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ABSTRACT
Recent successes in the development and self-assembly of nanoelec-
tronic devices suggest that the ability to manufacture dense nanofab-
rics is on the near horizon. However, the tremendous increase in de-
vice density of nanoelectronics will be accompanied by a substan-
tial increase in hard and soft faults, posing a major challenge to cur-
rent design methodologies and tools. In this paper we propose a
novel probabilistic design paradigm for defective but reconfigurable
nanofabrics. The new design goal is to devise an appropriate struc-
tural/behavioral decomposition which improves scalability by con-
straining the reconfiguration process, while meeting a desired prob-
ability of successful instantiation, i.e, yield. Our approach not only
addresses the scalability problem in configuring dense nanofabrics
subject to defects, but gives a rich framework in which critical trade-
offs among performance, yield, and per chip cost can be explored.
We present a concrete instance of the approach and show extensive
experimental results supporting these claims.

Categories and Subject Descriptors: J6 [Computer-Aided Engi-
neering]: Computer-aided design

General Terms: Performance, Design, Reliability.

Keywords: Nanotechnologies, probabilistic design, defect tolerance.

1. INTRODUCTION
Fast paced progress on devising and assembling nanoelectronic de-

vices suggests that it will be possible to manufacture large-scale com-
putation nanofabrics within 10-15 years [1, 2, 3, 4, 5, 6, 7]. Aside
from greatly increasing concerns with complexity and scalability, na-
noelectronic fabrics share a characteristic that will impact the entire
design hierarchy. Irrespective of the ‘winning’ technologies, e.g.,
semiconductor nanowires and/or carbon nanotubes, it is widely rec-
ognized that devices and interconnect at the nanoscale will exhibit
fault densities much higher than state-of-the-art silicon technology.
Indeed, they will have: (1) a density of defects which is much higher
than current silicon technologies [8, 9, 3, 5]; and (2) are likely to
be much more susceptible to transient faults, sometimes referred to
as soft faults, see e.g.,[10, 3]. The increases are, in part, due to the
physical dimensions being considered. Indeed, from a materials per-
spective, decreasing the size of structures increases the ratio of sur-
face area to volume, making imperfections on surfaces or materials’
boundaries more critical to proper function of nanoscale interconnects
and devices. Furthermore, at such reduced scales, the discrete nature
of atomic matter and charge becomes significant. Namely, a single
charge or defect may significantly impact the structural stability of a
nanodevice as well as its sensitivity to the electrostatic environment.
These observations point to a reliability problem that is intrinsic to
nanoscale regimes, and is thus here to stay.

Overcoming this problem will require work at many levels, includ-
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ing devising more reliable devices, interconnects, manufacturing pro-
cesses, and materials. At the same time, one needs to start devising
design principles, abstractions, and tools to enable system level de-
signers to address the projected increases in faults. These will not
only be pivotal to conclusively demonstrating the viability of nan-
otechnologies, but also critical to moving them from labs to produc-
tion. Current design methodologies and tools take high reliability for
‘granted’, and thus, their direct application to designing nanosystems
would lead to exceedingly low yields [5]. A paradigm shift in design
methods and tools is thus required, placing defect and fault-tolerance
at the forefront, and recognizing these as inextricably tied to system
performance. Moreover given the substantial degree of uncertainty
inherent to nanoscale technologies, design will have to be framed in a
probabilistic setting, if effective optimization of performance, yield,
and other key figures of merit is to be achieved.

