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Abstract— Internet traffic primarily consists of packets from
elastic flows, i.e. Web transfers, file transfers, and e-mail, whose
transmissions are mediated via the Transmission Control Protocol
(TCP). In this paper, we develop a methodology to process TCP
flow measurements in order to analyze throughput correlations
among TCP flow classes that can be used to infer congestion
sharing in the Internet. The primary contributions of this paper
are: (1) development of a technique for processing flow records
suitable for inferring congested resource sharing, (2) evaluation
of the use of factor analysis on processed flow records to explore
which TCP flow classes might share congested resources, and (3)
validation of our inference methodology using bootstrap methods
and non-intrusive, flow level measurements collected at a single
network site. Our proposal for using flow level measurements
to infer congestion sharing differs significantly from previous
research that has employed packet level measurements for
making inferences. Possible applications of our method include
network monitoring and root cause analysis of poor performance.

Index Terms— Factor analysis, inference of congestion sharing,
network measurement.

I. I NTRODUCTION

ROOT cause analysis of poor network performance using
voluminous amounts of measurements collected by net-

work monitoring tools and devices is a challenging problem for
network engineers and researchers. Poor network performance,
such as excessive delays during file downloads, is often due
to a congested resource such as an overloaded server, an
overutilized customer access link, or a backbone router that is
congested as a result of link failure or misconfigured routing
in carrier’s network.

Determining which network flows are sharing congested re-
sources might be the first step in analyzing and eliminating the
causes of poor network performance. For instance, information
on congestion sharing might be used by content providers to

Manuscript received February 29, 2004; revised March 2, 2005; revised
November 2, 2005; approved byIEEE/ACM TRANSACTIONS ON NET-
WORKING Editor J. Byers. This work was supported by The State of Texas
Advanced Technology Program under project 003658-0614-2001, and in part
by the National Science Foundation under Grant No. CNS-0435307.

D. Arifler is with the Department of Computer Engineering,
Eastern Mediterranean University, Famagusta, North Cyprus (e-mail:
dogu.arifler@emu.edu.tr). When this research was performed, he was with
the Department of Electrical and Computer Engineering, The University of
Texas at Austin, Austin, TX 78712-0240 USA.

G. de Veciana is with the Department of Electrical and Computer Engineer-
ing, The University of Texas at Austin, Austin, TX 78712-0240 USA (e-mail:
gustavo@ece.utexas.edu).

B. L. Evans is with the Department of Electrical and Computer Engineering,
The University of Texas at Austin, Austin, TX 78712-0240 USA (e-mail:
bevans@ece.utexas.edu).

replicate content at other locations to reduce the load on the
congested portions of the network, and by service providers to
diagnose problems and direct traffic sharing a bottleneck onto
disjoint routes. However, deciding which network flows are
sharing congested resources in the Internet is usually difficult
without access to the complete routing information for the
network. In general, network managers have information only
about their network domain, and have little or no information
about the properties of the other domains.

A significant portion of the Internet Protocol (IP) traffic
consists of packets fromelastic flows[1] or “document” traffic,
i.e. Web transfers, file transfers, and e-mail, whose transfers
are mediated via Transmission Control Protocol (TCP) (see
for example, [2]). In this paper, we describe the application
of a statistical method calledfactor analysisthat can be used
to analyze voluminous amounts of flow level TCP network
traffic measurements collected at a single measurement site
to infer which classes of TCP flows are sharing congested
resources. We develop a conditional sampling strategy on
the time series offlow class throughputdata. Our sampling
strategy generates samples that are used in the construction
of the flow class throughput correlation matrix that is suitable
for inferring congested resource sharing. We show that the
correlation structure of flow class throughputs obtained by
flow level measurements for a number of TCP flow classes
can often be captured by a fewer number oflatent factors. The
latent factors represent congested resources and can be used to
infer which flow classes are sharing resources in the network.
We also empirically investigate the effect of filtering out small
and large flows on our inferences of congestion sharing. Our
methodology is validated using two sets of TCP measurements
collected at a border router. The statistical accuracy of the
inferences is assessed using bootstrap confidence intervals.

A. Flows, Flow Records, and Flow Classes

Since network flows are of main interest in this paper, we
first define flows, flow records, and flow classes. Although
there is no standard definition of aflow, a commonly accepted
definition of an IP flow [3] is a unidirectional sequence of
packets, which are close to each other in time and share a
common identifier such as a common source and destination
address. For instance, packets corresponding to a file download
constitute a flow.

State-of-the-art networking equipment that runs traffic mon-
itoring tools (such as NetFlow [4], sFlow [5], and Argus [6]) is
capable of generatingflow records. A flow record contains the
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Fig. 1. A set of flow records can be arranged in time and classified into classes
(shown at different planes) as illustrated. The length of the rectangle indicates
the duration of the corresponding flow. Classesi and j might correspond to
two different sets of flows corresponding to two different source-destination
IP address prefix pairs.

source and destination IP addresses, TCP or User Datagram
Protocol (UDP) port numbers, IP protocol type, type of service
fields in IP headers, start and end times, and the number
of packets and bytes in a flow. A major problem in flow
measurement is the lack of scalability: at very high speed
routers, the number of flows to be measured might easily
exceed millions per hour. Therefore, at high link speeds, the
flows [7] and/or the packets within a flow [8] may be sampled
in order to keep up with the link speeds. The network node,
such as a router, performing record generation usually exports
these records to a data warehouse for further processing.

We define an IPflow classas a collection, or aggregation,
of flows that are emitted successively and in parallel, and
that have a common attribute. For example, we can refer to
all flows sharing common source and destination IP address
prefixes as a flow class (see Fig. 1). A Web browsing session,
in which a user visits a number of pages at a Web site and
triggers a number of object downloads at each page, generates
flows that can also be treated as a flow class.

B. Related Work

The simplest approach to detecting shared resources is to
use a utility such astraceroute that tracks the route that a
packet follows from its source to its destination. Such utilities,
however, require the cooperation of routers in the network
on the path of the flow. Owners of the carrier networks are
often unwilling to provide information about their networks,
and hence the use of such utilities is not always viable.
Savage, Cardwell, and Anderson [9] describe a “locality”
based approximation for detecting shared paths by looking
at the destination addresses of flows. Their approximation is
based on the assumption that flows destined to a particular
host or network address generally follow the same path, and
hence visit the same bottleneck in the network.

