
NOVA: QoE-driven Optimization of
DASH-based Video Delivery in Networks

Vinay Joseph and Gustavo de Veciana
Department of Electrical and Computer Engineering, The University of Texas at Austin

Abstract—We consider the problem of optimizing video de-
livery for a network supporting video clients streaming stored
video. Specifically, we consider the joint optimization of network
resource allocation and video quality adaptation. Our objective is
to fairly maximize video clients’ Quality of Experience (QoE) re-
alizing tradeoffs among the mean quality, temporal variability in
quality, and fairness, incorporating user preferences on rebuffer-
ing and cost of video delivery. We present a simple asymptotically
optimal online algorithm, NOVA, to solve the problem. NOVA is
asynchronous, and using minimal communication, distributes the
tasks of resource allocation to network controller, and quality
adaptation to respective video clients. Video quality adaptation
in NOVA is also optimal for standalone video clients, and is well
suited for use in the DASH framework. Further, NOVA can be
extended for use with more general QoE models, networks shared
with other traffic loads and networks using fixed/legacy resource
allocation.

I. INTRODUCTION

There has been tremendous growth in video traffic in the
past decade. Current trends (see [1]) suggest that mobile video
traffic will more than double each year till 2015, with two-
thirds of mobile data traffic being video by 2015. It is unlikely
that wireless infrastructure can keep up with such growth.
Even brute force densification (e.g., using HetNets) would
not resolve the problem since variability in throughput would
likely worsen due to increased throughput sensitivity to the
dynamic number of users sharing an access point and/or dy-
namic interference. Given these challenges, optimizing video
delivery to make the best use of available network resources
is one of the critical networking problems today.

We view the video delivery optimization problem for a
network as that of fairly maximizing the video clients’ QoE
subject to network constraints. Here, QoE is a proxy for ‘video
client satisfaction’. A comprehensive solution to this problem
requires two components- a network resource allocation com-
ponent and a quality adaptation component. The allocation
component decides how network resources (e.g., bandwidth,
power etc) are allocated to the video clients. The adaptation
component decides how the video clients adapt their video
quality (or video compression rate) in response to the allocated
resources, the nature of the video etc.

We develop a distributed algorithm, Network Optimization
for Video Adaptation (NOVA), which jointly optimizes the
two components. The adaptation component itself has strong

This research was supported in part by Intel and Cisco under the VAWN
program, and by the NSF under Grant CNS-0917067. We thank Zheng
Lu, Xiaoqing Zhu, Chao Chen and Sarabjot Singh for helpful discussions.
978-1-4799-3360-0/14$31.00 ©2014 IEEE

optimality guarantees, and can also be used in standalone
video clients. The adaptation component in NOVA can be used
with video clients based on the DASH (Dynamic Adaptive
Streaming over HTTP) framework ([2]). Under the DASH
framework, video is stored as a sequence of short duration
(e.g., secs) video segments. Various ‘representations’ for each
segment may be made available by compressing it to differ-
ent sizes by changing various parameters e.g., quantization,
resolution, frame rate etc, where high quality representations
of a segment are typically larger in size. Video clients can
adapt their video quality across segments, i.e., can pick
different representations for different segments. The choice of
representation can be based on several factors such as the state
of the playback buffer, current channel capacity, features of
video content being downloaded etc. For instance, the video
client can request representations of smaller size to adapt to
poor channel conditions.

We identify the following four key factors determining the
QoE of a video client: (a) average quality, (b) temporal vari-
ability in quality, (c) time spent rebuffering (including startup
delay), and (d) cost to the video client and video content
provider. Our technical focus is on solving the optimization
problem given below (formally described in the sequel) which
takes these key factors into account:

max
∑
i∈N

UEi (Mean Qualityi − Quality Variabilityi) (1)

subject to Rebufferingi, Costi, and Network constraints,

where N is the set of video clients supported by the network
and UEi is a ‘nice’ concave function chosen in accordance
with the fairness desired in the network. Network constraint
captures time varying constraints on network resource alloca-
tion allowing us to model wide range variability in resource
availability found in real networks.

Let us discuss the four key factors mentioned above. We
measure mean quality for a video session as the average across
Short Term Quality (STQ) associated with the downloaded
representations of the video’s segments. STQ of a downloaded
segment should ideally capture the viewer’s subjective eval-
uation of the quality of the downloaded representation. In
practice, this subjective metric will be measured approximately
using objective Video Quality Assessment (VQA) metrics (see
[3] for a survey) like PSNR, SSIM, MSSSIM etc. In the sequel,
we interchangeably use the terms STQ and quality.

While the benefit of high mean quality is clear, the detrimen-
tal impact of temporal variability on QoE (see [4], [5], [6]),
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and fundamental tradeoff between the average and temporal
variability of quality is often ignored. Indeed [4] suggests
that temporal variability in quality can result in a QoE that
is worse than that of a constant quality video with lower
average quality. Two prominent sources for such variability
are the time varying nature of video content and time varying
network capacity. The former can cause time variations in the
dependence of STQ on parameters like compression rate, for
instance, segments of the same size and duration could have
very different STQ, for e.g., consider two such segments where
the first segment is of an action scene (where there is a lot of
changing visual content) and the second segment is of a slower
scene (where things stay the same). Time varying network
capacity is especially relevant when considering wireless net-
works where such variations can be caused by fast fading (on
faster time scales, e.g., ms) and slow fading due to shadowing,
dynamic interference, mobility, and changing loads (on slower
time scales, e.g. secs).

Rebuffering happens when playback buffer of a video client
empties, and video playback stalls. Rebuffering events have
a significant impact on QoE. Indeed [7] points out that the
total time spent rebuffering and the frequency of rebuffering
events during a video session can significantly reduce video
QoE. In our approach, we impose constraints on the fraction
of total time spent rebuffering, and suggest simple ideas to
reduce startup delay and the frequency of rebuffering events.
We also provide flexibility to the video client in setting these
constraints according to its preferences. For instance, a video
client which is willing to tolerate rebuffering in return for
higher mean quality (for e.g., to watch a movie in high
definition over a poor network) can set these constraints
accordingly. Such constraints driven by video client prefer-
ences will often be content and device dependent, and capture
important tradeoffs for the video client. This heterogeneity,
which is not really exploited in current solutions, can be a
source of significant performance gains.

