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Resource Allocation: Realizing
Mean-Variability-Fairness Tradeoffs

Vinay Joseph, Gustavo de Veciana, Fellow, IEEE, and Ari Arapostathis, Fellow, IEEE

Abstract—Network utility maximization (NUM) is a key con-
ceptual framework to study reward allocation amongst a collec-
tion of users/entities in disciplines as diverse as economics, law
and engineering. However when the available resources and/or
users’ utilities vary over time, reward allocations will tend to
vary, which in turn may have a detrimental impact on the users’
overall satisfaction or quality of experience. This paper introduces
a generalization of the NUM framework which incorporates the
detrimental impact of temporal variability in a user’s allocated
rewards. It explicitly incorporates tradeoffs amongst the mean
and variability in users’ reward allocations, as well as fairness
across users. We propose a simple online algorithm to realize
these tradeoffs, which, under stationary ergodic assumptions, is
shown to be asymptotically optimal, i.e., achieves a long term
performance equal to that of an offline algorithm with knowledge
of the future variability in the system. This substantially extends
work on NUM to an interesting class of relevant problems where
users/entities are sensitive to temporal variability in their service
or allocated rewards.

Index Terms—Network utility maximization (NUM).

I. INTRODUCTION

N ETWORK utility maximization (NUM) is a key concep-
tual framework to study (fair) reward allocation among

a collection of users/entities across disciplines as diverse as
economics, law and engineering. For example, [25] introduces
NUM for realizing fair allocations of a fixed amount of water
c to N farms. The amount of water wi allocated to the ith
farm is a resource which yields a reward ri = fi(wi) to the ith
farm. Here, fi is a concave function mapping allocated water
(resource) to yield (reward), and these can differ across farms.
The allocation maximizing

∑
1≤i≤N ri is a reward (utility)

maximizing solution to the problem. Fairness can be imposed
on the allocation by changing the objective of the problem to∑

1≤i≤N U(ri) for an appropriately chosen concave function
U . Now, suppose that we have to make allocation decisions pe-
riodically to respond to time varying water availability (ct)t∈N
and utility functions (fi,t)t. Then, subject to the time varying
constraints, one could obtain a resource allocation scheme
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which is fair in the delivery of time average rewards r =
(ri)1≤i≤N by optimizing (see, e.g., [16], [30])

∑

1≤i≤N

U(ri). (1)

In network engineering, the NUM framework has served as
a particularly insightful setting to study (reverse engineer) how
the Internet’s congestion control protocols allocate bandwidth,
how to devise schedulers for wireless systems with time vary-
ing channel capacities, and also motivated the development
of distributed mechanisms to maximize network utility in di-
verse settings including communication networks and the smart
grid, while incorporating new relevant constraints, on energy,
power, storage, power control, stability, etc. (for, e.g., see [14],
[25], [30]).

When the available resources/rewards and/or users’ utilities
vary over time, reward allocations amongst users will tend to
vary, which in turn may have a detrimental impact on the users’
utility or perceived service quality. In fact, temporal variability
in farm water availability can have a negative impact on crop
yield (see [28]). This motivates modifications of formulations
with objectives such as the one in (1) to account for this impact.

Indeed temporal variability in utility, service, rewards or
associated prices is particularly problematic when humans are
the eventual recipients of the allocations. Humans typically
view temporal variability negatively, as a sign of an unreliable
service, network or market instability. Broadly speaking, tem-
poral variability, when viewed through human’s cognitive and
behavioral responses, leads to a degraded Quality of Experience
(QoE). This in turn can lead users to make decisions, e.g.,
change provider, act upon perceived market instabilities, etc.,
which can have serious implications on businesses and engi-
neered systems, or economic markets. For problems involving
resource allocation in networks, [5] argues that predictable or
consistent service is essential and even points out that it may be
appropriate to intentionally lower the quality delivered to the
user if that level is sustainable.

For a user viewing a video stream, variations in video quality
over time have a detrimental impact on the user’s QoE, see e.g.,
[15], [23], [33]. Indeed [33] suggested that variations in quality
can result in a QoE that is worse than that of a constant quality
video with lower average quality. Furthermore, [33] proposed a
metric for QoE given below which penalizes standard deviation
of quality over time

Mean Quality − κ
√

Temporal Variance in Quality
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where κ is an appropriately chosen positive constant.
References [9] and [32] argue that less variability in the service
processes can improve customer satisfaction by studying data
for large retail banks and major airlines respectively. Aversion
towards temporal variability is not just restricted to human
behavior, for instance, see [22] for a discussion of the impact
of temporal variability in nectar reward on foraging behavior
of bees. Also, variability in resource allocation in networks can
lead to burstiness which can degrade network performance (see
[7], [24]). These examples illustrate the need for extending the
NUM framework to incorporate the impact of variability.

This paper introduces a generalized NUM framework which
explicitly incorporates the detrimental impact of temporal vari-
ability in a user’s allocated rewards. We use the term rewards
as a proxy for the resulting utility of, or any other quantity
associated with, allocations to users/entities in a system. Our
goal is to explicitly tackle the task of incorporating tradeoffs
amongst the mean and variability in users’ rewards. Thus, for
example, in a variance-sensitive NUM setting, it may make
sense to reduce a user’s mean reward so as to reduce his/her
variability. As will be discussed in the sequel, there are many
ways in which temporal variations can be accounted for, and
which, in fact, present distinct technical challenges. In this
paper, we shall take a simple elegant approach to the problem
which serves to address systems where tradeoffs amongst the
mean and variability over time need to be made rather than
systems where the desired mean (or target) is known (as in
minimum variance control, see [2]), or where the issue at hand
is minimization of the variance of a cumulative reward at the
end of a given (e.g., investment) period.

To better describe the characteristics of the problem we intro-
duce some preliminary notation. We shall consider a network
shared by a set N of users (or other entities) where N := |N |
denotes the number of users in the system. Throughout the
paper, we distinguish between random variables (and random
functions discussed later) and their realizations by using upper
case letters for the former and lower case for the latter. Let N,
R, and R+ denote the sets of positive integers, real numbers
and nonnegative real numbers respectively. We use bold letters
to denote vectors, e.g., a = (ai)i∈N . Given a collection of
T objects (b(t))1≤t≤T or a sequence (b(t))t∈N, we let (b)1:T
denote the finite length sequence (b(t))1≤t≤T (in the space
associated with the objects of the sequence). For example,
consider a sequence (b(t))t∈N of vectors in RN . Then (b)1:T
denotes the T length sequence containing the first T vectors
of the sequence (b(t))t∈N, and (bi)1:T denotes the sequence
containing the ith component of the first T vectors. For any
function U on R, let U ′ denote its derivative.

Definition 1: For any (infinite length) sequence of real num-
bers (a(t))t∈N, let

mT (a) :=
1

T

T∑

t=1

a(t)

VarT (a) :=
1

T

T∑

t=1

(
a(t) − mT (a)

)2

eT
i (a) := mT (a) − UV

i

(
VarT (a)

)

i.e., mT (a) and VarT (a) denote empirical mean and variance.
Note that the argument a used in the functions mT (a), VarT (a)
and eT

i (a) stands for the associated sequence (a(t))t∈N. We will
also (abusing notation) use the above operators on any finite
length sequence (a)1:T ∈ RT of real numbers.

Let ri(t) represent the reward allocated to user i at time t.
Then r(t) = (ri(t))i∈N is the vector of rewards to users N
at time t, and (r)1:T represents sequence of vector rewards
allocated over time slots t = 1, . . . , T . We assume that reward
allocations are subject to time varying network constraints

ct (r(t)) ≤ 0 for t = 1, . . . , T

where each ct : RN → R is a convex function, thus implicitly
defining a convex set of feasible reward allocations. To formally
capture the impact of the time-varying rewards on users’ QoE,
let (UE

i , UV
i )i∈N be real valued functions on R, and consider

the following offline convex optimization problem OPT(T):

max
(r)1:T

∑

i∈N
UE

i

⎛

⎜⎜⎝

User i’s QoE︷ ︸︸ ︷
mT (ri)︸ ︷︷ ︸

Mean Reward

− UV
i

(
VarT (ri)

)
︸ ︷︷ ︸

Penalty for Variability

⎞

⎟⎟⎠

subject to ct (r(t)) ≤ 0, r(t) ≥ 0 ∀t ∈ {1, . . . , T}.

We refer to OPT(T) as an offline optimization because time-
varying time constraints (ct)1:T are assumed to be known. Here,
(UE

i , UV
i )i∈N are increasing functions such that the above

optimization problem is convex. For user i, the argument of
the function UE

i is our proxy for the user’s QoE. Thus, the
desired fairness in the allocation of QoE across the users can
be imposed by appropriately choosing (UE

i )i∈N . Note that the
first term mT (ri) in user i’s QoE is the user’s mean reward
allocation, whereas the presence of the empirical variance func-
tion VarT (ri) in the second term penalizes temporal variability
in a reward allocation. Further, flexibility in picking (UV

i )i∈N
allows for several different ways to penalize such variability.
Indeed, one can in principle have a variability penalty that
is convex or concave in variance. Hence, the formulation
OPT(T ) allows us to realize tradeoffs among mean, fairness
and variability associated with the reward allocation by appro-
priately choosing the functions (UE

i , UV
i )i∈N .