Harfoush, Bestavros, and Byers [10] use packet-pair probing
for determining whether two flows originating from the same
source share a bottleneck. Their technique is based on correlat-
ing end-to-end packet loss measurements to identify flows that
share “similar network conditions”. The main disadvantage
of their technique is the requirement of cooperating senders.
Rubenstein, Kurose, and Towsley [11] develop an end-to-end
technique based on packet loss or delay observations to infer
whether or not two flows are experiencing congestion on a
common set of network resources. Their methodology is based
on the observation that losses or delays experienced by two

packets passing through the same bottleneck exhibit some
degree of positive correlation. Their technique assumes that
the flows share a common endpoint; i.e., either the sources or
the destinations of packets are co-located and collaborating,
which may have limited applicability. Kim et al. [12] propose
a wavelet-based approach to detecting shared congestion. In
order to determine whether two flows are sharing a bottleneck,
they correlate probe packets’ delay sequences generated by
applying wavelet denoising to original delay sequences of
flows. They show that wavelet denoising filters out delay
fluctuations that are not due to shared congestion. Unlike [10]
and [11], their method is not limited to flows that share a
common endpoint, provided that the synchronization offset
between delay sequences is less than 1 second.

Rabbat, Nowak, and Coates [13] propose sending packet
probes from two sources to infer whether a subgraph of
a graph formed from the paths connecting two sources to
two receivers is shared. The methodology is based on the
assumption that probe packets arrive at a receiver in the order
in which they reach the node where paths from two sources
join. Generalization of their method to more than two sources
may not be scalable due to probing traffic overhead.

Katabi, Bazzi, and Yang [14] develop iterative techniques
that minimize entropy-based cost functions to cluster flows
that share a bottleneck into groups. Their method is based on
the observation that correct clustering minimizes the entropy
of inter-packet spacing within clusters with an empirical
distribution measured by an observer. The main advantage of
their method is that it does not require sending probe traffic
into the network and does not require cooperating senders; i.e.,
it is passive. However, they also indicate that their technique is
robust only when the observer can monitor more than 15% of
the traffic from the bottleneck link, and hence is not practical
when the observer is an end-receiver.

C. Contributions and Organization

Our work on inferring congestion sharing differs signifi-
cantly from the previous work in that we considerflow level
instead ofpacket levelstatistics. We rely onpassive, flow level
TCP measurements (flow records) collected at a network node
(e.g. router, gateway, server), although it is possible to take an
active approach by sending probing flows into the network.
Furthermore, while many other previous methods that infer
resource sharing are limited to determining whether particular
flow classpairs share bottlenecks, our methodology considers
a set of flow classessimultaneously.

This paper is an extended version of [15], which proposes
using flow level throughput measurements to infer resource
sharing and presents results based on known, analytical fluid
models, and of [16], [17], which describe application of factor
analysis to real TCP data to infer which flow classes share
congested paths. In this paper, we include additional validation
results based on part of an extensive set of TCP simulations.
We also discuss the effects of flow sizes on inference results
based on our empirical findings.

The outline of the rest of the paper is as follows. Section
II first provides an insight into the reason why one expects to
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see correlated throughputs among congestion sharing flows,
and then describes methods for constructing a flow class
throughput correlation matrix from flow records. We review
the basics of factor analysis and discuss its application in our
context. Section III describes results based on TCP simulations
and demonstrates the effectiveness of our methods. Section IV
analyzes real TCP data to make inferences and presents a boot-
strap method to obtain confidence intervals on parameters of
interest for inferring congestion sharing. Section V concludes
the paper.

II. M ETHODS

In this section, we describe how to process flow records in
order to capture correlations among measured flow through-
puts. The size, start and end times of a flowf are available
from its record and are denoted byvf , sf , andef , respectively.
We define thethroughputor perceived throughput1 for a flow
as the amount of data it carries (in bits) divided by the duration
of the flow (in seconds). A key premise of this section is that
elastic flows that are overlapping long enough on the same
congested resource tend to have positively correlated perceived
throughputs.

A. Model for Congestion at a Bottleneck

First, we formalize the existence of correlation between
perceived throughputs of temporally overlapping elastic flows
that share a congested resource. We then investigate the effect
of the flow durations on the correlation.

It has been shown that TCP flows that are operating in
additive-increase multiplicative-decrease mode of congestion
control share the capacity of a bottleneck link roughly fairly
when the flows have similar round-trip times and packet loss
rates [18], [21], [22]. As an example, Fig. 2 illustrates how two
temporally overlapping TCP flows share available bottleneck
capacity in an idealized model. However, in general, TCP
flows take some time to discover the congestion state, or the
available capacity, of the network, and especially, very small
flows (due to TCP’s Slow Start) may not have an opportunity
to “learn” the capacity available to them during their sojourn.
As a consequence, the throughput perceived by short flows
will not reflect the congestion state of the network during their
sojourn2.

We consider a simple model of congestion level seen by a
flow3: {B(i)} is a first-order autoregressive (AR(1)) process
[23] that represents the instantaneous bandwidth (or capacity)
available to each flow at the bottleneck.{B(i)}, whose mean
is denoted byµB , is then defined by

B(i)− µB = α (B(i− 1)− µB) + Z(i),

1Other authors refer to perceived throughput as realized throughput [18],
file transfer throughput [19], or flow rate [20].

2We also note that throughput of a flow is limited by the sizes of sender’s
and receiver’s buffers. In that case, sender’s or receiver’s buffer is the
bottleneck for that flow.

3We assume that the congestion process is roughly independent of the flow;
i.e., the flow makes only a small contribution to the overall congestion.

time

flow 1

flow 2

flow 1 and flow 2
share available
capacity

available capacity is
allocated to flow 2

available capacity is
allocated to flow 1

Fig. 2. Sharing of instantaneous available resource capacity by two
temporally overlapping flows. The length of the rectangle corresponds to the
flow’s duration. In this particular example, both flows have similar packet
round trip times and packet loss rates, and the instantaneous bandwidth sharing
is roughly fair during the time period over which they overlap.

where{Z(i)} ∼ N(0, σ2
Z), |α| < 1, andZ(i) is uncorrelated

with B(j) for eachj < i 4. For now, let us assume thatsf

and ef are discrete times as well. A given flowf carries an
amount of data equal to

Vf =
ef∑

i=sf

B(i).