Client preferences concerning the cost of video delivery
could be important when viewers wish to manage their wire-
less data costs. Note that video content providers may also
pay Content Distribution Network operators for the delivery
of video data. Thus, if the cost of data delivery is high, higher
QoE often comes at higher cost, and the video client/content
provider may want to tradeoff QoE versus delivery cost. In
our framework, we allow each video client/content provider
to set a constraint on the average cost per unit video duration
which in turn reflects the desired tradeoff.

A. Main contributions

This paper presents a general optimization framework for
stored video delivery optimization that factors heterogeneity
in client preferences and QoE models, as well as capacity and
video content variability. We develop a simple online algorithm
NOVA (Network Optimization for Video Adaptation) to solve
this multiuser joint resource allocation and quality adaptation
problem. The algorithm has been both rigorously analyzed
and validated through extensive simulations. NOVA’s novelty

lies in realizing a comprehensive set of features that meet the
challenges of developing next-gen video transport protocols.
Key features of NOVA, discussed in more detail in Subsection
IV-B, are listed below:

1) Strong optimality: guaranteeing that NOVA performs as
well as optimal offline scheme which is omniscient, i.e.,
knows everything about the evolution of channel and
video ahead of time.

2) NOVA carries out ‘cross-layer’ joint optimization of
resource allocation and quality adaptation.

3) NOVA is a simple and online algorithm.
4) NOVA is a distributed algorithm where network con-

troller carries out resource allocation and video clients
carry out their own quality adaptation.

5) NOVA is an asynchronous algorithm well suited for
DASH-based video clients where the network controller
and video clients operate ‘at their own pace’. Value of
this asynchrony (and consequential technical challenges)
are discussed in Subsection I-B on Related Work.

6) Suited for current networks: The resource allocation in
NOVA requires just a simple modification of legacy
schedulers.

7) Optimal Adaptation: Quality adaptation proposed in
NOVA is independently optimal and can even be used
with a standalone video client, and this optimality is
‘insensitive’ to network resource allocation.

B. Related work

The problem of video delivery optimization in wireless
networks has been studied in many works, for instance, see [8],
[9], [10], [11], [12], [13], [14], [15] which utilize extensions of
Network Utility Maximization (NUM) framework (see [16]).
The main focus of [8] and [9] is real-time interactive video
which present the challenge of meeting strict delivery dead-
lines. Papers [10] and [11] study video delivery optimization in
wireless networks considering simpler QoE models, and do not
explicitly incorporate rebuffering (nor cost) into their respec-
tive optimization frameworks, and instead control rebuffering
through network congestion control. Using static QoE models,
[13] and [14] study the resource allocation component of video
delivery accounting for user dynamics. A major weakness
of the aforementioned papers is the limited nature of the
associated QoE models (that are essentially just the mean
quality) and their lack of flexibility in managing/incorporating
user preferences related to rebuffering and cost.

While [12] presents a novel algorithm for realizing mean-
variability tradeoffs for video delivery (see [17] for gen-
earalizations), the model involves a strong assumption of
synchrony- the download of a segment of each video client
starts at the beginning of a (network) slot and finishes by the
end of the slot. This assumption on synchrony precludes any
explicit control over rebuffering as it limits the ability of a
video client to get ahead (by downloading more segments)
during periods when channel is good and/or network is under-
loaded. Relaxed/different versions of this assumption can be
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found in the theoretical frameworks used in many previous pa-
pers (e.g., decision making in [15], [10], [11] is synchronous)
as it facilitates an easier extension of tools from classical
NUM framework. However, this assumption of synchrony is
not ideal for DASH-based video clients in a wireless network
that operate ‘at their own pace’- downloading variable sized
segments (with variable download times) one after the other.
In this paper, we drop the assumption of synchrony which
allows us to exploit opportunism across video clients’ state
of playback buffer (channels and features of video content
like quality rate tradeoffs), and base our adaptation decision
concerning a segment on network state information relevant
to the download period of the segment. We also tackle the
consequent novel technical challenges related to distributed
asynchronous algorithms operating in a stochastic setting.
Further, the rebuffering constraint in our asynchronous setting
effectively induces a new type of constraint involving averages
measured over two time scales.

C. Organization of the paper

Section II introduces the system model and assumptions.
We formulate (1)-(2) as an offline optimization problem in
Section III. In Section IV, we present an online algorithm
NOVA which solves this optimization problem, and discuss
its optimality properties. We present a sketch of the proof
of optimality of NOVA in Subsection V. We discuss several
useful extensions of NOVA in Section VI, present simulation
results in VII, and conclude the paper in Section VIII.

II. SYSTEM MODEL

We first describe some notation used in this paper. We
use bold letters to denote vectors. Given a T -length sequence
(a(t))1≤t≤T or a (infinite) sequence (a(t))t∈N, we let (a)1:T
denote the T -length sequence (a(t))1≤t≤T . For e.g., consider
a sequence (a(t))t∈N of vectors. Then (a)1:T denotes the T -
length sequence containing the first T vectors of the sequence
(a(t))t∈N, and (ai)1:T denotes the T -length sequence contain-
ing ith component of the first T vectors.

To develop our algorithmic framework, let us consider a
network serving video to a fixed set of video clients N where
|N | = N . The network operates in a slotted manner with
resources allocated for the duration of a slot τslot seconds.
The slots are indexed by k ∈ {0, 1, 2...}.

Time varying resource allocation constraints: We assume
that resource allocation is subject to time varying constraints.
In each slot k, a network controller (e.g., base station) allocates
rk = (ri,k)i∈N ∈ RN+ bits to the video clients such that
ck (rk) ≤ 0 where ck is a real valued (continuous) convex
function reflecting constraints on network resource allocation
in slot k. We refer to ck as the allocation constraint in slot k
(which captures the convex ’capacity region’ in slot k). This
(along with the generalization mentioned in Subsection VI)
allows us to model a fairly general class of network related
constraints, e.g., time-varying capacity constraints associated
with a wide range of wireless networks. We impose an
additional technical requirement that the resource allocation

to each video client i ∈ N in each slot should be at least
ri,min where ri,min is a (arbitrary) small positive constant1.

