
Dynamic Core Allocation and Packet Scheduling
in Multicore Network Processors

Muhammad Faisal Iqbal, Jim Holt, Jee Ho Ryoo, Gustavo de Veciana, and Lizy K. John

Abstract—With ever increasing network traffic rates, multicore architectures for network processors have successfully provided
performance improvements through high parallelism. However, naively allocating the network traffic to multiple cores without
considering diversified applications and flow locality results in issues such as packet reordering, load imbalance and inefficient cache
usage. Consequently, these issues degrade the performance of latency sensitive network processors by dropping packets or delivering
packets out of order. In this paper, we propose a packet scheduling scheme that considers the multiple dimensions of locality to improve
the throughput of a network processor while minimizing out of order packets. Our scheduling policy tries to maintain packet order my
maintaining the flow locality, minimizes the migration of flows from one core to another by identifying the aggressive flows, and
partitions the cores among multiple services to gain instruction cache locality. Our light weight hardware implementation shows
improvement of 60 percent in the number of packets dropped and 80 percent in the number of out-of-order packet deliveries over
previously proposed techniques.

Index Terms—Network processor, load balancing, resource management

Ç

1 INTRODUCTION

A Network Processor is a special-purpose, programmable
device that is optimized for network operations. A net-

work processor is generally a multicore processor that can
process network packets at wire-speeds of multi-Gbps. Net-
work processors are employed in many demanding network
processing environments like core and edge routers. While
the main requirement in core routers is high capacity to han-
dle huge amounts of traffic, edge routers require program-
mability and flexibility in order to support multiple complex
applications like intrusion detection, firewalls, protocol gate-
ways, etc. A network processor provides the performance of
custom silicon and programming flexibility of general pur-
pose cores. The ability of a network processor to perform
complex and flexible processing and its programmability
make it an excellent solution for core and edge routers.

A number of network processors exist in the market.
These processors can be classified into two categories. The
first category includes general purpose multicore processors
that are adapted to perform networking functions. Examples
of such processors are the ThunderX [1], SunNiagara [2] and
Tilera [3] processors. The second category includes process-
ors which are specifically designed for networking app-
lications. These processors are equipped with hardware
accelerators and co-processors in addition to a large number
of general-purpose cores. Examples include the Freescale

T4240 [4], Broadcom XLP [5], EZChip [6], Cisco nPowerX1
[7] and IBM PowerNP [8]. Both of these categories have a
common attribute: they utilize a large number of cores to
achieve desirable performance by exploiting parallelism.
Networking applications have abundant parallelism because
multiple packets can be processed by different cores in paral-
lel. This packet level parallelism makes multicore architec-
tures well suited for networking applications [9]. Network
processors with 64 cores or more have been announced by
vendors to handle 100 Gbps network speed [10], [11]. With
increasing traffic rates and processing demands, the number
and complexity of cores in these processors are on the rise
and efficiently managing these cores has become very chal-
lenging. In thisworkwe focus on dynamic adaptations based
on run time traffic behavior in order to optimize performance
andmake following contributions.

First, design of a hash based packet scheduler and load
balancer is presented in order to achieve the goals of pre-
serving flow locality and packet order. A hash based packet
scheduler performs very well in order to achieve these goals
because it schedules packet at the flow level and thereby
maintains packet order and flow locality inherently. A seri-
ous impediment to performance of hash based scheduler is
the presence of skewed flow sizes in network traffic. Such
skewed distribution of flow sizes can result in overloading
some cores and may result in packet loss. To avoid packet
loss, a load balancer is designed that migrates some flows
from the overloaded cores to under-utilized cores. Flow
migrations are undesirable because they result in bad data
locality and can result in out of order packets. The load bal-
ancer proposed in this study minimizes the number of flow
migrations by restricting migrations only to the aggressive
flows. We present a low cost hardware to identify aggres-
sive flows. Second, the design of the scheduler is extended
to support multiple applications in a router where cores
can be dynamically allocated to applications. Furthermore,
use of incremental hashing is proposed which is low cost

! M.F. Iqbal, J.H. Ryoo, G.d. Veciana, and L.K. John are with the Department
of Electrical and Computer Engineering, University of Texas, Austin, TX
78712-1084.
E-mail: {faisaliqbal, jr45842}@utexas.edu, {gustavo, ljohn}@ece.utexas.edu.

! J. Holt is with Freescale Semiconductor Inc. & MIT Computer Science and
Artificial Intelligence Laboratory, Cambridge, MA 02139.
E-mail: jholt@csail.mit.edu, zjim.holt@freescale.com.

Manuscript received 20 Aug. 2015; revised 27 Feb. 2016; accepted 29 Mar.
2016. Date of publication 28 Apr. 2016; date of current version 14 Nov. 2016.
Recommended for acceptance by N. Bagherzadeh.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2016.2560838

3646 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 12, DECEMBER 2016

0018-9340! 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



method that minimizes number of flow migrations when
cores are allocated or deallocated to the services.

In the next section we present architecture of a network
processor and discuss issues related to packet scheduling in
these processors. The design of the packet scheduler is pre-
sented in Sections 3 and 3.3.

2 BACKGROUND AND MOTIVATION

2.1 Architecture of a Network Processor
Many architectural variations of network processors exist in
the market. Although vendors differ in specific implementa-
tions, they generally share three main features: 1) Multiple
cores to exploit packet level parallelism, 2) Accelerators for
networking functions and 3) Optimized path for movement
of packet data.

Architecture for a typical network processor is shown in
Fig. 1. An incoming packet is received by a Frame Manager
(FM). FM Places the packet payload in a buffer allocated by
the Buffer Manager and places the header, a pointer to the
buffer and some meta data as command descriptors in the
input queue to a processing core. The general purpose core
processes the packet and can offload some of the work to
accelerators, e.g., it can put some of the work in the queue
for security accelerator (SEC). SEC performs the required
processing and puts the packet back to the return queue.
Eventually, the general purpose core sends the packet back
to the FM via an enqueue after finishing the processing.

Network processing can be classified as either Control
Plane or Data Plane. Control Plane is responsible for control
and management processing, e.g., maintaining and updating
the routing tables. Control Plane processingmay involve exe-
cuting routing protocols like RIP, OSPF, and BGP, or control
and signalling protocols such as RSVP or LDP. Data Plane
deals with actual processing involved in packet forwarding.
The data plane execution involves compression, encryption,
address searches, address prefix matching for forwarding,
classification, traffic shaping, network address translation
and so on. In many network processors, the general purpose
cores are responsible for processing both data and control
plane packets. However, in majority of modern high speed
network processors, control plane processing is separated
from data plane processing [4], [12]. When a packet arrives, a
packet classifier in the FM decides whether it is a control or a
data plane packet. Control plane packets take the slow
path through general purpose cores. The data plane packets

(Layer 2 or possibly Layer 3) take the fast path and are not off-
loaded to general puspose cores. Fast path processing is han-
dled by the FM itself.

The FM is equipped with a large number (32-120) of small
cores called I/O Processors (IOP). These IOPs are in-order,
dual issue cores with non coherent memory, and generally do
not have an operating system. When a packet arrives the
packet classifier first identifies whether it is a control plane or
a data plane packet. If it is a L2 or possibly L3 data plane
packet, it is handled in the FM autonomously by IOPs, other-
wise it goes to general purpose cores. This configuration
describes a notional system that represents a class of chips as
they look today and moving into the next 3-5 years. In this
workwe are interested in scheduling of data plane packets on
IOPs. Since these packets arrive at a very high rate (100 Gbps
and even higher in future), an efficient scheduling of packets
on IOPs is needed in order to gain good performance. The
term IOP and core are used interchangeably in thiswork.

2.2 Challenges in Packet Scheduling
The design of scheduler for these applications is very chal-
lenging. First, the scheduler is in the data path and therefore
it should be as efficient as possible. Second, it should meet
the requirements of packet ordering, flow locality and cache
locality.

2.2.1 Packet Ordering

Although the internet is designed to tolerate out-of-order
packets, performance of upper layer protocols, such as
Transmission Control Protocol (TCP), greatly depends on
packet ordering. Out of order packets can falsely trigger
congestion control mechanisms and degrade throughput
unnecessarily [13]. Also, applications like Voice Over IP
(VOIP) and multimedia transcoding require that packets
arrive in order because the receiver might not be able to eas-
ily reorder the packets. Hence, it is important to preserve
the order among the packets of a flow. In this work, a flow
is defined as a set of packets that have the same source
address, destination address, source port, destination port
and protocol. If packets from the same flow are processed
by different cores, they can experience different queuing
and processing delays, and consequently, the probability of
out of order delivery of packets increases. Careful schedul-
ing of packets is needed in the network processors to mini-
mize out of order departure of packets.