In the discrete-time AR(1) model, the duration of a flowf
is given bydf = ef − sf + 1. For simplicity, consider two
flows f1 andf2 with given start and end times, and suppose
that sf1 = 0 and sf1 ≤ sf2 without loss of generality. The
perceived throughputs of these flows are

Yf1 =
∑ef1

i=0 B(i)
df1

+
Wf1

df1

and Yf2 =

∑ef2
j=sf2

B(j)

df2

+
Wf2

df2

,

where Wf1 ,Wf2 ∼ N(0, σ2
W ) are included to model the

“noisy” throughputs perceived by short flows, and are inde-
pendent of each other,{B(i)}, and {Z(i)}. In this context,
a “noisy” throughput means that the throughput perceived by
a short flow is not a typical one for the class to which the
flow belongs due to its inability to discover the congestion
state of the network. For flows with long sojourn times, the
“noise” terms become negligible. The autocorrelation function

of {B(i)} is denoted byγ(h), and is equal to
σ2

Zαh

1− α2
for

h ≥ 0. The correlation betweenYf1 andYf2 is

Corr(Yf1 , Yf2) =
1

df1df2σYf1
σYf2

ef1∑

i=0

ef2∑

j=sf2

γ(|j − i|), (1)

whereσYf1
andσYf2

are the standard deviations of through-
puts of f1 and f2, respectively. We note that the correlation
in (1) does not change even in the case of unequal sharing of

4For similar approaches to modeling available bandwidth at a bottleneck,
refer to [24] and [25]. Note that in our AR(1) model, available bandwidth can
become negative. However, we introduce this simple model only to provide
an insight into the nature of flow throughput correlations without attempting
an exact traffic model in any way.
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Fig. 3. The effect of flow duration and temporal overlap on the correlation
in (1) between throughputs off1 andf2 that share a congested resource. The
correlation values shown are forσ2

W = 0. Flow 1 starts at time 0 and ends
at time 20.

bottleneck capacity5.
The standard deviation of the throughput off with sf = 0

is given by

σYf
=

√
Cov(Yf , Yf ) =

√√√√√ 1
d2

f




ef∑

i=0

ef∑

j=0

γ(|j − i|) + σ2
W


 .

(2)
From (2), one can conclude that perceived throughputs of
long flows have smaller standard deviation than those of short
flows sinced2

f dominates [26]. These results agree with the
observations reported for the perceived throughputs of small
and large flows in [18] and [22].

In order to illustrate the behavior of (1) with different flow
durations and different amounts of temporal overlap between
the two flows, we setα = 0.5, σ2

Z = 1, and σ2
W = 0 (no

noise), and in Figs. 3 and 4, we exhibit the correlation as
a function of sf2 for different df2 values whenef1 = 20
and ef1 = 30. Based on the AR(1) model, we can draw the
conclusion that the correlation between perceived throughputs
of congestion sharing elastic flows is largely determined by
the amount of temporal overlap between flows relative to the
(product of) durations and standard deviations of flows. The
throughput correlation is high when the two flows temporally
overlap, and then decreases with increasingsf2 (i.e. as the
amount of overlap decreases). Furthermore, the correlation
between overlapping flows decreases as the duration of the
first flow is increased (see Fig. 4).

As a consequence, for a set of flow records, we expect
throughput samples associated with long flows that have large

5Unequal sharing can occur in practice when TCP flows have different
round-trip times [18], [22]. In such cases, bottleneck capacity will be shared
in proportion to weights that are inversely proportional to associated round-
trip times. For instance, instantaneous bandwidths available for flowsf1 and
f2 could bew1B(i) andw2B(i) respectively, wherew1 andw2 are weights.
However, it is straightforward to show that the correlation betweenYf1 and
Yf2 is insensitive tow1 andw2.
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Fig. 4. The effect of flow duration and temporal overlap on the correlation
in (1) between throughputs off1 andf2 that share a congested resource. The
correlation values shown are forσ2

W = 0. Flow 1 starts at time 0 and ends
at time 30.

amounts of temporal overlap to result in high throughput cor-
relations. However, note that the occurrences of such samples
are rare since the Internet is currently dominated by short flows
[27], [28], [29]. Furthermore, throughput samples associated
with long flows overlapping with short flows will give a lower
value for throughput correlation. On the other hand, throughput
samples associated with short flows are noisy, and will not
exhibit high throughput correlation. Therefore, leaving out
long and very short flows may be desirable when estimating
throughput correlations that are due to congestion sharing.
Since flows with long durations will typically be large (in
size)6, we study the effect of different size thresholds to filter
out large flows, and similarly, consider the impact of different
size thresholds for omitting small flows. Unlike the duration
of a flow, the size of a flow is invariant regardless of the
capacity of links. Hence, flow size is the proper flow attribute
to consider for filtering out flows.

B. Flow Class Throughput

From the record of a flowf , its perceived throughput is
determined byyf = vf/df , wheredf = ef −sf and, for now,
ef > sf . Let us denote the set of flow records byF . Each flow
f ∈ F belongs to a flow classc ∈ C. The functionφ : F → C
associates a flow with a flow class. We letFc(n) = {f ∈ F :
φ(f) = c andsf ≤ n∆t and (n − 1)∆t < ef} denote the
set of flows that belong to classc and areactive at discrete
time n (of length ∆t). Recall that a flow class is defined as
a collection of flows that have common attributes, and hence
there can be more than one flow from a given class at a given
time. As such, we define thethroughput of a flow classc ∈ C
as an average over the flows in that class (class average) that

6Based on the processor sharing approximation of TCP bandwidth sharing
at a bottleneck, we assume that the flows of different sizes experience the
same slowdown.
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are active at a discrete timen at a measurement point:

yc(n) =





1
|Fc(n)|

∑

f∈Fc(n)

yf , if |Fc(n)| > 0,

0, otherwise.

(3)

C. Factor Analysis of the Flow Class Throughput Correlation
Matrix

We will assume that{yc(n)} is a realization of the er-
godic random process of the throughput of flow classc.
Let fY denote the joint pdf of the random vector7, Y =
(Yc1 , Yc2 , . . . , Ycp)T , of flow class throughputs forp flow
classes at stationarity; i.e.,Y ∼ fY. It is possible thatYci

= 0
for any i = 1, . . . , p; i.e., no flow from classci is active. Since
we are eventually interested in the correlation structure among
class throughputs at times when they are simultaneously active
(or when flows overlap), we next defineE = {Yci > 0, ∀ci ∈
C}. Also, define a random vector of flow class throughputs
conditioned onE , Y∗ = (Y ∗

c1
, Y ∗

c2
, . . . , Y ∗

cp
)T , with a joint pdf

fY|E , i.e., Y∗ ∼ fY|E . Denote the mean vector ofY∗ by
µY∗ = (µc1 , µc2 , . . . , µcp)T .

