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Abstract—We consider the problem of optimizing video de-
livery for a network supporting video clients streaming stored
video. Specifically, we consider the joint optimization of network
resource allocation and video quality adaptation. Our objective is
to fairly maximize video clients’ Quality of Experience (QoE) re-
alizing tradeoffs among the mean quality, temporal variability in
quality, and fairness, incorporating user preferences on rebuffer-
ing and cost of video delivery. We present a simple asymptotically
optimal online algorithm, NOVA, to solve the problem. NOVA is
asynchronous, and using minimal communication, distributes the
tasks of resource allocation to network controller, and quality
adaptation to respective video clients. Video quality adaptation
in NOVA is also optimal for standalone video clients, and is well
suited for use in the DASH framework. Further, NOVA can be
extended for use with more general QoE models, networks shared
with other traffic loads and networks using fixed/legacy resource
allocation.

I. INTRODUCTION

There has been tremendous growth in video traffic in the
past decade. Current trends (see [1]) suggest that mobile video
traffic will more than double each year till 2015, with two-
thirds of mobile data traffic being video by 2015. It is unlikely
that wireless infrastructure can keep up with such growth.
Even brute force densification (e.g., using HetNets) would
not resolve the problem since variability in throughput would
likely worsen due to increased throughput sensitivity to the
dynamic number of users sharing an access point and/or dy-
namic interference. Given these challenges, optimizing video
delivery to make the best use of available network resources
is one of the critical networking problems today.

We view the video delivery optimization problem for a
network as that of fairly maximizing the video clients’ QoE
subject to network constraints. Here, QoE is a proxy for ‘video
client satisfaction’. A comprehensive solution to this problem
requires two components- a network resource allocation com-
ponent and a quality adaptation component. The allocation
component decides how network resources (e.g., bandwidth,
power etc) are allocated to the video clients. The adaptation
component decides how the video clients adapt their video
quality (or video compression rate) in response to the allocated
resources, the nature of the video etc.

We develop a distributed algorithm, Network Optimization
for Video Adaptation (NOVA), which jointly optimizes the
two components. The adaptation component itself has strong
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optimality guarantees, and can also be used in standalone
video clients. The adaptation component in NOVA can be used
with video clients based on the DASH (Dynamic Adaptive
Streaming over HTTP) framework ([2]). Under the DASH
framework, video is stored as a sequence of short duration
(e.g., secs) video segments. Various ‘representations’ for each
segment may be made available by compressing it to differ-
ent sizes by changing various parameters e.g., quantization,
resolution, frame rate etc, where high quality representations
of a segment are typically larger in size. Video clients can
adapt their video quality across segments, i.e., can pick
different representations for different segments. The choice of
representation can be based on several factors such as the state
of the playback buffer, current channel capacity, features of
video content being downloaded etc. For instance, the video
client can request representations of smaller size to adapt to
poor channel conditions.

We identify the following four key factors determining the
QoE of a video client: (a) average quality, (b) temporal vari-
ability in quality, (c) time spent rebuffering (including startup
delay), and (d) cost to the video client and video content
provider. Our technical focus is on solving the optimization
problem given below (formally described in the sequel) which
takes these key factors into account:

max
∑
i∈N

UEi (Mean Qualityi − Quality Variabilityi) (1)

subject to Rebufferingi, Costi, and Network constraints,

where N is the set of video clients supported by the network
and UEi is a ‘nice’ concave function chosen in accordance
with the fairness desired in the network. Network constraint
captures time varying constraints on network resource alloca-
tion allowing us to model wide range variability in resource
availability found in real networks.

Let us discuss the four key factors mentioned above. We
measure mean quality for a video session as the average across
Short Term Quality (STQ) associated with the downloaded
representations of the video’s segments. STQ of a downloaded
segment should ideally capture the viewer’s subjective eval-
uation of the quality of the downloaded representation. In
practice, this subjective metric will be measured approximately
using objective Video Quality Assessment (VQA) metrics (see
[3] for a survey) like PSNR, SSIM, MSSSIM etc. In the sequel,
we interchangeably use the terms STQ and quality.