It has been demonstrated that nanoelectronics technology is well
suited to building reconfigurable computational fabrics[1, 9, 11]. This
is significant because reconfigurability provides a powerful tool to
circumvent the uncertainty associated with distributions of defects.
However, designing complex systems to be instantiated through re-
configuration poses a major scalability challenge – defect mapping
and configuration must be performed on a per chip basis. This pa-
per proposes a novel probabilistic design paradigm targeting recon-
figurable architected nanofabrics and shows that it lays a promising
foundation towards comprehensively addressing, at the system level,
the density and reliability challenges posed by emerging nanotech-
nologies. Indeed, first it provides a hierarchy of design abstractions
aimed at ensuring scalability, not only during a nanosystem’s synthe-
sis, but also in the defect mapping and configuration phases. Scalabil-
ity must be jointly addressed across these phases – this is one of the
innovative aspects of our approach. Second, the proposed hierarchy
is based on abstractions that enable an effective integration of fault-
tolerance and defect-avoidance techniques in design methodologies.
We will show that this is key to enabling the design of robust nanosys-
tems. A third innovation embodied in our approach is that it pro-
vides an adequate probabilistic framework in which to consider crit-
ical system-level design trade-offs between performance, yield and
per chip costs.

The paper is organized as follows. In §2 we briefly overview previ-
ous relevant work on fault-tolerant design and defect avoidance. Our
defect tolerant probabilistic design paradigm is introduced in §3. Ex-
perimental results demonstrating the promise of the approach are dis-
cussed in §4. Finally, §5 concludes with a brief discussion of how
our approach can be used to address both the defect-avoidance and
fault-tolerance challenges posed by emerging nanotechnologies.

2. PREVIOUS WORK
Classical fault tolerance approaches. Triple-module-redundancy

and N-module-redundancy (TMR and NMR, respectively) are based
on the use of multiple modules and reliable arbitration units, see e.g.,
[12]. Basing a design methodology on TMR/NMR would mean allo-
cating a priori structural redundancy and arbitration resources such
that defects could be tolerated with high probability in fabricated
chips. However, the reliability of such designs is limited by that of
the final arbitration unit, making the approach difficult in the context
of highly integrated nanosystems. Nevertheless, in the sequel we use
a TMR-design methodology as a baseline for comparison with our
approach.



The ‘arbiter reliability bottleneck’ problem could be circumvented
through coding. Unfortunately, efficient codes to achieve reliable
computationare either exceedingly complex or limited to linear op-
erations, see e.g.,[13, 14, 15]. The challenge lies in the transforma-
tional character of computation. Even with the high densities afforded
by nanotechnologies, the resource/interconnect complexity to realize
coded computation is impractical.
Defect avoidance approaches. An approach to nanosystem design
is proposed in [9, 11], which consists of first mapping defects on a
large reconfigurable regular grid of nanoblocks, each of which can
be configured as an AND, OR, XOR, half-adder etc., then synthe-
sizing (offline) a feasible configuration realizing the application for
each nanofabric instance, and finally configuring each instance ac-
cordingly. This approach has its roots in the TERAMAC experi-
ment[16, 8]. Unfortunately, an unstructuredapproach that requires
mapping, synthesis and configuration at such a fine granularity would
not scale for large nanosystems. In addition, the group testing strat-
egy used for defect mapping in [9, 11] requires unlimited connectiv-
ity among nanoblocks. Still, the key idea of using reconfiguration to
achieve defect avoidance is the starting point for our work.

3. PROBABILISTIC DESIGN PARADIGM
Our target implementation platform is a (re)configurable nanofab-

ric. Our approach is based on two key ideas. The first is to structure
designs as hierarchies of carefully dimensioned (re)configurable fab-
ric regions while decomposing and assigning functional ‘flows’ to
each region. By restricting the functionality which is preassigned to a
specific nanofabric region, we limit the scope and complexity of the
defect mapping and configuration tasks that need to be performed for
each chip. Namely, since one need only work with a set of basic flows
assigned to limited complexity and structured fabric regions, it is pos-
sible to precompute configuration alternatives. However, to achieve
high yields, one must ensure up-front that each region has sufficient
degrees of freedom for configuration (i.e., ‘capacity’), so that the as-
sociated flows can be instantiated with high probability.

The second idea underlying our approach is to devise efficient de-
fect mapping and configuration methods for such regions. Observe
that one need not map all defects in a region, but instead, only es-
tablish the existence of a feasible configuration for the region’s asso-
ciated flow(s). Also observe that the defect mapping process is time
consuming and one might wish to compromise its accuracy, i.e., al-
low false negatives, in order to trade-off accelerated fabrication with
lower yield. Our approach captures these trade-offs, providing a good
foundation for design methodologies for unreliable nanotechnologies.