The idea underlying factor analysis is to consider a rep-
resentation for ap-element random vector,Y∗ in our case,
in terms of a random vector ofm (m ≤ p) commonfactors
F = (F1, F2, . . . , Fm)T , and a random vector ofp unique
factorsU = (Uc1 , Uc2 , . . . , Ucp)T . We assume that centered
and normalizedY∗ can be expressed as

D(Y∗ − µY∗) = ΛF + U, (4)

whereΛ denotes a deterministicp ×m loading matrix, and
D is p × p diagonal matrix consisting of the reciprocals
of standard deviations of elements ofY∗. The following
additional assumptions are usually made [30]:E[F] = 0,
Cov(F) = E[FFT ] = I (orthogonal factors),E[U] = 0,
Cov(U) = E[UUT ] = Ψ = diag(ψ1, . . . , ψp) (a diagonal
matrix), and Cov(U,F) = 0. The assumption thatΨ is
diagonal means that all covariances among class throughputs
are accounted by the factors. Then, using (4), one can write
the correlation matrixR of Y∗:

R = Corr(Y∗) = ΛΛT + Ψ. (5)

The elements of the loading matrixΛ, Λij , capture the degree
of correlation exhibited between a given factor (corresponding
column in Λ) and variable (corresponding row inΛ). Esti-
matesΛ̂ and Ψ̂ for Λ and Ψ can be determined by using
theprincipal component methodas follows (see [30] for more
details). First, the (positive definite) correlation matrix in (5)
is expressed as

R = λ1ξ1ξ
T
1 + λ2ξ2ξ

T
2 + . . . + λpξpξ

T
p ,

where (λi, ξi) are the eigenvalue-eigenvector pairs such that
λ1 ≥ λ2 ≥ . . . ≥ λp > 0. Λ̂ and Ψ̂ can be determined by

7A random vector is a vector whose elements are random variables.

taking the largestm eigenvalues, and by approximatingR as

R ≈ Λ̂Λ̂T + Ψ̂

= (
√

λ1ξ1, . . . ,
√

λmξm)

×(
√

λ1ξ1, . . . ,
√

λmξm)T

+




ψ̂1 0 · · · 0
0 ψ̂2 · · · 0
...

...
.. .

...
0 0 · · · ψ̂p


 , (6)

so that Λ̂2
i1 + Λ̂2

i2 + . . . + Λ̂2
im + ψ̂i = ĥ2

i + ψ̂i = 1 for
i = 1, . . . , p, where ĥ2

i is called thecommunality, and ψ̂i is
called thespecific variance. The communality represents the
portion of the normalized variance ofY ∗

ci
that is accounted by

the m common factors, whileψ̂i reflects the portion of the
normalized variance due to a factor that is unique toY ∗

ci
.

D. Selection of the Number of Factors and Explanatory Power

When using the principal component method to “factor” the
correlation matrixwithout any assumptions on the distribution
of variables, there are only ad hoc heuristics for determining
the sufficiency of the number of factorsm in the model. In
exploratory studies, one common approach to determinem
is proposed by Kaiser [31]. Kaiser’s rule proposes selecting
factors whose variances (λi) are greater than 1. The intuition
behind this rule is that a factor that has a variance less than 1
contains less information than a (normalized) original variable
does. The number of factorsm used in the model needs to
account for a “reasonable” proportion of total variance (a
measure of overall variability), which is given by the trace of
the correlation matrix (p). If the proportion of total variance
captured by the common factors,1 − ∑p

i=1 ψi/p, is “high”,
then we say that the factors have a strongexplanatory power.
Our experiments with simulation data suggest that Kaiser’s
rule generally retains fewer factors than expected. Therefore,
we selectm based on the number of eigenvalues that are
greater than 0.9. In contrast, we have found that Kaiser’s rule
produces good results with real TCP data with the following
modification: We selectm based on the number of eigenvalues
whose confidence intervals contain 1 or lie above 1.

E. Interpretation of Factor Loadings

For our application, the factors represent shared congested
resources that cause variation in class throughputs. Among
the loadings for a given classci, i.e., Λ̂i1, Λ̂i2, . . . , Λ̂im,
the loading(s) with the largest magnitude(s) are treated as
significant loadings. The flow classes that have the largest
loading (in magnitude) on a common factor are identified
as classes that are likely to share a congested resource in
the network: Most of the variations in the throughput for
those classes are accounted by a common factor or congested
resource.

Note that the loading matrix is determined only up to an
orthogonal rotation matrixΓ. If Λ∗ = ΛΓ, then

R = Λ∗Λ∗T + Ψ = ΛΓΓT ΛT + Ψ = ΛΛT + Ψ.
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Fig. 5. An example (rotated) loading matrix. Suppose that there are 5 flow
classes, and we have identified 2 common factors and boxed the factor loading
with the largest magnitude in each row. We can then infer that classes 1, 2 &
5 share one congested resource (Factor 1), and 3 & 4 share another (Factor
2).

Throughout this paper, we apply a rotation to the loading
matrix to obtain a better description of the factors by using
a common method in factor analysis calledvarimax rotation
[30]. Varimax rotation attempts to find a rotation matrixΓ such
that the squares of the loadings on each factor are as spread
out as possible. More specifically,Γ is chosen to maximize

m∑

k=1




p∑

j=1

Λ∗4jk −
1
p




p∑

j=1

Λ∗2jk




2

 .

This criterion tends to drive squared loadings towards either
zero or one, away from intermediate values. Hence, deciding
which loadings are significant is easier withΛ∗. Fig. 5
illustrates howΛ∗ can be interpreted to identify congestion
sharing flow classes.

