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Abstract—Internet traffic primarily consists of packets from replicate content at other locations to reduce the load on the
elastic flows, i.e. Web transfers, file transfers, and e-mail, whose congested portions of the network, and by service providers to
transmissions are mediated via the Transmission Control Protocol diagnose problems and direct traffic sharing a bottleneck onto
(TCP). In this paper, we develop a methodology to process TCP . ~. - .
flow measurements in order to analyze throughput correlations dISjO.II’]t routes. However, dec!dlng which ne.twork row; gre
among TCP flow classes that can be used to infer congestionSharing congested resources in the Internet is usually difficult
sharing in the Internet. The primary contributions of this paper ~ without access to the complete routing information for the
are: (1) development of a technique for processing flow records network. In general, network managers have information only

suitable for inferring congested resource sharing, (2) evaluation 5454t their network domain. and have little or no information
of the use of factor analysis on processed flow records to explore . ’ .

which TCP flow classes might share congested resources, and (3)about_the_ _propertles_ of the other domains. )
validation of our inference methodology using bootstrap methods A significant portion of the Internet Protocol (IP) traffic

and non-intrusive, flow level measurements collected at a single consists of packets fromlastic flowq1] or “document” traffic,
network site. Our proposal for using flow level measurements j e Web transfers, file transfers, and e-mail, whose transfers
to infer congestion sharing differs significantly from previous are mediated via Transmission Control Protocol (TCP) (see
research that has employed packet level measurements for ) . N
making inferences. Possible applications of our method include for exan‘]pl'e, [2]). In this paper, we desprlbe the application
network monitoring and root cause analysis of poor performance. Of a statistical method callefhctor analysisthat can be used
to analyze voluminous amounts of flow level TCP network
Index Terms— Factor analysis, inference of congestion sharing, traffic measurements collected at a single measurement site
network measurement. to infer which classes of TCP flows are sharing congested
resources. We develop a conditional sampling strategy on
the time series oflow class throughputlata. Our sampling
strategy generates samples that are used in the construction
OOT cause analysis of poor network performance usimg the flow class throughput correlation matrix that is suitable
voluminous amounts of measurements collected by nébr inferring congested resource sharing. We show that the
work monitoring tools and devices is a challenging problem faorrelation structure of flow class throughputs obtained by
network engineers and researchers. Poor network performariley level measurements for a number of TCP flow classes
such as excessive delays during file downloads, is often dtemn often be captured by a fewer numbetlatént factors The
to a congested resource such as an overloaded serverlatnt factors represent congested resources and can be used to
overutilized customer access link, or a backbone router thatrger which flow classes are sharing resources in the network.
congested as a result of link failure or misconfigured routingye also empirically investigate the effect of filtering out small
in carrier's network. and large flows on our inferences of congestion sharing. Our
Determining which network flows are sharing congested reethodology is validated using two sets of TCP measurements
sources might be the first step in analyzing and eliminating tellected at a border router. The statistical accuracy of the
causes of poor network performance. For instance, informatimfierences is assessed using bootstrap confidence intervals.
on congestion sharing might be used by content providers to
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Classi Pl o ronsingasi | PACKets passing through the same bottleneck exhibit some
- B rosindassj  degree of positive correlation. Their technique assumes that

: the flows share a common endpoint; i.e., either the sources or

Class] —_— e the destinations of packets are co-located and collaborating,

which may have limited applicability. Kim et al. [12] propose
a wavelet-based approach to detecting shared congestion. In
Fig. 1. A set of flow records can be arranged in time and classified into clasgagler to determine whether two flows are sharing a bottleneck,

(shown at different planes) as illustrated. The length of the rectangle indica; )
the duration of the corresponding flow. Classeand j; might correspond to fﬁ%y correlate prObe paCketS delay sequences generated by

two different sets of flows corresponding to two different source-destinatiéPPlying wavelet denoising to original delay sequences of
IP address prefix pairs. flows. They show that wavelet denoising filters out delay

fluctuations that are not due to shared congestion. Unlike [10]
and [11], their method is not limited to flows that share a

source and destination IP addresses, TCP or User Datagfimon endpoint, provided that the synchronization offset
Protocol (UDP) port numbers, IP protocol type, type of servidd€tween delay sequences is less than 1 second.
fields in IP headers, start and end times, and the numbefR@bbat, Nowak, and Coates [13] propose sending packet
of packets and bytes in a flow. A major problem in flowprobes from two sources to infer whether a subgraph of
measurement is the lack of scalability: at very high speéddraph formed from the paths connecting two sources to
routers, the number of flows to be measured might easf¥/© receivers is shared. The methodology is based on the
exceed millions per hour. Therefore, at high link speeds, tﬁésumption that probe packets arrive at a receiver in the order
flows [7] and/or the packets within a flow [8] may be sample_tﬁ‘_Wh'Ch the)_/ reach the node where paths from two sources
in order to keep up with the link speeds. The network nod&!n- Generalization of their method to more than two sources
such as a router, performing record generation usually expdidy not be scalable due to probing traffic overhead.
these records to a data warehouse for further processing.  Katabi, Bazzi, and Yang [14] develop iterative techniques
We define an IFlow classas a collection, or aggregation,that minimize entropy-based cost functions to cluster flows
of flows that are emitted successively and in parallel, argat share a bottleneck into groups. Their method is based on
that have a common attribute. For example, we can refer the observation that correct clustering minimizes the entropy
all flows sharing common source and destination IP addreé¥s inter-packet spacing within clusters with an empirical
prefixes as a flow class (see Fig. 1). A Web browsing sessiétistribution measured by an observer. The main advantage of
in which a user visits a number of pages at a Web site afheir method is that it does not require sending probe traffic

triggers a number of object downloads at each page, generdféQ the network and does not require cooperating senders; i.e.,
flows that can also be treated as a flow class. it is passive. However, they also indicate that their technique is