A. Main Contributions

The main contribution of this paper is the development of an
online algorithm, Adaptive Variability-aware Reward allocation
(AVR), which asymptotically solves OPT(T). The algorithm
requires almost no statistical information about the system, and
its characteristics are as follows:

(i) in each time slot, ct is revealed and AVR, using pa-
rameters m(t),v(t) ∈ RN , greedily allocates rewards by
solving the optimization problem OPT-ONLINE given
below:

max
r∈RN

∑

i∈N

(
UE

i

)′
(ei(t))

(
ri −

(
UV

i

)′
(vi(t)) (ri − mi(t))

2
)

subject to ct(r) ≤ 0, r ≥ 0
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where ei(t) = mi(t) − UV
i (vi(t)) for each i ∈ N is an

estimate of the user’s QoE based on estimated means and
variances m(t) and v(t); and,

(ii) it updates (vector) parameters m(t) and v(t) to keep
track of the mean and variance of the reward allocations
under AVR.

Under stationary ergodic assumptions for time-varying con-
straints, we show that our online algorithm AVR is asymp-
totically optimal, i.e., achieves a performance equal to that of
the offline optimization OPT(T) introduced earlier as T → ∞.
This is a strong optimality result, which at first sight may be
surprising due to the variability penalty on rewards and the
time varying nature of the constraints (ct)t∈N. The key idea is
to keep online estimates for the relevant quantities associated
with users’ reward allocations, e.g., the mean and variance
which over time are shown to converge. This in turn eventually
enables our greedy online policy to produce reward allocations
corresponding to the optimal stationary policy. Proving this
result is somewhat challenging as it requires showing that the
estimates based on reward allocations produced by our online
policy, AVR, (which itself depends on the estimated quantities),
will converge to the desired values. To our knowledge this is the
first attempt to generalize the NUM framework in this direction.
We contrast our problem formulation and approach to past work
in addressing ‘variability’ minimization, risk-sensitive control
and other MDP based frameworks in the next subsection.

B. Related Work

NUM is a well studied approach used for reward alloca-
tion amongst a collection of users/entities. The work in [25]
provides a network-centric overview of NUM. All the work
on NUM including several major extensions (for, e.g., [14],
[21], [29], [30] etc.) has ignored the impact of variability in
reward allocation. Our work [12] is to our knowledge the first to
tackle NUM incorporating the impact of variability explicitly.
In particular, we addressed a special case of the problem studied
in this paper that only allows for linear functions (UE

i , UV
i )i∈N ,

and an asymptotically optimal online reward allocation algo-
rithm for a wireless network supporting video streaming users
is proposed. The algorithm proposed and analyzed in this paper
is a generalization of gradient based algorithms studied in [1],
[16], and [30]. Our approach for proving asymptotic optimality
generalizes those in [13] and [30]. In [30], the focus is on
objectives such as (1), but does not allow for the addition of
penalty terms on temporal variance in the objective. By contrast
with this paper, the approaches in [12] and [13] rely on the use
of results on sensitivity analysis of optimization problems, and
only allows for linear (UE

i )i∈N and concave (UV
i )i∈N .

Adding a temporal variance term in the cost takes the objec-
tive out of the basic dynamic programming setting (even when
(UE

i , UV
i )i∈N are linear) as the overall cost is not decompos-

able over time, i.e., can not be written as a sum of costs each
depending only on the allocation at that time- this is what makes
sensitivity to variability challenging. For risk sensitive decision
making, MDP based approaches aimed at realizing optimal
tradeoffs between mean and temporal variance in reward/cost
were proposed in [8] and [26]. While they consider a more

general setting than ours where actions can even affect future
feasible reward allocations, e.g., may affect the process (Ct)t∈N
itself, the approaches proposed in these works suffer from the
curse of dimensionality as they require solving large optimiza-
tion problems. For instance, the work of [8] involves solving
a quadratic program in the (typically large) space of state-
action pairs. Note that these works on risk sensitive decision
making are different from those focusing on the variance of the
cumulative cost/reward such as the one in [19].

Variability or perceived variability can be measured in many
different ways, and temporal variance considered in this paper
is one of them. One could also ‘reduce variability’ using a
minimum variance controller (see [2]) where we have certain
target reward values fixed ahead of time and big fluctuations
from these targets are undesirable. Note however that in using
this approach, we have to fix our targets ahead of time, and
thus lose the ability to realize tradeoffs between the mean
and variability in reward allocation. One could also measure
variability using switching costs like in [18], which consider the
problem of achieving tradeoffs between average cost and time
average switching cost associated with data center operation,
and proposes algorithms with good performance guarantees for
adversarial scenarios. The decision regarding how to penalize
variability is ultimately dependent on the application setting
under consideration.

C. Organization of the Paper

Section II introduces the system model and assumptions.
Section III presents and studies the offline formulation for
optimal variance sensitive joint reward allocation OPT(T).
Section IV formally introduces our online algorithm AVR and
presents our key convergence result which is used to prove
asymptotic optimality of AVR. Section V is devoted to the proof
of AVR’s convergence and Section VI presents simulation re-
sults exhibiting additional performance characteristics of AVR.
We conclude the paper with Section VII. Proofs for some of the
results have been relegated to the Appendices to make the paper
more readable.

II. SYSTEM MODEL

We consider a slotted system where time slots are indexed
by t ∈ N, and the system serves a fixed set of users N and let
N := |N |.

We assume that rewards are allocated subject to time varying
constraints. The reward allocation r(t) ∈ RN

+ in time slot t is
constrained to satisfy the following inequality:

ct (r(t)) ≤ 0

where ct denotes the realization of a randomly selected function
Ct from a finite set C of real valued maps on RN

+ . We model
the reward constraints (Ct)t∈N as a random process where each
Ct can be viewed as a random function, i.e., a random index
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associated with the function (which is selected from a finite set
C). We make the following assumptions on these constraints:

Assumptions C1–C3 (Time varying constraints on rewards)
C.1 (Ct)t∈N is a stationary ergodic process of functions selected

from a finite set C.
C.2 The feasible region for each constraint is bounded: there

is a constant 0 < rmax < ∞ such that for any c ∈ C and
r ∈ RN

+ satisfying c(r) ≤ 0, we have ri ≤ rmax for each
i ∈ N .1

C.3 Each function c ∈ C is convex and differentiable on an open
set containing [0, rmax]N with c(0) ≤ 0 and

min
r∈[0,rmax]N

c(r) < 0. (2)

As indicated in Assumption C.1, we model the evolution of
the reward constraints as a stationary ergodic process. Hence,
time averages associated with the constraints will converge
to their respective statistical averages, and the distribution of
the random vector (Ct1+s, Ct2+s, . . . , Ctn+s) for any choice
of indices t1, . . . , tn does not depend on the shift s, thus the
marginal distribution of Ct does not depend on time. We denote
the marginal distribution of this process by (π(c))c∈C and let Cπ

denote a random constraint with this distribution. This model
captures a fairly general class of constraints, including, for ex-
ample, time-varying capacity constraints associated with band-
width allocation in wireless networks. Our results also hold
when (Ct)t∈N is an asymptotically mean stationary process (see
[11] for reference) of functions selected from a finite set C and
this is discussed in Section IV. If condition C.2 holds, then we
can upper bound any feasible allocation under any constraint
in C using rmax1N where 1N is the N length vector with each
component equal to one. Condition C.3 ensures that the feasible
sets are convex, and the differentiability requirement simplifies
the exposition. The remaining requirements in C.3 are useful in
studying the optimization problem OPT(T ).

Next we introduce the assumptions on the functions
(UV

i )i∈N associated with the variability penalties.

Assumptions U.V: (Variability penalty) Let vmax := r2
max.

U.V.1: For each i ∈ N , UV
i is well defined and differ-

entiable on an open set containing [0, vmax] satisfy-
ing minv∈[0,vmax](U

V
i )′(v) > 0, and (UV

i )′(·) is Lipschitz
continuous.

U.V.2: For each i ∈ N and any z1, z2 ∈ [−√
vmax,

√
vmax]

with z1 ̸= z2, and α ∈ (0, 1) with ᾱ = 1 − α, we have

UV
i

(
(αz1 + ᾱz2)

2
)

< αUV
i

(
z2
1

)
+ ᾱUV

i

(
z2
2

)
. (3)

The assumptions concerning the Lipschitz continuity of
derivatives made in Assumptions U.V.1 and U.E (see below)
are made to simplify the exposition, and could be relaxed (see
Section V-B). Note that any non-decreasing (not necessarily

1We could allow the constant rmax to be user dependent. But, we avoid this
for notational simplicity.

strictly) convex function satisfies (3), but the condition is
weaker than a convexity requirement. For instance, using trian-
gle inequality, one can show that UV

i (vi) =
√

vi + δ for δ > 0
satisfies all the conditions described above for any vmax.2 This
function is not convex but is useful as it transforms variance to
approximately the standard deviation for small δ > 0, and thus
allowing QoE metrics such as those proposed in [33] (discussed
in Section I). We will later see that our algorithm (Section I-A)
can be simplified if any of the functions UV

i are linear. Hence,
we define the following subsets of N :

Nl :=
{
i ∈ N : UV

i is linear
}

Nn :=
{
i ∈ N : UV

i is not linear
}

.

Next we discuss assumptions on the functions (UE
i )i∈N

used to impose fairness associated with the QoE across users.
Recall that our proxy for the QoE for user i is ei(t) = mi(t) −
UV

i (vi(t)) and, let

emin,i := −UV
i (vmax) and emax,i := rmax − UV

i (0).