Segment dependent Quality Rate (QR) tradeoffs: The
STQ of a downloaded representation of a segment typically
increases with its effective compression rate, i.e., the ratio of
the representation’s size (which also includes overheads due to
metadata etc.) to the duration of the segment. We abstract this
relationship using a convex increasing function2 referred to as
a QR tradeoff. Note that we are assuming a continuous range
of representations, and later address finiteness of the number
of representations available in practice.

Each video client downloads segments of its video sequen-
tially, and we index the segments using variables like s, si
etc taking values in {0, 1, 2, ...}. Let li denote the length
(or duration in seconds) of segments of video client i (see
extensions to variable sized segments in [18]). Let fi,s denote
QR tradeoff associated with the sth segment of video client
i. Hence, QR tradeoffs can be user and device (screen size)
dependent and further, can be segment dependent varying
based on the nature of the segment’s video content. Let qi,s
denote the quality (i.e., STQ) associated with the segment s
downloaded by video client i. Thus, to obtain a quality qi,s
for the sth segment, the size of the segment that has to be
downloaded by video client i is given by lifi,s (qi,s). Let qmax

denote the maximum quality that can achieved in the given
network setting which is assumed to be finite.

QoE model: Our QoE model is a function of the quality of
the segment representations, (qi)1:S , downloaded by a video
client i on the condition that a rebuffering related constraint
(discussed next) is met. While accurate QoE models are
typically very complex, we use a simple model motivated by
the discussion in Section I and the model proposed in [4].
Let mS

i (qi) and VarSi (qi) denote mean quality and temporal
variance in quality respectively associated with the first S
segments downloaded by the video client i, i.e.,

mS
i (qi) :=

∑S
s=1 qi,s
S

, VarSi (qi) :=
∑S
s=1

(
qi,s −mS

i (qi)
)2

S
.

Note that the arguments of mS
i and VarSi are actually S−length

sequences (qi)1:S (i.e., (qi,s)1≤s≤S) although we are using a
shorthand for simplicity. We model the QoE of video client i
for these S segments as

eSi (qi) = mS
i (qi)− ηiVarS (qi) , (2)

where ηi > 0 scales penalty for temporal variability in quality.
Also, see [18] for extensions to more general QoE models.

Our objective function capturing video clients’ QoE is

φS ((q)1:S) :=
∑
i∈N

eSi (qi) . (3)

1This requirement can be relaxed as long as we ensure that each video
client can be guaranteed a strictly positive amount of resource allocation over
a fixed (large) number of slots

2Convexity is typically seen in QR tradeoffs except at very low compression
rates, for e.g., see Fig. 1 in [12]. Also, for each segment and effective com-
pression rate, we are implicitly restricting our attention to the representation
with highest quality and ignoring less efficient representations
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Here, we have set UEi (.) appearing in (1) as UEi (e) = e. In
[18], we discuss extensions to concave UEi (.) which provides
more flexibility in imposing QoE fairness across users.

Rebuffering constraints: Let κ > 0 and let KS = dκSe.
We obtain a good estimate for the fraction of time spent
rebuffering by a video client under an additional assumption on
resource allocation that for each video client i, 1

KS

∑KS
k=1 ri,k

converges, and hence provides an asymptotically accurate
estimate for time-average resource allocation to video client i
as S goes to infinity. Note that this condition is satisfied by
alpha-fair resource allocation policies like proportionally fair
allocation, max-min fair allocation etc under mild assumptions
on allocation constraints, for e.g., under stationary ergodic evo-
lution of allocation constraints. Next, note that the cumulative
size of the first S segments is given by

∑S
s=1 lifi,s (qi,s).

Thus, a good estimate (for large S) for the time required by
video client i to download the first S segments is∑S

s=1 lifi,s (qi,s)
1

τslotKS

∑KS
k=1 ri,k

which is the ratio of the cumulative size of S segments to the
per slot resource allocation estimate. We can show (see [18])
that the following expression is an asymptotically (as S goes
to infinity) accurate estimate for the percentage of time that
video client i is rebuffering while watching the S segments:

βi,S
(
(qi)1:S , (ri)1:KS

)
:=

∑S
s=1 lifi,s(qi,s)
1

τslotKS

∑KS
k=1 ri,k∑S

s=1 li
− 1.

The first term in the right hand side is the ratio of the estimate
for time required for download of the first S segments to
the total duration

∑S
s=1 li associated with the S segments.

Note that βi,S
(
(qi)1:S , (ri)1:KS

)
can also take negative values

which happens when segments are being downloaded at rate
higher than the rate at which they are viewed. We express the
rebuffering constraint as

βi,S
(
(qi)1:S , (ri)1:KS

)
≤ βi, ∀ i ∈ N , (4)

where each video client i specifies an upper bound βi > −1
on the percentage of time spent rebuffering. Though setting
βi = 0 ensures that there is only an asymptotically negligible
amount of rebuffering, we can enforce more stringent con-
straints on rebuffering by setting βi to negative values. We also
discuss simple ideas to reduce startup delay and frequency of
rebuffering events after presenting NOVA in the next section.

Cost constraints: The average compression rate associ-
ated with the first S segments of video client i ∈ N is∑S

s=1 lifi,s(qi,s)∑S
s=1 li

. Let pdi denote the cost per unit of data
(measured in dollar per bit) that video client i ∈ N (or the
video content provider associated with the video client) has to
pay. Then, the average cost per unit video duration the video
client (/content provider) pays is

pi,S ((qi)1:S) :=p
d
i

∑S
s=1 lifi,s (qi,s)∑S

s=1 li
.

We express the cost constraint as

pi,S ((qi)1:S) ≤ pi, ∀ i ∈ N ,

where each video client i (or the video content provider
associated with the video client) sets an upper bound pi > 0
on the amount of money per unit video duration.

III. OFFLINE OPTIMIZATION FORMULATION

We formulate the optimization problem in (1)-(2) formally
as an offline optimization problem OPT(S) for jointly opti-
mizing quality adaptation (i.e., finding optimal ((qi)1:S)i∈N )
and resource allocation (i.e., finding optimal (r)1:KS ). In the
offline setting we assume (ck)k and (fi,s)s for each video
client i ∈ N are known ahead of time.