2.2.2 Load Balancing

Load balancing is an important technique to efficiently uti-
lize multiple cores in a network processor. Packets arriving
at the input should be distributed uniformly to the available
processing cores to maximize performance. An unbalanced
allocation of load can swamp some cores. As a result,
incoming packets assigned to overloaded cores will experi-
ence large delays and may even result in packet loss due to
limited storage in the network processor.

2.2.3 Data Cache Locality

If different cores process packets of the same flow, the data
cache will be used inefficiently as the same data is copied to

Fig. 1. Typical architecture of a network processor.

IQBAL ETAL.: DYNAMIC CORE ALLOCATION AND PACKET SCHEDULING IN MULTICORE NETWORK PROCESSORS 3647



multiple caches. Packet processing needs to access per flow
data (state, statistics), as well as more global data (routing
table). If packets of a flow always go to the same core, locality
can be preserved for both local and global data. Locality in
global data comes from the fact that different flows may be
hot with respect to different parts of the routing table, i.e., at
the lower levels of the tree. The higher levels are hot to all
cores. Furthermore, there are many statistics that are kept per
flow, per port etc. Each packet may need to update several of
these statistics. If multiple cores work on packets of the same
flow in parallel, the per flow information needs to be kept
consistent across these cores by using synchronization primi-
tives like locks or semaphores. This results in blocking access
and degrades performance. The scheduler needs to account
for flow locality to achieve good performance.

2.2.4 Support for Multiple Services

Modern network processors are required to support a rich
set of services. For example, a multi-service edge router
may need to support encryption, decryption, firewalling,
intrusion detection and many other services [14], [15], [16].
The packet processing cores used in these processors are
usually small with a small instruction cache (i-cache) of size
8-16 KB. These caches can only hold a single program at
a time. The performance of a core will deteriorate due to
i-cache misses if it has to process packets of different appli-
cation types. In order to preserve i-cache locality, an effi-
cient resource allocator is needed to divide the pool of
processing cores among multiple services. If cores are allo-
cated to services statically at design time based on their
worst case requirements, it will result in unnecessary over-
provisioning with high system cost. The resource allocator
needs to be able to dynamically multiplex cores among
services based on runtime traffic requirements in order to
keep the processor provisioning level reasonable.

In the next section, we present a packet scheduler which
balances load among multiple cores while minimizing out
of order packets. In Section 3.3, we extend the load balancer
to support multiple services.

3 LOAD BALANCING WHILE MINIMIZING PACKET

REORDERING

In a network processor, load distribution among the multiple
cores is performed by a packet scheduler. A packet scheduler
receives an incoming packet form high speed link with traffic
rate ! and forwards it to one of the cores for processing. Each
cores processing power is mi and the total processing power
of the network processor is m ¼

P
mi. This work focuses on

the scheduler for data plane packets and does not consider
control plane packets. The design of scheduler for data plane
is particularly challenging. First, the scheduler is in the data
path, and therefore, should be as efficient as possible in terms
of latency to handle ever increasing traffic rates (100 Gbps
and even higher in future). Second, it should satisfy the
requirements of load balancing, packet ordering, data cache
and instruction cache locality.1 Previous researchers have

presentedmany load-balancing schemes [17], [18], [19]. These
schemes can be classified into two categories:

! Packet level load balancing: These schemes schedule
each packet independently to achieve uniformity in
load assignment. For example packets may be dis-
tributed in a round robin fashion [17], or an incom-
ing packet is allocated to the least loaded core [18].
These schemes have two drawbacks. First, these
schemes reorder packets very frequently. Second,
these schemes cannot utilize the data cache effi-
ciently because they send packets belonging to the
same flow to different cores.

! Flow level load balancing: Flow level schemes gener-
ally use hashing to distribute flows to individual
cores [20], [21], [22], [23]. The scheduler hashes one
or more header fields of the incoming packet and
uses the result to decide the target core for that
packet. Packets of the same flow are always mapped
to the same core because header fields are constant
for all packets of a flow. Hence the flow locality and
packet order is maintained.

The scheduler presented in this section uses a hash-
based approach because of its simplicity and obvious
advantage of packet ordering and flow locality. This sec-
tion discusses the challenges associated with hash based
packet scheduler and presents design of a scheduler that
overcomes these challenges.

3.1 Challenges in Hash Schedulers
Hash based designs are popular choices due to their low
overhead. These designs only need to compute a hash func-
tion to get the target core for a packet. But, there are several
dynamic properties of network traffic that make load bal-
ancing task challenging for hash-based designs.

3.1.1 Skewed Flow-Bundle Sizes

The quality of hash function plays an important role in dis-
tributing the flows evenly to all processing cores. All the
flows that map to the same core or bin in the map table are
referred to as a flow-bundle. Uniformity of flow bundle sizes
means that the hash function has distributed flows very
effectively to the processing cores. Under ideal conditions,
each flow bundles should have a size of F

M. Where F is the
number of active flows andM is the number of bins or cores.

Many researchers have worked on designing effective
hash functions for internet addresses [22], [24], [25]. It has
been shown that CRC16 performs very well for internet traf-
fic [24]. Similar results are observed in this study.

3.1.2 Skewed Flow Sizes

Even with perfect distribution of flows to cores, load imbal-
ance can still occur because all the flows are not of the same
size. In fact, it is well known that network traffic constitutes
only few heavy-hitter (high data rate) flows and many low
data rate flows [23], [26]. Fig. 2 demonstrates this behavior
in real network traffic. The plot shows the popularity of
flows (y-axis) with most popular flow plotted first (x-axis).

Shi et al. have shown that hashing alone cannot balance the
load under this highly skewed distribution of flow sizes [23]

1. This section does not consider i-cache locality. The scheduler pre-
sented in this section is extended in section 3.3 to make it i-cache aware
for multi-service routers.

3648 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 12, DECEMBER 2016



and can result in overloading some cores. In this scenario, the
load on each core should be monitored and adjusted dynami-
cally to migrate some load to underutilized cores. Care must
be taken because it is desirable to minimize the number of
flow migrations. Flowmigrations result in out-of-order pack-
ets and also badly affect data cache performance.

In order to minimize the number of flow migrations, pre-
vious research has made the observation that migrations
should be limited to only top aggressive flows [23]. In this
way load balance can be achieved by minimum number of
flow migrations. However, previous research based its
study purely on offline analysis and kept per flow statistics
to identify aggressive flows. Maintaining per flow statistics
has a lot of overhead and is not possible in realistic designs.
Although many per flow statistics are maintained by soft-
ware, accessing those software statistics is very time con-
suming for a scheduler that is trying to schedule data plane
packets. The data plane packet scheduler needs to function
with minimum software intervention for good performance.

This research presents the design of a hardware scheduler
for data plane packets. A novel low-overhead hardware tech-
nique to identify aggressive flows is presented. The aggres-
sive flow detection scheme is based on two-level caching
idea of annex-cache [27] used in general purpose applica-
tions. The caching based aggressive flow detector integrates
readily with a hash based packet scheduler. The complete
design and evaluation of the scheduler is presented in this
section.

3.2 Packet Scheduler Design
The proposed packet scheduler uses a hash based design
which is a natural way of maintaining flow locality and
packet order. The scheduler is called Locality Aware Packet
Scheduler (LAPS). When a packet arrives, its flow identifier
is extracted from the header. Flow identifier is a five tuple
consisting of source and destination IP addresses, source
and destination ports and protocol ID. This five tuple is
hashed using CRC16 to get an index into a map table.
The map table2 stores target core ID where the packet is

eventually forwarded. In the presence of skewed flow size
distribution as shown in Fig. 2, the scheduler identifies and
migrates the aggressive flows from the overloaded core to
achieve load balance. An efficient scheme for identifying
andmigrating aggressive flows is presented.

When a core becomes overloaded, i.e., its queue size
reaches a threshold, the scheduler needs to migrate some of
the incoming traffic from that core to a less loaded core.
This migration of flows has two drawbacks: One, it makes
some cached data in the source core useless and triggers
some cold misses in the cache of newly allocated core. Two,
flowmigration makes it harder to maintain the order among
packets of the flow. The new incoming packets will poten-
tially experience less queuing delay as compared to older
packets that are waiting in the overloaded core’s queue.

To avoid the above two situations, it is desirable to mini-
mize the number of flow migrations. If only the most
aggressive flows can be identified and migrated, load bal-
ance can be achieved with minimum disruption, i.e., only a
few flows need to be migrated to achieve load balance. In
order to achieve this, a low cost mechanism is need to iden-
tify top aggressive flows. This research proposes a novel
cache based hardware called Aggressive Flow Detector
(AFD) to identify the top flows. The hardware consists of a
small fully associative cache called Aggressive Flow Cache
(AFC). AFC is augmented with a cache assist called annex
cache. Detailed architecture of annex cache and AFC is pre-
sented in Section 5.3.