Assumption U.E: (Fairness in QoE)
U.E: For each i ∈ N , UE

i is concave and differentiable on
an open set containing [emin,i, emax,i] with (UE

i )
′
(emax,i) >

0, and (UE
i )

′
(·) is Lipschitz continuous.

Note that concavity and the condition that (UE
i )′(emax,i) >

0 ensure that (UE
i )′ is strictly positive on [emin,i, emax,i]. For

each i ∈ N , although UE
i has to be defined over an open set

containing [emin,i, emax,i], only the definition of the function
over [−UV

i (0), emax,i] affects the optimization. This is because
we can achieve this value of QoE for each user just by allocating
zero resources to each user in each time slot. Thus, for example,
we can choose any function from the following class of strictly
concave increasing functions parametrized by α ∈ (0,∞) [20]:

Uα(e) =

{
log(e) if α = 1
(1 − α)−1e1−α otherwise

(4)

and can satisfy U.E by making minor modifications to the
function. For instance, we can use the following modification
UE,log of the log function for any (small) δ > 0: UE,log(e) =
log(e − emin,i + δ), e ∈ [emin,i, emax,i]. The above class of
functions are commonly used to enforce fairness specifically
to achieve reward allocations that are α-fair (see [25]).

Good choices of (UV
i )i∈N and (UE

i )i∈N will depend on the
problem setting. A good choice for (UV

i )i∈N should be driven
by an understanding of the impact of temporal variability on a
user’s QoE, which might in turn be based on experimental data.
For instance, a choice of UV

i (vi) =
√

vi + δ is proposed for
video adaptation in [33]. The choice of (UE

i )i∈N is driven by
the degree of fairness in the allocation of QoE across users, e.g.,
max-min, proportional fairness etc. A larger α corresponds to a

2Note that we need δ > 0 otherwise UV
i (vi) =

√
vi violates U.V.1.
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more fair allocation which eventually becomes max-min fair as
α goes to infinity.

Applicability of the Model: We close this section by il-
lustrating the wide scope of the framework discussed above
by describing examples of scenarios that fit it nicely. They
illustrate the freedom provided by the framework for modeling
temporal variability in both the available rewards and the sen-
sitivity of the users’ reward/utility to their reward allocations,
as well as fairness across users’ QoE. The presence of time-
varying constraints ct(r) ≤ 0 allows us to apply the model
to several interesting settings. In particular, we discuss three
wireless network settings and show that the framework can
handle problems involving time-varying exogenous loads and
time-varying utility functions.

1) Time-Varying Capacity Constraints: We start by dis-
cussing the case where the rewards in a time slot is the rate
allocated to the users, and users dislike variability in their
allocations. Let P denote a finite (but arbitrarily large) set of
positive vectors where each vector corresponds to the peak
transmission rates achievable to the set of users in a given time
slot. Let C = {cp : cp(r) =

∑
i∈N (ri/pi) − 1,p ∈ P}. Here,

for any allocation r, ri/pi is the fraction of time the wireless
system needs to serve user i in time slot t in order to deliver
data at the rate of ri when the user has peak transmission rate
pi. Thus, the constraint cp(r) ≤ 0 can be seen as a scheduling
constraint that corresponds to the requirement that the sum of
the fractions of time that different users are served in a time slot
should be less than or equal to one.

2) Time-Varying Exogenous Constraints: We can further in-
troduce time varying exogenous constraints on the wireless sys-
tem by appropriately defining the set C. For instance, consider a
base station in a cellular network that supports users who dislike
variability in rate allocation. But, while allocating rates to these
users, we may also need to account for the time-varying rate
requirements of the voice traffic handled by the base station.
We can model this by defining

C =

{
cp,f : cp,f (r) =

∑

i∈N

ri

pi
− (1 − f), p ∈ P, f ∈ Tfr

}

where Tfr is a finite set of real numbers in [0, 1) where each
element in the set corresponds to a fraction of a time slot that is
allocated to other traffic.

3) Time-Varying Utility Functions: Additionally, our frame-
work also allows the introduction of time-varying utility func-
tions as illustrated by the following example of a wireless
network supporting video users. Here, we view utility functions
as a mapping from allocated resource (e.g., rate) to reward (e.g.,
video quality). For video users, we consider perceived video
quality of a user in a time slot as the reward for that user in
that slot. However, for video users, the dependence of perceived
video quality3 on the compression rate is time varying. This is
typically due to the possibly changing nature of the content,
e.g., from an action to a slower scene. Hence, the utility function
that maps the reward (i.e., perceived video quality) derived

3In a short duration time slot roughly a second long which corresponds to a
collection of 20–30 frames.

from the allocated resource (i.e., the rate) is time varying. This
setting can be handled as follows. Let qt,i(·) denote the strictly
increasing concave function that, in time slot t, maps the rate
allocated to user i to user perceived video quality. For each user
i, let Qi be a finite set of such functions, then a scenario with
time varying peak rates and utilities can be modeled by set of
convex constraints

C=

{
cp,q :cp,q(r)=

∑

i∈N

q−1
i (ri)

pi
−1,p∈P, qi∈Qi ∀ i∈N

}
.

III. OPTIMAL VARIANCE-SENSITIVE OFFLINE POLICY

In this section, we study OPT(T), the offline formulation for
optimal reward allocation introduced in Section I. In the offline
setting, we assume that (c)1:T , the realization of the constraints
process (C)1:T , is known. We denote the objective function of
OPT(T) by φT , i.e.,

φT (r) :=
∑

i∈N
UE

i

(
eT
i (ri)

)
(5)

where eT
i (·) is as in Definition 1. Hence the optimization

problem OPT(T ) can be rewritten as

OPT(T ) : max(r)1:T φT (r) (6)

subject to ct (r(t)) ≤ 0 ∀ t ∈ {1, . . . , T} (7)

ri(t)≥0 ∀ t∈{1, . . . , T}, ∀ i∈N .

(8)

The next result asserts that OPT(T ) is a convex optimization
problem satisfying Slater’s condition [6, Section 5.2.3] and that
it has a unique solution.

Lemma 1: OPT(T ) is a convex optimization problem satis-
fying Slater’s condition with a unique solution.

Proof: By Assumptions U.E and U.V, the convexity of
the objective of OPT(T ) is easy to establish once we prove
the convexity of the function UV

i (VarT (·)) for each i ∈ N .
Using (3) and the definition of VarT (·), we can show that
UV

i (VarT (·)) is convex for each i ∈ N . The details are given
next. Using convexity of Euclidean norm (see [6]), we can show
that for any two quality vectors (r1)1:T and (r2)1:T , any i ∈ N ,
α ∈ (0, 1) and ᾱ = 1 − α, we have that

VarT
(
αr1

i + ᾱr2
i

)
=

(
α
√

VarT (r1
i ) + ᾱ

√
VarT (r2

i )

)2

.

(9)
Using this, (3) and the monotonicity of UV

i , we have

UV
i

(
VarT

(
αr1

i + ᾱr2
i

))

≤ αUV
i

(
VarT

(
r1
i

))
+ ᾱUV

i

(
VarT

(
r2
i

))
. (10)

So, UV
i (VarT (·)) is a convex function. Thus, by the concavity

of UE
i (·) and −UV

i (VarT (·)), we can conclude that OPT(T )
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is a convex optimization problem. Also, from (9) and (3)
(since we have strict inequality), we can conclude that we have
equality in (10) only if

VarT
(
r1
i

)
= VarT

(
r2
i

)
(11)

or equivalently

r1
i (t) = r2

i (t) + mT
(
r1
i

)
− mT

(
r2
i

)
∀ t ∈ {1, . . . , T}. (12)

Further, Slater’s condition is satisfied and it follows from (2) in
Assumption C.3.

Now, for any i ∈ N , UE
i and −UV

i (VarT (·)) are not nec-
essarily strictly concave. But, we can still show that OPT(T )
has a unique solution. Let (r1)1:T and (r2)1:T be two opti-
mal solutions to OPT(T ). Then, from the concavity of the
objective, (α(r1

i )1:T + ᾱ(r2
i )1:T ) is also an optimal solution

for any α ∈ (0, 1) and ᾱ = 1 − α. Due to convexity of UE
i (·)

and UV
i (VarT s(·)), this is only possible if for each i ∈ N and

1 ≤ t ≤ T

UV
i

(
VarT

(
αr1

i + ᾱr2
i

))

= αUV
i

(
VarT

(
r1
i

))
+ ᾱUV

i

(
VarT

(
r2
i

))
.

Hence (12) and (11) hold. Due to optimality of (r1)1:T and
(r2)1:T , we have that

∑

i∈N
UE

i

(
1

T

T∑

t=1

r2
i (t) − UV

i

(
VarT

(
r2
i

))
)

=
∑

i∈N
UE

i

(
1

T

T∑

t=1

r1
i (t) − UV

i

(
VarT

(
r2
i

))
)

=
∑

i∈N
UE

i

(
1

T

T∑

t=1

r2
i (t) + mT

(
r1
i

)
− mT

(
r2
i

)

−UV
i

(
VarT

(
r2
i

)))

where the first equality follows from (11) and the second one
follows from (12). Since UE

i is a strictly increasing function for
each i ∈ N , the above equation implies that mT (r1

i ) = mT (r2
i )

and thus (using (12)) r1(t) = r2(t) for each t such that 1 ≤ t ≤
T . From the above discussion, we can conclude that OPT(T )
has a unique solution. !