F. Squared error loss

In addition to explanatory power which exhibits the ability
of the factors to account for the variance in data, we need a
metric to assess the efficacy of factor loadings indistinguishing
which factors have the most effect on throughputs, and to
investigate various flow filtering schemes to improve the ability
to infer congestion sharing in controlled simulations (in which
we know the topology). We definesquared error loss8 as

L := ‖Λ0 − abs(Λ̂)‖2 =
p∑

i=1

m∑

j=1

(Λ0
ij − |Λ̂ij |)2, (7)

whereΛ0
ij = 1 if the flow classci shares the factorj, and

Λ0
ij = 0 otherwise, which correspond to “ideal” loadings in

a matrixΛ0. When there is only one factor (m = 1), we set
Λ0

i1 = 1 for all i. The notation‖ · ‖ denotes the Euclidian
norm, and for a matrix, it is given by the square root of the
sum of squares of each element in the matrix. The function
abs(·) returns a matrix whose elements are the absolute values
of the corresponding elements in the input matrix. Note that
squared error loss penalizes large deviations from the ideal
more than small deviations.

8If comparisonsacrossdifferent bottleneck configurations (different number
of classes and different number of congested resources) are desired, one can
divide squared error loss byp ×m, the number of elements in the loading
matrix.

TABLE I

KEY PARAMETERS.

p Number of flow classes
ρcicj Correlation between throughputs ofci andcj

m Number of shared congested resources (factors)
Λij Correlation between throughput ofci and resourcej
Ψi Specific variance of throughput ofci

λi ith eigenvalue ofR
1−Pp

i=1 ψi/p Explanatory power ofm factors
L Squared error loss

G. Estimation of the Correlation Matrix

One drawback of the development until this point is that all
of the flows must be active at a given time to contribute an
observation of random vectorY∗ when we estimate first- and
second-order statistics of flow class throughputs. Therefore,
when there are only a few flows belonging to a flow class
under consideration, only a few class throughput observations
are available for statistical analysis. To address this problem,
we estimate theelementsof the correlation matrix of flow
class throughputs using separate bivariate analyses: In order
to estimate an element (a correlation) of the matrix, we use
the class throughput observations at times when the flow class
pair is active. Such an element-wise approach is employed in
multivariate statistics when there are “missing values” for one
or more variables in a significant number of observation vec-
tors (see for example, [30] and [32]). We adopt this approach
to compute correlations since there are a lot of sampling
instants when not all of the variables can be manipulated
simultaneously: Instead of having missing values, simply, no
flow from a given flow class is active at that instant. Since
the correlation matrix constructed in this way may not always
be positive definite, the matrix can be adjusted to make it
positive definite. For example, as proposed in [33], a constant
may be added to the non-positive eigenvalues ofR to make
them positive.

Accordingly, we develop the following conditional sam-
pling strategy: Define the eventP (n, ci, cj) = {yci(n) >
0 andycj (n) > 0, for ci, cj ∈ C}; i.e. both classesci and
cj are active at (discretized) timen. Let N(T, ci, cj) be the
number of discrete times over which both flow classesci

and cj are active, whereT denotes the measurement period.
Pairwisemean and variance are given by

µci,cj = lim
T→∞

1
N(T, ci, cj)

T∑
n=1

yci(n)1P (n,ci,cj),

σ2
ci,cj

= lim
T→∞

1
N(T, ci, cj)

T∑
n=1

(yci(n)− µci,cj )
2 1P (n,ci,cj),

where1E is the standard indicator function, and is equal to 1
if E is true and 0, otherwise. The correlation of throughputs
of flow classesci andcj is given by

ρcicj =

lim
T→∞

T∑
n=1

(yci(n)− µci,cj )(ycj (n)− µcj ,ci)1P (n,ci,cj)

N(T, ci, cj)σci,cj σcj ,ci

.(8)
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Hence, a correlation matrix can be approximated using corre-
lations (from separate bivariate analyses) between variables:

R ≈ (ρcicj
), i, j = 1, . . . , p, (9)

whereρcicj is given by (8) (andρcici = 1). Also, in Table
I, we tabulate the key parameters used to infer congestion
sharing for easy reference.

H. Bootstrap Methods

Since the distribution of real throughput data is unknown,
we resort to thebootstrapmethod [34] to compute the bias-
corrected and accelerated (BCa) confidence intervals whenever
we wish to assess the statistical accuracy of eigenvalues
and factor loadings, which are key parameters for making
congestion sharing inferences. The bootstrap is a computer-
based method that depends onresamplinga given set of data
consisting ofN samplesB times. A bootstrap sample is a
random sample of sizeN drawn with replacement from the
original sample. Corresponding to each bootstrap replication,
an estimate for the parameter of interestθ̂∗(b) is computed for
b = 1, . . . , B. One can then use the independent replications of
θ̂ to obtain confidence intervals. The BCa confidence intervals
are very close to the exact intervals ofθ. The recommended
number of replications required for computing the BCa confi-
dence intervals is at least 1000 [34]. A detailed discussion of
bootstrap methods can be found in [34].

III. TCP SIMULATIONS

In this section, we present results based on part of an
extensive set of OPNET Modeler [35] simulations. The pri-
mary aim of this section is to validate the methods introduced
in Section II for identifying congestion sharing flow classes
in a controlled environment in which the routes from the
sources to destinations are known exactly. The effectiveness of
factor analytic methods in identifying such flow classes under
different traffic conditions and different network configurations
is evaluated.

Each simulation in this section corresponds to 2 hours of
file download activity. That is, the measurement periodT is
2 hours when computing the correlation in (8). The length
of the discrete interval∆t (see Section II-B) is chosen as 1
second. During simulations, we record the request time, size
(in bytes) and duration (in seconds) of each file transfer. File
transfer requests arrive according to a Poisson distribution, and
file sizes are selected from a lognormal distribution [27], [28],
[29] with a mean file size of 16 kB and a standard deviation
of 131 kB. On each bottleneck link, we include background
traffic to model the effects of additional traffic from other users
or applications.

A. Networks with Tree Topologies

While actual networks rarely look like trees, tree topologies
have been frequently used in studies that infer which flows
share congested resources. Trees may provide a good abstrac-
tion for logical topologies. For example, each tree branch can
represent a link that may potentially become a bottleneck in the

A router

Subnet 7

Subnet 6

Subnet 5

Subnet 4

Subnet 3

Subnet 2

Subnet 1

A3

A1

S1A2

File Server

10 Mbps local area network with 10 workstations

Fig. 6. Tree topology used in OPNET TCP simulations.

actual network, while overprovisioned links are not included
in the tree.

Consider the tree topology shown in Fig. 6. Users download
files from a server using the File Transfer Protocol (FTP).
Access links are denoted by A1, A2, and A3, and the link
connecting the FTP server to the network is denoted by S1.
Seven classes of flows are defined according to their local
subnet addresses. Each subnet is a 10 Mbps local area network
that has 10 workstations.