Fig. 3 presents the scheduler design. The incoming pack-
ets are hashed to get index into a map table that stores the
target core IDs. On load imbalance, the incoming packet
flow to the overloaded core is migrated to the least loaded
core if the flow is identified as an aggressive flow by AFD.
The decision is recorded in the Migration table. So the future
packets of the same flow are always migrated to the newly
allocated core. The scheduler gives priority to the output of
migration table over the default hash table. If the input
queue indicated by the scheduler is filled up, the incoming
packet is dropped.

3.2.1 Aggressive Flow Detection

The design of Aggressive Flow Detector is based on annex
cache. Annex Cache was proposed by John [27] to exploit
locality in the memory references in general purpose

Fig. 2. Distribution of flow sizes in real network traces. Rank 1 is the flow
with the highest flow size.

Fig. 3. Load balancer design.

2. Map table is used instead of direct hashing because it allows
dynamic core allocation presented in the next section.

IQBAL ETAL.: DYNAMIC CORE ALLOCATION AND PACKET SCHEDULING IN MULTICORE NETWORK PROCESSORS 3649



processor workloads. This study shows that such a struc-
ture can be very useful in to identify aggressive flows.

The AFD has two main components as shown in Fig. 4.
One component is a small fully associative cache called
Aggressive Flow Cache. AFC holds the IDs of top aggres-
sive flows. All entries into AFC come via annex cache. Items
referenced only rarely will be filtered out by annex cache
and will never enter AFC. The basic premise is that a flow
deserves to enter AFC only if it proves its right to be in AFC
by showing locality in the annex cache. Annex cache also
serves as a victim cache and provides some inertia before a
flow is excluded from the AFD. Both AFC and annex cache
use Least Frequently Used (LFU) replacement policy.

The design of AFD is slightly different from the one pre-
sented in [27] because in AFD annex cache is bigger than
AFC. A larger AFC is undesirable because the proposed
scheme wants to limit the number of monitored aggressive
flows. Annex cache is a bigger structure that serves as a
qualifying station for large number of flows to demonstrate
their eligibility to be cached into the AFC. When a packet
arrives, its flow ID is checked in both AFC and annex cache.
If it is a hit in AFC, the hit counter is incremented. On a hit
in the annex cache, flow counter is incremented and the
value is compared with a pre-defined threshold. The thresh-
old for promotion to AFC is the LFU count in AFC. If the
hit count in annex cache exceeds the threshold, the flow is
promoted to AFC. The victim flow from AFC is then placed
in the annex cache. Finally on a miss in annex cache, a flow
replaces the LFU flow of the annex cache.

3.2.2 Load Imbalance Detection

Length of the longest queue is used to detect the load imbal-
ance in the system, i.e., when the length of the longest queue
in the system reaches a predefined threshold, load imbal-
ance signal is asserted. As long as the load imbalance signal
is asserted, all the aggressive flows are migrated to the least
loaded core. The migrated flows are forwarded to the new
core even after the load imbalance signal is de-asserted as a
result of flow migration.

Most modern network processors have dedicated hard-
ware units for management of packet queues [4], [8], [28]

and a lot of research has been done on design of these hard-
ware queue managers [29], [30], [31]. These queue managers
implement different active queue management algorithms
(e.g., Random Early Detection RED) and monitor the queue
length as part of their normal operation. This queue length
information can easily be used by the load balancer to detect
the need for low migration, i.e., it can easily be reported to
the packet scheduler when the queue reaches a threshold.
Hence, additional hardware resources are not needed to
monitor queue length, because queues are already moni-
tored for congestion control purposes. In this work, it is
assumed that hardware queue manager monitors the queue
state and generates the load imbalance signal.

3.3 Packet Scheduler for Multiservice Routers
A simple hash based design as presented in 3 can result in
inefficient i-cache usage. In order to exploit i-cache locality,
LAPS divides the pool of cores among all active applications
or services. In effect, there is a separatemap table for each ser-
vice. All cores in a single map table always get packets that
require same processing. Hence, i-cache locality is preserved.
The main question is how to allocate cores to applications? If
cores are allocated on compile time, we need provisioning
for worst case traffic requirements of each service requiring a
huge number of cores. Fortunately, all services do not experi-
ence their worst case traffic simultaneously and hence cores
can be multiplexed dynamically among services to keep the
total number of cores reasonable. Many dynamic allocation
schemes have been proposed in the past. In this work we
adapt the policies presented in [32] to integrate it with hash
load balancer. We further make it flow aware so that the
number of flowmigrations areminimized on dynamic alloca-
tion and deallocation of cores. LAPS utilizes incremental
hashing (also known as Linear hashing) to minimize number
of flowmigrations on dynamic adaptation.

3.3.1 Allocation of Cores to Services

LAPS keeps a list of cores that aremarked as surplus cores by
other services (Section 3.3.2). When a service becomes over-
loaded, LAPS looks through the list of surplus cores and finds
the core that has been marked extra for the longest period of
time and allocates this core to fulfill the demands of request-
ing service. This policy makes sure that the deallocated core
has the least utility for the victim service. The core ID is added
to the list of allocated cores for the requesting service.

3.3.2 Release of Cores by Services

When input queue to a core becomes empty, a timer starts.
When the timer reaches idleth, the core is marked surplus
by adding it to a list of extra cores. The core still remains
allocated to the same service. In case, the same service needs
more resources in near future (before the core is put to deep
sleep state by the power management scheme), this core
can be unmarked and removed from the list of surplus cores
without incurring the overhead of context switch. If the core
is actually allocated to another service, it is removed from
the bucket list of the victim service. Other core IDs will be
shifted to take the place of this ID. The bucket size b is
decremented by 1 and the hash function is also changed
accordingly. This may result in some flow migrations but

Fig. 4. Structure of aggressive flow detector.

3650 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 12, DECEMBER 2016



the performance overhead is tolerable because this service is
only lightly loaded anyway. The value of idleth is set to
10us based on previous research [33].

3.3.3 Load Redistribution on Core Allocation

When an additional core is allocated to a service, the
resource manager appends the core ID to the end of the
hash table for that service, i.e., hash table size grows by 1.
Linear Hashing scheme allows a hash table to grow one
bucket at a time and does not require rehashing of all flows
currently allocated. This makes it useful for load balancing
because it is desirable to minimize the flow disruption
when an additional core is allocated to a service. The Linear
Hashing scheme was introduced by Litwin [34] and has
been described in [35]. Following is a brief introduction of
how this scheme works.

3.3.4 Initial Assignment of Flows

The linear hashing scheme has m initial buckets labelled
0 through m# 1, and an initial hashing function h0ðkÞ ¼
fðkÞ%m that is used to map any key k to one of the m buck-
ets, and a pointer p that points to the bucket to be split
whenever new bucket is added. Initial value of p is 0. An
example is shown in Fig. 5. In this example, h0ðkÞ ¼ k%m is
used as a hash function for simplicity.

3.3.5 Bucket Split

When the resource manager allocates an addition core to a
service, bucket 0, that is pointed by p, is split into two buck-
ets: the original bucket 0 and a new bucketm. The flows orig-
inally mapped to bucket 0 by hash function h0 are now
distributed between bucket 0 and m using a new hash func-
tion h1. Fig. 6, shows layout of linear hashing after the new
core bucket has been added to the map table. The shaded
flows are the flows that are moved to the new bucket. Bucket
0 has been split and and the flows originally in bucket 0 are
distributed between bucket 0 and bucket 4, using a new hash
function h1ðkÞ ¼ k%8. When another additional core is allo-
cated, i.e., another bucket m+1 is added to the hash table, the
flowsmapped to bucket 1 will now be redistributed using h1
between buckets 1 and m+1. A crucial property of h1 is that
the keys that were mapped to some bucket j by h0, are

remapped to either j or bucket jþm. This is a necessary
property for linear hashing to work. An example of such
hashing function is: h1ðkÞ ¼ k%2m.

3.3.6 Round and Hash Function Advancement

After enough core allocations, all original m buckets will be
split. Thismarks the end of splitting round 0. During round 0,
p went from 0 to m# 1. At the end of round 0, there are 2m
buckets in the hash table. Hash function h0 is no longer
needed because all 2m buckets can be addressed by h1. Vari-
able p is reset to 0, and a new round namely round 1 starts. A
new hash function h2 needs to be used. Fig. 7 shows the state
of hash table at the end of splitting round 0. In general, the lin-
ear hashing scheme uses a family of hash functions h0, h1, h2,
and so on. Let the initial function be h0ðkÞ ¼ fðkÞ%m, then
any later hash function is hiðkÞ ¼ fðkÞ%2im. This way it is
guaranteed that if hi hashes a key to the bucket j 2
½0::2im# 1(, hiþ1 will hash the same key to either j or bucket
jþ 2im. At any time, two hash functions hi and hiþ1 are used.
In general, in splitting round i, hash functions hi and hiþ1 are
used. At the beginning of round i, p ¼ 0 and there are 2im
buckets.When all those buckets are split, splitting round iþ 1
starts, p goes back to zero, the number of buckets become
2iþ1m, and hash functions hiþ1 and hiþ2 will start to be used.