We let (rT )1:T denote the optimal solution to OPT(T ).
Since OPT(T ) is a convex optimization problem satisfying
Slater’s condition (Lemma 1), the Karush-Kuhn-Tucker (KKT)
conditions (see [6, Section 5.5.3]) given next hold.

KKT-OPT(T):
There exist nonnegative constants (µT )1:T and (γT )1:T such

that for all i ∈ N and t ∈ {1, . . . , T}, we have

(
UE

i

)′ (
eT
i

(
rT
i

))

(
1

T
−

2
(
UV

i

)′ (
VarT

(
rT
i

))

T

(
rT
i (t) − mT

(
rT
i

))
)

− µT (t)

T
c′t,i

(
rT (t)

)
+

γT
i (t)

T
= 0 (13)

µT (t)ct

(
rT (t)

)
= 0 (14)

γT
i (t)rT

i (t) = 0 (15)

Here c′t,i denotes ∂ct/∂ri, and we have used the fact that for
any t ∈ {1, . . . , T}

∂

∂r(t)

(
TVarT (r)

)
= 2

(
r(t) − mT (r)

)
.

From (13), we see that the optimal reward allocation rT (t)
on time slot t depends on the entire allocation (rT)1:T through
the following three quantities: (i) the time average rewards mT ;
(ii) ((UE

i )
′
)i∈N evaluated at the quality of experience of the

respective users; and (iii) ((UV
i )

′
)i∈N evaluated at the variance

seen by the respective users. So, if the time averages associated
with the optimal solution were somehow known, the optimal
allocation for each time slot t could be determined by solving
an optimization problem (derived from the KKT conditions)
that only requires these time averages, and knowledge of ct

(associated with current time slot) rather than (c)1:T . We exploit
this key idea in formulating our online algorithm in the next
section.

IV. ADAPTIVE VARIANCE-AWARE REWARD ALLOCATION

In this section, we present Adaptive Variance-aware Re-
ward allocation (AVR) algorithm and establish its asymptotic
optimality.

We let

H := [0, rmax]
N × [0, vmax]

N (16)

where × denotes Cartesian product for sets. Let (m, v) ∈
H and ei = mi − UV

i (vi) for each i ∈ N , and consider the
optimization problem OPTAVR((m, v), c) given below

OPTAVR((m, v), c):

max
r

∑

i∈N

(
UE

i

)′
(ei)

(
ri −

(
UV

i

)′
(vi)(ri − mi)

2
)

subject to c(r) ≤ 0 (17)

ri ≥ 0 ∀ i ∈ N . (18)

The reward allocations for AVR are obtained by solv-
ing OPTAVR((m, v), c), where m, v, and e correspond to
current estimates of the mean, variance and QoE, respec-
tively. We let r∗((m, v), c) denote the optimal solution to
OPTAVR((m, v), c).

Next, we describe our algorithm in detail.
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Algorithm 1. Adaptive Variance-aware Reward allocation
(AVR)
AVR.0: Initialization: let (m(1), v(1)) ∈ H.

In each time slot t ∈ N, carry out the following steps:
AVR.1: The reward allocation in time slot t is the optimal so-

lution to OPTAVR((m(t), v(t)), ct), i.e., r∗((m(t),
v(t)), ct), and will be denoted by r∗(t) (when the depen-
dence on the variables is clear from context).

AVR.2: In time slot t, update mi as follows: for all i ∈ N

mi(t + 1) =

[
mi(t) +

1

t
(r∗i (t) − mi(t))

]rmax

0

(19)

and update vi as follows: for all i ∈ N

vi(t + 1) =

[
vi(t) +

(r∗i (t) − mi(t))
2 − vi(t)

t

]vmax

0

. (20)

Here, [x]ba = min(max(x, a), b).

Thus, AVR greedily allocates rewards in slot t based on the
objective of OPTAVR((m(t), v(t)), ct). Thus, the computa-
tional requirements per slot involve solving a convex program
in N variables (that has a simple quadratic function as its
objective function), and updating at most 2N variables. We
see that the update equations (19), (20) roughly ensure that
the parameters m(t) and v(t) keep track of mean reward and
variance in reward allocations under AVR. The updates in AVR
fall in the class of decreasing step size stochastic approximation
algorithms (see [17] for reference) due to the use of 1/t in (19),
(20). We could replace 1/t with a small positive constant ϵ and
obtain a constant step size stochastic approximation algorithm
which is usually better suited for non-stationary settings (also
see [27, Section 4.4] for other useful choices). Note that we do
not have to keep track of variance estimates for users i with
linear UV

i since OPTAVR is insensitive to their values (i.e.,
(UV

i )′(.) is a constant), and thus the evolutions of m(t) and
(vi(t))i∈Nn

do not depend on them. We let θ(t) = (m(t), v(t))

for each t. The truncation [.]ba in the update (19), (20) ensure that
θ(t) stays in the set H.

For any ((m, v), c) ∈ H × C, we have (UE
i )

′
(mi −

UV
i (vi))(UV

i )′(vi) > 0 for each i ∈ N (see Assumptions U.E
and U.V). Hence, OPTAVR((m, v), c) is a convex opti-
mization problem with a unique solution. Further, using (2) in
Assumption C.3, we can show that it satisfies Slater’s condition.
Hence, the optimal solution r∗ for OPTAVR((m, v), c)
satisfies KKT conditions given below.

KKT-OPTAVR((m, v), c):
There exist nonnegative constants µ∗ and (γ∗

i )i∈N such that
for all i ∈ N

(
UE

i

)′ (
mi − UV

i (vi)
) (

1 − 2
(
UV

i

)′
(vi) (r∗i − mi)

)

+ γ∗
i − µ∗c′i(r

∗) = 0 (21)

µ∗c(r∗) = 0 (22)

γ∗
i r

∗
i = 0. (23)

In the next lemma, we establish continuity properties
of r∗((m, v), c) when viewed as a function of (m, v). In
particular, the Lipschitz assumption on the derivatives of
(UV

i )i∈N and (UE
i )i∈N help us conclude that the optimizer of

OPTAVR(θ, c) is Lipschitz continuous in θ. A proof is given
in Appendix A.

Lemma 2: For any c ∈ C, and θ = (m, v) ∈ H
(a) r∗(θ, c) is a Lipschitz continuous function of θ.
(b) E[r∗(θ, Cπ)] is a Lipschitz continuous function of θ.
The next theorem states our key convergence result for the

mean, variance and QoE of the reward allocations under AVR.
This result is proven in Section V. For brevity, we let r∗(t)
denote r∗((m(t), v(t)), ct).

Theorem 1: The evolution of the users’ estimated parameters
m(t) and v(t), and the sequence of reward allocations (r∗i )1:T
to each user i under AVR satisfy the following property: for
almost all sample paths, and for each i ∈ N

(a) lim
T→∞

mT (r∗i ) = lim
t→∞

mi(t)

(b) lim
T→∞

VarT (r∗i ) = lim
t→∞

vi(t)

(c) lim
T→∞

eT
i (r∗i ) = lim

t→∞

(
mi(t) − UV

i (vi(t))
)
.

The next result establishes the asymptotic optimality of AVR,
i.e., if we consider long periods of time T , the difference in
performance (i.e., φT defined in (5)) of the online algorithm
AVR and the optimal offline policy OPT(T ) becomes negligi-
ble. Thus, the sum utility of the QoEs (which depends on long
term time averages) is optimized.

Theorem 2: The sequence of reward allocations (r∗)1:T un-
der AVR is feasible, i.e., it satisfies (7) and (8), and for almost
all sample paths they are asymptotically optimal, i.e.,

lim
T→∞

(
φT (r∗) − φT (rT )

)
= 0.

Proof: Since the allocation (r∗)1:T associated with AVR
satisfies (17) and (18) at each time slot, it also satisfies (7)
and (8).

To show asymptotic optimality, consider any realization of
(c)1:T . Let (µ∗)1:T and (γ∗)1:T be the sequences of nonnega-
tive real numbers satisfying (21)–(23) for this realization. From
the nonnegativity of these numbers, and feasibility of (rT )1:T ,
we have

φT (rT ) ≤ ψT (rT ) (24)

where

ψT (rT ) =
∑

i∈N
UE

i

(
eT
i

(
rT
i

))
−

T∑

t=1

µ∗(t)

T
ct

(
rT (t)

)

+
T∑

t=1

∑

i∈N

γ∗
i (t)

T
rT
i (t).
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Indeed, the function ψT is the Lagrangian associated with
OPT(T ) but evaluated at the optimal Lagrange multipliers
associated with the optimization problems (OPTAVR) involved
in AVR, and hence the inequality. Since ψT is a differentiable
concave function, we have (see [6])

ψT (rT ) ≤ ψT (r∗) +
〈
∇ψT (r∗),

(
(rT )1:T − (r∗)1:T

)〉

where ⟨·, ·⟩ denotes the dot product. Hence, we have

ψT (rT ) ≤
∑

i∈N
UE

i

(
eT
i (r∗i )

)
−

T∑

t=1

µ∗(t)

T
ct (r∗(t))

+
T∑

t=1

∑

i∈N

γ∗
i (t)

T
r∗i (t) +

T∑

t=1

∑

i∈N

(
rT
i (t) − r∗i (t)

)

(
−µ∗(t)

T
c′t,i (r∗(t)) +

γ∗
i (t)

T
+
(
UE

i

)′ (
eT
i (r∗i )

)

(
1

T
−

2
(
UV

i

)′ (
VarT (r∗i )

)

T

(
r∗i (t) − mT (r∗i )

)
))

.