In order to be able to capture the throughput correlation
between flow classes successfully, we consider the effect of
flow sizes on correlation estimates. The results in Section
II-A suggested that removing small and large flows from
flow records under consideration might improve our ability
to capture positive throughput correlation among temporally
overlapping, congestion sharing flows.

In the subsequent discussion, we will analyze the effect
of retaining flows satisfying the following size conditions:
{f ∈ F : vf > 4 KB}, {f ∈ F : vf > 8 KB},
{f ∈ F : vf < 16 KB}, {f ∈ F : vf < 32 KB}, and
{f ∈ F : 4 < vf < 32 KB}. We refer to the results based on
the entire set of flows (without filtering) as the “original”. Note
that these thresholds are not intended for establishing criteria
for selecting or defining large or small flows in the Internet.
Rather, our focus will be on analyzing the effect of removing
certain sized flows on flow class throughput correlations.

1) Single bottleneck: Effect of background traffic:Consider
the case in which link S1 (1.544 Mbps) in Fig. 6 is the
bottleneck and access links A1, A2, and A3 are overprovi-
sioned (44.736 Mbps). The users belonging to classes 1–7
generate a total load of 30% on the bottleneck link and the
bottleneck’s background traffic utilization is varied from 40%
to 65% to demonstrate the ability to identify this bottleneck
under different background traffic conditions.

Using the modified Kaiser’s rule described in Section II-
D, we correctly determine that there is one significant factor
for each utilization factor considered. Fig. 7 shows that the
explanatory power of this single factor increases as congestion
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increases on the bottleneck. Fig. 8 illustrates that at higher
utilization levels of the bottleneck link, squared error loss is
smaller. Both Figs. 7 and 8 show the effect of filtering out
small flows, large flows, and small and large flows simultane-
ously on the percentage of variance accounted by the signifi-
cant factor and on the squared error loss. We see that filtering
out small flows or large flows improves the explanatory power
of the factor and decreases the squared error loss. Note that
increasing (decreasing) the lower (higher) filtering threshold of
flow sizes has significant benefits on these measures. However,
increasing (decreasing) the lower (higher) threshold retains
fewer flows and decreases the statistical accuracy of estimates.
An important observation is that omittingbothsmall and large
flows simultaneously significantly improves the explanatory
power of the factor and decreases the squared error loss.
Retaining flows whose sizes are between 4 kB and 32 kB
is a compromise between reliability of inference for resource
sharing and statistical accuracy of estimates.

2) Single bottleneck: Effect of class loads:Consider again
the case in which link S1 (1.544 Mbps) is the bottleneck
and access links A1, A2, and A3 are overprovisioned (44.736
Mbps). We investigate the ability to identify this bottleneck for
different total loads (20%, 30%, 40%) generated by users be-
longing to classes 1–7 on the bottleneck link S1. Background
traffic utilizes 50% of link S1.

Using the modified Kaiser’s rule, we successfully determine
that there is one significant factor when total class loads on
the bottleneck link are greater than or equal to 20%. Fig. 9
shows that the explanatory power of this factor increases
as congestion increases on the bottleneck. Fig. 10 illustrates
that at higher utilization levels, squared error loss is smaller.
Again, omitting both small and large flows simultaneously
significantly improves the explanatory power of the factor and
decreases the squared error loss.

3) Single bottleneck: Effect of non-stationary traffic:We
also investigate the effect of having non-stationary background
traffic for the single bottleneck case described in the previous
subsections. The background traffic utilization of the bottle-
neck link changes between 60% and 40% every 20 minutes
over the period of 2 hours. Using the modified Kaiser’s rule,
we successfully determine that there is one significant factor
with explanatory power 71%. For this particular scenario, non-
stationarity of the network traffic does not seem to affect
determination of resource sharing. Further analysis may be
required to assess the impact of non-stationarity of network
traffic on inference results.

4) Three bottlenecks:Consider the case in which links A1,
A2, and A3 (each 1.544 Mbps) are bottlenecks and link S1 is
overprovisioned (44.736 Mbps). We investigate the ability to
identify these bottlenecks andassociateeach flow class with
a bottleneck for different loads (10%, 15%, 20%) generated
by eachclass.

The background utilization on A1 and A2 (each serving
two subnets) is set to 50%. The background utilization on
A3 (serving three subnets) is adjusted so as to keep the
total utilization on each bottleneck (A1, A2, and A3) the
same; i.e., the background utilization on A3 is 40%, 35%,
and 30% corresponding to 10%, 15%, and 20% loads offered
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Fig. 7. Percent variance under different background traffic conditions on the
single bottleneck. The total load due to classes 1–7 on S1 is kept at 30%.
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Fig. 8. Squared error loss under different background traffic conditions on
the single bottleneck. The total load due to classes 1–7 on S1 is kept at 30%.

by each class, respectively. From the generated records, we
successfully determine that there are three significant factors
when loads generated by each class are greater than or equal
to 10%. Furthermore, we correctly identify which flow classes
share congested resources: We find that the throughputs of flow
classes from subnets 1 and 2 have the largest loading with
factor 1, the throughputs of flow classes from subnets 3 and 4
have the largest loading with factor 2, and the throughputs
of flow classes from subnets 5, 6 and 7 have the largest
loading with factor 3. These factors are interpreted as the
bottleneck access links A1, A2, and A3, respectively. Fig. 11
shows that the explanatory power of the three factors increases
as congestion increases on the bottlenecks. Fig. 12 illustrates
that at higher utilization factors, the factor loadings distinguish
which factor a flow class is most associated with more easily.
As in the previous cases, omitting both small and large flows
simultaneously significantly improves the explanatory power
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Fig. 9. Percent variance under different total loads from classes 1–7 on the
single bottleneck S1. The utilization of S1 due to background traffic is kept
at 50%.
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Fig. 10. Squared error loss under different total loads from classes 1–7 on
the single bottleneck S1. The utilization of S1 due to background traffic is
kept at 50%.

of the factors and decreases the squared error loss.

B. Interaction of Coupled Flow Classes

We also show how factor analysis identifies two coupled
bottlenecks in an example scenario given in Fig. 13. Users
belonging to subnet 1 (class 1) download files from server
1, users belonging to subnet 2 (class 2) download files from
server 2, and users belonging to subnet 3 (class 3) download
files from server 3. Class 1 offers a load of 20% on the
bottleneck link 1 and 2. Class 2 offers a load of 40% on
the bottleneck link 1. Class 3 offers a load of 40% on the
bottleneck link 2. The load due to background traffic on the
bottlenecks 1 and 2 is set to 20%.