3.3.7 Summary and Mapping Scheme

Initially, each service is allocated m cores, i.e., there are m
buckets in the hash table. At any time the hash table man-
ager has the following components:

1) A variable i that indicates the current splitting
round.

2) A variable p that points to the bucket to be split next.
3) A total number of 2imþ p buckets in the hash table.
4) Two hash functions hi and hiþ1. The base hash func-

tion used is CRC16, i.e., fðkÞ ¼ CRC16ðkÞ.
Whenever a packet arrives, the hash scheduler has to

map it to one of the buckets in the map table. The mapping
scheme works as follows:

hðkÞ ¼ hiþ1ðkÞ : hiðkÞ < p
hiðkÞ : hiðkÞ ) p:

!

Fig. 5. Initial assignment of flows.m ¼ 4, p ¼ 0, h0ðkÞ ¼ k%4:. Fig. 6. Flow redistribution after allocation of an additional core. p ¼ 1,
h0ðkÞ ¼ k%4, h1ðkÞ ¼ k%8.

IQBAL ETAL.: DYNAMIC CORE ALLOCATION AND PACKET SCHEDULING IN MULTICORE NETWORK PROCESSORS 3651



That is, if hiðkÞ ) p, choose bucket hiðkÞ because this bucket
has not been split yet in the current round. If hiðkÞ < p,
choose bucket hiþ1ðkÞ. The value of p is incremented when-
ever a new core is allocated to the service. Use of this incre-
mental hashing in conjunction with load balancing scheme
of Section 3.2 allows us to add additional cores to a service
with minimal disruption to the existing flows.

3.3.8 Load Redistribution on Core Release

When a core is reallocated to another service, it is removed
from the bucket list of the victim service. Essentially, a pro-
cess that is reverse of load redistribution on allocation takes
place. The value of round i is updated, i.e., i ¼ ðb=mÞ # 1,
where b is the current number of buckets in the map table.
The value of p is set to b# 2im. and the hash function is also
changed accordingly.

3.4 Overall Scheme
Fig. 8 shows the overall architecture for LAPS. The bucket
list in the mapping table for each service Si is dynamic and
the dynamic size bi changes with traffic variations. The hash
function for each service is decided based on the size of its
bucket list. Following steps are taken when a packet arrives:

1) If the flow ID hits in the migration table, the packet is
forwarded to the core ID indicated by the migration
table.

2) If the flow ID does not hit the migration table, the
map table is searched using the hash function and
the packet is forwarded to the core indicated by the
mapping table.

3) Under load imbalance, the aggressive flows (flows
that hit in AFC) are migrated to the least loaded core
allocated to that service similar to the load balancing
scheme of Section 3.

4) When number of cores allocated to a service become
insufficient, the bucket lists are updated. An idle
core is removed from the bucket list of donor service
and is added to the bucket list of overloaded service.

4 EVALUATION INFRASTRUCTURE

4.1 Traffic Traces
In this work we used real network traces to evaluate the per-
formance of packet scheduler. Following is a small descrip-
tion of set of traces used in this study.

4.1.1 CAIDA Traces

This dataset contains anonymized traffic traces from
CAIDA’s equinix-sanjose monitor [36]. This monitor is con-
nect to OC-192 link. These set of traces are captured in year
2011 and are of duration of 1 minute each.

4.1.2 University of Auckland Traces

This set of traces, also known as AUCK-II, is captured at
University of Auckland and captures the traffic between the
university and its ISP [37]. All connections from the univer-
sity to external world pass through this measurement point.
These traces are of one hour long duration each.

4.2 Workload Model
In order to model the different services running on a multi-
service router we consider a workload similar to the one
presented in Fig. 9. This model is based on methodology
presented in [16]. In modern network processors, all tasks
of the same path are scheduled on the same core to reduce
the communication overhead. Hence, in this study we con-
sider all the tasks on the same path as a single service. Thus
our simulations have four active services in the processors.
A packet is tied to a single core for the life time of its proc-
essing. The incoming packets can be serviced by one of the
four services represented by different paths of Fig. 9. Path 1
describes the path of outgoing packets which are tunnelled

Fig. 7. Flow redistribution at the end of round 0 (beginning of round1).
p ¼ 0, h1ðkÞ ¼ k%8, h2ðkÞ ¼ k%16.

Fig. 8. Locality aware packet scheduler.

3652 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 12, DECEMBER 2016



via VPN. Path 2 represents the default handling of packets.
Path 3 is the path of incoming packets on edge router that
are scanned for malware and Path 4 is for incoming VPN
packets which are decrypted and scanned for malware.

4.3 Simulation Infrastructure
For evaluating different scheduling strategies, we devel-
oped a simulation model in SpecC [38]. SpecC is similar to
systemC [39] in its design and philosophy. Different compo-
nents of the simulator are shown in Fig. 10.

4.3.1 Packet Generator

Packet generator generates traffic with programmable traffic
rates. To generate packets, it reads the real packet traces.
We govern the traffic for each path based on Holt-Winterz
forecasting as suggested in [40]. The traffic rate is governed
by the equation (1).

xiðtÞ ¼ aþ b:tþ C:SðtmodmÞ þ nðsÞ; (1)

where xiðtÞ is the traffic rate for service i, a is the base-
line traffic component, b is the trend component, C is the
magnitude of seasonal component S, m is the period of
seasonal component, n is random noise with a standard
deviation of s. Total incoming traffic is the sum of traffic
of each individual service. The header for each generated
packet is taken from real network traces. We use a sepa-
rate packet trace for each path of the flow graph. The
use of real network traces ensures that realistic flow sce-
narios are created.

4.3.2 Scheduler

The Scheduler module implements the different scheduling
strategies. Once a decision has been made the input packets
are enqueued into the input queue of the target core. The
queue size is set to 32 packet descriptors for each queue
based on pervious research [19]. A packet is lost when it is
assigned to a queue which is already full.

4.3.3 Processing Latencies

Each packet of a service i, experiences a Processing Delay
(PDi) in the core based on the following equation

PDi ¼ Tproc;i þ FMpenalty þ CCpenalty; (2)

where Tproc;i is the processing time, FMpenalty is the penalty
due to flow migration and CCpenalty is the cold cache penalty
which occurs when subsequent packet needs different proc-
essing than the previous packet. Tproc;i is derived from real
delays seen by the packets when the packet processing is
implemented in software on a full systemGEMS [41] simula-
tor. The configuration of in-order cores is shown in Table 3.

We executed these packet processing applications and
derived a packet processing delay model for each service.
TProc is measured to be 0.5ms for path 2, i.e., IP forwarding.
For path 3 it is measured to be 3.53ms. For Path 1 it also
depends on the packet size and is given as

Tproc;path1 ¼ 3:7msþ PacketSize

64 byte
* 0:23 ms: (3)

Similarly the processing time for path 4 is given as

Tproc;path4 ¼ 5:8msþ PacketSize

64 byte
* 0:21 ms: (4)

FMpenalty is set to four cache misses (o.8ms) conservatively
(two for routing data and two for per flow data). In reality,
a flow migration can cause a lot more misses depending
on how much per flow data is maintained. Becasue of small
I-cache, these cores can hold instructions of only the last
executed program (e.g., AES encryption used in IPSec

Fig. 9. Example task graph for an edge router.

Fig. 10. Simulation infrastructure.

TABLE 1
List of CAIDATraces Used in the Study

Trace Name

Caida 1 20110120-125905.UTC.anon.pcap.gz
Caida 2 20110120-130000.UTC.anon.pcap.gz
Caida 3 20110120-130100.UTC.anon.pcap.gz
Caida 4 20110120-130200.UTC.anon.pcap.gz

TABLE 2
List of Auckland-II Traces Used in the Study

Trace Name

Auckland 1 20000614-181539-0.gz
Auckland 2 20000614-181539-1.gz
Auckland 3 20000619-183717-1.gz
Auckland 4 20000621-105006-0.gz
Auckland 5 20000621-105006-1.gz
Auckland 6 20000630-175712-0.gz
Auckland 7 20000630-175712-1.gz
Auckland 7 20000703-152100-0.gz

TABLE 3
Data Plane Core Configuration

Frequency Pipeline Branch Predictor I-Cache D-Cache

1GHz 7 stage gshare/BTB 16 KB 32 KB
2-issue 128 entry each 2 way 4 way

IQBAL ETAL.: DYNAMIC CORE ALLOCATION AND PACKET SCHEDULING IN MULTICORE NETWORK PROCESSORS 3653



requires 16 KB). So whenever a packet of different service
arrives at a core, it will experience cold cache penalty. We
set the cold cache penalty to 10 ms which is the cold cache
penalty for the smallest service, i.e., IP Forwarding as
observed in GEMS simulator. In practice this penalty will
be higher because many services are larger and a context
switch can result in some D-Cache misses too. For simplic-
ity, we ignore the D-cache misses due to context switch in
this work.

