

i2S

E[Ai(d)].

This proves (13) which in turn shows (10) and therefore, �1q 2 RIB ✓ cl(FLDF+Greedy).
The lower bound �1 is indeed tight in the sense that for any ✏ > 0, there exists an

SRT-MIC system with NBUE workloads such that �LDF+Greedy < 1 �
max
i2N

µi

� + ✏. Such a
system is detailed in Appendix 8.2.

⇤

It follows that if � � max
i2N

µi, then �1 is close to 1, i.e., LDF+Greedy is close to optimal.

This is true when the task workloads are small relative to the core processing speed.
However, when � is comparable to max

i2N
µi, the e�ciency ratio lower bound �1 is small,

although in some scenarios LDF+Greedy may still be e�cient. For example, LDF+Greedy is
feasibility optimal if the task workloads of all users follow the same exponential (or geometric)
distribution, or in systems studied in prior work (Hou and Kumar 2012a). This is due to
the memoryless property of the exponential (or geometric) distribution. We omit the proof
here. Still in some scenarios where we know more about the task workloads it is interesting
to explore other simple policies that perform better than LDF+Greedy, especially when �

is comparable to the maximum mean workload. That motivates the discussion in the next
subsection.

4.3 Performance Analysis of LDF+TS/LLREF Scheduling under Deterministic
Workloads

In this subsection, we consider systems where users generate tasks with deterministic, but
possibly di↵erent, workloads, i.e., Pr(Wi = µi) = 1 for all i 2 N . For soft real-time users that
can tolerate missing some deadlines, even if they generate tasks with deterministic workloads,
one can still intentionally drop a fraction of tasks in each period while guaranteeing the
users’ long-term QoS requirements. Selecting a subset of tasks to be processed in each period
is like a bin backing problem. And to fulfill the long-term soft QoS requirements, one need
to dynamically change or rotate the selected task subset. Recall that in each period t+ 1,
we let Xi(t) be the defict for user i and Yi(t + 1) is the indicator variable that user i’s
task completes in this period. It is known that the max-weight algorithm which maximizes
P

i2N
Xi(t)Yi(t+1) in each period t+1 is optimal. But this involves solving this fairly complex

optimization problem which is indeed NP-complete in each period and this policy is hard to
implement in practical systems. We want to explore simple policies that perform well.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

1:16 Yuhuan Du and Gustavo de Veciana

Note deterministic workloads satisfy the NBUE property. Also note that for deterministic
workloads, non-clairvoyant policies have knowledge of workload realizations. We shall once
again prioritize users using LDF prioritization. Intuitively, the greedy task scheduler wastes
time on multiple cores if multiple tasks are unfinished at the end of a period, so we will
devise a task scheduler that orchestrates across cores so as to “reduce” wasted core time to
finish more tasks.
For deterministic workloads, one can assess how many tasks one can complete prior to

initiating processing. Indeed, it is intuitive, and established in (Cho et al. 2006), that one
can complete all tasks in a user subset S in a period by some optimal scheduling if and only
if

P

i2S
µi  m�. We consider one such optimal algorithm: Largest Local Remaining Execution

time First (LLREF) (Cho et al. 2006). Let us briefly describe how LLREF7 would work in
the SRT-MIC model and then introduce a task scheduler that combines the idea of task
selection and LLREF scheduling.

To that end we introduce some terminology used in (Cho et al. 2006). Consider a period
starting at time t� and ending at time (t + 1)� , at any time ⌧ 2 [t�, (t + 1)�], the Local

Remaining Execution time (LRE) of user i is defined as the remaining time needed to
complete its task. The LRE decrements as the task is processed. Further, the laxity of user i
is defined as the remaining time before the deadline of user i’s task, i.e., (t+ 1)� � ⌧ , minus
the current LRE of user i. Thus, if some user has zero laxity at some time, one needs to
start processing the task immediately to complete it by its deadline.

Definition 4.4. For the SRT-MIC model with deterministic workloads, the Largest Local

Remaining Execution time First (LLREF) policy is such that, given a selected user
subset S for the period, it does the following:

(1) At the beginning of the period, m tasks associated with users in S are chosen to be
processed according to largest LRE first.

(2) When a running task completes, or a non-running task reaches a state where it has
zero laxity, again the m tasks in S with largest local remaining execution time are
selected to be processed.

Note that the LLREF policy uses task preemption and possibly migration. A review of
variants of LLREF aimed at reducing task preemptions is provided in (Davis and Burns
2011b).

Definition 4.5. The Task Selection/LLREF (TS/LLREF) task scheduler is such that,
given the user priority decision d for a period, it does the following:

(1) Task selection: it greedily selects users based on d until the sum workload exceeds
m�. More formally, it selects

j(d) = max
n

j|
j

X

i=1

µdi  m�

o

. (14)

Let J(d) = {d1, d2, · · · , dj(d)} represent the selected user subset.
(2) LLREF for J(d): the system uses LLREF scheduling for tasks in J(d) in this period.

By (Cho, Ravindran, and Jensen Cho et al.), it follows that all tasks from J(d) will
complete.

7LLREF is defined to be applicable in more general settings where users might generate tasks with di↵erent
period. We will discuss this in Section 6.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

Scheduling for Cloud-Based Computing Systems to Support Soft Real-Time Applications 1:17

Paralleling Theorem 4.3, we have the following result for the LDF+TS/LLREF resource
allocation, i.e., the combination of LDF user prioritization and TS/LLREF task scheduling.

Theorem 4.6. For the SRT-MIC model with deterministic workloads, the e�ciency ratio

of LDF+TS/LLREF exceeds �2 where

�2 = 1�
max
i2N

µi

m�

.

Intuitively, under TS/LLREF, the task selection rule guarantees that in any given period
the wasted time m� �

P

i2J(d)

µi is less than max
i2N

µi. Given the total available core time m�,

the gap between LDF+TS/LLREF and optimality is again bounded by the fraction of

wasted time, i.e.,
max
i2N

µi

m� . A formal proof of this result is similar to that of Theorem 4.3 and
is provided in Appendix 8.3.

The e�ciency ratio lower bound �2 in this theorem is better than �1 obtained in Theorem
4.3, specifically the dependence on m is much stronger. For a system with a large number of
cores m, �2 is close to 1, i.e., LDF+TS/LLREF is close to feasibility optimal even if � is
comparable to max

i2N
µi.