After filtering out flows whose sizes are smaller than 4
kB or greater than 32 kB, we find that there are two signif-
icant factors. Then, we estimate factor loadings of four class
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Fig. 11. Percent variance under different loads offered by each of the classes
1–7 for the three-bottleneck scenario. The total utilization factors of each of
the bottlenecks are the same in each offered load case, and are 70%, 80%,
and 90%, respectively.
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Fig. 12. Squared error loss under different loads offered by each of the
classes 1–7 for the three-bottleneck scenario. The total utilization factors of
each of the bottlenecks are the same in each offered load case, and are 70%,
80%, and 90%, respectively.
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Fig. 13. Linear network topology with coupled bottleneck links used in
OPNET TCP simulations.
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TABLE II

DESCRIPTION OFNETFLOW DATASETS COLLECTED ATUT AUSTIN’ S

BORDER ROUTER.

Date Period TCP records
Dataset2002 11/6/2002 12:58 PM - 2:07 PM 5,173,385
Dataset2004 1/21/2004 12:58 PM - 1:26 PM 4,440,697

throughputs based on two significant factors. We first estimate
factor loadings and specific factors based on (6), and then use
varimax rotation [30] onΛ̂:

Λ̂∗ =




0.5011 0.7272
0.9570 −0.0041
−0.1143 0.9214


 ,

(significant loadings boxed) and

Ψ̂ = diag(0.2200, 0.0841, 0.1380) .

The explanatory power of the two factors is 85%. From the
results, one can see that the throughputs of classes 2 and
3 are captured by only one factor, i.e. the bottleneck link
that each traverses. For class 1, one can argue that both
loadings are significant, and hence the throughputs of class
1 can be explained by two factors, i.e. the two bottlenecks the
flows belonging to class 1 visit. This example scenario shows
the effectiveness of factor analysis in identifyingmultiple
bottlenecks in a linear network.

IV. A NALYSIS OF ACTUAL TCP FLOW RECORDS

In this section, we apply factor analysis to TCP flow class
throughput correlation matrices that are constructed using
actual TCP flow records collected by networking equipment.
With actual TCP flow measurements, a validation of the
inferences of flow classes sharing congestion is extremely
hard, if not impossible, since routing information about all
the domains that flows visit and the congestion status of the
servers that provide the incoming traffic are not available.
However, bootstrap confidence intervals can be used to demon-
strate the statistical accuracy of the inferences.

A. Description of Datasets

We use NetFlow [4] records collected at the border router of
The University of Texas at Austin (UT Austin) on November
6, 2002, between 12:58 PM and 2:07 PM CST, and on January
21, 2004, between 12:58 PM and 1:26 PM CST. The records
that are collected in 2002 are referred to as Dataset2002, and
those that are collected in 2004 are referred to as DataSet2004.
Dataset2002 consists of 5,173,385 TCP flow records out of
a total of 5,866,602 flow records. Dataset2004 consists of
4,440,697 TCP flow records out of a total of 6,556,674 flow
records. The records contain both the incoming and outgoing
traffic from UT Austin. The IP addresses belonging to UT
Austin were made anonymous to protect privacy. Table II
summarizes these datasets.

We assume that over a one-hour period, flow class through-
puts can be modeled as stationary processes. Furthermore, we

assume that the packets from a given TCP flow follow the
same route9. Such assumptions, although idealized, are not
completely unrealistic for our one-hour long flow measure-
ments.

B. Methodology

In NetFlow records, the start time of a flow is the time of
arrival of the first packet in the flow, and the end time is the
time of arrival of the last packet in the flow. Since the time
between the first and the last packet is zero, flow throughput
is not defined for flows consisting of one packet. Hence, one-
packet flows will be omitted. From the premises of Section
II-A that are validated by performed simulations in Section
III, we filter out all flow records whose sizes are smaller than
one threshold or larger than another threshold in order to better
capture the throughput correlations among flow classes. Based
on empirical investigations and datasets at hand, we select
to filter out flows whose sizes are less than 8 kB or greater
than 64 kB. The choices for these thresholds are based on
some practical, empirical considerations: For example, Estan
and Varghese [7] define “small” flows as those that send less
than 0.1% of the link capacity during a given measurement
interval, say 1 second. For instance, for a (bottleneck) OC-1
(optical carrier level 1) link of 51.84 Mbps, a small flow will
be one that transports less than 7 kB. When choosing the upper
threshold value for filtering out flows, we took into account the
measurement studies that find that 50 kB Web objects (carried
by TCP) are becoming common in the Internet [37]. Therefore,
we can consider a flow whose size is larger than 64 kB as
“large”. In addition, in the Internet, packets belonging to flows
that consist of only a few packets can sometimes arrive back to
back (or with a very small inter-packet spacing). In this case,
it is unreasonable to assume that such large flow throughputs
are typical for that flow class [20]. Hence, we will also omit
all flows whose durations are shorter than one second10.

We choose to analyze incoming traffic (flow records with
source IP addresses) associated with AOL and HotMail, since
one can reasonably expect that traffic belonging to these
content providers potentially experience congestion at their
source due to high demand for their content. We define two
flow classes for traffic from each provider: AOL1 and AOL2
(class 1 and class 2) from AOL, and HotMail1 and HotMail2
(class 3 and class 4) from Microsoft Corporation. Assignment
of flows into AOL1 or AOL2 (and similarly for HotMail1 and
HotMail2) is performed by randomly splitting all flows from
AOL (and HotMail) into two sets. The cumulative distribution
functions in Figs. 14 and 15 provide some insight into the
flow size distributions of the chosen flows from the datasets.
Note that the measurement periodT used in computing the
correlation in (8) is 69 minutes for Dataset2002 and 28 minutes
for Dataset2004. The length of the discrete interval∆t (see

9This assumption is supported by the empirical measurements in [36].
10Flows can also be categorized according to their duration. Brownlee

and Claffy [37] term flows whose durations are less than 2 seconds as
“dragonflies”.
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Fig. 14. Cumulative distribution function of flow sizes in kB under
consideration from Dataset 2002.
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Fig. 15. Cumulative distribution function of flow sizes in kB under
consideration from Dataset 2004.