3.1 Proposed Abstractions and Design Hierarchy
The nanofabric is architected using the three-level hierarchy sum-

marized in Fig.1. Regionsare the basic configuration units, i.e., the
structural ’primitives’ of the nanofabric, while basic flowsare the
corresponding behavioral primitives. One may think of basic flows
as instructions and regions as the programmable execution units of
a nanocomputing system. They are defined such that each flow can
be instantiated (with high probability) into a single region if it has a
‘moderate’ number of faulty elements. To be concrete, in this paper
we will assume each region contains eight processing elements (PEs),
each capable of performing the standard set of 8-bit arithmetic/logic
operations – such small PEs can be realized using simple designs,
e.g., memory based, and incorporate redundancy. Thus, basic flows
may contain at most eight operations. Fig.1 shows the 7 basic flow
types we will use, ft1–ft7. Naturally, the larger the number of alter-
native ways a flow can be instantiated in a given region, the larger the
probability of a successful configuration when defective elements are
present.

The second level of the design hierarchy comprises mapping units
(MUs), each aimed at realizing a (connected) set of flows. Mapping
units are dimensioned so as to provide sufficient redundant resources,
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Figure 1: Three level design hierarchy.

i.e., configuration ’capacity’, to ensure their associated flows can be
instantiated with the budgeted probability. Fig.1 illustrates this, ex-
hibiting a mapping unit requiring a minimum of three regions (one
for each of its associated basic flows), and yet containing four such
regions, so as to increase the probability of a successful configuration.
Mapping units also define the scope in which to consider alternative
configurations for a given behavior, i.e., set of flows. Specifically, one
need only determine whether the flows assigned to each mapping unit
can be realized on its internal regions.

The top level of our structural design hierarchy is the component
abstraction. Each component is intended to either realize a transfor-
mational kernel, i.e., perform an application’s computation and con-
trol tasks, or realize storage andswitching resources, i.e., support
communication between tasks. This paper focuses on the first type of
component, as their transformational nature is more challenging from
a reliability standpoint. Each application kernel is thus mapped to
a corresponding component or set of component ‘slices’, depending
on the required word size. At the right most side of Fig.1 we illus-
trate one such component, implementing an auto-regression (AR) fil-
ter kernel. The component design includes two mapping units (MU1
and MU2), each with four regions – flows F1, F2, and F3 of the AR
kernel are assigned to MU1, while flows F4, F5, and F6 are assigned
to MU2. In order to simplify scheduling and control, the set of flows
assigned to the various mapping units of a component must satisfy
convexity constraints, that is, there cannot be ‘circular’ (input/output)
data dependencies among them, see e.g.,[17]. In order to control
intra-MU routing complexity (see below), our nanofabric architecture
allows mapping units to have at most nine regions.

Routing among elements in the hierarchy is supported as follows.
Within a region switching elements (SEs) are used to route between
adjacent PEs. We currently assume each SE can support up to two
routing channels among its adjacent PEs. At the MU level, each re-
gion is surrounded by a routing track on each of its sides. A switch
block is placed between each routing track. Since there are a rela-
tively small number of tracks within an MU, and MUs may contain
at most nine internal regions, efficient table lookup based algorithms
can be used to explicitly program the switch blocks with the shortest
paths between any two regions. At the component level, inter-MU
routing is done using long-lines for signals that are run next to the
MUs and switch boxes for routing between MUs. The routing strat-
egy is similar to that used for intra-MU routing.

To summarize, the componentabstraction implements an interface
that hides/encapsulates the particular defect realizations for a nanofab-
ric instance – that is, all operational (i.e., successfully configured) sys-
tems are structurally ‘identical’ at the component level. Note however
that there still is uncertainty associated with the actual performance
of such components. Namely, there will be delay variability across



different component instances, and components are still susceptible
to transient/soft faults, and may thus malfunction. Still, the compo-
nent abstraction provides a basic foundation towards controlling the
complexity associated with handling the remaining sources of uncer-
tainty, see §5.