Although LDF+TS/LLREF is designed for deterministic workloads, we envisage it will
work well for workloads with small variability by using the expected workload, or some more
sophisticated workload estimation w

est
i . Specifically, TS makes selections based on w

est
i and

LLREF computes local remaining execution time and laxity by assuming Wi = w

est
i . Note

that this heuristic LDF+TS/LLREF is still non-clairvoyant. This will be explored in the
simulation section.

4.4 Resource Requirements

So far we have analytically characterized the e�ciency ratios of two LDF-based resource
allocation policies. Another metric of interest is the resource requirements in terms of the
number of cores m needed to fulfill a set of users’ QoS requirements. To that end in this
subsection we shall explore the required m given n, �, the random workload distributions
and the requirement vector q. A policy that requires a smaller m is better in that it saves
compute resources and/or energy.

4.4.1 Resource Requirements for Reservation-Based Static Sharing.
Based on the definition of FRB in 3.1, the required number of cores to fulfill the users’

QoS requirements q under reservation-based static sharing is given by

mRB =
l

P

i2N
wi(qi)

�

m

, (15)

where dxe is the ceiling of x.
4.4.2 Lower Bound on Resource Requirements.
For any non-clairvoyant resource allocation policy ⌘, we let m⌘ denote the required number

of cores to fulfill users’ QoS requirements under policy ⌘. By Theorem 3.1, we know m⌘ must
satisfy m⌘� �

P

i2N
qiµi , giving the following lower bound on the required number of cores:

m ⌘
l

P

i2N
qiµi

�

m

. (16)

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

1:18 Yuhuan Du and Gustavo de Veciana

4.4.3 Resource Requirements Estimate for LDF+Greedy.
Ideally one would like a tight upper bound for the required resources mLDF+Greedy for

LDF+Greedy. By Theorem 4.3 we know that LDF+Greedy may expect to waste up to
max
i2N

µi time on each core in a period because of unfinished tasks. Thus, to complete an

“e↵ective” workload
P

i2N
qiµi, we propose an estimate for mLDF+Greedy as follows,

m

est
LDF+Greedy ⌘

l

P

i2N
qiµi

� �max
i2N

µi

m

. (17)

If � � max
i2N

µi, this estimate is close to the lower bound m.

We can analytically show that indeed m

est
LDF+Greedy � mLDF+Greedy when � and n are

large, see the extended version of this paper (EXT 2017). We observe that the inequality
holds true in the various simulation settings considered next.

5 SIMULATIONS

In this section we address through simulation some of the questions that are still open:

(1) What are possible resource savings of adopting LDF+Greedy versus reservation-
based static sharing? Are they close to optimal when � is large? How do they depend
on the QoS requirements q?

(2) Our theorems on the lower bounds on e�ciency ratios imply that LDF+TS/LLREF
is better than LDF+Greedy for small � and deterministic workloads. Is it true that
LDF+TS/LLREF is more e�cient?

(3) For workloads with small variability, can one use LDF+TS/LLREF and get gains
over LDF+Greedy?

Our simulation setup is as follows. We start with an initial deficit vector X(0) =
(0, 0, · · · , 0). In each period, we independently generate a task workload realization for
each user and simulate the specified policy to evaluate if tasks complete. All simulations are
run for 3000 periods. A QoS requirement vector q is feasible if for all users i the fraction of
task completions over the 3000 periods exceeds qi.

5.1 Near-Optimality of LDF+Greedy for Large �

To evaluate the resource savings of LDF+Greedy for large period length �, we consider an
SRT-MIC system model with n = 200 and � = 50, serving homogeneous users that have
the same QoS requirement q and generate tasks with Gamma(5, 1) workloads, i.e., a sum
of 5 independent exponential random variables with parameter 1. The probability density
function is shown in the top panel in Figure 3. We choose this NBUE workload distribution
as a representative one8.

In the bottom panel in Figure 3, we show the simulated resource savings of LDF+Greedy
versus the reservation-based static sharing, i.e., 1� mLDF+Greedy

mRB
, and the computed upper

bound on resource savings 1� m
mRB

as the QoS requirement q increases from 0 to 1. The
lines are not smooth because we take ceilings when computing m and mRB.
It can be seen that the savings under LDF+Greedy is close to the upper bound in

this setting. The “U” shape of the exhibited results depends on the workload distribution.

8Gamma distributions with shape parameters k � 1 is an important class of NBUE distributions. We pick
Gamma(5, 1) as a representative NBUE distribution.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

Scheduling for Cloud-Based Computing Systems to Support Soft Real-Time Applications 1:19

Intuitively, in this homogeneous-user scenario, if we ignore the ceilings in (15) (16), the
upper bound on savings becomes,

1� m

mRB
' 1� qµ

w(q)
, (18)

where µ is the common mean workload and w(q) is the common required static allocation.
For high q, w(q) is like a worst-case workload and this is an improvement from worst case
to average which is as high as 60-70% for Gamma(5, 1) distribution. For medium q ⇠ 50%,
qµ is around 0.5µ while w(q) is roughly µ, giving a 50% resource savings. For low q, qµ is
much smaller compared to w(q) and the savings can be up to 80-90%.

0 2 4 6 8 10 12 140

0.5

1
Probability Density Functions

Gamma(5, 1)
Gamma(100, 0.05)

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

Requirement q

Sa
vi

ng
s

Savings for Large Period

Upper Bound
LDF+Greedy

Fig. 3. Top: the probability density functions for Gamma(5, 1) and Gamma(100, 0.05). Bottom: the

resource savings for large period.