robust only when the observer can monitor more than 15% of
the traffic from the bottleneck link, and hence is not practical
B. Related Work when the observer is an end-receiver.
The simplest approach to detecting shared resources is to
use a utility such atraceroute  that tracks the route that a Lo L
packet follows from its source to its destination. Such utilitieg' Contributions and Organization
however, require the cooperation of routers in the network Our work on inferring congestion sharing differs signifi-
on the path of the flow. Owners of the carrier networks a@ntly from the previous work in that we considéw level
often unwilling to provide information about their networksjnstead ofpacket levektatistics. We rely opassive flow level
and hence the use of such utilities is not always viabl@CP measurements (flow records) collected at a network node
Savage, Cardwell, and Anderson [9] describe a “locality(e.g. router, gateway, server), although it is possible to take an
based approximation for detecting shared paths by lookiagtive approach by sending probing flows into the network.
at the destination addresses of flows. Their approximationkgrthermore, while many other previous methods that infer
based on the assumption that flows destined to a particulasource sharing are limited to determining whether particular
host or network address generally follow the same path, afew classpairs share bottlenecks, our methodology considers
hence visit the same bottleneck in the network. a set of flow classesimultaneously
Harfoush, Bestavros, and Byers [10] use packet-pair probingThis paper is an extended version of [15], which proposes
for determining whether two flows originating from the samasing flow level throughput measurements to infer resource
source share a bottleneck. Their technique is based on corrediaring and presents results based on known, analytical fluid
ing end-to-end packet loss measurements to identify flows tmaodels, and of [16], [17], which describe application of factor
share “similar network conditions”. The main disadvantagenalysis to real TCP data to infer which flow classes share
of their technique is the requirement of cooperating sendeecengested paths. In this paper, we include additional validation
Rubenstein, Kurose, and Towsley [11] develop an end-to-erebults based on part of an extensive set of TCP simulations.
technique based on packet loss or delay observations to infég also discuss the effects of flow sizes on inference results
whether or not two flows are experiencing congestion onkased on our empirical findings.
common set of network resources. Their methodology is basedrhe outline of the rest of the paper is as follows. Section
on the observation that losses or delays experienced by tikdirst provides an insight into the reason why one expects to

time
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| d th h . hari fl flow 1 and flow 2
see correlated throughputs among congestion sharing flows, share available

and then describes methods for constructing a flow class capacity

throughput correlation matrix from flow records. We review J
the basics of factor analysis and discuss its application in UL e cavecityis | | | ﬁ_ _ o
context. Section Ill describes results based on TCP simulati L /\/ available capacity is

Qsﬂ&:ated to flow 1 -
: i ~all to flow 2
and demonstrates the effectiveness of our methods. Section IV dlocated o flow

analyzes real TCP data to make inferences and presents a boot- 1 time
strap method to obtain confidence intervals on parameters of flow 1 _

interest for inferring congestion sharing. Section V concludes flow 2 | |

the paper.

Fig. 2. Sharing of instantaneous available resource capacity by two

temporally overlapping flows. The length of the rectangle corresponds to the

flow's duration. In this particular example, both flows have similar packet
IIl. METHODS round trip times and packet loss rates, and the instantaneous bandwidth sharing

. . . is roughly fair during the time period over which they overlap.
In this section, we describe how to process flow records in

order to capture correlations among measured flow through-

puts. The size, start and end times of a flgvare available

from its record and are denoted by, s, ande, respectively. where{Z(i)} ~ N(0,0%), |a| < 1, and Z(i) is uncorrelated
We define thehroughputor perceived throughptitfor a flow  with B(j) for eachj < i 4. For now, let us assume that
as the amount of data it carries (in bits) divided by the durati@amd e; are discrete times as well. A given floy carries an
of the flow (in seconds). A key premise of this section is th@mount of data equal to

elastic flows that are overlapping long enough on the same

congested resource tend to have positively correlated perceived s _
throughputs. Vi =Y B
’i:Sf
A. Model for Congestion at a Bottleneck In the discrete-time AR(1) model, the duration of a flgv

First f lize th ist f lation bet is given byd; = ey — s; + 1. For simplicity, consider two

Irst, \évih ormﬁuz:ta fet exis en"ce 0 lcorrg a 'O? t? \ﬁe ws f1 and f, with given start and end times, and suppose
perceved fhroughputs of temporatly overiapping elastic TowR, sf, = 0 andsy, < sy, without loss of generality. The
that share a congested resource. We then investigate the e CIv8

of the flow durations on the correlation. eived throughputs of these flows are

It has been shown that TCP flows that are operating in e . €fa ;
additive-increase multiplicative-decrease mode of congesti | = MJF Wi and Yy, = Zj:sfz BG) + Wf27
control share the capacity of a bottleneck link roughly fairly dy, dy, dy dg,
when the flows have similar round-trip times and packet loss )
rates [18], [21], [22]. As an example, Fig. 2 illustrates how tw¥here Wy, Wy, ~ N(0, ‘T%V) are included to model the
temporally overlapping TCP flows share available bottlenecROiSY” throughputs perceived by short flows, and are inde-
capacity in an idealized model. However, in general, TCReNdent of each othe{.B(i)}, and {Z(i)}. In this context,
flows take some time to discover the congestion state, or fen0isy” throughput means that the throughput perceived by
available capacity, of the network, and especially, very sm&|short flow is not a typical one for the class to which the
flows (due to TCP’s Slow Start) may not have an opportuniﬂPW belongs due to its inability to dlscover_the congestion
to “learn” the capacity available to them during their sojourrptate of the network. For flows with long sojourn times, the
As a consequence, the throughput perceived by short floWrise” terms become negligible. The autocorrela2t|o}|? function

will not reflect the congestion state of the network during thegf {B(;)} is denoted byy(h), and is equal to 924 > for
j -«
sojourrt. h > 0. The correlation betweel;, andYy, is

2

We consider a simple model of congestion level seen by a
flow3: {B(4)} is a first-order autoregressive (AR(1)) process ) ef efy
[23] that represents the instantaneous bandwidth (or capacityorr(v;,,v;,) = —————— P 1
: 10 Yy (5 =), (@)
available to each flow at the bottlenedi3 (i)}, whose mean v dy df,0v; 0vy, ; j_zs:h

is denoted by, is then defined by

) ) ) whereoy, andoy,, are the standard deviations of through-
B(i) = pp = a(B(i = 1) = pp) + Z(i), puts of f; and f,, respectively. We note that the correlation
in (1) does not change even in the case of unequal sharing of
1other authors refer to perceived throughput as realized throughput [18],
file transfer throughput [19], or flow rate [20].
2We also note that throughput of a flow is limited by the sizes of sender's4For similar approaches to modeling available bandwidth at a bottleneck,
and receiver's buffers. In that case, sender's or receiver's buffer is thefer to [24] and [25]. Note that in our AR(1) model, available bandwidth can
bottleneck for that flow. become negative. However, we introduce this simple model only to provide
3We assume that the congestion process is roughly independent of the flaw;insight into the nature of flow throughput correlations without attempting
i.e., the flow makes only a small contribution to the overall congestion. an exact traffic model in any way.
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Fig. 3. The effect of flow duration and temporal overlap on the correlatidfig. 4. The effect of flow duration and temporal overlap on the correlation
in (1) between throughputs gfi and f» that share a congested resource. The (1) between throughputs gf and f5 that share a congested resource. The
correlation values shown are f0r2W = 0. Flow 1 starts at time 0 and ends correlation values shown are fo12W = 0. Flow 1 starts at time 0 and ends
at time 20. at time 30.