5 RESULTS AND DISCUSSION

5.1 Throughput Improvement with LAPS
LAPS aims to improve throughput by exploiting locality in
instruction and data caches. Fig. 12 shows effectiveness of
LAPS in improving throughput of a sixteen core system. In
this experiment, all four services of Fig. 9 are active. Simula-
tion infrastructure of Fig. 10 is used. The traffic rate genera-
tor is configured to increase the traffic gradually to measure
the maximum throughput supported by the system. Traffic
is equally divided among the four services, i.e., Path 1
through 4 of Fig. 9. Caida 1, Caida 2, Caida 3 and Caida 4
traces are used for generating packets for Path 1, Path 2,
Path 3 and Path 4. Fig. 12 compares throughput of LAPS
with a First Come First Served (FCFS) and Arbitrary Flow
Shift (AFS) scheduler. X-axis shows combined input traffic
rate which is equally divided among all the services and
y-axis shows the traffic rate observed at the output.

FCFS scheduler services packets in their arrival order
and does not consider flow or instruction locality. As a
result, it causes many data and instruction cache misses and
results in the worst throughput among the three schedulers.
As compared to FCFS, AFS reduces some flow migrations
and is able to improve throughput a little. But AFS is still

unaware of instruction locality and results in suboptimal
performance. In comparison to these two schemes, LAPS
improves both flow and instruction locality and results in
substantially better throughput (56 percent more than AFS
and about 100 percent more than FCFS). Ideal throughput
represents a system with no cache miss penalties. The plot
is obtained by setting the cache miss penalties to zero.
Although such a system is infeasible, it represents a theoret-
ical maximum which can be achieved if the system has full
knowledge of everything and is able to move data and
instructions into caches before they are needed.

Note that the throughput supported by the simulated
sixteen core system is much less than the industrial system.
There are two reasons for this: First, the software imple-
mentations of services are taken from open source bench-
mark suites where as companies use highly optimized
implementations. Second, the experiments are based on
software only implementations and do not use hardware
accelerations.

5.2 Performance Improvement with LAPS
In this section, we compare the performance of LAPS with a
First Come First Served scheduler and the scheduler pre-
sented in [20]. This scheduler migrates arbitrary flows when
load imbalance is detected. We call this scheme Arbitray
Flow Shift. For this set of experiments, traffic rate is governed
by equation (1). We experimented with different sets of
parameters for equation (1) and LAPS outperforms other
schemes in all scenarios. We present results with two sets of
parameters listed in Table 4. Set 1 represent the under-load
scenario i.e., the aggregate traffic rate is less than the ideal
capacity of 16 cores. Set 2 represents an overload scenario i.e.,
the data rate is more than the capacity of the 16 core system.

For each service, we use real network traces to generate
the packet. We used different sets of traces listed in Table 5.

Fig. 11. Comparison of LAP with FCFS and AFS with different traffic scenarios listed in Table 6.

Fig. 12. Throughput comparison of different schedulers.

TABLE 4
Parameters Governing Traffic Rate

Service a b C m s

Set 1 S1 1 0.03 0.3 40 0.1
S2 1.8 -.025 0.1 25 0.05
S3 0.5 0.01 0.07 60 0.25
S4 0.3 0.005 0.09 600 0.3

Set 2 S1 1.5 0.002 0.3 100 0.3
S2 1.3 -.02 0.15 25 0.05
S3 1 0.004 0.25 30 0.25
S4 0.7 0.01 0.18 200 0.3

Rate is in Mpps and period is in seconds

3654 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 12, DECEMBER 2016



The combination of sets of equation in Table 4 and traces in
Table 5 creates difference traffic scenarios listed in Table 6.

Fig. 11a shows packets dropped with three schemes under
the traffic scenarios shown in Table 6. LAPS outperforms
FCFS and AFS in both underload and overload conditions.
FCFS and AFS dsitrubute packets of different services arbi-
trarily to cores and suffer from poor I-cache locality (Fig. 11b).
These schemes drop packets even in underload conditions
because almost 60 percent of packets suffer from cold cache
penalties. On the other hand, LAPS partitions the cores
among services effectively and enjoys good I-Cache perfor-
mance. Under overload scenarios (T5 through T8), LAPS also
suffers from some cold caches because cores are dynamically
switched between services based on traffic variations.

LAPS maintains data and instruction cache locality and is
able to sustain higher traffic inputr rates. Fig. 11c shows the
effectiveness of LAPS in preserving packet order under traf-
fic scenarios of Table 6. FCFS does not care for packet order-
ing and hence results in most out of order packets. AFS
reduces these out of order packets but still there are consid-
erable amount of out of order packets due to large number
of flow migrations. LAPS minimizes the flow migrations by
only migrating the top flows and hence result in very few
packets being delivered out of order. Next, we show how
our proposed Aggressive Flow Detector helps in identifying
the top flows and helps to achieve load balance with mini-
mum flowmigrations.

5.3 Performance of Aggressive Flow Detector
The proposed AFD has two components: An aggressive
flow cache, and an annex cache. An annex cache can be
viewed as a preliminary filter where non-aggressive flows
are filtered out from entering the small AFC. Therefore, any
entry in AFC is a considered an aggressive flow. We evalu-
ate the effectiveness of AFD by varying annex cache size
while setting the size of AFC constant at 16 entries. Since
our AFC size is fixed, we can only detect up to the maxi-
mum of 16 top aggressive flows. A perfectly accurate AFC
will hold the IDs of top 16 aggressive flows. A flow found in
AFC, which is not among the top 16 flows identified by off-
line analysis is considered a false positive. Fig. 13a shows
the false positive ratio (false positives/total entries) in AFC
when annex cache size is varied. As the size increases, the
annex cache can hold more flows to choose a possible candi-
date for a promotion to the AFC. In other words, the pool of
aggressive flow candidates increases and the chances of
aggressive flows residing in the cache for the AFC promo-
tion becomes higher. For Auckland traces, AFC can identify
all top 16 flows with 100 percent accuracy with a 512 entry
annex cache. Caida traces have much more flows active and
thus require a larger annex cache. In Caida 1 and 2 respec-
tively, only 14 and 13 most aggressive flows are correctly

identified with a 512 entry annex cache. When we double
the size to 1,024 entries, accuracy improved an average of
6.25 percent. Although there are 2 or 3 false positives in
Caida 1 and 2 cases, they are not random flows that are pro-
moted to the AFC. In fact, when we consider 20 most
aggressive flows as our area of interest, these false positives
fall into the aggressive flow category. Yet, for consistency of
our work, we treat those flows as false positives. We only
looked at the accuracy of our mechanism at the end of our
simulations until now. Since LAPS needs to peek into the
AFC whenever load balancing is required, we performed
another experiment where the accuracy is checked at every
fixed intervals. In Fig. 13b, we performed the same accuracy
evaluation with varying interval steps. In this experiment,
we assumed the fixed 512 entries for the size of the annex
cache. Our mechanism shows above 90 percent accuracy
from a small step size such as every 1,000 packets to large
step sizes. This implies that our AFC will contain the most
aggressive active flows regardless of when it is accessed. In
dynamic scheduling schemes like ours, it is key to maintain
a high level of accuracy across the entire execution. Fig. 13c
shows the false positive ratio when packets are sampled
with a probability p and not all packets access the AFD. It is
interesting to note that FPR improves initially with sam-
pling. This is because sampling acts as a filter, i.e., the prob-
ability of large flows being sampled is higher than the
smaller flows. However, the performance deteriorates
for Caida traces at larger sampling intervals. Sampling up
to 1/1k probability gives better or equal performance than
sampling all packets for all traces. Caida traces have gener-
ally large number of high data rate flows and hence their
performance deteriorates if sampling is increased too much.
Sampling not only improves the accuracy but also reduces
power consumption because now each packet does not
have to access the AFD.

5.4 Dynamic Behavior of the System
In order to observe the effectiveness of of dynamic resource
allocation scheme, temporal behavior of number of cores
allocated to each service is plotted. Fig. 14 shows the dynamic
behaviorwhen two services are active in the system. Service 1
is the same as Path 1 of Fig. 9, i.e., the outgoing VPN traffic is
encrypted using IPSEC encryption. Service 2 is the Path 3 of
Fig. 9 which corresponds to processing incoming packets
through a firewall. The traffic requirements of each service
are varied over time and the response of the resource alloca-
tion system is observed. Fig. 14 shows that the system is very
effective in following the changing traffic requirements and

TABLE 5
Traces Used in Experiment for Packets of Individual Services

Group S1 S2 S3 S4

G1 Caida1 Caida2 Caida3 Caida4
G2 Caida5 Caida6 Caida2 Caida3
G3 auck1 auck2 auck3 auck4
G4 auck5 auck6 auck7 auck8

TABLE 6
Traffic Scenarios Used in Fig. 11

Scenario Parameter Set Trace Group

T1 Set 1 G1
T2 Set 1 G2
T3 Set 1 G3
T4 Set 1 G4
T5 Set 2 G1
T6 Set 2 G2
T7 Set 2 G3
T8 Set 2 G3

IQBAL ETAL.: DYNAMIC CORE ALLOCATION AND PACKET SCHEDULING IN MULTICORE NETWORK PROCESSORS 3655



changes the core allocations to match the demands of each
service very effectively.