Based on the discussion in Section II, we rewrite (1)-(2) as
the optimization problem OPT(S) given below:

max
(q)1:S ,(r)1:KS

φS ((q)1:S)

subject to 0 ≤ qi,s ≤ qmax ∀ s ∈ {1, ..., S} ,∀ i ∈ N ,
ri,k ≥ ri,min, ∀ k ∈ {1, ...,KS} ,∀ i ∈ N ,
ck (rk) ≤ 0, ∀ k ∈ {1, ...,KS} ,
βi,S

(
(qi)1:S , (ri)1:KS

)
≤ βi,∀ i ∈ N , (5)

pi,S ((qi)1:S) ≤ pi,∀ i ∈ N . (6)

We assume that the optimization problem OPT(S) is fea-
sible (sufficient conditions are discussed in [18]). Let φoptS

denote the optimal value of objective function of OPT(S).
In practice, solving OPT(S) directly is impossible (except

for trivial cases) since we need to know (ck)k and (fi,s)s ahead
of time. Further, it is also computationally prohibitive as the
optimization would be over O(NS) variables. Thus, from a
practical point of view, the main challenge is to overcome
these two hurdles and obtain a simple and online algorithm
that performs as well as φoptS asymptotically.

IV. A SIMPLE ONLINE ALGORITHM FOR JOINTLY
OPTIMIZING ALLOCATION AND ADAPTATION

The algorithm NOVA comprises three components:
1) Allocate: Network resource allocation is done by the
network controller at the beginning of each slot k by solving an
optimization problem RNOVA(bk, ck) which depends on the
parameter bk (described below) and the allocation constraint
ck in the slot.
2) Adapt: When a video client i ∈ N completes down-
loading the sith segment, the video client selects the qual-
ity/representation for the next segment by solving an opti-
mization problem QNOVAi(θi,si , fi,si+1) which depends on
a parameter θi,si (described later in the section) and the QR
tradeoff fi,si+1 of the next segment.
3) Learn: involves learning parameters (mi,si , bi,k, di,si)i∈N
used in the optimization problems RNOVA(bk, ck) and
QNOVAi(θi,si , fi,si+1). Here si is the current segment index
of video client i and k is the current slot index. The parameter
mi,si tracks mean quality of video client i ∈ N . Parameters
bi,k and di,si serve as indicators of risk of violation of
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rebuffering constraints (5) and cost constraints (6) respectively
of video client i ∈ N , and larger the parameter, larger the risk.
We later see that, for βi = 0, the value of bi,k reflects the
duration of video content in video client i’s playback buffer
(and is roughly a linear decreasing function of this duration).

For b ∈ RN and allocation constraint c ∈ C, the (convex)
optimization problem RNOVA(b, c) associated with network
resource allocation is:

max
r

{∑
i∈N

hBi (bi) ri : c (r) ≤ 0, ri ≥ ri,min ∀i ∈ N

}
(7)

where hBi (.) is a non-negative valued Lipschitz continuous
function such that limb→∞ hBi (b) = ∞, hBi (bi) = 0 for
all bi ≤ b for some constant b (typically set as zero or
small negative numbers), and is strictly increasing for bi ≥ b.
Simple examples of functions satisfying these conditions are
max(b, 0), max(b2, 0) etc.

When using RNOVA(b, c), we will set b as the current
value of the rebuffering risk indicator bk. Hence, the objective
function (7) gives more weight to video clients with a higher
value of bi,k i.e., higher risk of violation of rebuffering
constraints.

Let mi ∈ [0, qmax], bi, di ∈ R and θi = (mi, bi, di). For
QR tradeoff fi, let

φQ (qi,θi, fi) = qi − ηi (qi −mi)
2 (8)

− hBi (bi)(
1 + βi

)fi (qi)− pdi h
D
i (di)

pi
fi (qi) ,

where hDi (.) satisfies conditions given for hBi (.) with b re-
placed by d (also set as zero or a small negative number). The
optimization problem QNOVAi(θi, fi) associated with quality
adaptation of video client i is given below:

max
qi

{
φQ (qi,θi, fi) : 0 ≤ qi ≤ qmax

}
.

When using QNOVAi(θi, fi) in NOVA, we will use θi =
(mi,s, bi,k+1, di,s) so that the objective function (8) includes
a term (qi −mi,s)

2 that ensures that an optimal solution to
QNOVAi(θi, fi) is not too far away from mi,s (current esti-
mate of mean quality), and thus avoids high variance in quality.
Further, the terms hBi (bi,k+1)

(1+βi)
fi (qi) and pdi h

D
i (di,s)
pi

fi (qi) in
(8) penalize quality choices leading to large segment sizes
when bi,k+1 or di,s are high, and thus ensure NOVA reacts
to indicators of increased risk of violation of rebuffering con-
straints and cost constraints. Also note that we can control the
response of NOVA to these indicators by appropriately choos-
ing

(
hBi (.)

)
i∈N and

(
hDi (.)

)
i∈N . The optimization problem

QNOVAi(θi, fi) is convex and has a unique solution, denoted
as q∗i (θi, fi), due to the strict concavity of the objective
function.

Next, we present the algorithm NOVA. Let si be an indexing
variable keeping track of the segment video client i is currently
downloading. Let [x]y = max(x, y) for x, y ∈ R. Also,
assume that all video clients have already downloaded the 0th
segment at the beginning of slot k = 0. The algorithm NOVA

is given below.

NOVA
Initialization: Let ε > 0, and for each i ∈ N , let
0 ≤ mi,0 ≤ qmax, bi,0 ≥ b and di,0 ≥ d.

In each slot k ≥ 0, carry out the following steps:
ALLOCATE: At the beginning of slot k, network con-
troller allocates resources r∗k choosing any solution to
RNOVA(bk, ck). Update bk as follows:

bi,k+1 = bi,k + ε

(
τslot(
1 + βi

)) . (9)

ADAPT: In slot k, if any video client i ∈ N finishes download
of si th segment, let θi,si = (mi,si , bi,k+1, di,si). For segment
si + 1 of video client i, the video client selects representa-
tion with quality q∗i (θi,si , fi,si+1) (i.e., optimal solution to
QNOVAi(θi,si , fi,si+1)), denoted as q∗i,si+1 for brevity, and
update parameters mi,si+1, bi,k+1, di,si+1 and si as follows:

mi,si+1 = mi,si + ε
(
q∗i,si+1 −mi,si

)
, (10)

bi,k+1 = [bi,k+1 − ε (li)]b , (11)

di,si+1 =

[
di,si + ε

(
pdi
lifi,si+1

(
q∗i,si+1

)
pi

− li

)]
d

, (12)

si = si + 1.