bottleneck capacify amounts of temporal overlap to result in high throughput cor-
The standard deviation of the throughputfofvith s; =0  relations. However, note that the occurrences of such samples
is given by are rare since the Internet is currently dominated by short flows
[27], [28], [29]. Furthermore, throughput samples associated
1 [e e with long flows overlapping with short flows will give a lower
oy; =/ CowYy, Yy) = el ZZV(U — i)+ 03, | . value for throughput correlation. On the other hand, throughput
f \i=0 j=0 samples associated with short flows are noisy, and will not

(2) exhibit high throughput correlation. Therefore, leaving out
From (2), one can conclude that perceived throughputs lofig and very short flows may be desirable when estimating
long flows have smaller standard deviation than those of shtiftoughput correlations that are due to congestion sharing.
flows sinced? dominates [26]. These results agree with th8ince flows with long durations will typically be large (in
observations reported for the perceived throughputs of smaitef, we study the effect of different size thresholds to filter
and large flows in [18] and [22]. out large flows, and similarly, consider the impact of different
In order to illustrate the behavior of (1) with different flowsize thresholds for omitting small flows. Unlike the duration
durations and different amounts of temporal overlap betweeh a flow, the size of a flow is invariant regardless of the
the two flows, we setv = 0.5, 0% =1, and ggv = 0 (no capacity of links. Hence, flow size is the proper flow attribute
noise), and in Figs. 3 and 4, we exhibit the correlation &8 consider for filtering out flows.
a function of s;, for different ds, values wheney, = 20
andey, = 30. Based on the AR(1) model, we can draw the
conclusion that the correlation between perceived throughp®gs Flow Class Throughput
of congestion sharing elastic flows is largely determined by
the amount of temporal overlap between flows relative to theFrom the record of a flowf, its perceived throughput is
(product of) durations and standard deviations of flows. Ti§etermined byy; = vs/dy, wheredy = ey — sy and, for now,
throughput correlation is high when the two flows temporallgs > ;- Let us denote the set of flow records By Each flow
overlap, and then decreases with increasing (i.e. as the [ € F belongs to a flow class € C. The function¢ : 7 — C
amount of overlap decreases). Furthermore, the correlat@$sociates a flow with a flow class. We JBt(n) = {f € F :
between overlapping flows decreases as the duration of tef) = ¢ ands; < nAt and(n — 1)At < ey} denote the
first flow is increased (see Fig. 4). set of flows that belong to clagsand areactive at discrete
As a consequence, for a set of flow records, we expétbe n (of length At). Recall that a flow class is defined as

throughput samples associated with long flows that have la@éollection of flows that have common attributes, and hence
there can be more than one flow from a given class at a given

5Unequal sharing can occur in practice when TCP flows have differemne' As such, we define t”erQUthm of a flow class € C
round-trip times [18], [22]. In such cases, bottleneck capacity will be shar@&s an average over the flows in that class (class average) that
in proportion to weights that are inversely proportional to associated round-
trip times. For instance, instantaneous bandwidths available for ffovend
f2 could bew; B(7) andws B(%) respectively, wherev; andws are weights. 6Based on the processor sharing approximation of TCP bandwidth sharing
However, it is straightforward to show that the correlation betwEgnand at a bottleneck, we assume that the flows of different sizes experience the
Yy, is insensitive tow; andws. same slowdown.
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are active at a discrete time at a measurement point: taking the largestn eigenvalues, and by approximatil®) as
1 . R ~ AAT+ @
T yr, if [Fe(n)| >0,
oy = L T 2 - Y Y wi
0, otherwise. X (VA€ V AmE) T
1[,1 0o --- 0
: . 0 % -+ 0
C. Factor Analysis of the Flow Class Throughput Correlation + S, (6)
Matrix D :
We will assume that{y.(n)} is a realization of the er- 0 0 -
godic random process of the throughput of flow class ¢4 thatf\fl + A% +ot Agm Ly = Ef + )y = 1 for
Let fy denote the joint pdf of the random vectolY = ; _ 1, whereh? is called thecommunality and); is
(Yey, Yey, .., Ye, )7, of flow class throughputs fop flow cqjied thespecific variance The communality represents the

classes at stationarity; i.€Y, ~ fy. Itis possible that., =0  portion of the normalized variance of* that is accounted by

foranyi =1,.. o> 1.€., NO flqw from classg-. Is active. Since ye ., common factors, while); reflects the portion of the
we are eventually interested in the correlation structure among:malized variance due to a factor that is uniqué’ta
class throughputs at times when they are simultaneously active

(or when flows overlap), we next defie= {Y., > 0,Vc¢; € .
C}. Also, define a random vector of flow class throughpufd- Selection of the Number of Factors and Explanatory Power

conditioned or€, Y* = (Y, Y,...,Y)", with ajoint pdf  When using the principal component method to “factor” the
fyje, -6, Y* ~ fye. Denote the mean vector f * by correlation matrixvithout any assumptions on the distribution
My = (fheys Hegs - - - s Mc,,)T- of variables there are only ad hoc heuristics for determining

The idea underlying factor analysis is to consider a refhe sufficiency of the number of factors in the model. In
resentation for g-element random vectolY* in our case, exploratory studies, one common approach to determine
in terms of a random vector of. (m < p) commonfactors is proposed by Kaiser [31]. Kaiser's rule proposes selecting
F = (F\,F,,...,F,)T, and a random vector gf unique factors whose variances ) are greater than 1. The intuition
factorsU = (U.,,U.,,...,U.,)". We assume that centerecbehind this rule is that a factor that has a variance less than 1
and normalizedY* can be expressed as contains less information than a (normalized) original variable

does. The number of factors used in the model needs to
D(Y* - py.)=AF+ U, (4) account for a “reasonable” proportion of total variance (a
o _ _ measure of overall variability), which is given by the trace of
where A denotes a deterministig x m loading matrix and the correlation matrixz). If the proportion of total variance
Dispxp dlagoqal matrix consisting of the remprocal%aptured by the common factors— S7_, 4 /p, is “high”,
of standard deviations of elements &f*. The following ihen we say that the factors have a stremglanatory power

additional assumjptions are usually made [3B[F] = 0, QOyr experiments with simulation data suggest that Kaisers
Cov(F) = E[FFjl = I (orthogonal factors)E[U] = 0, ryle generally retains fewer factors than expected. Therefore,
Cov(U) = E[UU"] = ¥ = diag[¢y,...,v,) (a diagonal e selectm based on the number of eigenvalues that are

matrix), and CovU,F) = 0. The assumption tha® is greater than 0.9. In contrast, we have found that Kaiser’s rule
diagonal means that all covariances among class throughp@@duces good results with real TCP data with the following

are accounted by the factors. Then, using (4), one can Wiiiggification: We select: based on the number of eigenvalues

the correlation matribR of Y*: whose confidence intervals contain 1 or lie above 1.