While the benefit of high mean quality is clear, the detrimen-
tal impact of temporal variability on QoE (see [4], [5], [6]),
and fundamental tradeoff between the average and temporal
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variability of quality is often ignored. Indeed [4] suggests
that temporal variability in quality can result in a QoE that
is worse than that of a constant quality video with lower
average quality. Two prominent sources for such variability
are the time varying nature of video content and time varying
network capacity. The former can cause time variations in the
dependence of STQ on parameters like compression rate, for
instance, segments of the same size and duration could have
very different STQ, for e.g., consider two such segments where
the first segment is of an action scene (where there is a lot of
changing visual content) and the second segment is of a slower
scene (where things stay the same). Time varying network
capacity is especially relevant when considering wireless net-
works where such variations can be caused by fast fading (on
faster time scales, e.g., ms) and slow fading due to shadowing,
dynamic interference, mobility, and changing loads (on slower
time scales, e.g. secs).

Rebuffering happens when playback buffer of a video client
empties, and video playback stalls. Rebuffering events have
a significant impact on QoE. Indeed [7] points out that the
total time spent rebuffering and the frequency of rebuffering
events during a video session can significantly reduce video
QoE. In our approach, we impose constraints on the fraction
of total time spent rebuffering, and suggest simple ideas to
reduce startup delay and the frequency of rebuffering events.
We also provide flexibility to the video client in setting these
constraints according to its preferences. For instance, a video
client which is willing to tolerate rebuffering in return for
higher mean quality (for e.g., to watch a movie in high
definition over a poor network) can set these constraints
accordingly. Such constraints driven by video client prefer-
ences will often be content and device dependent, and capture
important tradeoffs for the video client. This heterogeneity,
which is not really exploited in current solutions, can be a
source of significant performance gains.

Client preferences concerning the cost of video delivery
could be important when viewers wish to manage their wire-
less data costs. Note that video content providers may also
pay Content Distribution Network operators for the delivery
of video data. Thus, if the cost of data delivery is high, higher
QoE often comes at higher cost, and the video client/content
provider may want to tradeoff QoE versus delivery cost. In
our framework, we allow each video client/content provider
to set a constraint on the average cost per unit video duration
which in turn reflects the desired tradeoff.

A. Main contributions

This paper presents a general optimization framework for
stored video delivery optimization that factors heterogeneity
in client preferences and QoE models, as well as capacity and
video content variability. We develop a simple online algorithm
NOVA (Network Optimization for Video Adaptation) to solve
this multiuser joint resource allocation and quality adaptation
problem. The algorithm has been both rigorously analyzed
and validated through extensive simulations. NOVA’s novelty
lies in realizing a comprehensive set of features that meet the
challenges of developing next-gen video transport protocols.

Key features of NOVA, discussed in more detail in Subsection
IV-B, are listed below:

1) Strong optimality: guaranteeing that NOVA performs as
well as optimal offline scheme which is omniscient, i.e.,
knows everything about the evolution of channel and
video ahead of time.

2) NOVA carries out ‘cross-layer’ joint optimization of
resource allocation and quality adaptation.

3) NOVA is a simple and online algorithm.
4) NOVA is a distributed algorithm where network con-

troller carries out resource allocation and video clients
carry out their own quality adaptation.

5) NOVA is an asynchronous algorithm well suited for
DASH-based video clients where the network controller
and video clients operate ‘at their own pace’. Value of
this asynchrony (and consequential technical challenges)
are discussed in Subsection I-B on Related Work.

6) Suited for current networks: The resource allocation in
NOVA requires just a simple modification of legacy
schedulers.

7) Optimal Adaptation: Quality adaptation proposed in
NOVA is independently optimal and can even be used
with a standalone video client, and this optimality is
‘insensitive’ to network resource allocation.