5.2 LDF+Greedy vs. LDF+TS/LLREF for Deterministic Workloads and Small �

To compare LDF+Greedy and LDF+TS/LLREF for short periods � and deterministic
workloads, we consider a system where n = 30 and � = 9 and where users are homogeneous
and generate tasks with deterministic workloads µ = 5. In the top panel in Figure 4, we
exhibit the upper bound of resource savings and the resource savings under LDF+Greedy
and LDF+TS/LLREF as the requirement q changes from 0 to 1.
As can be seen, LDF+TS/LLREF can achieve the upper bound on savings while

LDF+Greedy does not perform as well. For high q, the savings for LDF+Greedy is even
negative implying that LDF+Greedy is worse than the reservation-based approach. This is
because we chose µ and � such that LDF+Greedy wastes a significant amount of time on
unfinished tasks. Observe that the savings are monotonically decreasing in q, which is di↵er-
ent from the “U” shape exhibited in Figure 3. Intuitively, this is because for deterministic
workloads, by (18) we know w(q) equals to µ and thus we get

1� m

mRB
' 1� q.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

1:20 Yuhuan Du and Gustavo de Veciana

0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

Requirement q

Sa
vi

ng
s

Savings for Deterministic Workloads

0 0.2 0.4 0.6 0.8 1−1

−0.5

0

0.5

1

Requirement q

Sa
vi

ng
s

Savings for Workloads with Small Variabilities

Upper Bound
LDF+TS/LLREF
LDF+Greedy

Upper Bound
Heuristic LDF+TS/LLREF
LDF+Greedy

Fig. 4. Top: the resource savings under deterministic workloads. Bottom: the resource savings under

random workloads with small variability.

5.3 LDF+TS/LLREF for Workloads with Small Variability

For workloads with small variability, we envisage that the heuristic LDF+TS/LLREF
described in Section 4.3 is a good non-clairvoyant policy. Consider a SRT-MIC system with
homogeneous users where n = 30 and � = 9 and where the task workload distributions
are Gamma(100, 0.05) exhibited on the top panel in Figure 3. Note that the distribution
Gamma(100, 0.05) has the same mean µ = 5 but a small variance. In this setting, we shall
estimate the workload to be w

est = 1.1µ and use our proposed heuristic LDF+TS/LLREF
in Section 4.3. We conduct the same analysis for resource savings and exhibit the results in
the bottom panel in Figure 4.

As can be seen, the heuristic LDF+TS/LLREF indeed performs better than LDF+Greedy.
However, the performance of the heuristic LDF+TS/LLREF degrades for high q. This is
due to the fact that some selected tasks fail to complete since their workloads are larger
than w

est. One approach to solve this is to increase w

est as q becomes bigger.
Although we only considered homogeneous users, the above observations were found to be

robust for heterogeneous users.

6 POSSIBLE GENERALIZATIONS

In this section we discuss the following generalizations of the SRT-MIC NBUE-workload
model and associated results:

(1) Cores with di↵erent processing speeds.
(2) Users generating tasks at di↵erent periods.
(3) Tasks which further consist of sub-tasks that need to be processed in order.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

Scheduling for Cloud-Based Computing Systems to Support Soft Real-Time Applications 1:21

Table 1. Results for di↵erent generalizations.

Model Reservation-Based FRB Outer Bound ROB

�1 (NBUE workloads) �2

preemptive
non- (deterministic

preemptive workloads)

SRT-

MIC

{q 2 Rn
+ | q � 1,

X

i2N

wi(qi)  m�,

wi(qi)  �, 8i 2 N}

{q 2 Rn
+ | q � 1,

X

i2N

qiµi  m�} 1�
max
i2N

µi

� 1�
max
i2N

µi

m�

{q 2 Rn
+ | q � 1,

Bn(q)  Sm · �,
Bk(q)  Sk · �, 1  k  m}

{q 2 Rn
+ | q � 1,

X

i2N

qiµi  Sm · �} 1�
max
i2N

µi

s·�
1�

max
i2N

µi

min
c2C

sc·� 1�
max
i2N

µi

Sm·�

Di↵erent
speeds

sc

{q 2 Rn
+ | q � 1,

X

i2N

wi(qi)

�i
 m,

wi(qi)  �i, 8i 2 N}

{q 2 Rn
+ | q � 1,

X

i2N

qiµi

�i
 m} N/A 1�

max
i2N

µi
�i

m

Di↵erent
periods

�i

{q 2 Rn
+ | q � 1,

X

i2N

wi(qi)  m�,

wi(qi)  �, 8i 2 N}

{q 2 Rn
+ | q � 1,

X

i2N

qiµi  m�} 1�
max
i2N

µi

� 1�
max
i2N

µi

m�

Chains of
subtasks

k(i)

We discuss these three generalizations in the following three subsections, respectively.
For ease of reference, Table 1 provides a summary of various generalizations—the necessary

notation is introduced in the sequel.

6.1 Cores with Di↵erent Processing Speeds

We first consider generalizations where the cores may have di↵erent processing speeds. Let
C = {1, 2, · · · ,m} denote the set of cores. Suppose all cores are of the same type and each
core c 2 C has processing speed sc, i.e., cores are “uniform”, see the taxonomy in, e.g.,
(Davis and Burns 2011a). In other words, if a task runs on a core with speed s for t time
units, then s⇥ t units of work are performed. In this context, the workload of a task refers
to the required units of work to fully complete the task. Therefore, a task with workload w

processed on core c has a processing time w
sc
. Let s =

P
c2C

sc

m be the average processing speed.
Clearly, in the SRT-MIC model we have previously considered, sc = 1 for each c 2 C.
We assume n � m since otherwise one only needs the n fastest cores. Next we discuss

generalizations of our results.

6.1.1 Reservation-Based Static Sharing Policies. In reservation-based static sharing, given
the computed wi(qi) for all users i 2 N , the question is whether it is feasible to find a static
allocation guaranteeing that wi(qi) units of work can be performed for each user i in each
period.

To answer this question, we first introduce some notation. Given a set Z of non-negative
numbers and a positive integer k which satisfies 1  k  |Z|, we let a(Z, k) be the sum of
the largest k numbers in Z. We let Sk = a({sc|c 2 C}, k). Given a QoS requirement vector
q, for 1  k  n, we let Bk(q) = a({wi(qi)|i 2 N}, k) be the sum of the k largest core time
reservations. By (Funk et al. 2001; Funk and Meka 2009), we know that a static allocation

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

1:22 Yuhuan Du and Gustavo de Veciana

is feasible if and only if the following conditions hold:

Bn(q)  Sm · �, (19)

Bk(q)  Sk · � for 1  k  m. (20)

Intuitively, (19) implies that the sum of required reservations does not exceed the total units
of work that can be performed in a period. And (20) implies that the k largest reservation
requirements can be satisfied by the k fastest cores.
Such a static allocation can be obtained according to prior work, see e.g., (Funk et al.

2001; Funk and Meka 2009). Therefore, the feasibility region of reservation-based static
sharing FRB is given by

FRB = {q 2 Rn
+ | q � 1, Bn(q)  Sm · �,

Bk(q)  Sk · � for 1  k  m}.