R = Corr(Y*) = AAT + ¥, (5)
E. Interpretation of Factor Loadings

The elements of the loading matri, A;;, capture the degree  For our application, the factors represent shared congested
of correlation exhibited between a given factor (correspondingsources that cause variation in class throughputs. Among
column in A) and variable (corresponding row ift). Esti- the |oadings for a given class;, i.e., A;1, Ao, ..., Aim,
matesA and ¥ for A and ¥ can be determined by usingthe |oading(s) with the largest magnitude(s) are treated as
the principal component methods follows (see [30] for more sjgnificant loadings. The flow classes that have the largest
details). First, the (positive definite) correlation matrix in (Sading (in magnitude) on a common factor are identified

is expressed as as classes that are likely to share a congested resource in
T T T the network: Most of the variations in the throughput for
R =M&& + 2268 +.. + 168, those classes are accounted by a common factor or congested
resource.

where (\;,§;) are the eigenvalue-eigenvector pairs such tha

M > A= ...> A > 0. A and ¥ can be determined by Note that the loading matrix is determined only up to an

orthogonal rotation matriX". If A* = AT, then

A random vector is a vector whose elements are random variables. R=AANT+ & = ATTTAT + & = AAT + .
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Factor 1 Factor 2 TABLE |

KEY PARAMETERS
Aj, Class 1
A%y Class2 ) Number of flow classes

¥ _ * * Peicy Correlation between throughputs of and c;
A= Ady Class3 m Number of shared congested resources (factors)
Az Class 4 Aij Correlation between throughput of and resource

v, Specific variance of throughput ef

AL Class5 i ith eigenvalue olR.

1—>% | +i/p | Explanatory power ofn factors
L Squared error loss

Fig. 5. An example (rotated) loading matrix. Suppose that there are 5 flow
classes, and we have identified 2 common factors and boxed the factor loading
with the largest magnitude in each row. We can then infer that classes 1, . . . .
5 share one congested resource (Factor 1), and 3 & 4 share another (F orEStlmanon of the Correlation Matrix

2). One drawback of the development until this point is that all
of the flows must be active at a given time to contribute an
observation of random vectd&* when we estimate first- and

Throughout this paper, we apply a rotation to the loadirgpcond-order statistics of flow class throughputs. Therefore,

matrix to obtain a better description of the factors by usinghen there are only a few flows belonging to a flow class

a common method in factor analysis callegrimax rotation under consideration, only a few class throughput observations

[30]. Varimax rotation attempts to find a rotation maffbsuch are available for statistical analysis. To address this problem,

that the squares of the loadings on each factor are as spremdestimate theslementsof the correlation matrix of flow

out as possible. More specificalll, is chosen to maximize class throughputs using separate bivariate analyses: In order

9 to estimate an element (a correlation) of the matrix, we use
LA w1 P o the class throughput observations at times when the flow class
Z Afie — P ZAjk . pair is active. Such an element-wise approach is employed in
k=1 | j=1 j=1

multivariate statistics when there are “missing values” for one

This criterion tends to drive squared loadings towards eith@f more variables in a significant number of observation vec-
zero or one, away from intermediate values. Hence, decidiljS (see for example, [30] and [32]). We adopt this approach
which loadings are significant is easier with*. Fig. 5 to compute correlations since there are a lot of sampling

illustrates howA* can be interpreted to identify congestiodnStants when not all of the variables can be manipulated
sharing flow classes. simultaneously: Instead of having missing values, simply, no

flow from a given flow class is active at that instant. Since
the correlation matrix constructed in this way may not always
be positive definite, the matrix can be adjusted to make it
In addition to explanatory power which exhibits the abilityyysitive definite. For example, as proposed in [33], a constant
of the factors to account for the variance in data, we nee()ﬁ‘aay be added to the non-positive eigenvalue®Rofo make
metric to assess the efficacy of factor loadingdistinguishing  them positive.

which factors have the most effect on throughputs, and toaccordingly, we develop the following conditional sam-
investigate various flow filtering schemes to improve the abilityjing strategy: Define the ever(n, ¢ir¢;) = {ye,(n) >

to infer congestion sharing in controlled simulations (in whic andy,, (n) > 0, for ¢;,¢; € C}; i.e. both classes; and

we know the topology). We defingquared error lossas c; are active at (discretized) time. Let N (T, ¢;,c;) be the

. pm A number of discrete times over which both flow classgs
L:=||A° —abgA)|> =D "> (A% —[Ay])%,  (7) andc; are active, wherd® denotes the measurement period.

F. Squared error loss

i=1j=1 Pairwise mean and variance are given by
where A?j = 1 if the flow classc; shares the factof, and 1 T
AY; = 0 otherwise, which correspond to “ideal” loadings in Peje; = lim ———— Zyc () 1p(n,ei,e5)s
e _ T—oo N(T,¢;,¢5) 4=

a matrix AY. When there is only one factorn(= 1), we set n=1
A% = 1 for all . The notation| - || denotes the Euclidian T
norm, and for a matrix, it is given by the square root of the: . 1 2

! ' = lim ——— (n) — pe, 1 )y
sum of squares of each element in the matrix. The functiofi*  T—oo N(T,¢;,c;) ;(%( )~ Heva) " Lpineney)

abs() returns a matrix whose elements are the absolute ValL\J/vSerelE is the standard indicator function, and is equal to 1

of the corresponding elements in the Input matrix. Note .thﬁ‘tp is true and 0, otherwise. The correlation of throughputs
squared error loss penalizes large deviations from the Id%{flﬂow classes; andc; is given by
i J

more than small deviations.