For each i ∈ N , parameters (mi,si , bi,k, di,si) are
learnt/updated by video client i. The network controller only
needs to know bk for carrying out resource allocation in slot k
and this can be achieved using minimal signaling as described
in subsection IV-B. Under NOVA, allocation is done at the
beginning of each slot whereas adaptation is asynchronous,
i.e., adaptation related decisions about a segment are made by
a video client only at the completion of download of previous
segment. The update equation (10) associated with the param-
eter mi,si is similar to update rules used for tracking EWMA
(Exponentially Weighted Moving Averages), and ensures that
mi,si tracks the mean quality of video client i. Consider the
evolution of the parameter bi,k which is updated in both (9)
and (11) ignoring the operator [.]b and setting initialization to
zero. (9) ensures that bi,k is increased by fixed amount ετslot

(1+βi)
at the beginning of each slot. (11) ensures that when a video
client completes the download of a segment, bi,k is reduced
by ε times the duration of the next segment. Hence, at some
time t seconds (or k = t/τslot slots) after starting the video,

bi,k − bi,0
ε

≈ t(
1 + βi

) − LDi (t),
where LDi (t) is the duration of video downloaded up to time
t. This sheds light on the role of bi,k as an indicator of risk
of violation of rebuffering constraint in (5) for video client
i. In particular, we see that for βi = 0 and small enough b,
(bi,k−bi,0)/ε is equal to (t−LDi (t)) which is equal to negative
of the duration of video content in playback buffer (if there is
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any). Similarly, we can argue that di,si serves as an indicator
of risk of violation of cost constraint (6) for video client i.

Note that a large value of bi,k results in the selection of a
representation of smaller size (see (8)). This combined with the
role of bi,k discussed above and the fact that NOVA satisfies
the rebuffering constraint (4) asymptotically (see Theorem
1 (a)) suggests that NOVA strives to meet the rebuffering
constraint (4) for finite S also. Further, start up delays can
be reduced by appropriately choosing the initial conditions,
e.g. pick large bi,0 and small mi,0 to encourage selection of
representations with smaller size in the beginning so that they
are downloaded quickly. Also, the frequency of rebuffering
events can be reduced by forcing the video client to delay the
resumption of playback after a rebuffering event until there
is sufficient amounts of video content in the playback buffer.
Also, note that although we have not explicitly incorporated
the possibility of packet losses (in wireless networks, routers
in wired networks etc) into our theoretical framework, the
simplicity of quality adaptation in NOVA allows it operate in
such settings as it does not rely on such ‘low-level’ network
information and only relies on a ‘high level’ view of the
network encapsulated in segment download completions.

A. Optimality of NOVA

The following theorem provides the main optimality result
for NOVA. The proof of the result is omitted due to space
constraints. However, we discuss a sketch of the proof in
Section V. The following result holds under a few mild
technical assumptions given in [18] (See Theorem 1 in [18]
for a complete development).

Theorem 1. Suppose (Ck)k≥0 and (Fi,s)s≥0 are stationary
ergodic processes for each i ∈ N . Then,
(a) Feasibility: NOVA asymptotically satisfies the constraints
on rebuffering and cost.
(b) Optimality: Let Sε = S

ε . Then,

lim
S→∞

lim
ε→0

(
φSε

(
(q∗)1:Sε

)
− φoptSε

)
goes to zero in probability.

Here Ck and Fi,s are random variables corresponding to
ck and fi,s respectively. Recall that, under NOVA, q∗i,si is the
quality associated with segment si of video client i (and the
notation used in this result is described at the beginning of
Section II). This result tells us that the difference in perfor-
mance (according to definition (3)) of the online algorithm
NOVA (i.e., φSε

(
(q∗)1:Sε

)
) and that of the optimal offline

scheme goes to zero for long enough videos and small enough
ε. Recall that φoptSε

is the optimal value of OPT(Sε), i.e., the
performance of the optimal omniscient offline scheme which
knows all the allocation constraints (ck)k and QR tradeoffs
(fi,s)s ahead of time.

B. Key features and Implementation of NOVA

Next, we summarize the key features of NOVA.
Optimality: NOVA carries out ‘cross-layer’ joint optimization
of resource allocation and quality adaptation, with strong

optimality guarantees (given in Theorem 1).
Online: NOVA is an online algorithm as it only uses current
information, i.e., network controller only needs to know the
allocation constraint ck to carry out resource allocation for
slot k, and video client i only requires the QR tradeoff fi,s
for quality adaptation of segment s.
Simple: RNOVA(b, c) is an N−variable convex optimization
problem, which becomes an even simpler linear program under
linear allocation constraints (often this linear program has
enough structure to allow for very efficient solution tech-
niques). Also, note that QNOVAi(θi, fi) is just a scalar convex
optimization problem.
Asynchronous and well suited for DASH: The asynchronous
nature of NOVA ensures that the video clients can work at
their own pace and the adaptation prescribed in NOVA is
entirely client driven requiring no assistance from the network
controller, and is thus well suited for DASH framework.
Distributed implementation and information flow: NOVA
can be implemented in a distributed manner with minimal
signaling since quality adaptation is client driven and for the
resource allocation, the network controller need only know bk.
To ensure that the network controller knows the current value
of rebuffering risk indicator vector bk, each video client can
send a signal to the base station indicating the latest value of
bi,k (just a signal indicating segment download completion is
enough) at the end of each segment download which usually
occurs at a low frequency (typically once a second). On
receiving this signal from video client i ∈ N , the network
controller can then update bi,k. Now, until the next signal from
video client i, the network controller can update bi,k using (9)
that requires only constant increments. The network controller
could obtain information about allocation constraints through
Channel Quality Information feedback from the network, and
video clients could obtain their respective QR tradeoffs using
application layer information exchange.
Optimal Adaptation: The adaptation proposed in NOVA is
independently optimal, and the optimality properties of the
adaptation component of NOVA is ‘insensitive’ to the resource
allocation component, i.e., does not depend on detailed char-
acteristics (for e.g., the specific resource allocation algorithm,
time scale of operation etc) of the latter. See [18] for a detailed
discussion of this property. As a corollary of this property,
we have that the adaptation proposed in NOVA (which is
well suited for DASH based video clients) is also optimal for
standalone video clients.
Well suited for legacy networks: Optimization algorithm
for resource allocation, RNOVA(b, c) requires only a sim-
ple modification of legacy schedulers like proportionally fair
schedulers (see [19]). This is clear on comparing (7) and (13)
(which is discussed later).