B. Related work

The problem of video delivery optimization in wireless
networks has been studied in many works, for instance, see [8],
[9], [10], [11], [12], [13], [14], [15] which utilize extensions of
Network Utility Maximization (NUM) framework (see [16]).
The main focus of [8] and [9] is real-time interactive video
which present the challenge of meeting strict delivery dead-
lines. Papers [10] and [11] study video delivery optimization in
wireless networks considering simpler QoE models, and do not
explicitly incorporate rebuffering (nor cost) into their respec-
tive optimization frameworks, and instead control rebuffering
through network congestion control. Using static QoE models,
[13] and [14] study the resource allocation component of video
delivery accounting for user dynamics. A major weakness
of the aforementioned papers is the limited nature of the
associated QoE models (that are essentially just the mean
quality) and their lack of flexibility in managing/incorporating
user preferences related to rebuffering and cost.

While [12] presents a novel algorithm for realizing mean-
variability tradeoffs for video delivery (see [17] for gen-
earalizations), the model involves a strong assumption of
synchrony- the download of a segment of each video client
starts at the beginning of a (network) slot and finishes by the
end of the slot. This assumption on synchrony precludes any
explicit control over rebuffering as it limits the ability of a
video client to get ahead (by downloading more segments)
during periods when channel is good and/or network is under-
loaded. Relaxed/different versions of this assumption can be
found in the theoretical frameworks used in many previous pa-
pers (e.g., decision making in [15], [10], [11] is synchronous)
as it facilitates an easier extension of tools from classical
NUM framework. However, this assumption of synchrony is
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not ideal for DASH-based video clients in a wireless network
that operate ‘at their own pace’- downloading variable sized
segments (with variable download times) one after the other.
In this paper, we drop the assumption of synchrony which
allows us to exploit opportunism across video clients’ state
of playback buffer (channels and features of video content
like quality rate tradeoffs), and base our adaptation decision
concerning a segment on network state information relevant
to the download period of the segment. We also tackle the
consequent novel technical challenges related to distributed
asynchronous algorithms operating in a stochastic setting.
Further, the rebuffering constraint in our asynchronous setting
effectively induces a new type of constraint involving averages
measured over two time scales.

C. Organization of the paper

Section II introduces the system model and assumptions.
We formulate (1)-(2) as an offline optimization problem in
Section III. In Section IV, we present an online algorithm
NOVA which solves this optimization problem, and discuss
its optimality properties. We present a sketch of the proof
of optimality of NOVA in Subsection V. We discuss several
useful extensions of NOVA in Section VI, present simulation
results in VII, and conclude the paper in Section VIII.

II. SYSTEM MODEL

We first describe some notation used in this paper. We
use bold letters to denote vectors. Given a T -length sequence
(a(t))1≤t≤T or a (infinite) sequence (a(t))t∈N, we let (a)1:T
denote the T -length sequence (a(t))1≤t≤T . For e.g., consider
a sequence (a(t))t∈N of vectors. Then (a)1:T denotes the T -
length sequence containing the first T vectors of the sequence
(a(t))t∈N, and (ai)1:T denotes the T -length sequence contain-
ing ith component of the first T vectors.

To develop our algorithmic framework, let us consider a
network serving video to a fixed set of video clients N where
|N | = N . The network operates in a slotted manner with
resources allocated for the duration of a slot τslot seconds.
The slots are indexed by k ∈ {0, 1, 2...}.

We assume that resource allocation is subject to time vary-
ing constraints. In each slot k, a network controller (e.g., base
station in a cellular network) allocates rk = (ri,k)i∈N ∈ RN+
bits (or rk/τslot bits per second) to the video clients such that
ck (rk) ≤ 0, where ck is a real valued function modeling the
current constraints on network resource allocation. We refer to
ck as the allocation constraint in slot k. This function could
be determined by various parameters like video clients’ SINR
(Signal-to-Interference Noise Ratio). In the sequel, we refer
to these functions as allocation constraints. Let Ck denote the
random variable corresponding to the allocation constraint in
slot k (and ck is a realization of it). We make the following
assumptions on these allocation constraints:

Assumptions C.1-C.3 (Time varying allocation constraints)

C.1 (Ck)k∈N is a stationary ergodic process of functions
selected from a set C.
C.2 C is a (arbitrarily large) finite set of real valued functions

on RN+ , such that each function c ∈ C is convex and continu-
ously differentiable on an open set containing [0, rmax]

N with
c (0) ≤ 0 and

min
r∈[0,rmax]

N
c (r) < 0. (2)

C.3 The feasible region for each allocation constraint is
bounded: there is a constant 0 < rmax <∞ such that for any
c ∈ C and r ∈ RN+ satisfying c (r) ≤ 0, we have ri ≤ rmax

for each i ∈ N .