8|f comparisonsacrossdifferent bottleneck configurations (different number Peic; =
of classes and different number of congested resources) are desired, one can T (yc, (n) — le, c~)(yc ) (n) — Ue, C_) 1P(n o
lim z : % 19C; J RN 1Ciy

T—oo

<) (8)

divide squared error loss by x m, the number of elements in the loading
matrix. el N(T,ci, Cj)CTc,-,c,- Ocjci
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Hence, a correlation matrix can be approximated using corre-
lations (from separate bivariate analyses) between variables:

R%(pCLCJ)) i’j:17"'7p7 (9)

where p.,., is given by (8) (andp.,., = 1). Also, in Table
I, we tabulate the key parameters used to infer congestion
sharing for easy reference.

H. Bootstrap Methods

Since the distribution of real throughput data is unknown,
we resort to thebootstrapmethod [34] to compute the bias-
corrected and accelerated (B&onfidence intervals whenever
we wish to assess the statistical accuracy of eigenvalues
and factor loadings, which are key parameters for making I A router
congestion sharing inferences. The bootstrap is a computer-
based method that depends msamplinga given set of data
consisting of N samplesB times. A bootstrap sample is a
random sample of siz& drawn with replacement from the
original sample. Corresponding to each bootstrap replication,
an estimate for the parameter of interésth) is computed for actual network, while overprovisioned links are not included
b=1,..., B. One can then use the independent replications igf the tree.

0 to obtain confidence intervals. The B€onfidence intervals ~ Consider the tree topology shown in Fig. 6. Users download
are very close to the exact intervals éf The recommended files from a server using the File Transfer Protocol (FTP).
number of replications required for computing the B&nfi- Access links are denoted by Al, A2, and A3, and the link
dence intervals is at least 1000 [34]. A detailed discussion @dnnecting the FTP server to the network is denoted by S1.

Q 10 Mbps local area network with 10 workstations

Fig. 6. Tree topology used in OPNET TCP simulations.

bootstrap methods can be found in [34]. Seven classes of flows are defined according to their local
subnet addresses. Each subnet is a 10 Mbps local area network
1. TCP SIMULATIONS that has 10 workstations.

: . In order to be able to capture the throughput correlation
In this section, we present results based on part of Bltween flow classes successfully, we consider the effect of
extensive set of OPNET Modeler [35] simulations. The pri: Y,

: . o . : low sizes on correlation estimates. The results in Section
mary aim of this section is to validate the methods introduc

. . . . ) . -A suggested that removing small and large flows from
in Section I for identifying congestion sharing flow classeﬁow records under consideration might improve our ability
in a controlled environment in which the routes from th(?

L . r itive through rrelation amon mporall
sources to destinations are known exactly. The effectlveness%fc aptu.e positive t. oug pgt correlation among temporally
overlapping, congestion sharing flows.

factor analytic methods in identifying such flow classes underIn the subseauent discussion. we will analvze the effect
different traffic conditions and different network configurations q ' y

. of retaining flows satisfying the following size conditions:
's evaluated. € F:uv > 4KB}, {f € F : v; > 8KB}
Each simulation in this section corresponds to 2 hours %f - v ’ - ;

. . ) € F v <16 KB}, {f € F: v < 32KB}, and
file download activity. That is, the measurement periods w € F:4 < v; < 32 KB}. We refer to the results based on

2 hours when computing the correlation in (8). The Iengtthe entire set of flows (without filtering) as the “original”. Note

of the d|scrgte mFervaAf (see Section II-B) is chose_n as ]Ihat these thresholds are not intended for establishing criteria
second. During simulations, we record the request time, si¢

(in bytes) and duration (in seconds) of each file transfer. Fi 4 selecting or defiping large or small flows in the Interqet.
transfer requests arrive according to a Poisson distribution, an%th(.ar’ our focus will be on analyzing the effect of removing
file sizes are selected from a lognormal distribution [27], [Zsiertaln_smed flows on flow class throughput correlathns.
[29] with a mean file size of 16 kB and a standard deviation 1) Smgl_e bottl_enegk: Effect of background_ trafftbonm_oler
of 131 kB. On each bottleneck link, we include backgroun e case in which link S1 (1.544 Mbps) in Fig. 6 is the

traffic to model the effects of additional traffic from other uselJQ;.OttleneCk and access links Al, A2, and .A3 are overprovi-
or applications. sioned (44.736 Mbps). The users belonging to classes 1-7

generate a total load of 30% on the bottleneck link and the
bottleneck’s background traffic utilization is varied from 40%
A. Networks with Tree Topologies to 65% to demonstrate the ability to identify this bottleneck
While actual networks rarely look like trees, tree topologiesnder different background traffic conditions.
have been frequently used in studies that infer which flowsUsing the modified Kaiser’s rule described in Section II-
share congested resources. Trees may provide a good absawe correctly determine that there is one significant factor
tion for logical topologies. For example, each tree branch céor each utilization factor considered. Fig. 7 shows that the
represent a link that may potentially become a bottleneck in tegplanatory power of this single factor increases as congestion
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Percent variance accounted by the first factor (Tree topology with one bottleneck)

increases on the bottleneck. Fig. 8 illustrates that at higher

utilization levels of the bottleneck link, squared error loss is — Original

smaller. Both Figs. 7 and 8 show the effect of filtering out  *[ | 2 Zaie ]
small flows, large flows, and small and large flows simultane- s | & \Solo 1
ously on the percentage of variance accounted by the signifi- | < |
cant factor and on the squared error loss. We see that filtering 7/

out small flows or large flows improves the explanatory power
of the factor and decreases the squared error loss. Note tha
increasing (decreasing) the lower (higher) filtering threshold of = | SV i

% Variance
(2] ~

o o

| |

flow sizes has significant benefits on these measures. Howevel . zf»i/f erf‘/fg
increasing (decreasing) the lower (higher) threshold retains | TR s ° 1
fewer flows and decreases the statistical accuracy of estimates  sof - E - i ST = 1
An important observation is that omittifgpth small and large 45 X : ]
flows simultaneously significantly improves the explanatory "

w0 ‘ ‘ ‘ ‘
power of the factor and decreases the squared error loss 035 0.4 0.45 05 0.5 06 0.65 07

Retaining flows whose sizes are between 4 kB and 32 kB Backaround utlization ofhe botlieneck

is a compromise between reliability of inference for resourggy 7. percent variance under different background traffic conditions on the

sharing and statistical accuracy of estimates. single bottleneck. The total load due to classes 1-7 on S1 is kept at 30%.
2) Single bottleneck: Effect of class loadSonsider again

the case in which link S1 (1.544 Mbps) is the bottleneck

and access links Al, A2, and A3 are overprovisioned (44.736 Squared error loss (Tree topology with one bottleneck)