V. SKETCH OF PROOF OF OPTIMALITY OF NOVA

We omit a detailed proof of Theorem 1 (given in [18]) due
to its length, and instead present a sketch of the proof.

For each video client i ∈ N , in addition to tracking NOVA
parameters mi,si , bi,k and di,si , our proof uses auxiliary
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parameters vi,si , σi,si and ρi,k that track the variance in
quality, mean segment size and the mean resource allocation
of the video client respectively.

We devote the next three subsections to three key ideas/steps
and technical challenges in our proof of Theorem 1.

A. NOVA, under stationary ergodic regime, is optimal if its
parameters are picked from an optimal parameter set

The optimality of NOVA is established under the as-
sumption that the underlying allocation constraints and QR
tradeoffs are drawn from stationary ergodic processes. Under
this assumption, the offline optimization problem OPT(S) has
an ‘asymptotically’ optimal solution which corresponds to a
stationary policy– a policy for which the allocation and quality
adaptation decisions depend solely on the current state deter-
mined by the current allocation constraint and QR tradeoffs.
Additionally, we establish a useful relationship between such
an ‘optimal’ stationary policy and NOVA that the former
can be obtained by using RNOVA(b, c) for allocation and
QNOVAi(θi, fi) for quality adaptation if the parameters driv-
ing the allocation and adaptation (i.e., θi for all i which also
includes b) are selected from an ‘optimal’ set of parameters.

This set, denoted by H∗, of optimal parameters depends on
the problem setting (including distribution of stationary pro-
cesses) and corresponds to averages, and Lagrange multipliers
associated with rebuffering and cost constraints corresponding
to optimal stationary policies. However, if we pick NOVA’s
parameters from this set of optimal parameters, the above
arguments relating optimal stationary policy to NOVA suggest
that NOVA would be optimal. This is formally stated in
Theorem 2 where H∗i (which is obtained from H∗) denotes the
set of optimal parameters associated with video client i and
recall that q∗i (θi,si , fi,si+1) is the quality selected for segment
si + 1 of video client i under NOVA.

Theorem 2. Suppose θπi ∈ H∗i for each i ∈ N . Then, for
almost all sample paths

lim
S→∞

(
φS

((
(q∗i (θ

π
i , fi,s))i∈N

)
1≤s≤S

)
− φoptS

)
= 0.

B. NOVA can learn the optimal parameters: Fluid NOVA
parameters converge to optimal parameter set

The next key problem is to show that NOVA’s ‘learning
component’ (i.e., updates (9)-(12)) is able to guide its pa-
rameters to the optimal set. The challenge here is that the
evolution of NOVA’s parameters is not simply determined
by an exogenous system, but is dependent on allocation and
quality adaptation decisions. In other words, current NOVA
parameters impact NOVA’s decisions which in turn impact the
next set of NOVA’s parameters, and so on.

Instead of directly studying the (asynchronous) discrete
time evolution of NOVA’s parameters, we will first study a
related set of ‘fluid’ NOVA parameters and (in Theorem 3)
show that these converge to the optimal set. These parameters
evolve according to a differential equation3 that captures the

3this is actually a differential inclusion though, for simplicity, here we will
call it a differential equation

averaged dynamics of the evolution of NOVA’s parameters and
incorporates the asynchronous nature of NOVA’s updates. For
instance, fluid NOVA parameter b̂i(t) corresponding to bi,k
roughly evolves according to

.
b̂i(t) =

1(
1 + βi

) − li
ûi (t)

where first term in the right hand side accounts for the update
(9) (carried out at the beginning of each slot) and the second
term accounts for the update (11) (carried out at segment
download completions of video client i). Here 1/ûi (t) can
be viewed as video client i’s segment download rate which is
also equal to the rate at which update rule (11) is used.

For each video client i ∈ N , let m̂i(t), v̂i(t), b̂i(t), d̂i(t),
σ̂i(t) and ρ̂i(t) denote the fluid NOVA parameters that track
the average dynamics of NOVA parameters mi,si , vi,si , bi,k,
di,si , σi,si and ρi,k respectively. The following result says that
these fluid parameters converge to the optimal parameter set.

Theorem 3. Fluid NOVA parameters converge to H∗, i.e.,

lim
t→∞

d
((
m̂i(t), v̂i(t), b̂i(t), d̂i(t), σ̂i(t), ρ̂i(t)

)
,H∗

)
= 0,

where d (.,H∗) measures Euclidean distance to the set H∗.

The proof of the above result is one of the more challenging
ones in [18]. It relies on establishing that the following
(carefully chosen) Lyapunov function has a negative drift:

L
((

m̂, v̂, b̂, d̂, σ̂, ρ̂
))

:=−
∑
i∈N

(
1 + βi

)
li (m̂i − ηiv̂i)

+
∑
i∈N

(
1 + βi

)(
lid

π
i

(
pdi σ̂i
pi
− 1

)
+

∫ d̂i

d

(
hDi (e)− dπi

)
de

)

+
∑
i∈N

(lib
π
i σ̂i − τslotbπi ρ̂i) +

∑
i∈N

σπi

∫ b̂i

b

(
hBi (e)− bπi

)
de

+
∑
i∈N

(
1 + βi

)
li (m̂i −mπ

i )
2
+ χd

((
m̂, v̂, b̂, d̂, σ̂, ρ̂

)
, H̃
)
.

See [18] for a description of the various variables involved in
the above function. Proof of this result uses several interme-
diate results including extensions of ideas in [17], [20] etc.

C. NOVA parameters also converge to the optimal parameter
set, and proving Theorem 1

We complete the proof of Theorem 1 by using Theorem
4 which says that NOVA’s parameters also converge to the
optimal set, and then using Theorem 2.