Using (24), and the fact that (µ∗)1:T and (γ∗)1:T satisfy
(21)–(23), we have

φT (rT ) ≤
∑

i∈N
UE

i

(
eT
i (r∗i )

)
+

T∑

t=1

∑

i∈N

rT
i (t) − r∗i (t)

T

((
UE

i

)′ (
eT
i (r∗i )

)

(
1 − 2

(
UV

i

)′ (
VarT (r∗i )

) (
r∗i (t) − mT (r∗i )

))

−
(
UE

i

)′
(ei(t − 1))

(
1 − 2

(
UV

i

)′
(vi(t − 1)) (r∗i (t) − mi(t − 1))

))
. (25)

From Theorem 1 (a)–(c), and the continuity and boundedness
of the functions involved, we can conclude that the expression
appearing in the last four lines of the above inequality can be
made as small as desired by choosing large enough T and then
choosing a large enough t. Also, |rT

i (t) − r∗i (t)| ≤ rmax for
each i ∈ N . Hence, taking limits in (25)

lim
T→∞

(
φT (r∗) − φT (rT )

)
≥ 0 (26)

holds for almost all sample paths. From the optimality of
(rT )1:T

φT (rT ) ≥ φT (r∗). (27)

The result follows from the inequalities (26) and (27). !
Remark: The asymptotic optimality of AVR (stated in

Theorem 2) can also be established when (Ct)t∈N is an asymp-
totically mean stationary process (see [11] for reference) of
functions selected from a finite set C. This is a weaker as-
sumption than Assumption C.1, and our proofs of Lemma 7
and Theorem 1 used Assumption C.1. Note that the proof of
Lemma 7 (given in Appendix G) holds as long as the strong
law of large numbers holds for (g(m, v, Ct))t for any (m, v),

and the proof of Theorem 1 can be extended as long as the
second term in (42) converges to E[r∗i (θ

π, Cπ)]. Note that both
these modifications to the proofs hold since Birkhoff’s Ergodic
Theorem (BET) holds for (Ct)t∈N (see paragraph below
Remark 7 in Section 3 of [11]).

V. CONVERGENCE ANALYSIS

This section is devoted to the proof of the previously stated
Theorem 1 capturing the convergence of reward allocations
under AVR. Our approach relies on viewing (19), (20) in
AVR as a stochastic approximation update equation (see, e.g.,
[17] for reference), and relating the convergence of reward
allocations under the discrete time algorithm AVR to that of
an auxiliary (continuous time) ODE (given in (37)) which
evolves according to time averaged dynamics of AVR. In fact,
we will show that the ODE converges to a point determined
by the optimal solution to an auxiliary optimization problem
OPTSTAT closely related to OPT(T ) which is discussed in the
next subsection. In Section V-B, we study the convergence of
the auxiliary ODE and in Section V-C, we establish conver-
gence of (θ(t))t∈N generated by AVR to complete the proof of
Theorem 1.

A. Stationary Version of OPT: OPTSTAT

The formulation OPT(T) involves time averages of various
quantities associated with users’ rewards. By contrast, the
formulation of OPTSTAT is based on expected values of the
corresponding quantities under the stationary distribution of
(Ct)t∈N.

Recall that (under Assumption C.1) (Ct)t∈N is a stationary
ergodic process with marginal distribution (π(c))c∈C , i.e., for
c ∈ C, π(c) is the probability of the event Ct = c. Since C is
finite, we assume that π(c) > 0 for each c ∈ C without any loss
of generality.

Definition 2: A reward allocation policy is said to be
stationary if the associated reward allocation in any time slot
t depends only on current constraint ct.

Thus, we can represent any stationary reward allocation
policy as a |C| length vector (of vectors) (ρc)c∈C where ρc =
(ρc,i)i∈N ∈ RN

+ denotes the allocation of rewards to users
under constraint c ∈ C.

Definition 3: We say that a stationary reward allocation pol-
icy (ρc)c∈C is feasible if for each c ∈ C, we have that c(ρc) ≤ 0
and for each i ∈ N , we have ρc,i ≥ 0. Also, let RC ⊂
RN |C| denote the set of feasible stationary reward allocation
policies, i.e.,

RC := Πc∈C
{
ρc ∈ RN : c(ρc) ≤ 0, ρc,i ≥ 0 ∀ i ∈ N

}
.

(28)
Now, let

φπ ((ρc)c∈C) =
∑

i∈N
UE

i

(
E[ρCπ,i] − UV

i (Var(ρCπ,i))
)

where ρCπ,i is a random variable taking value ρc,i with prob-
ability π(c) for each c ∈ C, i.e., a random variable whose
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distribution is that of user i’s reward allocation under stationary
reward allocation policy (ρc)c∈C . Hence

E[ρCπ,i] =
∑

c∈C
π(c)ρc,i

Var(ρCπ,i) =
∑

c∈C
π(c) (ρc,i − E[ρCπ,i])

2 .

We define the ‘stationary’ optimization problem OPTSTAT
as follows:

OPTSTAT:

max
(ρc)c∈C∈RC

φπ

(
(ρc)c∈C

)
.

The next lemma gives a few useful properties of OPTSTAT.
Lemma 3: OPTSTAT is a convex optimization problem sat-

isfying Slater’s condition and has a unique solution.
Proof: The proof is similar to that of Lemma 1, and is

easy to establish once the convexity of the function Var(·) is
shown. !

Using Lemma 3, we can conclude that the KKT conditions
given below are necessary and sufficient for optimality of
OPTSTAT. Let (ρπ

c )c∈C denote the optimal solution.

KKT-OPTSTAT:
There exist constants (µπ(c))c∈C and (γπ(c))c∈C such that

π(c)
(
UE

i

)′ (
E
[
ρπCπ,i

]
− UV

i

(
Var

(
ρπCπ,i

)))

(
1 − 2

(
UV

i

)′ (
Var

(
ρπCπ,i

)) (
ρπc,i − E

[
ρπCπ,i

]))

− µπ(c)c′i (ρπ
c ) + γπ

i (c) = 0 (29)

µπ(c)c (ρπ
c ) = 0 (30)

γπ
i (c)ρπc,i = 0 (31)

where c′i denotes the ith component of the gradient ∇c of the
constraint function c ∈ C.

In developing the above KKT conditions, we used the
fact that for any c ∈ C and i ∈ N , ∂Var(ρπCπ,i)/∂ρc,i =
2π(c)(ρπc,i − E[ρπCπ,i]).

Next, we find relationships between the optimal solution
(ρπ

c )c∈C of OPTSTAT and OPTAVR. To that end, let θπ :=
(mπ,vπ) where for each i ∈ N , we define

mπ
i := E

[
ρπCπ,i

]
(32)

vπ
i := Varπ

(
ρπCπ,i

)
(33)

eπi := mπ
i − UV

i (vπ
i ) . (34)

Definition 4: Let H∗ be the set of fixed points defined by

H∗ = {(m, v) ∈ H : (m, v) satisfies (35)−(36)}

where

E [r∗i ((m, v), Cπ)] = mi ∀ i ∈ N (35)

Var (r∗i ((m, v), Cπ)) = vi ∀ i ∈ N . (36)

Recall that r∗((m, v), c) denotes the optimal solution to
OPTAVR((m, v), c) and H is defined in (16). Thus, H∗ is
the set of parameter values θ = (m, v) that can be viewed as
fixed points for ‘stationary modification’ of AVR obtained by
replacing r∗i (t) and (r∗i (t) − mi(t))2 in (19) and (20) with their
expected values. Theorem 3 below shows that in fact there is
but one such fixed point θπ . A proof is given in Appendix B.

Theorem 3: θπ satisfies the following:
(a) r∗(θπ, c) = ρπ

c for each c ∈ C, and
(b) H∗ = {θπ}.
Using these results we will study a differential equation that

mimics the evolution of the parameters under AVR and show
that it converges to θπ.

B. Convergence of Auxiliary ODE Associated With AVR

In this subsection, we study and establish convergence of
an auxiliary ODE which evolves according to the average
dynamics of AVR. We establish the relationship between the
ODE and AVR in the next subsection. This will subsequently
be used in establishing convergence properties of AVR.

Consider the following differential equation:

dθA(τ)

dτ
= ḡ

(
θA(τ)

)
+ z

(
θA(τ)

)
(37)

for τ ≥ 0 with θA(0) ∈ H where ḡ(θ) is a function taking
values in R2N defined as follows: for θ = (m, v) ∈ H, let

(ḡ(θ))i := E [r∗i (θ, Cπ)] − mi (38)

(ḡ(θ))N+i := E
[
(r∗i (θ, Cπ) − mi)

2
]
− vi. (39)

In (37), z(θ) ∈ −CH(θ) is a projection term corresponding to
the smallest vector that ensures that the solution remains in
H (see [17, Section 4.3]). The set CH(θ) contains only the
zero element when θ is in the interior of H, and for θ on the
boundary of the set H, CH(θ) is the convex cone generated by
the outer normals at θ of the faces of H on which θ lies. The
motivation for studying the above differential equation should
be partly clear by comparing the right hand side of (37) (see
(38), (39)) with AVR’s update (19), (20), and we can associate
the term z(θ) with the constrained nature of AVR’s update
equations. The following result shows that z(θ) appearing in
(37) is innocuous in the sense that we can ignore it when we
study the differential equation. The proof, given in Appendix C,
shows the redundancy of the term z(θ) by arguing that the
differential equation itself ensures that θA(τ) stays within H.