This is consistent with our analysis when sc = 1 for all c 2 C, see Eq (3).

6.1.2 Outer Bound ROB for the System Feasibility Region. For a system with di↵erent core
processing speeds, the outer bound ROB in Theorem 3.1 needs to be modified to

ROB ⌘ {q 2 Rn
+ | q � 1,

X

i2N

qiµi  Sm · �},

i.e., the “e↵ective” workload
P

i2N
qiµi cannot exceed the maximum units of work Sm · � that

can be performed in a period.
A proof of this result requires a slight modification of that of Theorem 3.1: we replace

m� by Sm · �; we redefine US to be the total units of work performed for users in S in a
typical period; and we redefine Ai,c to be the indicator random variable that user i’s task is
unfinished and c units of work are performed for user i’s task in a typical period.

6.1.3 LDF+Greedy Scheduling. For LDF+Greedy, if all cores have the same speed, there
is no benefit of moving a running task from one core to another. However, if cores have
di↵erent speeds, one may want to migrate tasks to faster cores if they become available.
Therefore, depending on whether task preemption/migration is allowed, there are two types
of greedy task schedulers: preemptive and non-preemptive greedy task scheduler.

Preemptive Greedy Task Scheduler: In the preemptive case, the task scheduler
greedily and preemptively schedules tasks with the highest priority on the fastest cores.
Specifically, at all times the task scheduler guarantees that the available9 task with the
highest priority is placed on the fastest core, the available task with the second highest
priority is on the second fastest core, etc. In this setting, similarly to Theorem 4.3 we get
the following corollary.

Corollary 6.1. For the generalization of SRT-MIC model to cores with di↵erent pro-

cessing speeds, the e�ciency ratio of the preemptive LDF+Greedy exceeds �1 where

�1 = 1�
max
i2N

µi

s · � .

Note that in the denominator we have an average processing speed s, which equals to
1 in the SRT-MIC model we considered previously. Intuitively, this is because under the
preemptive greedy task scheduler the unfinished tasks are always on the fastest cores. And

9A task is available if it is not completed yet.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

Scheduling for Cloud-Based Computing Systems to Support Soft Real-Time Applications 1:23

the average processing speed of the k fastest cores is at least s for 1  k  m. We omit the
proof to save space. For a detailed proof, see the extended version of this paper (EXT 2017).

Non-Preemptive Greedy Task Scheduler: The non-preemptive greedy task scheduler
starts by putting the task with the highest priority on the fastest core, the task with the
second highest priority on the second fastest core, etc. Once one of these tasks completes,
it continues by processing the task with priority m+ 1 on the available core, etc. In this
setting, we get the following corollary.

Corollary 6.2. For the generalization of SRT-MIC model with di↵erent processing

speeds, the e�ciency ratio of the non-preemptive LDF+Greedy exceeds �1 where

�1 = 1�
max
i2N

µi

min
c2C

sc · �
.

See the extended version of this paper (EXT 2017) for the proof.
Note that �1 under the preemptive LDF+Greedy is larger than that under the non-

preemptive LDF+Greedy. This captures the benefit of task preemption/migration although
these operations involve overheads in practice.

6.1.4 LDF+TS/LLREF Scheduling. For deterministic workloads, we shall generalize our
proposed LDF+TS/LLREF scheduling. We first introduce a further assumption.

Assumption 1. We suppose the n users’ deterministic workloads are such that for all

1  k  m,

Mk  Sk · �,

where Mk = a({µi|i 2 N}, k) represents the sum of the k largest workloads.

Intuitively, this guarantees that for all 1  k  m, the k tasks with largest workloads can
complete on the k fastest processors in a period.

Under Assumption 1, and by (Funk et al. 2001; Funk and Meka 2009), we can complete all
tasks in a user subset S in a period by some optimal scheduling if and only if

P

i2S
µi  Sm · �.

Such optimal scheduling algorithms include U-LLREF (Funk and Meka 2009), a variant of
LLREF for cores with di↵erent speeds, and Proportionate Fair (Pfair) (Baruah et al. 1996).

Similar to the TS/LLREF task scheduler in Definition 4.5, we propose TS/U-LLREF or
TS/Pfair where the task selection rule (14) naturally becomes

j(d) = max
n

j|
j

X

i=1

µdi  Sm · �
o

, (21)

and the selected subset of users are scheduled via U-LLREF or Pfair algorithms.
Under Assumption 1, and similarly to Theorem 4.6, we can show that the e�ciency ratio

of LDF+TS/U-LLREF or LDF+TS/Pfair exceeds �2 where

�2 = 1�
max
i2N

µi

Sm · � .

The proof of this result follows that of Theorem 4.6 by simply replacing m� with Sm · �.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

1:24 Yuhuan Du and Gustavo de Veciana

6.2 Users Generating Tasks at Di↵erent Periods

In this subsection, we consider possible generalizations of the SRT-MIC NBUE-workload
model where users generate tasks at di↵erent periods, and discuss results that cannot be
generalized and/or associated di�culties.

Specifically, suppose starting from time 0 each user i generates a task at the beginning of
each period of length �i. We assume there exists a minimum common multiple � of �i for
all i. We shall refer to � as a super period.

Again, each user requires the long-term time-averaged number of tasks completed on time
per period qi 2 [0, 1]. To be consistent with the SRT-MIC model, we define the feasibility in
terms of the positive recurrence of a Markov chain. Given q = (q1, q2, · · · , qn), we keep track
of the deficits of users across super periods. For each user i 2 N and super period t+ 1, we
shall define deficit updates as follows,

Xi(t+ 1) = [Xi(t) + qi ·
�

�i
� Yi(t+ 1)]+, (22)

where Yi(t+ 1) is a random variable representing the number of tasks completed on time
for user i in super period t + 1. Let X(t) = (X1(t), X2(t), · · · , Xn(t)). We only consider
non-clairvoyant resource allocation policies such that the process {X(t)}t�1 is a Markov
chain. A QoS requirement vector q is feasible if the Markov chain {X(t)}t�1 is positive
recurrent under some non-clairvoyant resource allocation policy.