Section II-B) is chosen as 1 second11.

C. Statistical Accuracy of Inferences

First, we describe how to choose the number of significant
factors. We estimate 95% BCa confidence intervals for four
eigenvalues of the class throughput correlation matrixR in
(9). The results are shown in Table III for Dataset2002, and
in Table IV for Dataset2004.

Once the confidence intervals for the eigenvalues are esti-
mated, the modified Kaiser’s rule for real data can be used
to choose the significant eigenvalues: the eigenvalues whose
confidence intervals lie below 1 are designated asinsignificant.
Therefore, from Tables III and IV, there are two significant
factors; i.e., four classes share two different network infras-
tructures. The explanatory power of the two factors is 72% in
the case of Dataset2002 and 63% in the case of Dataset2004.

After establishing the number of significant factors, we
estimate factor loadings of four class throughputs based on
two significant factors. We first estimate factor loadings and
specific factors based on (6), and then use varimax rotation on

11We find that using finer scale intervals does not affect the reported results.
Using intervals that are longer than 1 second will reduce the number of
samples of flow class throughputs, thereby producing less accurate results.

TABLE III

MEAN OF BOOTSTRAP REPLICATIONS AND95% CONFIDENCE INTERVALS

FOR EIGENVALUES OFR BASED ON DATASET2002.

Eigenvalue Mean Interval estimate
λ1 1.7274 (1.5457, 1.7900)
λ2 1.1562 (1.0861, 1.3206)
λ3 0.8344 (0.7058, 0.9150)
λ4 0.2785 (0.2194, 0.4458)

TABLE IV

MEAN OF BOOTSTRAP REPLICATIONS AND95% CONFIDENCE INTERVALS

FOR EIGENVALUES OFR BASED ON DATASET2004.

Eigenvalue Mean Interval estimate
λ1 1.4287 (1.3646, 1.4786)
λ2 1.0780 (1.0237, 1.1603)
λ3 0.9094 (0.8230, 0.9690)
λ4 0.5856 (0.5413, 0.6379)

Λ̂. For DataSet2002,

Λ̂∗ =




0.7933 0.0711
0.7289 −0.1315
−0.0842 0.9088
0.0501 0.9240




(significant loadings boxed) and

Ψ̂ = diag(0.3656, 0.4514, 0.1669, 0.1437) .

For Dataset2004,

Λ̂∗ =




0.8378 −0.0451
0.8411 0.0044
0.0200 -0.7415
0.0260 -0.7351




(significant loadings boxed) and

Ψ̂ = diag(0.2961, 0.2926, 0.4497, 0.4589) .

Next, 95% BCa confidence intervals for absolute values of
eight rotated factor loadings are computed. When computing
confidence intervals for factor loadings, one needs to take into
account sign reversals of loadings and changes in the order of
factors across bootstrap samples [38]. As such, we compute
the confidence intervals of the absolute values of loadings. We
rearrange the order of factors if such reordering results in a
smaller‖Λ̂∗ − Λ̂∗(b)‖, whereΛ̂∗ is estimated using (6) and
varimax rotation, and̂Λ∗(b) is the estimate for̂Λ∗ using the
bth bootstrap replication. The results are given in Table V for
DataSet2002 and in Table VI for DataSet2004.

By inspecting the significant loadings on the loading matrix,
we can conclude that classes 1 and 2 (flows belonging to
AOL) share factor 1, and classes 3 and 4 (flows belonging
to HotMail) share factor 2 with 95% confidence. In this case,
factor 1 would be interpreted as the networking infrastructure
belonging to AOL, and factor 2 would be the networking
infrastructure belonging to Microsoft Corporation.



IEEE/ACM TRANSACTIONS ON NETWORKING 12

TABLE V

MEAN OF BOOTSTRAP REPLICATIONS AND95% CONFIDENCE INTERVALS

FOR FACTOR LOADINGS BASED ONDATASET2002.

Loading Mean Interval estimate
|Λ∗11| 0.7944 (0.7567, 0.8252)
|Λ∗12| 0.0761 (0.0036, 0.1688)
|Λ∗21| 0.7250 (0.6360, 0.7884)
|Λ∗22| 0.1331 (0.0235, 0.2401)
|Λ∗31| 0.0836 (0.0241, 0.1436)
|Λ∗32| 0.9110 (0.8564, 0.9362)
|Λ∗41| 0.0535 (0.0042, 0.1294)
|Λ∗42| 0.9250 (0.8806, 0.9483)

TABLE VI

MEAN OF BOOTSTRAP REPLICATIONS AND95% CONFIDENCE INTERVALS

FOR FACTOR LOADINGS BASED ONDATASET2004.

Loading Mean Interval estimate
|Λ∗11| 0.8370 (0.8223, 0.8544)
|Λ∗12| 0.0478 (0.0034, 0.1312)
|Λ∗21| 0.8402 (0.8254, 0.8580)
|Λ∗22| 0.0303 (0.0000, 0.1296)
|Λ∗31| 0.0458 (0.0000, 0.0731)
|Λ∗32| 0.7395 (0.6314, 0.7879)
|Λ∗41| 0.0512 (0.0004, 0.0969)
|Λ∗42| 0.7316 (0.6207, 0.7737)

D. Discussion of results

The potential power of this inference technique in root cause
analysis may be illustrated by considering the results in Tables
V and VI. For example, suppose that the users belonging to
classes AOL1 and AOL2 at UT Austin were experiencing
poor performance (excessive download times). Treating the
external network as a “black box” (i.e., no knowledge about
the utilization factors of access links or routing information
of outside network), network managers could infer that poor
performance was not due to the access links connecting UT
Austin to the Internet, because the flow classes did not have
one common factor that would indicate a bottleneck shared
by all classes. The network managers could then hypothesize
that the cause for poor performance was either at the content
provider’s server or a corresponding bottleneck link visited by
pairs of flow classes (1 & 2 and 3 & 4) in the Internet.

V. CONCLUSION

Our proposed approach for inferring congestion sharing
based on flow records can serve as a tool for network monitor-
ing and root cause analysis of poor performance, and differs
drastically from the packet based methodologies employed so
far to infer network-internal characteristics. We believe that the
use of factor analysis in analyzing network behavior is a novel
idea. A distinctive feature of our work is the consideration
of the correlation structure of conditionally sampled random
processes (flow class throughputs) whose samples are taken
when the classes are active at the sampling instant.
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