Components and their constituent elements decompose the three
main problems that need to be handled – namely, the designof a
suitable configurable nanofabric architecture for a target nanosystem,
the mapping of defects, and the configurationof actual nanofabric
instances – into smaller subproblems which can be handled quasi-
independently. Together these make our approach inherently scalable.
Moreover, because each subproblem is small and relatively simple,
solutions can be explicitly ‘enumerated’. Furthermore the internal
computation capacity of each chip can be effectively used to assist in
its own defect mapping and configuration, see §3.2.

3.2 Scalable Defect Mapping and Configuration
A strength of our approach is that it enables a substantial part of the

defect mapping and configuration tasks for structured nanofabrics to
be performed within the nanofabric itself. Specifically, a region’s de-
fective components and/or connectivity are systematically identified
by a suite of prespecified test tiles. A test tile corresponds to configur-
ing and operating a set of PEs to perform a function whose output al-
lows detection of possible defects. We propose using tiles implement-
ing a triple-module-redundancy (TMR) configuration. Specifically
each tile includes four processing elements, where one plays the role
of an arbiter for the outputs of the other three. Such small tiles can be
configured systematically, and will usually permit locating faulty PEs
or connections. Specifically, a TMR testing tile can identify faulty
PE/connectivity if the arbiter and two other PEs/connections are op-
erational.1 Fig.2 shows four such tiles with the arbiters labeled ‘A.’
The results produced by the four tiles shown in the figure can, for ex-
ample, detect if flow ft2 (see Fig.1), can be configured in a region,
even if, say, the two processing elements labeled ‘F’ in Fig.2(a) are
faulty, see Fig.2(b).
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Figure 2: Example showing (a) four TMR testing tiles and (b) two
feasible configurations for basic flow ft2. The graph shows coverage
for each basic flow when tile testing suites consisting of 6–14 TMR
tiles are used and (Pe, Pa, Pc) = (10, 5, 1)%.

The region size and topology adopted in our current fabric architec-
ture were selected to realize a good trade-off between: (1) the amount
of raw redundant capacity provided at the region level; and (2) the
number of TMR testing tiles required to achieve a good flow-oriented
defect coverage. Specifically, we have experimentally determined
that, if the probability of failure for processing elements Pe is 1-20%,
for connections Pc is 0.1-2%, and for processing elements operated
as arbiters Pa is 0.5-10%, then 14 TMR tiles provide an excellent
defect coverage of a region for our set of basic flows. Note that one
1We assume that a PE configured as an arbiter which is faulty is very unlikely to generate
a false positive, i.e., generate a ‘correct’ diagnosis message.

would expect Pa < Pe since a PE’s operation as an arbiter is a sub-
set of the arithmetic/logic operations supported by a PE as a generic
processor. The use of fewer tiles results in a degradation in cover-
age, and thus increases the number of false negatives. Fig.2 shows
the coverage, i.e., one minus probability of false negatives, for each
basic flow, achieved by testing suites including 6–14 tiles. Clearly,
the more tiles are used, the better the defect map one obtains, i.e., the
better the coverage. Yet a large number of tiles will mean a higher
cost, in time, for producing a chip.

We conclude by noting that our approach shares some commonal-
ities with previous work in high level synthesis, see e.g.,[17]. How-
ever, the performance versus yield trade-offs exposed in our frame-
work add a new design/optimization dimensionthat will be critical
for unreliable nanotechnologies. Scalability issues associated with
configuring ultra large/dense nanofabrics to circumvent defects pose
yet another ’uncharted’ challenge.