6.2.1 Reservation-Based Static Sharing Policies. We first generalize the performance char-
acterization of reservation-based static sharing policies. Similarly to the setting in 3.1, we
can compute the required core time reservation per period wi(qi) for all users i. Now wi(qi)

�i
represents the required core utilization for user i if we want to allocate wi(qi) core time to

user i per period. Clearly, if
P

i2N

wi(qi)
�i

> m we cannot meet the core time reservations wi(qi)

for all users. Indeed, by prior work, see e.g., (Cho et al. 2006; Davis and Burns 2011a), we
can characterize the feasibility region FRB of reservation-based static sharing policies as
follows,

FRB = {q 2 Rn
+ | q � 1,

X

i2N

wi(qi)

�i
 m,

wi(qi)  �i, 8i 2 N}.

Note that this is consistent with our analysis when all users have the same period, see Eq
(3).

Given that
P

i2N

wi(qi)
�i

 m and wi(qi)  �i for all i 2 N , since users have di↵erent periods,

the remaining problem is how to allocate wi(qi) to each user i in each period. One solution
is to use the LLREF scheduling policy. We omit the details to save space. Refer to the
extended version of this paper (EXT 2017) for detailed discussion.

6.2.2 Outer Bound ROB for the System Feasibility Region. When users generate tasks with
di↵erent periods, the outer bound ROB for the system feasibility region can be generalized
as follows,

ROB = {q 2 Rn
+ | q � 1,

X

i2N

qiµi

�i
 m}.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

Scheduling for Cloud-Based Computing Systems to Support Soft Real-Time Applications 1:25

Intuitively,
P

i2N

qiµi

�i
represents the sum of core utilizations to fulfill QoS requirement q,

which cannot exceed the maximum degree of parallelism m. The proof is similar to that of
Theorem 3.1—refer to the extended version of this paper (EXT 2017) for details.

6.2.3 LDF-Based Policies Over Super Periods. A heuristic way to generalize our proposed
LDF-based resource allocation policies to di↵erent-period scenarios is to adopt the LDF
policy to pick a priority decision for each super period. Specifically, at the beginning of super
period t+ 1, the system orders the deficit vector X(t) and assigns priorities from largest
to smallest. These priorities are interpreted by the task scheduler to schedule tasks in this
super period.

LDF+Greedy:When users generate tasks with di↵erent periods, the greedy task scheduler
can be preemptive or non-preemptive depending on whether preemption/migration is allowed.
In the preemptive version, at all times the task scheduler processes the m available tasks
with the highest priority on the m cores. In the non-preemptive version, the task scheduler
starts with m tasks with the highest priority. When a running task completes or reaches
its deadline10, the available non-running task with the highest priority is selected to be
processed on the available core.

Unfortunately, for this generalized LDF+Greedy policy we cannot get a similar performance
characterization as Theorem 4.3. Intuitively, this is because the greedy task scheduler can
potentially waste a lot of time on unfinished tasks in di↵erent-period scenarios. For example,
under the preemptive greedy task scheduler, we may start processing a task right before
its deadline and fail to complete it, or we may process a task only for a short time before
we have to switch to process another task with higher priority leaving the original task
unfinished. These scenarios degrade the performance of the LDF+Greedy policy.

LDF+TS/LLREF under Deterministic Workloads: If the users generate tasks
with di↵erent periods but with deterministic workloads, we can generalize the LDF+TS/LLREF
policy and also Theorem 4.6. Naturally we assume µi  �i for all i 2 N . Otherwise, the
tasks from user i cannot complete on time.

Under LDF+TS/LLREF, in each super period, a priority decision d is selected according to
the LDF policy. Similarly to (14), the system selects the user subset J(d) = {d1, d2, · · · , dj(d)}
where j(d) is computed as follows,

j(d) = max
n

j|
j

X

i=1

µdi

�di

 m

o

. (23)

We shall consider the case where the system adopts the LLREF policy to process and
complete all tasks from J(d) in this super period.
To characterize the e�ciency ratio, we proved the following corollary which is similar to

Theorem 4.6.

Corollary 6.3. For the SRT-MIC system model with di↵erent periods and deterministic

workloads, the e�ciency ratio of LDF+TS/LLREF that operates over super periods exceeds

�2, where

�2 = 1�
max
i2N

µi

�i

m

.

10This implies that another task from the same user is released. That new task is also considered to be a
non-running task.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

1:26 Yuhuan Du and Gustavo de Veciana

Intuitively, under the task selection rule (23), for the selected user subset J(d) we know
that m�

P

i2J(d)

µi

�i
is less than max

i2N

µi

�i
, and therefore, the performance gap is bounded by

max
i2N

µi
�i

m . The formal proof is straightforward generalization of the proof of Theorem 4.6 and
we shall omit it.

Again, this result is consistent with our analysis when all users have the same period, see
Theorem 4.6.

6.2.4 Fine-Grained LDF-Based System Designs. A problem for the LDF-based resource
allocation policies over super periods is that the task completions of users vary a lot from
super period to super period. For example, a user with high priority in one super period may
complete a large number of tasks in this super period and then be assigned a low priority in
the next super period, completing only a small number of tasks. Such bursty completions
would likely be undesirable for users especially when the super period � is large.

To mitigate this problem, we could consider a fine-grained LDF policy to change the
priority decisions more frequently. We divide the timeline into intervals associated with
times where tasks become available for processing and deadlines. At the beginning of each
interval, we compute the deficit between the QoS requirement and the actual number of
completed tasks up to that time for each user i, sort the deficits from largest to smallest
and assign priorities accordingly.

Given the priority decision in each interval, we can adopt a greedy task scheduler. If task
preemption/migration is allowed, naturally we start by putting the m tasks with highest
priority on the m cores, and once one of these tasks completes, we continue by putting the
task with priority m+ 1 on the available core, etc. If preemption/migration is not allowed,
at the beginning of this interval, we continue processing the tasks running at the end of the
previous interval, and once one of these tasks completes or reaches the deadline, we put the
non-running task with the highest priority on the available core, etc.

It would be of interest to characterize the performance of such resource allocation policies
and to generalize LDF+TS/LLREF in future work.