In the proof of Theorem 4, we relate the evolution of
NOVA’s parameters to the evolution of the fluid NOVA param-
eters, and then use convergence of latter given in Theorem 3.
We relate NOVA’s parameters to its fluid version by viewing
NOVA as an asynchronous stochastic approximation, and
developing an extension of Theorem 3.4 in Chapter 12 of [21].

Theorem 4. For each i ∈ N , the following holds: for any
δ > 0, the fraction of segment indices for which (θi,s)1≤s≤Sε
is in a δ-neighborhood of H∗i converges to one in probability
as ε goes to zero and S goes to infinity.
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VI. EXTENSIONS

In [18], NOVA has been extended in several important
directions including:
- general QoE models (i.e., generalizations of (2));
- a straightforward extension to more general allocation con-
straints described in terms of finite number of convex functions
(for e.g., allocation constraints where the network resources
are available in the form of sub-resources like sub-bands);
- optimality under legacy resource allocation policies;
- the performance of quality adaptation in NOVA when used
for a standalone video client;
- the presence of other traffic (e.g., data traffic);
- discrete network resources, i.e., when the set of feasible
resource allocations in a slot is discrete;
- video client implementation considerations such as
• finiteness of the number of representations available in

practice (also discussed briefly in Section VII),
• impact of choice of ε, (hBi (.))i∈N and (hDi (.))i∈N ,
• playback buffer limits, playback pauses, ads etc.

VII. SIMULATIONS

In this section, we evaluate NOVA using Matlab simulations
to compare the performance of a wireless network operating
under NOVA vs one using Proportionally Fair (PF) network
resource allocation (see [19]) and quality adaptation based
on Rate Matching (RM). We discuss PF and RM below. We
restrict the discussion to the key features of the setting used
for simulations, and finer details can be found in [18].

We consider a wireless network with τslot = 10 msecs, and
with allocation constraints of the form ck (rk) =

∑
i∈N

ri,k
pi,k
−

1 in each slot k, where pi,k denotes the peak resource
allocation for video client i in slot k, i.e., if we only allocate
resources to video client i in slot k, then ri,k = pi,k is
the maximum resource allocation to the video client. We
used traces for peak resource allocation based on data for
an HSDPA system4 and we used randomly scaled versions of
these traces to model heterogeneous channels for video clients.

Under PF (see [19]), network resource allocation in slot k
is an optimal solution to

max
r

{∑
i∈N

ri
ρi,k

: ck (r) ≤ 0, ri ≥ ri,min ∀ i ∈ N

}
, (13)

where the parameters (ρi,k)i∈N track the mean resource
allocation to the video clients.

In our simulations, we consider video clients downloading
different parts of three open source movies Oceania, Route 66
and Valkaama where the segments are of duration 1 second
each and have 5-6 different representations. We obtained5

proxy subjective VQA metric for the representations based
on the corresponding value of MSSSIM-Y metric ([22]). To
account for finiteness of available representations, we modify
the optimization problem QNOVAi(θi, fi), used for quality

4This data was provided by a service provider. See [18] for more details
on the generation of these sequences.

5See [18] for details including plots depicting diversity of the QR tradeoffs.

adaptation in NOVA by imposing an additional restriction that
the quality for segment s of video client i is picked from the
finite set of quality choices available for the segment.

In quality adaptation based on RM (Rate Matching), the
video client tries to ‘match’ the effective compression rate
of the selected representation to (current estimate of) mean
resource allocation in bits per second, and further modifies the
selection to respond to the playback buffer’s state by switching
to aggressive and cautious modes (see [18] for details). This is
basic feature in many compression rate adaptation algorithms,
for instance, see [23] where (following their terminology) we
see that ‘requested bitrate’ (i.e., size of the representation)
stays close to the ‘average throughput’ (i.e., ρi,k in our setting)
in Microsoft Smooth Streaming player and Netflix player.

For our simulations of NOVA, we let ε = 0.05, ri,min =
0.001 bits, ηi = 0.05, βi = 0 and pdi = 0.01 dollars per
bit for each i ∈ N . While evaluating the rebuffering time in
the simulation results, we allow for a startup delay of 3 secs.
For each i ∈ N , we chose hDi (di) = 10di and hBi (bi) =

0.005
(

bi
0.05 +max

(
bi−20
0.05 , 0

)2)
, mi,0 = 25, bi,0 = 40

0.05 and
di,0 = 1 (these choices are discussed in more detail in [18]).

Each point in the plots discussed below is obtained by
running the associated algorithm 50 times where each sim-
ulation is run until all the video clients have downloaded
a video of duration at least 10 minutes. Each point corre-
sponds to a fixed number of video clients N taking values in
{12, 15, 18, 21, 24, 27, 30, 33}. We refer to the combi-
nation of PF resource allocation and RM quality adaptation
as PF-RM. We also study the performance of PF-QNOVA
which uses PF resource allocation and quality adaptation in
NOVA. NOVA, PF-QNOVA and PF-RM correspond to setting
with no price constraints, and their modifications with price
constraint of 3 dollars per bit are referred to as NOVA(3),
PF-QNOVA(3) and PF-RM(3) respectively. NOVA(3) and PF-
QNOVA(3) implementations use a more stringent/conservative
price constraint of 0.95× 3.

In Fig. 1(a), we compare the QoE of the video clients under
different algorithms, where we measure QoE using the metric
QoE1 which is the average across simulation runs of

1

N

∑
i∈N

(
m600
i (qi)−

√
Var600i (qi)

)
,

where m600
i (qi) −

√
Var600i (qi) is the metric proposed in

[4] with the scaling constant for
√

Var600i (qi) set to unity
(and m600

i (qi) and Var600i (qi) are defined in Section II). On
comparing QoE1 using Fig. 1(a), we see that NOVA performs
much better than PF-RM and PF-QNOVA, and in fact provides
‘network capacity gains’ of about 60% over PF-RM, i.e., given
a requirement on average QoE1, we can support about 60%
more video clients by using NOVA than that under PF-RM.
For instance, if we consider the horizontal dashed line in
Fig. 1(a) that corresponds to an average QoE1 requirement
of about 43, we see that PF-RM can only support 20 video
clients while meeting this requirement whereas NOVA can
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support almost 33 video clients. Under price constraint (of
3 dollars per second) also, we see that NOVA(3) provides
network capacity gains of about 60% over PF-RM(3). The
gain from the adaptation component of NOVA is also visible
in Fig. 1(a), where we see that PF-QNOVA provides network
capacity gains of about 25% over PF-RM respectively. The
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Fig. 1. (a) Top figure: QoE1 gains from NOVA; (b) Bottom figure: Reduction
in rebuffering under NOVA

results in Fig. 1(b) depict the significant reduction in the
amount of time spent rebuffering under NOVA and NOVA(3).
Using Fig 1, we see that NOVA outperforms PF-RM in both
the metric QoE1 and the amount of time spent rebuffering
which cover some of the most important factors affecting video
clients’ QoE (see the discussion in Section I).