5.5 Opportunities of Migration without Reordering
The results presented in the previous section show signifi-
cant improvements in minimizing number of flow migra-
tions and percentage of packets which leave the system out
of order. However, there is still a small percentage of pack-
ets which are out of order (1-2 percent). Ideally, any out of
order packets should be eliminated. In this section we
study, the opportunities of migrating flows without any
risk of packet reorder. Such opportunities exist because the
gap between the packets may be large enough to allow
flows to migrate without any risk of reordering [42].

To investigate such opportunities a simple experiment is
conducted. Whenever a packet arrives, the opportunity
count is incrementd by 1 if the target queue does not contain
any packets from the same flow. Table 7 shows the opportu-
nity counts for Caida 1 trace. Note that this is a conservative
estimate because even if packets exist in the queue, it is still
possible to migrate without reordering if the existing pack-
ets will be processed before the new incoming packet.

First row shows, when any packet arrives and it is safe to
migrate it without any reordering. The second row shows
the same results when the input queue length of the target
core is greater than the imbalance threshold. This is more
important than because this is the situation where flow
migration is needed. The third row represents the situation
when the incoming packet belongs to the top flow and the
target core is overloaded. This is the situation where our
scheme can benefit by migrating the large flow without
causing any reordering. This is a great opportunity to fur-
ther minimize out of order departure of packets. It is possi-
ble that current scheme when moves a big flow does not
cause reorder. But the scheme in itself does not have any
such mechanism. It can be further extended such that when
its time to migrate flow, priority could be given to flows
with minimum packets in the system to minimize reorder-
ing. This will help minimize reorderings but will make the
system little more complex. Because now, we need to store
the target cores for the large flows and also need to keep
track of the number of packets belonging to that flow in the
system. Such a system is part of future work.

5.6 Analysis of Flows on Migration
In order to understand the behavior of the system, the flows
allocated to the overloaded core at the instance of flow
migration are analyzed. Fig. 15a shows the number of
unique flows present in the queue of the overloaded core
when a big flow is migrated from that core. Generally, a
large number (15-20) of flows are present. This indicates
that the overload is caused by a combination of large and
small flows and migrating the large flow is expected to

Fig. 13. Effectiveness of AFD in identifying aggressive flows.

Fig. 14. Temporal behavior of the resource allocator.

TABLE 7
Opportunities For Flow Migration without Reordering

Flow Type Qlength Total Packets PMO

Any Any 28219211 20385555
Any >qthresh 14068978 9375921
Top >qthresh 619555 252825

3656 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 12, DECEMBER 2016



mitigate the load imbalance. A small number of flows
would indicate that the overload is caused by small number
of large flows and there is a potential that migrating
the large flow would result in imbalance even in the newly
allocated core. Fig. 15b shows the number of big flows allo-
cated to the overloaded core at the time of flow migration.
From the plot it can be seen that the imbalance is usually
caused by multiple big flows and migrating one flow is not
expected to cause imbalance in the new core.

Presence of multiple big flows in the queue of overloaded
core opens up the opportunity to further improve the scheme.
For example, when migration decision is made preference
could be given to the big flowwhich will cause less distortion
in the order of packets, e.g., the flow with less number of
packets in the queue could be preferred over the flow with
larger number of packets. Such a scheme is likely to increase
the complexity of the system becasue now core association of
the flows and their number of packets in the system need to
bemonitored. Design of such a system is part of futurework.

6 RELATED WORK

6.1 Existing Work on Packet Ordering
Previous researchers have adopted two different
approaches to minimize packet reordering in network pro-
cessors: order restoration and order preservation.

6.1.1 Order Restoration

This technique allows packets belonging to a flow to be proc-
essed out of order by different cores and restores the order at
the output [8], [18], [19]. At the input, each packet is tagged
with a sequence number and the packets are allowed to exit
the system in strict sequence order. Per flow tagging is
needed in order to preserve order among packets of the
same flow. This requires keeping per flow information,
which is a huge overhead as there can be millions of flows
active at a time [43], [44]. Overhead of per flow tagging can
be reduced by using global tagging. Global tagging is easy to
implement but it is overly restrictive as it forces order even
among packets of different flows and results in throughput
degradation. Order restoration also requires an expensive
synchronization mechanism because multiple cores may be
required to update the ordered list of packets of the same
flow at the same time. This scheme also results in poor data
cache locality because flow locality is not preserved.

6.1.2 Order Preservation

This technique avoids the overheads of order restoration by
preserving packet order. One example of order preservation

is the batch scheduling scheme presented by Guo et al. [17].
In this scheme, a batch of packets is dispatched to cores in a
strict round robin manner and is read from cores in the
same order. This scheme does not require per flow informa-
tion but requires expensive synchronization among multi-
ple cores and is not suitable to be implemented for data
plane packets. Furthermore, this scheme assumes that each
packet requires the same application and does not consider
i-cache or flow locality in the algorithm. Another method to
preserve packet order is to use a hash function to distribute
packets to processing cores [20], [21], [22], [23]. This work
adopts hash based scheme and integrates a hash scheduler
with a dynamic resource allocator.

6.2 Existing Work on Load Balancing
Dittman presented a hash based packet scheduler and load
balancer [20]. When a load imbalance is detected, this
scheme migrates arbitrary flows to an under-loaded core.
Such a scheme blindly migrates flows and can result in a
large number of flow migrations. This scheme is referred to
as arbitrary flow ship in this paper. A large number of flow
migrations results in poor data cache locality and causes
many out of order packets. Shi et al. [23] proposed to only
migrate the flows that have high data rates. The load balanc-
ing scheme presented in this work is based on [23] but the
proposed scheme minimizes the overhead of per flow statis-
tics by using a low cost aggressive flow detector. Further-
more, the load-balancer presented in [23] does not consider
i-cache locality whereas this research presents a more com-
plete solution that maximizes throughput by considering
instruction and data cache localities and minimizes packet
reordering. Shi et al. also proposed an adaptive hashing
scheme [21] that assures that the weights of the hashing
scheme are modified such that the assignment of flow bun-
dles to cores is more evenly balanced for biased hash bun-
dles found in internet traffic. In [22], Shi and Kencl propose
to combine the previous two schemes, i.e., adaptive hashing
is used in conjunction with the migration of aggressive bun-
dles. This scheme is complementary to the solution pro-
posed in this research and can easily be integrated with the
proposed scheduler to further improve the performance of
hashing.

The load balancer proposed in this research limits the
flow migration only to the aggressive flows. In order to
achieve that, efficient identification of aggressive flows is
required. Detecting and monitoring aggressive flows is an
important part of traffic management and policing. Conse-
quently, there has a plethora of work on how to calculate
flow statistics. Initial naive proposals to keep counters for
each flow [45], [46] are not scalable when there are millions
of flows, which is common in today’s network environment.
There have been extensive researches on reducing the over-
heads of keeping per flow counters [43], [47], [48], [49], [50]
to find the accurate estimate of the rates of aggressive flows.
In contrast, the proposed packet scheduler in this research
merely needs to identify the top aggressive flows without
accurately estimating the rates of all flows. The closest
related work is done by Yi et al. [44] where a single cache is
used to identify “elephant” flows. Experiments done in this
research reveal that a single level caching scheme can result
in large number of false positives due to many “mice” flows

Fig. 15. Analysis of flows allocated to overloaded core at the time of
migration.

IQBAL ETAL.: DYNAMIC CORE ALLOCATION AND PACKET SCHEDULING IN MULTICORE NETWORK PROCESSORS 3657



active at any time. This research proposes a novel two-level
caching scheme to identify aggressive flows based on annex
cache [27]. The proposed detector effectively eliminates the
false positives and integrates directly with the scheduler.

6.3 Existing Work on Dynamic Resource Allocation
Many researches have observed the need for dynamic
resource allocation in network processors [14], [51], [52] and
there have been proposals for runtime resource allocations
in the past [15], [53], but these schemes consider a packet
processing application as a graph where different tasks
within the application form the nodes of the graph. These
schemes consider adjacency between nodes for task sched-
uling as packets move between different cores in a pipe-
lined manner during processing. In contrast, this research
considers each service as a single entity, i.e., a packet is tied
to a single core for the whole processing and graph or pipe-
line scheduling is not considered. Wolf et al. [54] observed
that the mix of packets destined for each service varies with
time. If packets of different services are sent to the same
core, i-cache locality cannot be maintained. This results in
huge performance overhead. They attempted to address the
issue of i-cache locality through careful packet scheduling.
When a core becomes idle, their scheme searches for a
packet of the same application as the previous one. This
searching has a lot of overhead and is not feasible for data
plane packets. Although this scheme considers application
locality, does not consider data locality and packet order.
This work presents a more complete solution to the problem
of packet scheduling and resource allocation in multi-ser-
vice routers in contrast to the prior proposals which have
focused on the individual aspects of the problem. A prelimi-
nary version of this paper has appeared as a conference
paper [55].