6.3 Tasks Consisting of Sub-Tasks

We continue our discussion of possible generalizations of our SRT-MIC NBUE-workload
model to the case where each task consists of several sub-tasks that need to be processed in
order and all of which need to be completed by the end of the corresponding period. We
assume all sub-tasks can be processed on all cores.
Specifically, suppose in each period each user i 2 N generates a task consisting of k(i)

sub-tasks, which have to be processed in order and cannot be processed in parallel. But
sub-tasks of di↵erent tasks can be processed simultaneously. A task in a period is said to
be completed on time if and only if all its sub-tasks complete by the end of the period.
Each user i requires time-averaged task completions per period qi. For a given user, we
assume the sub-task workloads with the same sub-task index are i.i.d. across periods and
the sub-task workloads with di↵erent indices are independent. For each user i 2 N and each

sub-task index k = 1, 2, · · · , k(i), we denote by W

(k)
i the workload of the k

th sub-task from

user i and let µ(k)
i = E[W (k)

i] be the mean sub-task workload. Clearly Wi =
k(i)
P

k=1

W

(k)
i and

µi =
k(i)
P

k=1

µ

(k)
i . We further assume each sub-task has an NBUE workload distribution.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

Scheduling for Cloud-Based Computing Systems to Support Soft Real-Time Applications 1:27

Clearly our original SRT-MIC system model is a special case of this generalized model
where k(i) = 1 for all users i. It turns out that our proposed approaches and performance
characterization still hold under this generalized task model although some of the proofs
need modification. We omit the details to save space. Refer to the extended version of this
paper (EXT 2017) for detailed discussion.
In this section we have introduced three possible generalizations in parallel. Given these

results, the combinations of multiple generalizations, e.g., scenarios where the processors have
di↵erent processing speeds and users generate tasks with di↵erent periods, are straightforward
and we omit the discussion here.

7 CONCLUSION

We have considered a computing system with multiple resources supporting soft real-time
applications and established analytically and through simulation that simple resource
allocation policies like LDF+Greedy are near-optimal and achieve substantial resource
savings, except when the real-time constraints are tight, i.e., the period length is similar
to the service time for a user’s task. In this case, LDF+Greedy may not work well and it
is worth exploring other policies. For workloads with small variability, we have proposed
the LDF+TS/LLREF policy which indeed outperforms LDF+Greedy. For future work, a
more detailed exploration of systems consisting of possibly di↵erent types of resources is of
interest.

REFERENCES
2017. Extended version. http://arxiv.org/abs/1601.06333. (2017).
Fardin Ahmadizar, Mehdi Ghazanfari, and Seyyed Mohammad Taghi Fatemi Ghomi. 2010. Group shops

scheduling with makespan criterion subject to random release dates and processing times. Computers
and Operations Research 37 (2010), 152–162. Issue 1.

Ali Allahverdi and Yuri Sotskov. 2003. Two-machine flowshop minimum-length scheduling problem with
random and bounded processing times. International Transactions in Operational Research 10 (2003),
65–76. Issue 1.

Yair Amir, Baruch Awerbuch, Amnon Barak, R. Sean Borgstrom, and Arie Keren. 2000. An Opportunity
Cost Approach for Job Assignment in a Scalable Computing Cluster. IEEE Transactions on Parallel and
Distributed Systems 11 (July 2000), 760–768. Issue 7.

Alia Atlas and Azer Bestavros. 1998. Statistical Rate Monotonic Scheduling. In Proceedings of RTSS 1998.
123–132.

S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. 1996. Proportionate Progress: A Notion of
Fairness in Resource Allocation. Algorithmica 15 (June 1996), 600–625. Issue 6.

Carlos J. Bernardos and others. 2014. An architecture for software defined wireless networking. IEEE
Wireless Communications 21, 3 (2014).

Guillem Bernat and Alan Burns. 1997. Combining (nm)-Hard deadlines and Dual Priority Scheduling. In
Proceedings of RTSS 1997. 46–57.

J. Blazewicz, M. Drabowski, and J. Weglarz. 1986. Scheduling Multiprocessor Tasks to Minimize Schedule
Length. IEEE Trans. Comput. C-35 (1986), 389–393. Issue 5.

J. Bruno, E. G. Co↵man Jr., and R. Sethi. 1974. Scheduling Independent Tasks To Reduce Mean Finishing
Time. Commun. ACM 17 (1974), 382–387. Issue 7.

John Carpenter, Shelby Funk, Philip Holman, Anand Srinivasan, James Anderson, and Sanjoy Baruah.
2004. A Categorization of Real-time Multiprocessor Scheduling Problems and Algorithms. Handbook of
Scheduling: Algorithms, Models, and Performance Analysis (2004).

China Mobile. 2011. C-RAN The Road Towards Green RAN. (Oct 2011).
Hyeonjoong Cho, Binoy Ravindran, and E. Douglas Jensen. An Optimal Real-Time Scheduling Algorithm

for Multiprocessors. In Proc. of RTSS 2006.
Hyeonjoong Cho, Binoy Ravindran, and E. Douglas Jensen. 2006. An Optimal Real-Time Scheduling

Algorithm for Multiprocessors. In Proceedings of RTSS 2006. 101–110.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

http://arxiv.org/abs/1601.06333

1:28 Yuhuan Du and Gustavo de Veciana

J.H. Conway and N.J.A. Sloane. 2013. Sphere Packings, Lattices and Groups. Springer.
Robert I. Davis and Alan Burns. 2011a. A Survey of Hard Real-Time Scheduling for Multiprocessor Systems.

Comput. Surveys 43 (October 2011). Issue 4.
Robert I. Davis and Alan Burns. 2011b. A Survey of Hard Real-Time Scheduling for Multiprocessor Systems.

Comput. Surveys 43 (2011). Issue 4.
Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-E�cient and QoS-Aware Cluster

Management. In Proceedings of the 19th international conference on Architectural support for programming
languages and operating systems. 127–144.

Antonis Dimakis and Jean Walrand. 2006. Su�cient Conditions for Stability of Longest-Queue-First
Scheduling: Second-Order Properties Using Fluid Limits. Advances in Applied Probability 38, 2 (June
2006).

Yuhuan Du and Gustavo de Veciana. 2014. Wireless Networks Without Edge: Dynamic Radio Resource
Clustering and User Scheduling. In Proceedings of INFOCOM 2014. 1321–1329.

Yuhuan Du and Gustavo de Veciana. 2016. E�ciency and Optimality of Largest Deficit First Prioritization:
Resource Allocation for Real-Time Applications. INFOCOM 2016 (April 2016).

Shelby Funk, Joël Goossens, and Sanjoy Baruah. 2001. On-line Scheduling on Uniform Multiprocessors. In
Proceedings of RTSS 2001. 183–192.