Mbps). We investigate the ability to identify this bottleneck for ! ‘ ‘ ‘ ‘ = original

different total loads (20%, 30%, 40%) generated by users be- ool — NG

longing to classes 1-7 on the bottleneck link S1. Background | ovasks

traffic utilizes 50% of link S1. - o devedzkB

Using the modified Kaiser’s rule, we successfully determine  °7 Vel B

that there is one significant factor when total class loads on __?o.ef V;

the bottleneck link are greater than or equal to 20%. Fig. 9 £ .| P TR T N

shows that the explanatory power of this factor increases & T VO ONI ,
Z 041 S ¢

as congestion increases on the bottleneck. Fig. 10 illustrates & ™ S
that at higher utilization levels, squared error loss is smaller. o3t
Again, omitting both small and large flows simultaneously | B\@\_g\ﬁ\ﬂ
significantly improves the explanatory power of the factor and
decreases the squared error loss. oLr
3) Single bottleneck: Effect of non-stationary traffigve [ o o o o o o o
also investigate the effect of having non-stationary background Background utilization of the bottleneck
traffic fO.I’ the single bottleneck casg degc_:rlbgd in the preon% 8. Squared error loss under different background traffic conditions on
subsections. The background traffic utilization of the bottlgse single hottieneck. The total load due to classes 1-7 on S1 is kept at 30%.
neck link changes between 60% and 40% every 20 minutes
over the period of 2 hours. Using the modified Kaiser’s rule,
we successfully determine that there is one significant factor
with explanatory power 71%. For this particular scenario, noby each class, respectively. From the generated records, we
stationarity of the network traffic does not seem to affestuccessfully determine that there are three significant factors
determination of resource sharing. Further analysis may tsen loads generated by each class are greater than or equal
required to assess the impact of non-stationarity of netwaidk 10%. Furthermore, we correctly identify which flow classes
traffic on inference results. share congested resources: We find that the throughputs of flow
4) Three bottlenecksConsider the case in which links Al,classes from subnets 1 and 2 have the largest loading with
A2, and A3 (each 1.544 Mbps) are bottlenecks and link S1factor 1, the throughputs of flow classes from subnets 3 and 4
overprovisioned (44.736 Mbps). We investigate the ability toave the largest loading with factor 2, and the throughputs
identify these bottlenecks arassociateeach flow class with of flow classes from subnets 5, 6 and 7 have the largest
a bottleneck for different loads (10%, 15%, 20%) generatéohding with factor 3. These factors are interpreted as the
by eachclass. bottleneck access links Al, A2, and A3, respectively. Fig. 11
The background utilization on A1 and A2 (each servinghows that the explanatory power of the three factors increases
two subnets) is set to 50%. The background utilization axs congestion increases on the bottlenecks. Fig. 12 illustrates
A3 (serving three subnets) is adjusted so as to keep that at higher utilization factors, the factor loadings distinguish
total utilization on each bottleneck (Al, A2, and A3) thevhich factor a flow class is most associated with more easily.
same; i.e., the background utilization on A3 is 40%, 35%\s in the previous cases, omitting both small and large flows
and 30% corresponding to 10%, 15%, and 20% loads offersithultaneously significantly improves the explanatory power




IEEE/ACM TRANSACTIONS ON NETWORKING 9

Percent variance accounted by the first factor (Tree topology with one bottleneck)

80 T T T T T Percent variance accounted by significant factors (Tree topology with 3 bottlenecks)
90 T T T T T
751 B
//g 85 :
70 ol i
—&— Original
65 | -~ v>4 kB B 751 4
© v - v>8kB ~
g —1- v<16 kB JRid o
€ 6o | & v<32kB RS v 1 S 70t 1
> —5— 4<v<32kB - e A <]
X - PAShd 8
B e z= 2 es5f 7
551 02T N b 3
S ST L —— Original i
sol P « | 60 -7 v>4 kB
I g < v>8kB
v o 551 —A- y<16 kB |
a5l J & v<32kB
—&— 4<v<32 kB
50 B
40 | I I I
0.15 0.2 0.25 03 0.35 0.4 0.45 5 ‘ ‘ ‘ ‘ ‘
Total load offered by classes 1-7 on the bottleneck 0.075 0.1 0.125 0.15 0.175 0.2 0.225

Load offered by each class on the corresponding bottleneck

Fig. 9. Percent variance under different total loads from classes 1-7 on the

single bottleneck S1. The utilization of S1 due to background traffic is kepig. 11. Percent variance under different loads offered by each of the classes

at 50%. 1-7 for the three-bottleneck scenario. The total utilization factors of each of
the bottlenecks are the same in each offered load case, and are 70%, 80%,
and 90%, respectively.

Squared eror loss (Tree topology with one bottieneck) Squared error loss (Tree topology with 3 bottlenecks)

1 T T T T T
—&— Original 05 i ' ' ! !
o9k - v>4 kB i —&— Original
. < - v>8 kB 0.45+ -V v>4 kB B
—A- v<16 kB v v>8kB
0.8 A~ v<32 kB B —~ v<16 kB
-5 4<v<32 kB 0.4 & v<32kB 1
0.7r = A i —8- 4<v<32 kB
e 0.35¢ 1
g e
o 0.61 sl > q 2
2 e W 8 o3 1
S S~ =
= ~ ~ N o
2 051 NN i 2
b ~. sl & S 0.25F k!
< ~ ST~ o
2 oat NN ] g .l ]
~ N v g N
03f h 1
v 0.15¢ 4
0.2 b
0.1 4
0.11 b
0.05[ 1
0 . . . . .
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0 L L L . L
Total load offered by classes 1-7 on the bottleneck 0.075 0.1 0.125 0.15 0.175 0.2 0.225

Load offered by each class on the corresponding bottleneck

Fig. 10. Squared error loss under different total loads from classes 1-7 lgla 12
the single bottleneck S1. The utilization of S1 due to background traffic 1s=" ~
kept at 50%.

Squared error loss under different loads offered by each of the
Sasses 1-7 for the three-bottleneck scenario. The total utilization factors of
each of the bottlenecks are the same in each offered load case, and are 70%,
80%, and 90%, respectively.

of the factors and decreases the squared error loss.