4. EXPERIMENTAL RESULTS AND ANALYSIS

4.1 Empirical Validation Methodology
We evaluated the proposed design approach by considering a num-

ber of possible component designsfor the benchmark kernels shown
in Table 1. A component design for a kernel requires defining the fol-
lowing:
(1) Sizing the component’s resources, i.e., specifying the number of
MUs and number of regions within each MU;
(2) Specifying a flow cover for the kernel, using a set of basic flows,
see examples in Fig. 4;
(3) Specifying an assignment of basic flows to MUs, whereby basic
flows in a cover are assigned to MUs subject to convexity constraints.

#Ops Granularity
Kernels #Ops in CP #Covers of covers
FIR Filter unrolled (FIRu) 32 11 2 4/6
Auto-Regression Filter (AR) 28 8 2 6/7
Avenhous Filter mod (AF2) 19 7 2 6/7
Avenhous Filter (AF1) 18 7 2 6/6
2D-DCT (DCT) 16 9 2 4/6
FIR Filter (FIR) 16 9 2 4/6
FFT 10 3 1 5

Table 1: Characteristics of benchmark kernels.

We assessed the merits of each component design when defects
are present via Monte Carlo simulation. Different regimes were pa-
rameterized by probabilities of failure for processing elements (PEs),
PEs operating as arbiters, and switches/connections, Pe, Pa and Pc

respectively. We focus on defects in the transformationalparts of a
component (i.e., regions) as these are the most challenging to handle.
Specifically, we applied a suite of 14 TMR testing tiles to each region
of a component instance, to obtain a (partial) defect map. Then for
each region inside an MU, a table lookup based algorithm was used
to identify which flows associated with the MU are feasible on that
region. Finally, a heuristic algorithm was used to decide where to in-
stantiate each basic flow. The algorithm considers flows assigned to
a given MU in topological order, and regions within the MU in row
first order, and greedily configures flows on the first available feasi-
ble region. This simple heuristic tries to minimize inter and intra-MU
delays. If this is not successful, we then attempt to map flows based
on their size, with coarser/harder flows first. Naturally, this heuristic
may fail to find a feasible configuration– because none exists, the de-
fect map is incomplete, or the heuristic did not find it. For a given
defect regime, (Pe, Pa, Pc), we sampled a large number of defect re-
alizations, to estimate the probability that basic flows will be feasible
on a region, probability of false negatives, and average delays, with
adequate confidence intervals. The probability that a component de-
sign fails to be configured is computedbased on the above estimates
and particulars of the design.



We modeled delays associated with a given component instance as
follows. Each operation takes 2 cycles to complete on a PE and have
its results routed to an adjacent PE, i.e., to a consumer operation of
the same flow. Thus, the delay (in number of cycles) of any basic flow
on a region will be the number of operations on its critical path times
two. When a signal leaves a region, it takes 1 cycle to traverse a side
of a region and go through a switchbox to an adjacent region. Sim-
ilarly, a signal produced in one MU and consumed by another MU
takes 1 cycle to traverse the length of a region through a long-line.
Operations mapped to the same MU can start executing as soon as
their operands become available. However, in order to simplify con-
trol within components, we imposed an additional scheduling con-
straint for flows belonging to different MUs. Specifically, an MU can
begin execution only after all of its ‘producer’ MUs (i.e., MUs that
generate inputs to it) have completed execution. Finally, note that the
relative delays for computation versus transport is what truly matters
here. Although we are only able to present one scenario in this paper,
one can roughly infer the impact of changing the relative values.

We let Pf denote the probability that a component fails to be con-
figured. In order to fairly compare the relative performance, i.e., de-
lay, of alternative component designs, we only compare designs that
achieve the samePf . Let CP denote the critical path length of a ker-
nel. Then, under our delay model, CPdelay = 2 × CP is a lower
bound on the delay for any component realizing that kernel. We will
let RP denote the relative performanceof a component, defined as
CPdelay over the actual delay achieved by the component. A lower
RP implies a higher delay overhead due to data transfers across re-
gions and MUs. Since the delay of a component design will vary de-
pending on the realization of defects, in the sequel we will let RPavg

and RPwc denote ratios of CPdelay over the average and worst case
delay, over a sample of instances that were simulated. To compare
the performance of alternative component designs over a range of
Pf ’s, we define the normalized relative performanceNPR(Pf ) of
a design as its performance, say RPavg, divided by the performance
of the best design considered, irrespective of Pf . Thus, a graph of
NPR(Pf ) exhibits the relative performance penalty of various de-
sign alternatives, as one varies Pf .