Shelby Funk and Archana Meka. 2009. U-LLREF: An Optimal Scheduling Algorithm for Uniform Multipro-
cessors. In Workshop on Models and Algorithms for Planning and Scheduling Problems.

Alan Gatherer. 2015. Personal communication. (February 2015).
Moncef Hamdaoui and Parameswaran Ramanathan. 1995. A Dynamic Priority Assignment Technique for

Streams with (m, k)-Firm Deadlines. IEEE Trans. Comput. 44 (December 1995), 1443–1451. Issue 12.
I-Hong Hou and P. R. Kumar. 2012a. Queueing systems with hard delay constraints: a framework for

real-time communication over unreliable wireless channels. Queueing Systems 71 (March 2012), 151–177.
Issue 1-2.

I-Hong Hou and P. R. Kumar. 2012b. Queueing systems with hard delay constraints: a framework for
real-time communication over unreliable wireless channels. Queueing Systems 71 (2012). Issue 1-2.

I-Hong Hou and P. R. Kumar. 2013. Packets with Deadlines: A Framework for Real-Time Wireless Networks.
Morgan & Claypool Publishers.

Juan Jose Jaramillo and R. Srikant. 2011. Optimal Scheduling for Fair Resource Allocation in Ad Hoc
Networks With Elastic and Inelastic Tra�c. IEEE Transactions on Networking 19 (August 2011),
1125–1136. Issue 4.

Changhee Joo, Xiaojun Lin, and Ness B. Shro↵. 2007a. Performance Limits of Greedy Maximal Matching in
Multi-hop Wireless Networks. In IEEE Conference on Decision and Control. 1128–1133.

Changhee Joo, Xiaojun Lin, and Ness B. Shro↵. 2007b. Performance Limits of Greedy Maximal Matching in
Multi-hop Wireless Networks. In IEEE Conference on Decision and Control.

Xiaohan Kang, Weina Wang, Juan Jose Jaramillo, and Lei Ying. 2013. On the Performance of Largest-
Deficit-First for Scheduling Real-Time Tra�c in Wireless Networks. In Proceedings of MobiHoc. 99–108.

Eugene L. Lawler, Jan karel Lenstra, Alexander H.G. Rinnooy Kan, and David B. Shmoys. 1993. Sequencing
and Scheduling: Algorithms and Complexity. Logistics of Production and Inventory (1993), 445–522.

Joseph Y.-T. Leung. 1989. A New Algorithm for Scheduling Periodic, Real-Time Tasks. Algorithmica 4
(June 1989), 209–219. Issue 1.

Cong Liu and James H. Anderson. 2009. Task Scheduling with Self-Suspensions in Soft Real-Time Multipro-
cessor Systems. In Proceedings of RTSS 2009. 425–436.

C. L. Liu and James W. Layland. 1973. Scheduling Algorithms for Multiprogramming in a Hard Real-Time
Environment. J. ACM 20, 1 (January 1973), 46–61.

Jane W.S. Liu, Kwei-Jay Lin, and Swaminathan Natarajan. 1987. Scheduling Real-time, Periodic Jobs Using
Imprecise Results. In Proceedings of RTSS 1987. 252–260.

Jane W. S. Liu. 2000. Real-Time Systems. Prentice Hall.
Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou So↵a. 2011. Bubble-Up: Increasing

Utilization in Modern Warehouse Scale Computers via Sensible Co-locations. In Proceedings of the 44th
Annual IEEE/ACM International Symposium on Microarchitecture.

A. Müller and D. Stoyan. 2002. Comparison Methods for Stochastic Methods and Risks. Wiley.
Shailesh Patil and Gustavo de Veciana. 2007. Managing Resources and Quality of Service in Heterogeneous

Wireless Systems Exploiting Opportunism. IEEE/ACM Transactions on Networking 15 (October 2007),
1046–1058. Issue 5.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

Scheduling for Cloud-Based Computing Systems to Support Soft Real-Time Applications 1:29

Michael L. Pinedo. 2012. Scheduling: Theory, Algorithms, and Systems. Springer.
Parameswaran Ramanathan. 1999. Overload management in real-time control applications using (m, k)-firm

guarantee . IEEE Transactions on Parallel and Distributed Systems 10 (June 1999), 549–559. Issue 6.
Sanjay Shakkottai and Alexander L. Stolyar. 2001. Scheduling algorithms for a mixture of real-time and

non-real-time data in HDR. In Proceedings of the International Teletra�c Congress. 793–804.
Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric Tune, and John Wilkes.

2015. Large-scale cluster management at Google with Borg. In Proceedings of EuroSys 2015.

8 APPENDIX

8.1 Proof of Theorem 4.2

We first introduce some additional notation. Given two vectors a = (a1, a2, · · · , an) and
b = (b1, b2, · · · , bn), we denote by a � b = (a1b1, a2b2, · · · , anbn) the entrywise product.

Given q 2 int(RIB), we need only show q can be fulfilled by the LDF+X policy.
By definition of interior there exists an ✏ > 0 such that q0 = q+ ✏1 2 RIB. By definition

of RIB, there exists a vector ↵ � 0 such that for all S ✓ N ,

X

i2S

↵iq
0
i  min

d2D(S)

X

i2S

↵ipi(d). (24)

Consider the following candidate Lyapunov function:

L(X(t)) =
n
X

i=1

↵iXi(t)
2
.

Note that the process {X(t)}t�1 is now driven by LDF, and letY(t) = (Y1(t), Y2(t), · · · , Yn(t))
be the vector of indicator variables for users’ task completions under LDF. At period t+ 1,
we have that

E [L(X(t+ 1))� L(X(t))|X(t) = x]

= E

"

n
X

i=1

↵i(Xi(t+ 1)2 �Xi(t)
2)|X(t) = x

#

 E

"

n
X

i=1

↵i((Xi(t) + qi � Yi(t+ 1))2 �Xi(t)
2)|X(t) = x

#

= E

"

n
X

i=1

↵i(qi � Yi(t+ 1))2 + 2h↵ �X(t),q�Y(t+ 1)i|X(t) = x

#

 E

"

n
X

i=1

↵i(q
2
i + Yi(t+ 1)2) + 2h↵ �X(t),q�Y(t+ 1)i|X(t) = x

#

= E

"

n
X

i=1

↵i(q
2
i + Yi(t+ 1)2) + 2h↵ �X(t),q0 �Y(t+ 1)i|X(t) = x

#

� 2✏hx,↵i(25)

For simplicity, let d denote the priority decision selected by LDF at period t+ 1. We have

E [h↵ �X(t),q0 �Y(t+ 1)i|X(t) = x] = h↵ � x,q0 � p(d)i.