Lemma 4: For any θ ∈ H, zj(θ) = 0 for all 1 ≤ j ≤ 2N .
Note that (37) has a unique solution for a given initialization

due to Lipschitz continuity results in Lemma 2.
We define the set H̃ ⊂ H as follows:

H̃ :=
{
(m, v) ∈ H : there exists (ρc)c∈C ∈ RC such that

E[ρCπ,i] = mi, Var(ρCπ,i) ≤ vi ≤ r2
max ∀ i ∈ N

}
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where RC is the set of feasible stationary reward allocation poli-
cies defined in (28). We can view H̃ as the set of all ‘achievable’
mean variance pairs, i.e., for any (m, v) ∈ H there is some
stationary allocation policy with associated mean vector equal
to m and associated variance vector componentwise less than
or equal to v. Here, the restriction vi ≤ r2

max for each i ensures
that H̃ is bounded. Further, for any θ = (m, v) ∈ H̃, let

R̃(θ) :=
{
(ρc)c∈C ∈ RC : E[ρCπ,i] = mi,

Var(ρCπ,i) ≤ vi ∀ i ∈ N} .

We can view R̃(θ) as the set of all feasible stationary reward
allocation policies corresponding to an achievable θ ∈ H̃.

The following result characterizes several useful properties
of the sets introduced above; a proof is given in Appendix D.

Lemma 5: (a) For any θ = (m, v) ∈ H̃, R̃(θ) is a non-
empty compact subset of RN |C|.

(b) H̃ is a bounded, closed and convex set.
The next result gives a set of sufficient conditions to establish

asymptotic stability of a point with respect to an ordinary
differential equation. This result is a generalization of Theorem
4 in [30]. A proof of the result is given in Appendix E.

Lemma 6: Consider a differential equation

ẋ = f(x), x ∈ Rd (40)

where f is locally Lipschitz and all trajectories exist for t ∈
[0,∞). Suppose that some compact set K ⊂ Rd is asymptot-
ically stable with respect to (40) and also suppose that there
exists a continuously differentiable function L : Rd → R and
some x0 ∈ K such that

∇L(x) · f(x) < 0 ∀x ∈ K, x ̸= x0. (41)

Then x0 is an asymptotically stable equilibrium for (40) in Rd.
We are now in a position to establish the convergence re-

sult for the ODE in (37). The proof relies on the optimality
properties of the solutions to OPTAVR, Lemma 3 from [30],
Theorem 3 (b), and Lemma 6. A detailed proof is given in
Appendix F.

Theorem 4: Suppose θA(τ) evolves according to the
ODE in (37). Then, for any initial condition θA(0) ∈ H,
limτ→∞ θA(τ) = θπ .

If the Lipschitz hypothesis in Assumptions U.V.1 and U.E. is
relaxed, then the conclusions of Lemma 2 hold with continuity
replacing Lipschitz continuity. Existence of solutions to the or-
dinary differential (37) in the set H follows by Peano’s theorem
since H is compact, thus rendering the vector field [associated
with (37)] continuous and bounded. Note that Lemma 6 does
not require Lipschitz continuity, and nor does the proof of
Theorem 4.

C. Convergence of AVR and Proof of Theorem 1

In this subsection, we complete the proof of Theorem 1.
We first establish a convergence result for the sequence of
iterates of the AVR algorithm (θ(t))t∈N based on the associated
ODE (37). We do so by viewing (19), (20) as a stochastic

approximation update equation, and use a result from [17]
that relates the iterates to the ODE (37). We establish the
desired convergence result by utilizing the corresponding result
obtained for the ODE in Theorem 4. A detailed discussion and
proof of the result is given in Appendix G.

Lemma 7: If θ(0) ∈ H, then the sequence (θ(t))t∈N gener-
ated by the Algorithm AVR converges almost surely to θπ.

If we use AVR with a constant step size stochastic approxi-
mation algorithm obtained by replacing 1/t in (19), (20) with a
small positive constant ϵ, we can use results like Theorem 2.2
from Chapter 8 of [17] to obtain a result similar in flavor to
that in Lemma 7 (which can then be used to obtain optimality
results).

Now we prove Theorem 1 mainly using Lemma 7, and
stationarity and ergodicity assumptions.

Proof of Theorem 1: For each i ∈ N

1

T

T∑

t=1

r∗i (θ(t), Ct) =
1

T

T∑

t=1

(r∗i (θ(t), Ct) − r∗i (θ
π, Ct))

+
1

T

T∑

t=1

r∗i (θ
π, Ct). (42)

Using Lemma 7, Lipschitz continuity of r∗(., c) for any c ∈ C
[see Lemma 2(a)] and finiteness of C, we can conclude that
|r∗i (θ(t), Ct) − r∗i (θ

π, Ct)| converges to 0 a.s. (i.e., for almost
all sample paths) as t → ∞. Hence, the first term on right hand
side of (42) converges to 0 a.s. as T → ∞. The second term
converges to E[r∗i (θ

π, Cπ)] by Birkhoff’s Ergodic Theorem
(see, for, e.g., [10]). Now, note that E[r∗i (θ

π, Cπ)] = mπ
i (see

Theorem 3(b) and (35)). Since by Lemma 7, limt→∞ mi(t) =
mπ

i , part (a) of Theorem 1 is proved.
Next, we prove part (b). Note that for each i ∈ N

VarT (r∗i )

=
1

T

T∑

t=1

(
r∗i (θ(t), Ct) −

1

T

T∑

s=1

r∗i (θ(s), Cs)

)2

=
1

T

T∑

t=1

(r∗i (θ(t), Ct) − mπ
i )2

−
(

1

T

T∑

s=1

r∗i (θ(s), Cs) − mπ
i

)2

. (43)

The second term on the right-hand-side of (43) converges a.s.
to zero as t → ∞ by part (a). Also, following the same steps as
in the proof of part (a), we see that the first term converges a.s.
to vπ

i as T → ∞. Since by Lemma 7, limt→∞ vi(t) = vπ
i , part

(b) of Theorem 1 is proved.
Part (c) of Theorem 1 follows from parts (a) and (b). !

VI. SIMULATIONS

In this section, we evaluate additional performance charac-
teristics of AVR via simulation. We focus on the realization
of different mean-fairness-variability tradeoffs by varying the
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functions (UE
i , UV

i )i∈N , and on the convergence rate of the
algorithm.

For the simulations, we consider a time-slotted setting in-
volving time varying utility functions as discussed in Section II.
We consider a network where N = 20. Temporal variations
in video content get translated into time varying quality rate
maps, and we model this as follows: in each time slot, a time
varying quality rate map for each user is picked independently
and uniformly from a set Q = {q1, q2}. Motivated by the video
distortion versus rate model proposed in [31], we consider the
following two (increasing) functions that map video compres-
sion rate w to video quality

q1(w) = 100 − 40000

w − 500
, q2(w) = 100 − 80000

w − 500
.

These (increasing) functions map video compression rate w to
a video quality metric. We see that the map q2 is associated with
a time slot in which the video content (e.g., involving a scene
with a lot of detail) is such that it needs higher rates for the same
quality (when compared to that for q1). Referring Section II, we
see that Qi = Q for each user i ∈ N . For each user, the peak
data rate in each time slot is modeled as an independent random
variable with various distributions (discussed below) from the
set W = {ω1,ω2} where ω1 = 30 000 units and ω2 = 60 000
units (thus P = WN ). Further, we choose rmax = 100 and the
run length of each simulation discussed below is 100 000 time
slots.

To obtain different tradeoffs between mean, variability and
fairness, for each i ∈ N we set UE

i (e) = e1−α/(1 − α) and
UV

i (v) = β
√

v + 1 and vary α and β. For a given α, note that
UE

i (·) corresponds to α-fair allocation discussed in Section II
where a larger α corresponds to a more fair allocation of QoE.
Also, by choosing a larger β we can impose a higher penalty
on variability. The choice of UV

i (·) roughly corresponds to the
metric proposed in [33]. To obtain a good initialization for
AVR, the reward allocation in the first 10 time slots is obtained
by solving a modified version of OPTAVR((m, v), c) with a
simpler objective function

∑
i∈N UE

i (ri) (which does not rely
on any estimates) under the same constraints (17) and (18), and
run AVR from the 11th time slot initialized with parameters
(m, v) set to the mean reward and half the variance in reward
over the first ten time slots.

We first study a homogeneous setting in which, for each time
slot, the peak data rate of each user is picked independently and
uniformly at random from the set W . Here, we set α = 1.5 and
vary β over {0.02, 0.1, 0.2, 0.5, 1, 2}. The averaged (across
users) values of the mean reward and standard deviation of
the reward allocation for the different choices of β are shown
in Fig. 1. Not only does the standard deviation reduce with a
higher β, we also see that the reduction in mean reward for a
given reduction in variability is very small. For instance here
we were able to reduce the standard deviation in reward from
around 10 to 3 (i.e., around 70% reduction) at the cost of a mere
reduction of 4 units in the mean reward (around 7% reduction).
It should be clear that the reduction in variance corresponding
to the above data will be even more drastic than that of the
standard deviation and this is the case in the next setting too.

Fig. 1. Homogeneous setting: Mean-variability tradeoffs.