4.2 Contrast to TMR-based Design Methodology
We first contrasted the effectiveness of our approach versus a de-

sign methodology based on triple-module-redundancy (TMR), see §2.
By a TMR-based design, we mean designs based on a priori alloca-
tion of redundant resources and arbiters, so that a target Pf is met.
This approach requires a single synthesis step and no defect map-
ping or configuration. Below we discuss results for the FFT ker-
nel, see Table 1. Two defect regimes (technologies) were consid-
ered (Pe, Pc) = (10, 1)% and (Pe, Pc) = (1, 0.1)%, see Fig.3. For
each target Pf , we generated two TMR-based designs: one assum-
ing perfect arbiters, i.e., Pa = 0 (unrealistic for nanotechnologies);
and the other assuming Pa = Pe/1000. We assumed optimistically
that data transfer delays across regions and MUs for TMR-based de-
signs would be zero. For component designs based on our approach,
we assumed pessimistically that Pa = Pe/2. The FFT kernel can
be covered by two basic flows of type ft5 (see Fig.1), and thus we
considered only component designs that assign both flows to a single
MU. As Pf decreases, our component designs include an increasing
number of regions within the MU, so as to meet the target Pf .

Fig.3 exhibits NPR(Pf ) using RPwc for our approach and RP
for TMR-based component designs – note that there is no delay vari-
ability in the latter. Recall that NPR(Pf ) is normalized to the rel-
ative performance for the best performing design over all Pf con-
sidered. As expected, TMR-based designs with non-ideal arbiters
eventually reach an arbitration bottleneck beyond which they can no
longer reduce Pf . Also note that (unrealistic) TMR-based designs
with perfect arbiters can achieve Pf targets, yet exhibit a much longer
delay than the worst casefor our probabilistic component designs.
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Figure 3: Normalized relative performance for probabilistic designs
(PD) and TMR-based based designs for the FFT kernel.

This is due to the large amount of a priori redundancy required to
achieve a small target Pf . Thus, from the perspective of creating de-
fect tolerant designs, TMR is inappropriate, i.e., delivers low yield
and performance. Yet, a TMR-based design may at the same time be
robust to soft/transient faults. We shall return to this point in §5.

4.3 Exposing Performance versus Yield Trade-offs
In this section we provide experimental evidence to support the

claim that our design approach and hierarchy expose a new class of
trade-offs that will be critical for designing computing systems on
defect prone nanotechnologies.

4.3.1 Basic Illustrative Examples

We illustrate these trade-offs by analyzing results for component
designs for the DCT and AR kernels, see Table 1. For each kernel,
two different flow covers are considered: those for the AR filter are
shown in Fig.1 and 4, and those for the DCT kernel are shown in
Fig.4. For both kernels, Cover 2 uses larger basic flows than Cover
1. For each cover, three different assignments were considered: (1)
assign all basic flows to one MU; (2) assign half of the basic flows
to one MU and the rest to another MU; and (3) assign each basic
flow to its own MU. Thus, for each kernel, we considered 6 different
basic component designs, i.e. 2 covers with 3 assignments each. The
following naming convention is used in the sequel: KERNELx.y
will denote a design for a KERNEL where cover x and assignment
y were used. For instance, DCT1.2 represents a component design
where F1, F2 are assigned to MU1 and F3, F4 are assigned to MU2.
Finally for each design, we varied the number of regions on each MU,
so as to meet the target Pf .
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Figure 4: On the left Cover 2 for AR filter kernel and on the right
Covers 1 and 2 for 2D-DCT kernel.