7 CONCLUSION

We present the design and evaluation of a scheduler for
data plane packets in network processor. The packet
scheduler adopts an efficient dynamic core allocation
scheme for multiple services to improve throughput and
to minimize out of order delivery of packets. A key to
reducing the out of order packets is to eliminate unneces-
sary flow migrations. The scheduler achieves this goal by
identifying and migrating only aggressive flows. We pres-
ent the design of a novel Aggressive Flow Detector based
on two level caching scheme which integrates readily
with our scheduler, and also, is very effective in identify-
ing top aggressive flows with high accuracy. Further-
more, the scheduler extends the hash based design for
multi-service routers where the cores are dynamically
allocated to services to improve I-Cache locality. Our
experiments with real network traces show that our pro-
posed scheduler improves the throughput by 60 percent
while reducing the out of order packets by 80 percent
when compared to previous schemes. The schemes pre-
sented in this paper show promising improvements over
the previous work. Hash based designs of packet sched-
uler and resource manager have very low overhead. This
makes the designs very scalable for data rates of 100
Gbps and even beyond.

REFERENCES

[1] L. Gwennap, “Thunderx rattles server market,” Microprocessor
Rep., Jun. 2014, http://linleygroup.com/mpr/article.php?
id=11223.

[2] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-way
multithreaded SPARC processor,” IEEE Micro, vol. 25, no. 2, pp.
21–29, Mar./Apr. 2005.

[3] G. Chuvpilo, D. Wentzlaff, and S. Amarasinghe, “Gigabit IP rout-
ing on raw,” in Proc. 8th Int. Symp. High-Perform. Comput. Archit.,
Workshop Netw. Process., 2002, pp. 2–9.

[4] The Freescale P4240 processor (2012) [Online]. Available: http://
www.freescale.com

[5] T. R. Halfhill. (Oct. 2012). Broadcom samples 28nm XLP ii
[Online]. Available: http://www.linleygroup.com/newsletters/
newsletter_detail.php?num=4901&year=2012&tag=3

[6] EZCHIP, “NPS-400 Network Processor,” 2013, http://www.
tilera.com/products/?ezchip=598&spage=603.

[7] CISCO, “Next-generation custom routing silicon processors for
the internet of everything,” 2013, http://www.cisco.com/c/en/
us/solutions/collateral/optical-networking/ons-15454-series-
multiservice-provisioning-platforms/solution_overview_c22-
729610.pdf.

[8] J. R. Allen, B. M. Bass, C. Basso, R. H. Boivie, J. L. Calvignac,
G. T. Davis, L. Frelechoux, M. Heddes, A. Herkersdorf, A. Kind,
J. F. Logan, M. Peyravian, M. A. Rinaldi, R. K. Sabhikhi,
M. S. Siegel, and M. Waldvogel, “IBM PowerNP network proces-
sor: Hardware, software, and applications,” IBM J. Res. Develop.,
vol. 47, pp. 177–193, Mar. 2003.

[9] P. Duggisetty, “Design and implementation of a high performance
network processor with dynamic workload management,” Mas-
ter’s thesis, Univ. Massachusetts Amherst, Amherst, MA, USA,
Sep. 2015.

[10] Tilera72 core network processor tile-gx72, (2013). [Online]. Avail-
able: http://www.tilera.com

[11] Broadcom 64 core processor iBCM-88030, (2012). [Online]. Avail-
able: http://www.dcom.com/press/release.php?id=s666869

[12] B. Wheeler. (Sep. 2013). A new era of network processing [Onlien].
Available: http://www.linleygroup.com/cms_builder/uploads/
ericsson_npu_white_paper.pdf

[13] V. Paxson, “End-to-end internet packet dynamics,” in Proc. ACM
SIGCOMM Conf. Appl. Technol. Archit. Protocols Comput. Commun.,
1997, pp. 139–152.

[14] R. Kokku, T. L. Rich!e, A. Kunze, J. Mudigonda, J. Jason, and
H. M. Vin, “A case for run-time adaptation in packet processing
systems,” SIGCOMM Comput. Commun. Rev., vol. 34, pp. 107–112,
Jan. 2004.

[15] Q. Wu and T. Wolf, “On runtime management in multi-core
packet processing systems,” in Proc. 4th ACM/IEEE Symp. Archit.
Netw. Commun. Syst., 2008, pp. 69–78.

[16] X. Huang and T. Wolf, “Evaluating dynamic task mapping in net-
work processor runtime systems,” IEEE Trans. Parallel Distrib.
Syst., vol. 19, no. 8, pp. 1086–1098, Aug. 2008.

[17] J. Guo, J. Yao, and L. Bhuyan, “An efficient packet scheduling
algorithm in network processors,” in Proc. 24th Annu. Joint Conf.
IEEE Comput. Commun. Soc., Mar. 2005, pp. 807–818.

[18] L. Shi, Y. Zhang, J. Yu, B. Xu, B. Liu, and J. Li, “On the extreme
parallelism inside next-generation network processors,” in Proc.
26th IEEE Int. Conf. Comput. Commun., May 2007, pp. 1379–1387.

[19] R. Ohlendorf, M. Meitinger, T. Wild, and A. Herkersdorf, “An
application-aware load balancing strategy for network process-
ors,” in Proc. 5th Int. Conf. High Perform. Embedded Archit. Com-
pilers, 2010, pp. 156–170.

[20] G. Dittmann and A. Kerkersdorf, “Network processor load
balancing for high speed links,” in Proc. Int. Symp. Perform. Eval.
Comput. Telecommun. Syst., 2002, pp. 727–735.

[21] L. Kencl, ”Load sharing multiprocessor network nodes,”
PhD dissertation, Ecole Polytechnique Federale de Lausanne, Lau-
sanne, Switzerland, 2003.

[22] W. Shi and L. Kencl, “Sequence-preserving adaptive load bal-
ancers,” in Proc. ACM/IEEE Symp. Archit. Netw. Commun. Syst.,
Dec. 2006, pp. 143–152.

[23] W. Shi, M. MacGregor, and P. Gburzynski, “Load balancing for
parallel forwarding,” IEEE/ACM Trans. Netw., vol. 13, no. 8,
pp. 790–801, Aug. 2005.

[24] Z. Cao, Z. Wang, and E. Zegura, “Performance of hashing-based
schemes for internet load balancing,” in Proc. 19th Annu. Joint
Conf. IEEE Comput. Commun. Soc, 2000, pp. 332–341.

3658 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 12, DECEMBER 2016



[25] X. Hesselbach, R. Fabregat, B. Baran, Y. Donoso, F. Solano, and
M. Huerta, “Hashing based traffic partitioning in a multicast-
multipath MPLS network model,” in Proc. 3rd Int. IFIP/ACM Latin
Amer. Conf. Netw., 2005, pp. 65–71.

[26] L. Guo and I. Matta, “The war between mice and elephants,” in
Proc. 9th Int. Conf. Netw. Protocols, 2001, pp. 180–188

[27] L. John and A. Subramanian, “Design and performance evalua-
tion a cache assist to implement selective caching,” in Proc. IEEE
Int. Conf. Comput. Des. VLSI Comput. Process., Oct. 1997,
pp. 510–518.

[28] G. Koren and A. Rosen, “Architecture of a 100-gbps network pro-
cessor for next generation video networks,” in Proc. IEEE 26th
Conv. Elect. Electron. Eng. Israel, Nov. 2010, pp. 286–290.

[29] I. Papaefstathiou, T. Orphanoudakis, G. Kornaros, C. Kachris,
I. Mavroidis, and A. Nikologiannis, “Queue management in net-
work processors,” in Proc. Int. Conf. Des., Autom. Test Eur., 2005,
pp. 112–117.

[30] W. Zhou, C. Lin, Y. Li, and Z. Tan, “Queue management for QoS
provision build on network processor,” in Proc. 9th IEEE Workshop
Future Trends Distrib. Comput. Syst., 2003, pp. 219–224.

[31] D. Llorente, K. Karras, M. Meitinger, H. Rauchfuss, T. Wild, and
A. Herkersdorf, “Accelerating packet buffering and administra-
tion in network processors,” in Proc. Int. Symp. Integr. Circuits,
2007, pp. 373–377.