Our simulations results also showed capacity gains
of about 50% with respect to another metric QoE2

obtained by replacing Var600i (qi) in QoE1 with
MSD600

i (qi) :=
1

600

∑600
s=1 (qi,s+1 − qi,s)2 which penalizes

short term variability. Further, the results also showed that
NOVA even has a slightly higher mean quality (in addition to
lower variability in quality) in all but lightly loaded networks.

More details (e.g., fairness gains under NOVA) of the results
for the above setting is given in [18] . We carried out extensive
simulations validating the performance of NOVA in other
setting too, and these results can also be found in [18].

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

We developed a simple online algorithm NOVA for op-
timizing video delivery, well suited for today’s networks

supporting DASH-based video clients. Interesting future di-
rections include an exploration of the potential of learning
user preferences, and developing (and analyzing) ‘NOVA-like’
algorithms for networks with contention based medium access
by modulating the back-off timers using information about
parameters like bi,k.

REFERENCES

[1] CISCO, “Cisco Visual Networking Index: Global Mobile Data Traffic
Forecast Update, 2010-2015,” Feb. 2011.

[2] MPEG-DASH. mpeg.chiariglione.org/standards/mpeg-dash.
[3] K. Seshadrinathan and A. C. Bovik, “Automatic prediction of percep-

tual quality of multimedia signals–a survey,” International Journal of
Multimedia Tools and Applications, Jan. 2011.

[4] C. Yim and A. C. Bovik, “Evaluation of temporal variation of video
quality in packet loss networks,” Signal Processing: Image Communi-
cation, Jan. 2011.

[5] T. Kim and M. Ammar, “Optimal quality adaptation for scalable encoded
video,” IEEE Journal on Selected Areas in Communications, Dec. 2005.

[6] P. Seeling, M. Reisslein, and B. Kulapala, “Network performance
evaluation using frame size and quality traces of single-layer and two-
layer video: A tutorial,” IEEE Communications Surveys Tutorials, 2004.

[7] R. Mok, E. Chan, and R. Chang, “Measuring the quality of experience
of HTTP video streaming,” IFIP/IEEE International Symposium on
Integrated Network Management, 2011.

[8] F. Fu and M. van der Schaar, “A systematic framework for dynamically
optimizing multi-user wireless video transmission,” IEEE Journal on
Selected Areas in Communications, Apr. 2010.

[9] J. Huang, Z. Li, M. Chiang, and A. Katsaggelos, “Joint source adaptation
and resource allocation for multi-user wireless video streaming,” IEEE
Transactions on Circuits and Systems for Video Technology, May 2008.

[10] H. Hu, X. Zhu, Y. Wang, R. Pan, J. Zhu, and F. Bonomi, “QoE-
based multi-stream scalable video adaptation over wireless networks
with proxy,” in ICC, 2012.

[11] D. Bethanabhotla, G. Caire, and M. J. Neely, “Joint transmission
scheduling and congestion control for adaptive video streaming in small-
cell networks,” arXiv:1304.8083 [cs.NI], 2013.

[12] V. Joseph and G. de Veciana, “Jointly Optimizing Multi-user
Rate Adaptation for Video Transport over Wireless Systems:
Mean-Fairness-Variability Tradeoffs,” Technical Report, Jul. 2011.
www.ece.utexas.edu/~gustavo/VariabilityAwareVideoRateAdapt.pdf.

[13] V. Joseph, S. Borst, and M. Reiman, “Optimal rate allocation for adaptive
wireless video streaming in networks with user dynamics,” Submitted,
2013.

[14] B. Blaszczyszyn, M. Jovanovic, and M. Karray, “Quality of real-
time streaming in wireless cellular networks- stochastic modeling and
analysis,” arXiv:1304.5034 [cs.NI], 2013.

[15] S. Khan, Y. Peng, E. Steinbach, M. Sgroi, and W. Kellerer, “Application-
driven cross-layer optimization for video streaming over wireless net-
works,” IEEE Communications Magazine, Jan. 2006.

[16] S. Shakkottai and R. Srikant, “Network optimization and control,”
Foundations and Trends in Networking, Jan. 2007.

[17] V. Joseph, G. de Veciana, and A. Arapostathis, “Resource Alloca-
tion: Realizing Mean-Variability-Fairness Tradeoffs,” Submitted to IEEE
Transactions on Automatic Control, 2013.

[18] V. Joseph and G. de Veciana, “NOVA: QoE-driven Optimization of
DASH-based Video Delivery in Networks,” Full version available on
arXiv.org, http://wncg.org/publications/dl.php?file=VJGdV13.pdf, 2013.

[19] H. Kushner and P. Whiting, “Convergence of proportional-fair sharing
algorithms under general conditions,” IEEE Transactions on Wireless
Communications, Jul. 2004.

[20] A. L. Stolyar, “Greedy primal-dual algorithm for dynamic resource
allocation in complex networks,” Queueing Systems, Nov. 2006.

[21] H. Kushner and G. G. Yin, Stochastic Approximation and Recursive
Algorithms and Applications. Springer, 2003.

[22] Z. Wang, E. Simoncelli, and A. Bovik, “Multiscale structural similarity
for image quality assessment,” Asilomar Conference on Signals, Systems
and Computers, Nov. 2003.

[23] S. Akhshabi, S. Narayanaswamy, A. C. Begen, and C. Dovrolis, “An
experimental evaluation of rate-adaptive video players over HTTP,”
Signal Processing: Image Communication, 2012.