Fig.5 and 6 exhibit NRP (Pf ) for the six AR and DCT component
designs under two defect scenarios: Case 1 where (Pe, Pa, Pc) =
(10, 5, 1)%; and, Case 2 where (Pe, Pa, Pc) = (1, 0.5, 0.1)%. Here,
NRP (Pf ) for given component design meeting a target Pf corre-
sponds to the ratio of the averagedelay for the best design (over



all Pf ) to that of the component design under consideration. Con-
sider Case 1 which has a higher density of defects. Note that the
designs using covers with larger flows and a single MU (i.e., AR2.1
and DCT2.1) deliver the best performance but are also the most con-
strained in terms of yield they can achieve. Indeed, the use of coarser
flows reduces the number of inter-flow edges, thus reducing delay
overheads associated with communication across regions. Further-
more the use of a single MU eliminates overheads associated with
data transfers across MUs. However, coarser flows are harder to suc-
cessfully configure on a defective region, and the use of a single MU
limits drastically the redundancy one can add to compensate for the
problem (recall that an MU can contain at most 9 regions). The de-
signs with the next best performance are those using a single MU,
but covers with smaller flows, i.e., AR1.1 and DCT1.1. This sug-
gests that the number of mapping units in a design has a substantial
impact on average delay. However, in order to achieve lower Pf ,
one must consider component designs with more mapping units, and
pay the performance penalty. The next best designs are those with
two mapping units and coarser covers. Finally, as might be expected,
component designs that can achieve the lowest Pf in both cases are
the ones that use covers with finer-grained flows and allocate one MU
per flow. The results for Case 2, where the defects densities are 10
times lower, exhibit the same basic trends, except that lower delay
overheads are seen for the same Pf values, since less region redun-
dancy is required. Furthermore the best achievable Pf for all designs
decreases/improves substantially.
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Figure 5: Normalized relative performance (NRP) for various com-
ponent designs for AR kernel.

A fundamental trade-off between the probability of successful con-
figuration (i.e., yield) and delay emerges from these experiments. A
summary analysis suggests that, if the probability of unsuccessfully
configuring a component (Pf ) is not sufficiently low, one should con-
sider three options: (1) instantiating more regions in the mapping
units; (2) using a cover with smaller flows; and (3) instantiating more
mapping units and assigning fewer flows to each mapping unit. Our
experiments indicate that, as we progress from Option 1 to 3, the
achievable Pf decreases sharply, while the average delay increases.
Alternatively, one might choose a higher Pf and thus decrease yield
in order to improve the average delay of the resulting component in-
stances. These preliminary considerations exhibit the effectiveness of
our approach in exposing yield, delay, and cost trade-offs.

Finally, we note that a design methodology based on reconfigu-
ration to circumvent defects will need to contend with performance
variability. For example, Fig.7 shows the relative performance RP,
i.e., our lower bound CPdelay divided by the average, best and worst
case delays of the best AR component design (in terms of average
delay) for each Pf . As it can be seen, the best and worst case relative
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Figure 6: Normalized relative performance (NRP) for various com-
ponent designs for 2D-DCT kernel.

performance are within 10–15% of the average – we shall return to
this important point in §5.
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Figure 7: Best,worst and average relative performance (RP) of opti-
mal designs for AR kernel.

4.3.2 Trend Analysis

In this section we provide further empirical results towards identi-
fying the key design issues that need to be considered during design
space exploration for each component. To that end, we will consider
the first six kernels in Table 1. As before, two covers were devised
for each kernel – Table 1 indicates the size of the largest flow in each
cover. We consider the same three basic alternative component de-
signs discussed in §4.3.1, so again six basic component designs per
kernel. In order to allow comparisons across component designs as-
sociated with differentkernels, we will normalize the resulting delays
by the length of the corresponding critical path, thus obtaining an
effective delay per operationon the critical path. The normalized
relative performance per operation NRPo of a design is the average
delay divided by its CPdelay normalized to the best such ratio ob-
tained over all designs and Pf considered. Further we note that a
kernel with more operations is likely to see higher delay overheads to
meet the same overall Pf . Thus, we define a normalized probability
of operation failurePo

f achieved by a component design associated
with a kernel with N operations as follows:

P o
f = 1 − (1 − Pf )(1/N).