[32] A. Raghunath, A. Kunze, E. J. Johnson, and V. Balakrishnan,
“Framework for supporting multi-service edge packet processing
on network processors,” in Proc. ACM Symp. Archit. Netw. Com-
mun. Syst., 2005, pp. 163–171.

[33] M. F. Iqbal and L. K. John, “Efficient traffic aware power manage-
ment in multicore communications processors,” in Proc. 8th ACM/
IEEE Symp. Archit. Netw. Commun. Syst., 2012, pp. 123–134.

[34] W. Litwin, “Linear hashing: A new tool for file and table
addressing,” in Proc. 6th Int. Conf. Very Large Data Bases, 1980,
pp. 212–223.

[35] E. Horowitz, S. Shani, and D. Mehta, Fundamentals Data Structures
in C++. 2 ed., Silicon Pr, Summit, NJ, USA, 2006.

[36] K. Claffy, D. Andersen, and P. Hick. The CAIDA anonymized
2011 internet traces, (2011). [Online]. Available: http://www.
caida.org/data/passive/passive_2011_dataset.xml

[37] The University of Auckland traces, (2000). [Online]. Available:
http://wand.net.nz/wits/auck/2/

[38] D. D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhao, SpecC:
Specification Language and Methodology. Boston, MA, USA: Kluwer,
2000.

[39] T. Grotker, System Design with SystemC. Norwell, MA, USA:
Kluwer, 2002.

[40] J. D. Brutlag, “Aberrant behavior detection in time series for
network monitoring,” in Proc. 14th USENIX Conf. Syst. Admin.,
2000, pp. 139–146.

[41] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood,
“Multifacet’s general execution-driven multiprocessor simulator
(GEMS) toolset,” SIGARCH Comput. Archit. News, vol. 33, pp. 92–
99, Nov. 2005.

[42] S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load
balancing without packet reordering,” SIGCOMM Comput. Com-
mun. Rev., vol. 37, pp. 51–62, Mar. 2007.

[43] Y. Lu and B. Prabhakar, “Robust counting via counter braids: An
error-resilient network measurement architecture,” in Proc. IEEE
Int. Conf. Comput. Commun., Apr. 2009, pp. 522–530.

[44] Y. Lu, M. Wang, B. Prabhakar, and F. Bonomi, “Elephanttrap:
A low cost device for identifying large flows,” in Proc. 15th Annu.
IEEE Symp. High-Perform. Interconnects, Aug. 2007, pp. 99–108.

[45] D. Shah, S. Iyer, B. Prabhakar, and N. McKeown, “Analysis of a
statistics counter architecture,” in Proc. 9th Symp. High Perform.
Interconnects, 2001, Art. no. 107-.

[46] W. Fang and L. Peterson, “Inter-as traffic patterns and
their implications,” in Proc. Global Telecommun. Conf., vol. 3,
pp. 1859–1868, 1999.

[47] F. Hao, M. Kodialam, and T. V. Lakshman, “ACCEL-RATE: A
faster mechanism for memory efficient per-flow traffic
estimation,” in Proc. Joint Int. Conf. Meas. Modeling Comput. Syst.,
2004, pp. 155–166.

[48] C. Estan and G. Varghese, “New directions in traffic measurement
and accounting: Focusing on the elephants, ignoring the mice,”
ACM Trans. Comput. Syst., vol. 21, pp. 270–313, Aug. 2003.

[49] M. Zadnik, M. Canini, A. Moore, D. Miller, and W. Li, “Tracking
elephant flows in internet backbone traffic with an FPGA-based
cache,” in Proc. Int. Conf. Field Programmable Logic Appl., Sep. 2009,
pp. 640–644.

[50] M. Zadnik and M. Canini, “Evolution of cache replacement poli-
cies to track heavy-hitter flows,” in Proc. 6th ACM/IEEE Symp.
Archit. Netw. Commun. Syst., 2010, pp. 31:1–31:2.

[51] A. Srinivasan, P. Holman, J. Anderson, S. Baruah, and J. Kaur,
“Multiprocessor scheduling in processor-based router platforms:
Issues and ideas,” in Proc. 2nd Workshop Netw. Process., 2003,
pp. 48–62.

[52] A. Satheesh, D. Kumar, and S. Krishnaveni, “Dynamic adaptive
self-configurable network processor,” in Proc. Symp. Workshops
Ubiquitous, Autonomic Trusted Comput., 2010, pp. 160–164.

[53] J. Kuang and L. Bhuyan, “Lata: A latency and throughput-aware
packet processing system,” in Proc. 47th Des. Autom. Conf., 2010,
pp. 36–41.

[54] T. Wolf and M. A. Franklin, “Locality-aware predictive schedul-
ing of network processors,” in Proc. IEEE Int. Symp. Perform. Anal.
Syst. Softw., 2001, pp. 152–159.

[55] M. F. Iqbal, J. Holt, J. H. Ryoo, G. de Veciana, and L. K. John,
“Flow migration on multicore network processors: Load balanc-
ing while minimizing packet reordering,” in Proc. 42nd Int. Conf.
Parallel Process., 2013, pp. 150–159.

Muhammad Faisal Iqbal did his BS in Electronic
Engineering from GIK Institute, TOPI, Pakistan in
2003. He received his MS and PhD degrees from
the University of Texas at Austin in 2009 and
2013 respectively. His interests include micropro-
cessor architecture, power and performance
modeling, workload characterization and low
power architecture.

Jim Holt is a Senior Software Engineer at Intel.
Previously, He led the Processor Architecture and
Modeling Team for Freescaleâs Networking and
Multimedia group, and was also a Visiting Scientist
at theMassachusetts Institute of Technologywhere
he was a Principal Investigator for the Angstrom
project which investigated self-aware 1000-core
chips of the future. He has 32 years of industry
experience focused on microprocessors, multicore
systems, software engineering, distributed sys-
tems, design verification, and design optimization.

He is an IEEE Senior Member, and has over 30 refereed publications. He
earned a PhD in Electrical and Computer Engineering from the University
of Texas at Austin, and an MS in Computer Science from Texas State Uni-
versity-SanMarcos.

Jee Ho Ryoo is a PhD student at the University fo
Texas at Austin under the supervision of Professor
Lizy K. John. He received the BS degree in electri-
cal and computer engineering from Cornell Univer-
sity in 2011 and the MS degree in electrical and
computer engineering from the University of Texas
at Austin in 2014. His research interests include
computer architecture, memory systems and per-
formance analysis. He is a member of the IEEE
and the IEEEComputer Society.

IQBAL ETAL.: DYNAMIC CORE ALLOCATION AND PACKET SCHEDULING IN MULTICORE NETWORK PROCESSORS 3659



Gustavo de Veciana (S’88-M’94-SM’01-F’09)
received his BS, MS, and PhD in electrical engi-
neering from the University of California at Berkeley
in 1987, 1990, and 1993 respectively, and joined
the Department of Electrical and Computer Engi-
neering where he is currently a Cullen Trust Profes-
sor of Engineering. He served as the Director and
Associate Director of the Wireless Networking and
Communications Group (WNCG) at the University
of Texas at Austin, from 2003-2007. His research
focuses on the analysis and design of communica-

tion and computing networks; data-driven decision-making inman-machine
systems, and applied probability and queueing theory. Dr. de Veciana
served as editor and is currently serving as editor-at-large for the IEEE/
ACM Transactions on Networking. He was the recipient of a National Sci-
ence Foundation CAREER Award 1996 and a co-recipient of five best
paper awards including: IEEE William McCalla Best ICCAD Paper Award
for 2000, Best Paper in ACM TODAES Jan 2002-2004, Best Paper in ITC
2010, Best Paper in ACM MSWIM 2010, and Best Paper IEEE INFOCOM
2014. In 2009 he was designated IEEE Fellow for his contributions to the
analysis and design of communication networks. He currently serves on
the board of trustees of IMDEANetworksMadrid.

Lizy Kurian John is B. N. Gafford Professor in the
Electrical and Computer Engineering at UTAustin.
She received her PhD in Computer Engineering
from the Pennsylvania State University. Her
research interests include workload characteriza-
tion, performance evaluation, architectures with
emerging memory technologies, and high perfor-
mance processor architectures for emerging work-
loads. She is recipient of many awards including
the NSF CAREER award, UT Austin Engineering
Foundation Faculty Award, Halliburton, Brown and

Root Engineering Foundation Young Faculty Award 2001, University of
Texas Alumni Association (Texas Exes) Teaching Award 2004, The Penn-
sylvania State University Outstanding Engineering Alumnus 2011, etc.
She has coauthored a book on Digital Systems Design using VHDL (Cen-
gage Publishers, 2007), a book on Digital Systems Design using Verilog
(Cengage Publishers, 2014) and has edited 4 books including a book on
Computer Performance Evaluation and Benchmarking. She holds 9 US
patents. She is an IEEEFellow (Class of 2009).

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

3660 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 12, DECEMBER 2016