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

1:30 Yuhuan Du and Gustavo de Veciana

By reordering users according to priorities, we get

h↵ � x,q0 � p(d)i

=
n
X

i=1

xdi [↵diq
0
di

� ↵dipdi(d)]

=
n�1
X

i=1

[xdi � xdi+1][
i

X

j=1

↵djq
0
dj

�
i

X

j=1

↵djpdj (d)] + xdn [
n
X

j=1

↵djq
0
dj

�
n
X

j=1

↵djpdj (d)].

By the LDF policy we know xdi � xdi+1 . By (24) we have
i
P

j=1

↵djq
0
dj


i
P

j=1

↵djpdj (d) for

1  i  n. Therefore,

E [h↵ �X(t),q0 �Y(t+ 1)i|X(t) = x]  0.

Suppose b is an upper bound for all ↵i, qi and possible Yi(t+ 1), by (25)

E[L(X(t+ 1))� L(X(t))|X(t) = x] 2nb3 � 2✏hx,↵i  �1

for x satisfying hx,↵i � nb3

✏ + 1
2✏ .

It is not hard to show11 there are finite states x satisfying hx,↵i < nb3

✏ + 1
2✏ . Therefore,

by Foster’s Theorem {X(t)}t�1 is positive recurrent and q is fulfilled by the LDF policy.

8.2 Lower Bound in Theorem 4.3 is Tight

Given ✏ > 0, consider a SRT-MIC system model that has m = d
1
✏+1

2 e identical cores serving
2m users generating tasks with deterministic workload w in each period of length � = 2w� w

m .
Suppose all users have the same QoS requirement q.
In this setting, since w  �  2w, by using LDF+Greedy one can complete m tasks

per period. However, by using LDF+TS/LLREF policy introduced in Section 4.3 we can
complete dm�

w e = 2m�1 tasks per period, which is a lower bound on the number of completed
tasks per period under a feasibility optimal policy.

Given that all users have the same QoS requirement, the e�ciency ratio of LDF+Greedy
equals to ratio of the number of tasks completed per period under LDF+Greedy to that
under a feasibility optimal policy, and thus

�LDF+Greedy  m

2m� 1
.

Since m = d
1
✏+1

2 e �
1
✏+1

2 , we know ✏ � 1
2m�1 . Further since � = 2w � w

m , we get that

1� w

�

+ ✏ � 1� 1

2� 1
m

+
1

2m� 1
=

m

2m� 1
.

Thus, in this setting, we have that

�LDF+Greedy  1� w

�

+ ✏ = 1�
max
i2N

µi

�

+ ✏.

11This is true because given our assumption that requirement q are rational valued, the state space of
process {X(t)}t�1 is in a lattice (Conway and Sloane 2013).

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

Scheduling for Cloud-Based Computing Systems to Support Soft Real-Time Applications 1:31

8.3 Proof of Theorem 4.6

Suppose we are given a QoS requirement vector q. Under deterministic workloads, to fulfill
q the average core processing time

P

i2N
qiµi per period should not exceed m�. Therefore, a

feasible requirement vector q implies
X

i2N

qiµi  m�,

and clearly q � 1.
The goal is to show �2q 2 cl(FLDF+TS/LLREF). Recall that in this setting the vector

p(d) represents the expected numbers of task completions per period for TS/LLREF task
scheduling under priority decision d. Given deterministic workloads and any decision d,
under LDF+TS/LLREF, pi(d) equals to 1 if user i’s task is selected and thus completes,
and equals to 0 otherwise. By Theorem 4.2 it su�ces to show �2q 2 RIB and by letting
↵ = (µ1, µ2, · · · , µn), it su�ces to show for any given user subset S ✓ N and priority
decision d 2 D(S),

X

i2S

µipi(d) � �2

X

i2S

µiqi. (26)

We show this in the following two cases.
If

P

i2S
µi  m�, the task selection rule (14) will assure that all users in S are selected

and thus, pi(d) = 1 for all i 2 S. Since q � 1 and �2  1, we have
P

i2S
µipi(d) =

P

i2S
µi �

�2

P

i2S
µiqi.

Otherwise,
P

i2S
µi > m� and then not all users in S are selected. The task selection rule

(14) will ensure
j(d)
X

i=1

µdi  m� <

j(d)+1
X

i=1

µdi

and therefore,

X

i2S

µipi(d) =

j(d)
X

i=1

µdi > m� �max
i2N

µi = m�(1�
max
i2N

µi

m�

) = �2m� � �2

X

i2N

µiqi � �2

X

i2S

µiqi.

This proves (26) and therefore,

�2q 2 RIB ✓ cl(FLDF+TS/LLREF).

ACM Transactions on Modeling and Performance Evaluation of Computing Systems, Vol. 1, No. 1, Article
1. Publication date: March 2017.

	Abstract
	1 Introduction
	2 System Model
	2.1 Soft Real-Time (SRT) User Model
	2.2 Computing Infrastructure and Space of Policies
	2.3 SRT QoS Feasibility

	3 Reservation-Based Static Sharing and Outer Bound for the System Feasibility Region
	3.1 Reservation-Based Static Sharing Policies
	3.2 Outer Bound for the System Feasibility Region F

	4 Largest Deficit First (LDF) Based Policies
	4.1 Inner Bound for Feasibility Region of LDF+X
	4.2 Performance Analysis of LDF+Greedy Scheduling
	4.3 Performance Analysis of LDF+TS/LLREF Scheduling under Deterministic Workloads
	4.4 Resource Requirements

	5 Simulations
	5.1 Near-Optimality of LDF+Greedy for Large
	5.2 LDF+Greedy vs. LDF+TS/LLREF for Deterministic Workloads and Small
	5.3 LDF+TS/LLREF for Workloads with Small Variability

	6 Possible Generalizations
	6.1 Cores with Different Processing Speeds
	6.2 Users Generating Tasks at Different Periods
	6.3 Tasks Consisting of Sub-Tasks

	7 Conclusion
	References
	8 Appendix
	8.1 Proof of Theorem 4.2
	8.2 Lower Bound in Theorem 4.3 is Tight
	8.3 Proof of Theorem 4.6