Note that 1−P o
f can be interpreted as geometric average of the prob-



ability of success in realizing each operation (where they are assumed
independent) achieved by a component design meeting a target Pf .
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Figure 8: Impact of cover granularity.

Let us consider the impact of cover granularity, defined as the size
of the largest constituent basic flow, on the average delay and Pf . To
do so, we will restrict our attention to kernels for which two covers
with distinct maximum size flows have been defined, see Table 1. For
each kernel, cover and Pf , we determined which among the three de-
sign alternatives (see §4.3.1) minimizes the average delay, i.e., has
maximum NRP o. Thus, the reported performance for each Pf cor-
responds to the best component design for the particular cover. Fig. 8
exhibits normalized performance NRPo versus the normalized prob-
ability of failure P o

f for the kernels considered. The kernel and cover
granularity are indicated in the labels. As expected, the covers with
the smaller flows deliver worse delay performance NRPo but higher
normalized probability of failure Po

f . The three major drops in perfor-
mance for each cover correspond to increases in the number of MUs
and corresponding changes in basic flow assignments, to ensure the
target Pf , while smaller drops correspond to increases in regions per
MU. To summarize, this experiment shows that, when several alter-
native component designs (using different granularity covers) achieve
the same Pf , the best (i.e., minimum average delay) designs will be
those relying on the coarser covers. Yet, not all covers with the same
granularity are equally good. The following set of experiments illus-
trates this point.
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Figure 9: Impact of exposed instruction level parallelism.

As mentioned earlier, to simplify control within components, we
assumed that MUs start execution only after all of their ’producer’
MUs have completed. Thus, for some component designs, paral-
lelism may be lost, in the sense that operations that could execute
concurrently are serialized. Accordingly, in general, the larger the
number of MUs in a design, the higher the potential for lowering the
instruction level parallelism (ILP) in a kernel. Note that the AR ker-
nel is not included in this experiment since, for the two considered

covers, none of three MU allocation/assignment alternatives would
reduce ILP. Fig.9 exhibits results obtained for a number of alternative
component designs. As seen in the figure, the normalized perfor-
mance of the designs clusters into three groups based on the exposed
ILP: 100%, 90–85%, and 75–73%. For each cluster, NRPo is im-
pacted by other factors, including the size of the kernel, number of
interflow edges, etc., yet the amount of exposed ILP is clearly a key
factor. These results suggest that design methods will need to select
covers and MU assignments preserving ILP. Note that the component
designs with more MUs are most likely to decrease ILP, yet they are
also most capable of delivering very low Pf , or normalized P o

f , e.g.,
DCT/FIR 75% and FIRu 73%. So, once again, the recurring yield-
performance trade-off emerges.

5. CONCLUSIONS AND ONGOING WORK
As mentioned in the introduction, nanotechnologies are also likely

to have a higher susceptibility to transient/soft faults. This problem
can be addressed by adding structural redundancy at the region, map-
ping unit, and/or component levels. Unfortunately, this is likely to
once again lead to performance degradation. In ongoing work, we
are using the component abstraction proposed in this paper to enable
the design of high performancerobust nanosystems. Specfically, we
have devised a promising technique, reliability-driven speculation,
whereby computations/kernels are speculatively executed on faster
but less reliable components, with on-chip verification (on slower but
more reliable components) and roll back support. Our preliminary re-
sults show that, if speculation is based on fairly reliable components,
the overall system throughput is dominated by the faster ‘specula-
tive’ components rather than by the slower components necessary for
verification. In addition, we are investigating the use of simple load
balancing techniques (implemented on replicated speculative compo-
nents) so as to minimize performance variability across nanochip in-
stances. These ideas are still preliminary, but illustrate the potential
of the foundation proposed in this paper.
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