TABLE I
HETEROGENEOUS SETTING: MEAN-VARIABILITY-FAIRNESS TRADEOFFS

Next, we study a heterogeneous setting. For each time slot,
the peak data rate of each user indexed 1 through 10 is modeled
as a random variable taking values ω1 and ω2 with probability
0.9 and 0.1 respectively, and that of each user indexed 11
through 20 is ω1 and ω2 with probability 0.1 and 0.9, respec-
tively. Thus, in this setting, users with index in the range 1
through 10 typically see poorer channels, and can end up being
sidelined if the allocation is not fair. To measure the fairness of
a reward allocation, we use a simple metric Mfairn which is the
ratio of the minimum value to the maximum value of the QoE
of the users. In Table I, the value of Mfair along with values of
the averages (across users) of the mean, variance and standard
deviation of the allocated rewards for different choices of α and
β are given. As in the homogeneous setting, we see that we can
achieve drastic reduction in the variability of quality (measured
in terms of either the variance or the standard deviation) for a
relatively small reduction in the mean reward. We further see
that higher values of α result in a higher values of Mfair for the
same β, and thus reduce the disparity in allocation of quality.

In Fig. 2, we compare the performance of AVR to that of
the optimal offline policy obtained by solving OPT(T ) (for a
large T ). To enable computation of the optimal offline policy,
we consider a setting with just 2 users. We let UE

i (e) = e and
UV

i (v) = 0.1v for both the users. The time varying quality rate
maps are generated just as for the above simulations, and peak
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Fig. 2. Performance of AVR (top figure) and convergence of parameters
(bottom figure).

data rates are heterogeneous as described above so that the
first user sees poorer channels compared to the second. The
thick line in the top figure corresponds to the optimal value
obtained by solving the offline formulation OPT(T ) for T =
1500. The dashed lines depict the performance of AVR in terms
of φt(r∗) for different simulation runs. This indicates that the
performance of AVR converges to the (achievable) asymptotic
upper bound obtained by solving the offline formulation, i.e.,
the optimal value of OPT(T ) as T goes to infinity. The dashed
lines in the bottom figure depict the evolution of parameters
m1(.) and m2(.) for the same simulation runs. Here, the
lower and upper thick lines correspond to the mean quality of
users 1 and 2 respectively corresponding to the solution to
OPT(T ) for T = 1500.

VII. CONCLUSION

This work presents an important generalization of NUM
framework to account for the deleterious impact of temporal
variability allowing for tradeoffs between mean, fairness and
variability associated with reward allocations across a set of
users. We proposed a simple asymptotically optimal online
algorithm AVR to solve problems falling in this framework.
We believe such extensions to capture variability in reward
allocations can be relevant to a fairly wide variety of systems.

Our future work will encompass the possibility of addressing
resource allocation in systems with buffering or storage. e.g.,
energy and/or data storage.

APPENDIX

A. Proof of Lemma 2

Proof: For θ = (m,v), let

Φθ(r) :=
∑

i∈N

(
UE

i

)′
(ei)

(
ri −

(
UV

i

)′
(vi)(ri − mi)

2
)

(44)

for r ∈ RN where ei = mi − UV
i (vi) for each i ∈ N . Next, for

any θa,θb ∈ H and r ∈ [−2rmax, 2rmax]N (any optimal solu-
tion to OPTAVR, i.e., minimizer of Φθ(r) subject to constraints
is an interior point of this set), let

∆Φ(r,θa,θb) = Φθb(r) − Φθa(r).

We prove part (a) (i.e., the Lipschitz continuity with respect to θ
of the optimizer r∗(θ, c) of Φθ(r) subject to constraint c) using
Proposition 4.32 in [4]. The first condition in the Proposition
requires that ∆Φ(·,θa,θb) be Lipschitz continuous. To show
this, note that for any rc, rd ∈ [−2rmax, 2rmax]N

∆Φ(rc,θa,θb) −∆Φ(rd,θa,θb)

=
∑

i∈N

((
UE

i

)′
(ea

i ) −
(
UE

i

)′ (
eb
i

)) (
rc
i − rd

i

)

+
∑

i∈N

(
UE

i

)′
(ea

i )
(
UV

i

)′
(va

i )
(
rd
i −rc

i

) (
rd
i +rc

i −2ma
i

)

−
∑

i∈N

(
UE

i

)′ (
eb
i

) (
UV

i

)′ (
vb

i

) (
rd
i −rc

i

) (
rd
i +rc

i −2mb
i

)
.

Using the above expression, Lipschitz continuity and bounded-
ness of (UV

i
′
)i∈N and (UE

i
′
)i∈N (see Assumptions U.V.1 and

U.E), and boundedness of ra and rb, we can conclude that there
exists some positive finite constant η such that

∆Φ(rc,θa,θb) ≤ ηd(θa,θb)d(ra, rb).

Next, we establish the second condition given in the proposition
referred to as second order growth condition. For this we use
Theorem 6.1 (vi) from [3], and consider the functions L and ψ
discussed in the exposition of the theorem. We have

L(r,θ, µ,γ, c) = Φθ(r∗) − Φθ(r) + µc(r) −
∑

i∈N
γiri

and for d ∈ RN , we have

ψr∗(θ
a, c)(d) = dtr∇2

rL (r∗(θa, c),θa, µm(c),γm(c), c)d

where µm(c) and (γm
i (c) : i ∈ N ) are Lagrange multipliers

associated with the optimal solution to OPTAVR(θa, c). Then,
using convexity of c we have

ψr∗(θa,c)(d) ≥
∑

i∈N
2
(
UE

i

)′
(ea

i )
(
UV

i

)′
(va

i ) d2
i .

Since (UV
i

′
)i∈N and (UE

i
′
)i∈N are strictly positive (see

Assumptions U.V.1 and U.E), we can conclude that there
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exists some positive finite constant η1 such that ψr∗(θa,c)(d) ≥
η1∥d∥2. Now, using Theorem 6.1 (vi) from [3], we can con-
clude that second order growth condition is satisfied.

Thus, we have verified the conditions given in
Proposition 4.32 in [4], and thus (a) holds. Then, (b) follows
from (a) since C is finite and:

E [r∗(θ, Cπ)] =
∑

c∈C
π(c)r∗(θ, c).

!

B. Proof of Theorem 3

Proof: By KKT-OPTSTAT (ρπ
c : c ∈ C), (µπ(c) : c ∈ C)

and ((γπ
i (c))i∈N : c ∈ C) satisfy (29)–(31). To show that

r∗((mπ, vπ), c) = ρπ
c , we verify that ρπ

c satisfies KKT-
OPTSTAT((mπ, vπ), c). To that end, we can verify that
ρπ

c along with µ∗=µπ(c)/π(c) and (γ∗
i = γπ

i (c)/π(c) :
i ∈ N ) satisfy (21)–(23) by using (29)–(31). This proves
part (a).

To prove part (b), first note that (mπ, vπ) ∈ H∗ and this
follows from (a) and the definitions (see (32), (33)) of mπ

and vπ . Next, note that for any (m, v) ∈ H∗ and each c ∈ C,
r∗(m, v, c) is an optimal solution to OPTAVR and thus, there
exist nonnegative constants µ∗(c) and (γ∗

i (c) : i ∈ N ) such that
for all i ∈ N , and satisfies KKT-OPTAVR given in (21)–(23).
Also, since (m, v) ∈ H∗, it satisfies (35), (36). Combining
these observations, we have that for all c ∈ C

(
UE

i

)′ (
E [r∗(θ, Cπ)] − UV

i (Varπ (r∗(θ, Cπ)))
)

(
r∗i (θ, c) − 2

(
UV

i

)′
(Varπ (r∗(θ, Cπ))) (r∗i (θ, c)

− E [r∗(θ, Cπ)])) + γ∗
i − µ∗(c)c′i (r∗(θ, c)) = 0

µ∗(c)c (r∗(θ, c)) = 0

γ∗
i r

∗
i (θ, c) = 0.

where θ = (m, v), and ei = mi − UV
i (vi) for each i ∈ N .

Now for each c ∈ C, multiply the above equations with π(c)
and one obtains KKT-OPTSTAT ((29)–(31)) with (π(c)µ∗(c) :
c ∈ C) and ((π(c)γ∗

i (c))i∈N : c ∈ C) as associated Lagrange
multipliers. From Lemma 3, OPTSTAT satisfies Slater’s con-
dition and hence satisfying KKT conditions is sufficient for
optimality for OPTSTAT. Thus, we have that (r∗(m, v, c))c∈C
is an optimal solution to OPTSTAT. This observation along
with uniqueness of solution to OPTSTAT and (35), (36), imply
part (b), i.e., H∗ = {(mπ, vπ)}. !

C. Proof of Lemma 4

Proof: Recall that H = [0, rmax]N × [0, vmax]N and
vmax = r2

max. Note that for any θ in the interior of H,
zj(θ) = 0 for all j such that 1 ≤ j ≤ 2N from the definition
of CH(θ) and thus we can restrict our attention to the
boundary of H. For any θ on the boundary of H and i ∈ N ,
we can use the facts that (ḡ(θ))i = E[r∗i (θ, Cπ)] − mi

and 0 ≤ r∗i (θ, Cπ), mi ≤ rmax, to conclude that zi(θ) = 0.
Similarly, since vmax = r2

max, we can show that zj(θ) = 0 for
any j such that N + 1 ≤ j ≤ 2N . !