Bottleneck 1 Bottleneck 2
B. Interaction of Coupled Flow Classes Subnetl@ mrssmbps e
We also show how factor analysis identifies two coupled 1544 Mbps g 1.544 Mbpsgmy  1.544 Mbps
bottlenecks in an example scenario given in Fig. 13. Users
belonging to subnet 1 (class 1) download files from servmmz@ 44736Mbps  1OMPPS % 4736 Mbps
1, users belonging to subnet 2 (class 2) download files from Sarver 2 '/ Subnet3

server 2, and users belonging to subnet 3 (class 3) download
files from server 3. Class 1 offers a load of 20% on the
bottleneck link 1 and 2. Class 2 offers a load of 40% on O 10 Mbpslocal area network with 10 workstations
the bottleneck link 1. Class 3 offers a load of 40% on the
bottleneck link 2. The load due to background traffic on the l A router
bottlenecks 1 and 2 is set to 20%.
After filtering out flows whose sizes are smaller than #ig. 13. Linear network topology with coupled bottleneck links used in
kB or greater than 32 kB, we find that there are two signif2PNET TCP simulations.
icant factors. Then, we estimate factor loadings of four class
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TABLE I
DESCRIPTION OFNETFLOW DATASETS COLLECTED ATUT AUSTIN’S
BORDER ROUTER

assume that the packets from a given TCP flow follow the
same routé Such assumptions, although idealized, are not
completely unrealistic for our one-hour long flow measure-
ments.

Date Period TCP records
Dataset2002| 11/6/2002 | 12:58 PM - 2:07 PM| 5,173,385
Dataset2004| 1/21/2004 | 12:58 PM - 1:26 PM| 4,440,697

B. Methodology

throughputs based on two significant factors. We first estimateln NetFlow records, the start time of a flow is the time of
factor loadings and specific factors based on (6), and then @gval of the first packet in the flow, and the end time is the

varimax rotation [30] onA: time of arrival of the last packet in the flow. Since the time
between the first and the last packet is zero, flow throughput
A 0.5011 [0.7272 is not defined for flows consisting of one packet. Hence, one-

A= 0.9570 —-0.0041 |, packet flows will be omitted. From the premises of Section

—0.1143 10.9214 lI-A that are validated by performed simulations in Section

11, we filter out all flow records whose sizes are smaller than
one threshold or larger than another threshold in order to better
T = diag(0.2200,0.0841,0.1380) . capture the throughput correlations among flow classes. Based
on empirical investigations and datasets at hand, we select
The explanatory power of the two factors is 85%. From thg filter out flows whose sizes are less than 8 kB or greater
results, one can see that the throughputs of classes 2 g{h 64 kB. The choices for these thresholds are based on
3 are captured by only one factor, i.e. the bottleneck linkome practical, empirical considerations: For example, Estan
that each traverses. For class 1, one can argue that baly varghese [7] define “small” flows as those that send less
loadings are significant, and hence the throughputs of clagan 0.1% of the link capacity during a given measurement
1 can be explained by two factors, i.e. the two bottlenecks thgeryal, say 1 second. For instance, for a (bottleneck) OC-1
flows belonging to class 1 visit. This example scenario Sho‘/{@ptical carrier level 1) link of 51.84 Mbps, a small flow will
the effectiveness of factor analysis in identifyimultiple pe one that transports less than 7 kB. When choosing the upper

(significant loadings boxed) and

bottlenecks in a linear network. threshold value for filtering out flows, we took into account the
measurement studies that find that 50 kB Web objects (carried
IV. ANALYSIS OF ACTUAL TCP H.OwW RECORDS by TCP) are becoming common in the Internet [37]. Therefore,

In this section, we apply factor analysis to TCP flow clas¥e can consider a flow whose size is larger than 64 kB as
throughput correlation matrices that are constructed usirlgrge”. In addition, in the Internet, packets belonging to flows
actual TCP flow records collected by networking equipmer{hat consist of only a few packets can sometimes arrive back to
With actual TCP flow measurements, a validation of theack (or with a very small inter-packet spacing). In this case,
inferences of flow classes sharing congestion is extremdlys unreasonable to assume that such large flow throughputs
hard, if not impossible, since routing information about aftre typical for that flow class [20]. Hence, we will also omit
the domains that flows visit and the congestion status of tAl flows whose durations are shorter than one setbnd
servers that provide the incoming traffic are not available. We choose to analyze incoming traffic (flow records with
However, bootstrap confidence intervals can be used to demseurce IP addresses) associated with AOL and HotMail, since
strate the statistical accuracy of the inferences. one can reasonably expect that traffic belonging to these
content providers potentially experience congestion at their
— source due to high demand for their content. We define two
A. Description of Datasets flow classes for traffic from each provider: AOL1 and AOL2

We use NetFlow [4] records collected at the border router gfjass 1 and class 2) from AOL, and HotMaill and HotMail2
The University of Texas at Austin (UT Austin) on Novembeciass 3 and class 4) from Microsoft Corporation. Assignment
6, 2002, between 12:58 PM and 2:07 PM CST, and on Janu@fiows into AOL1 or AOL2 (and similarly for HotMaill and
21, 2004, between 12:58 PM and 1:26 PM CST. The recorggiail2) is performed by randomly splitting all flows from
that are collected in 2002 are referred to as Dataset2002, i} (and HotMail) into two sets. The cumulative distribution
those that are collected in 2004 are referred to as DataSet2QQ4ctions in Figs. 14 and 15 provide some insight into the
Dataset2002 consists of 5,173,385 TCP flow records out gy size distributions of the chosen flows from the datasets.
a total of 5,866,602 flow records. Dataset2004 consists Qbte that the measurement perigdused in computing the
4,440,697 TCP flow records out of a total of 6,556,674 flowqrelation in (8) is 69 minutes for Dataset2002 and 28 minutes
records. The records contain both the incoming and outgoiRg pataset2004. The length of the discrete interddl (see
traffic from UT Austin. The IP addresses belonging to UT

Austin were made anonymous to protect privacy. Table II
9This assumption is supported by the empirical measurements in [36].

summarizes these datasets. 10 . . ) .
Wi that h iod. fl | th Flows can also be categorized according to their duration. Brownlee
€ assume that over a one-hour period, flow class rOUgJHa Claffy [37] term flows whose durations are less than 2 seconds as

puts can be modeled as stationary processes. Furthermore:dngonflies”.
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Dataset2002 TABLE IlI
: MEAN OF BOOTSTRAP REPLICATIONS ANDO5% CONFIDENCE INTERVALS

[N

4
©
T

FOR EIGENVALUES OFR BASED ON DATASET2002.

o
®
T

e
3
T

Eigenvalue| Mean | Interval estimate
1.7274 (1.5457, 1.7900)
1.1562 | (1.0861, 1.3206)
A3 0.8344 | (0.7058, 0.9150)
A4 0.2785 | (0.2194, 0.4458)

o

o

>
it

o
=
T

Cumulative distribution function
)
o
>
¥}

o Fd
N
T T

o
P
T

]

0 1 2 3 4 5 6 7 TABLE IV

log(size in kB)

)

MEAN OF BOOTSTRAP REPLICATIONS ANDO5% CONFIDENCE INTERVALS

Fig. 14. Cumulative distribution function of flow sizes in kB under FOR EIGENVALUES OFR BASED ON DATASET2004.

consideration from Dataset 2002.

Dataset2004
1 T T

] Eigenvalue| Mean | Interval estimate

osf ] N 1.4287 | (1.3646, 1.4786)
el N ] A2 1.0780 | (1.0237, 1.1603)
— | As 0.9094 | (0.8230, 0.9690)

=3
3
>
'S

0.5856 | (0.5413, 0.6379)

o4
e
T

e
=
T

A. For DataSet2002,

Cumulative distribution function
o
o

o
w
T

0.7933  0.0711
. _ | [0.7289 -0.1315
L N | —0.0842 [0.9088

0.0501 |0.9240

Fig. 15. Cumulative distribution function of flow sizes in kB under/_: . . -e .
cogrlwsideration from Dataset 2004. (Slgnlflcant Ioadmgs boxed) and

U= diag(0.3656,0.4514,0.1669,0.1437) .
For Dataset2004,

Section 1I-B) is chosen as 1 secdhd
0.8378 —0.0451

A 0.8411  0.0044
0.0200 [-0.7415
0.0260 [-0.7351]

First, we describe how to choose the number of significagdignificant loadings boxed) and
factors. We estimate 95% BCconfidence intervals for four . )
eigenvalues of the class throughput correlation maRixn W = diag(0.2961,0.2926, 0.4497, 0.4589) .

(9). The results are shown in Table Il for Dataset2002, and Next, 95% BG, confidence intervals for absolute values of
in Table IV for Dataset2004. eight rotated factor loadings are computed. When computing
Once the confidence intervals for the eigenvalues are esionfidence intervals for factor loadings, one needs to take into
mated, the modified Kaiser's rule for real data can be usadcount sign reversals of loadings and changes in the order of
to choose the significant eigenvalues: the eigenvalues whégetors across bootstrap samples [38]. As such, we compute
confidence intervals lie below 1 are designatethaggnificant  the confidence intervals of the absolute values of loadings. We
Therefore, from Tables Ill and IV, there are two significantearrange the order of factors if such reordering results in a
factors; i.e., four classes share two different network infrasma||er||[\* A*(b)||, where A* is estimated using (6) and
tructures. The explanatory power of the two factors is 72% iarimax rotation, and\*(b) is the estimate foA* using the
the case of Dataset2002 and 63% in the case of Dataset2Q4 bootstrap replication. The results are given in Table V for
After establishing the number of significant factors, w®ataSet2002 and in Table VI for DataSet2004.
estimate factor loadings of four class throughputs based orBy inspecting the significant loadings on the loading matrix,
two significant factors. We first estimate factor loadings anwle can conclude that classes 1 and 2 (flows belonging to
specific factors based on (6), and then use varimax rotation QL) share factor 1, and classes 3 and 4 (flows belonging
to HotMail) share factor 2 with 95% confidence. In this case,
e find that using finer scale intervals does not affect the reported resufa(:tor L woulld be interpreted as the networking infrastructure
lagelongmg to AOL, and factor 2 would be the networking

Using intervals that are longer than 1 second will reduce the number
samples of flow class throughputs, thereby producing less accurate resulifrastructure belonging to Microsoft Corporation.

C. Statistical Accuracy of Inferences
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TABLE V

12

UT Austin’s border router.

MEAN OF BOOTSTRAP REPLICATIONS AN®5% CONFIDENCE INTERVALS
FOR FACTOR LOADINGS BASED ONDATASET2002.

Loading | Mean | Interval estimate
[AT,[ | 0.7944 | (0.7567, 0.8252) [
|A%,] | 0.0761| (0.0036, 0.1688)
|A5;| | 0.7250| (0.6360, 0.7884) .
IAZ,| | 0.1331| (0.0235, 0.2401) [3]
IA%| | 0.0836| (0.0241, 0.1436) (3
|AZ,] | 0.9110| (0.8564, 0.9362)
|A%| | 0.0535| (0.0042, 0.1294) [4]
|AZ,| | 0.9250 | (0.8806, 0.9483) {2}
[7]
TABLE VI
MEAN OF BOOTSTRAP REPLICATIONS ANDO5% CONFIDENCE INTERVALS [8]
FOR FACTOR LOADINGS BASED ONDATASET2004.
Loading | Mean | Interval estimate [l
[AT,] | 0.8370| (0.8223, 0.8544)
|A%,] | 0.0478 | (0.0034, 0.1312) [10]
|A5;| | 0.8402| (0.8254, 0.8580)
|A3,] | 0.0303 | (0.0000, 0.1296)
|A%| | 0.0458| (0.0000, 0.0731) [11]
|AZ,] | 0.7395| (0.6314, 0.7879)
|AX]] | 0.0512 | (0.0004, 0.0969)
|A%,| | 0.7316 ] (0.6207, 0.7737) [12]
D. Discussion of results [13]

The potential power of this inference technique in root cause
analysis may be illustrated by considering the results in Tablgs]
V and VI. For example, suppose that the users belonging to
classes AOL1 and AOL2 at UT Austin were experiencingg
poor performance (excessive download times). Treating the
external network as a “black box” (i.e., no knowledge about
the utilization factors of access links or routing informatio
of outside network), network managers could infer that poor
performance was not due to the access links connecting UTl
Austin to the Internet, because the flow classes did not have
one common factor that would indicate a bottleneck shargd;
by all classes. The network managers could then hypothesize
that the cause for poor performance was either at the contﬁg}
provider’s server or a corresponding bottleneck link visited by
pairs of flow classes (1 & 2 and 3 & 4) in the Internet.

[20]
V. CONCLUSION

Our proposed approach for inferring congestion sharing
based on flow records can serve as a tool for network monitgyry)
ing and root cause analysis of poor performance, and differs
drastically from the packet based methodologies employed 52
far to infer network-internal characteristics. We believe that the
use of factor analysis in analyzing network behavior is a novel
idea. A distinctive feature of our work is the consideratiol[z%g]
of the correlation structure of conditionally sampled rando
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