D. Proof of Lemma 5

Proof: For any θ ∈ H̃, using the definition of H̃, we see
that R̃(θ) is a non-empty set. For any c ∈ C, the set {ρc ∈
RN : c(ρc) ≤ 0, ρc,i ≥ 0 ∀ i ∈ N} is compact due to conti-
nuity (see Assumption C.1) and boundedness (see Assumption
C.2) of feasible region associated with functions in C. Thus,
RC is also compact. Now, note that R̃(θ) is the intersection
of a compact set RC , and Cartesian product of intersection
of inverse images of closed sets associated with continuous
functions (corresponding to E[.] and Var(·)) defined over RN .
Thus, R̃(θ) is compact, and this proves (a).

H̃ is bounded since 0 ≤ mi ≤ rmax and 0 ≤ vi ≤ r2
max for

each i ∈ N , and each (m, v) ∈ H̃.
Let (m, v) be any limit point of H̃. Then, there exists a

sequence ((mn, vn))n∈N ⊂ H̃, such that limn→∞(mn, vn) =

(m, v). Let (ρc,n)
c∈C ∈ R̃((mn, vn)) for each n ∈ N. Since

((ρc,n)
c∈C)n∈N is a sequence in the compact set RC , it has

some convergent subsequence ((ρc,nk
)
c∈C)k∈N. Suppose that

the subsequence converges to (ρc)c∈C ∈ RC . Then

E[ρCπ,i] = lim
k→∞

E[ρCπ,nki] = lim
k→∞

mnki = mi

Var(ρCπ,i) = lim
k→∞

Var(ρCπ,nki) ≤ lim
k→∞

vnki = vi.

Thus, (ρc)c∈C ∈ R̃((m, v)), and hence, (m, v) ∈ H̃. Thus, H̃
contains all its limit points and hence is closed.

To show convexity, consider (m1, v1), (m2, v2) ∈ H̃, and
we show that for any given α∈ [0, 1], we have α(m1,
v1)+(1−α)(m2, v2)∈H̃. Let (ρc,1)c∈C ∈R̃((m1, v1)) and

(ρc,2)c∈C ∈R̃((m2, v2)). Hence, Var(r1i(Cπ))≤v1i, Var
(r2i(Cπ)) ≤ v2i ∀ i ∈ N . Let ρc,3 = αρc,1 + (1 − α)ρc,2.
Thus, for each i ∈ N

E[ρCπ,3i] = αm1 + (1 − α)m2. (45)

Next, note that Var(ρCπ ) is a convex function of (ρc)c∈C . This
can be shown using convexity of square function and linearity
of expectation. Thus, for each i ∈ N

Var(ρCπ,3i) ≤αVar(ρCπ,1i) + (1 − α)Var(ρCπ,2i)

≤αv1i + (1 − α)v2i. (46)

Thus, from (45) and (46), we have that (r3(c))c∈C ∈
R̃(α(m1, v1) + (1 − α)(m2, v2)), and thus α(m1, v1) +
(1 − α)(m2, v2) ∈ H̃. !

E. Proof of Lemma 6

Proof: The approach used here is similar to that in [30].
Let δ > 0 be given. With Bδ(x0) denoting the open ball of
radius δ centered at x0 select ε ∈ (0, δ) such that

max
Bε(x0)

L < min
K\Bδ(x0)

L. (47)

This is possible, since the hypotheses imply that L(x0) < L(x)
for all x ∈ K, x ̸= x0. Indeed, consider any solution γ of (40)
starting at x ∈ K, with x ̸= x0. Then the invariance of K and
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(41) imply that the set of ω-limit points of γ is necessarily the
singleton {x0}. Note that L is non-increasing along trajectories
in K and is strictly decreasing along any portion of a trajectory
which does not contain x0. Choose any t′ > 0 such γ(t) ̸= x0

for all t ∈ [0, t′] (this is of course possibly by the continuity of
t 2→ γ(t)). Therefore we must have

L(x) = L (γ(0)) > L (γ(t′)) ≥ lim
t→∞

L (γ(t)) = L(x0).

Since K is asymptotically stable there exists a decreasing
sequence of open sets {Gk}k∈N such that each Gk is invariant
with respect to (40) and ∩k∈NGk = K. By (41)–(47) and the
continuity of L and ∇L · f we can select n ∈ N large enough
such that

∇L(x) · f(x) < 0 ∀x ∈ Ḡn \ Bε(x0) (48a)

max
Bε(x0)

L < min
Ḡn\Bδ(x0)

L. (48b)

It is clear by (48a), (48b) that any trajectory starting in Gn ∩
Bε(x0) stays in Bδ(x0), implying that x0 is a stable equilib-
rium. Let γ be any trajectory of (40). Asymptotic stability of
K implies that there exists t1 > 0 such that γ(t) ∈ Gn for all
t > t1. Also by (48a) there exists t2 ≥ t1 such that γ(t2) ∈
Gn ∩ Bδ(x0). Therefore x0 is asymptotically stable. !

F. Proof of Theorem 4

Proof: Applying Lemma 3 in [30] and by identifying V ≡
H̃, it follows that H̃ is asymptotically stable for (32). Define

L(θ) = L(m, v) := −
∑

i∈N
UE

i

(
mi − UV

i (vi)
)
.

Then

∇L(θ) · ḡ(θ)

= −
∑

i∈N

(
UE

i

)′ (
mi − UV

i (vi)
)
(E [r∗i (θ, Cπ)] − mi

−
(
UV

i

)′
(vi)

(
E
[
(r∗i (θ, Cπ) − mi)

2
]
− vi

))
. (49)

If θ ∈ H̃, then for some ρ ∈ R̃(θ), (49) takes the form

∇L(θ) · ḡ(θ) = −E [Φθ (r∗(θ, Cπ)) − Φθ(ρCπ )]

−
∑

i∈N

(
UE

i

)′ (
mi − UV

i (vi)
) (

UV
i

)′
(vi) (vi − Var(ρCπ,i))

(50)

where Φθ is defined in (44). The optimality of r∗i (θ, c) for
OPTAVR((m, v), c) and the fact that ρ ∈ R̃(θ) together with
Assumptions U.V.1 and U.E. then imply that both terms on
the right-hand-side of (50) are nonpositive and that they vanish
only if

E [r∗i (θ, Cπ)] = E [ρCπ,i] = mi (51)

Var (r∗i (θ, Cπ)) = Var(ρCπ,i) = vi. (52)

In turn, by Theorem 3 these imply that θ = θπ. Therefore
∇L(θ) · ḡ(θ) < 0 for all θ ∈ H̃, θ ̸= θπ and the result follows
by Lemmas 4 and 6. !

G. Proof of Lemma 7

Proof: This proof draws on standard techniques from
stochastic approximation (see e.g., [17]). The key idea is to
view (19), (20) as a stochastic approximation update equation,
and using Theorem 1.1 of Chapter 6 from [17] to relate (19),
(20) to the ODE (37). Below, for brevity, we provide details
drawing heavily on the framework developed in [17].

In the following, we show that all the Assumptions re-
quired to use the theorem are satisfied. The following sets,
variables and functions H , θt, ξt, Yt, ϵt, sigma algebras
Ft, βt, δMt and the function g appearing in the exposition
of Theorem 1.1 of [17], correspond to the following vari-
ables and functions in our problem setting: H = H, θt =
(m(t), v(t)), ξt = ct, for each i ∈ N (Yt)i = r∗i (t) − mi(t)
and (Yt)i+N = (r∗i (t) − mi(t))2 − vi(t), ϵt = 1/t for each t,
Ft is such that (θ0,Yi−1, ξi, i ≤ t) is Ft-measurable, βt = 0
and δMt = 0 for each t, (g((m, v), c))i = r∗i ((m, v), c) − mi

and (g((m, v), c))i+N = (r∗i ((m, v), c) − mi)2 − vi.
Equation (5.1.1) in [17] is satisfied due to our choice of ϵt,

and (A4.3.1) is satisfied due to our choice of H. Further, (A.1.1)
is satisfied as the solutions to OPTAVR are bounded. (A.1.2)
holds due to the continuity result in Lemma 2 (a).

We next show that (A.1.3) holds by choosing the function ḡ
as follows for each i ∈ N : (g(m, v))i = E[r∗i ((m, v), Cπ)] −
mi, and (g(m, v))i+N = E[(r∗i ((m, v), Cπ) − mi)

2] − vi.
Note that the continuity of the function ḡ follows from
Lemma 2 (b).

From Section 6.2 of [17], if ϵt does not go to zero faster than
the order of 1/

√
t, for (A.1.3) to hold, we only need to show that

the strong law of large numbers holds for (g(m, v, Ct))t for any
(m, v). The strong law of large numbers holds since (Ct)t∈N
is a stationary ergodic random process and g is a bounded
function. Assumptions (A.1.4) and (A.1.5) hold since βt = 0
and δMt = 0 for each t. To check (A.1.6) and (A.1.7), we use
sufficient conditions discussed in [17] following Theorem 1.1.
Assumption (A.1.6) holds since g is bounded. (A.1.7) holds
due to the continuity of g((m, v), c) in (m, v) uniformly in c
which follows from the continuity result in Lemma 2 (a), and
the finiteness of C. Thus, using Theorem 1.1, we can conclude
that on almost all sample paths, (θ(t))t∈N converges to some
limit set of the ODE (37) in H. From Theorem 4, for any
initialization in H, this limit set is the singleton {θπ}, and thus
the main result follows. !
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