As indicated in Assumption C.1, we model the evolution
of the allocation constraints as a stationary ergodic process.
Hence, time averages associated with the allocation constraints
will converge to their respective statistical averages, and the
distribution of the random vector (Ck1+s, Ck2+s, ..., Ckn+s)
for any choice of indices k1, ..., kn does not depend on
the shift s, thus the marginal distribution of Ck does not
depend on time. We denote the marginal distribution of
this process by (π(c))c∈C . Without loss of generality, we
assume that πC(c) > 0 for each c ∈ C. Note that we
are restricting ourselves to settings with convex capacity
regions

{
(ri,k)i∈N ∈ RN+ : ck (rk) ≤ 0

}
due to the convexity

assumption in C.2. This model (along with the generalization
mentioned in Subsection VI) captures a fairly general class
of allocation constraints, including, for example, time-varying
capacity constraints associated with bandwidth allocation in
wireless networks. We impose an additional requirement on
the resource allocation algorithm to ensure that the resource
allocation to each video client i ∈ N in each slot should be
at least ri,min where ri,min is a small positive constant. This
technical requirement can be relaxed as long as we ensure that
each video client can be guaranteed a strictly positive amount
of resource allocation over a fixed (large) number of slots.

Segment dependent Quality Rate (QR) tradeoffs: The
STQ of a downloaded representation of a segment typically
increases with its effective compression rate, i.e., the ratio of
the representation’s size (which also includes overheads due to
metadata etc.) to the duration of the segment. We abstract this
relationship using a convex increasing function1 referred to as
a QR tradeoff. Note that we are assuming a continuous range
of representations, and later address finiteness of the number
of representations available in practice.

Each video client downloads segments of its video sequen-
tially, and we index the segments using variables like s, si
etc taking values in {0, 1, 2, ...}. Let li denote the length
(or duration in seconds) of segments of video client i (see
extensions to variable sized segments in [18]). Let fi,s denote
QR tradeoff associated with the sth segment of video client
i. Hence, QR tradeoffs can be user and device (screen size)
dependent and further, can be segment dependent varying
based on the nature of the segment’s video content. For
instance, a segment associated with a slow scene (where things
stay the same) will typically have a ‘steeper’ QR tradeoff when

1Convexity is typically seen in QR tradeoffs except at very low compression
rates, for e.g., see Fig. 1 in [12]. Also, for each segment and effective com-
pression rate, we are implicitly restricting our attention to the representation
with highest quality and ignoring less efficient representations
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compared to that of an action scene (where there is a lot of
changing visual content). Also, let Fi,s denote the random
variable corresponding to the QR tradeoff associated with the
sth segment of video client i. Let qi,s denote the quality (i.e.,
STQ) associated with the segment s downloaded by video
client i. Thus, to obtain a quality qi,s for the sth segment, the
size of the segment that has to be downloaded by video client
i is lifi,s (qi,s). Let qmax denote the maximum quality that can
achieved in the given network setting which is assumed to be
finite. For each video client i ∈ N , we make the following
assumptions on the QR tradeoffs associated with it:

Assumptions QR.1-QR.2 on QR tradeoffs

QR.1 (Fi,s)s≥0 is a stationary ergodic process taking values
in a set Fi.
QR.2 Fi is a finite set of differentiable increasing convex
functions defined on an open set containing [0, qmax] such that
min{fi∈Fi} fi (0) > 0 and max{fi∈Fi} (fi)

′
(qmax) is finite.

As indicated in Assumption QR.1, we model the evolu-
tion of QR tradeoffs of each video client i ∈ N as a
stationary ergodic process. Let

(
πFi (fi)

)
fi∈Fi

denote the
associated marginal distribution. Without loss of generality,
we assume that πFi (fi) > 0 for each fi ∈ Fi. Let
fmin:=min{i,∈N ,fi∈Fi} fi (0) which is strictly positive from
QR.2, and this gives a lower bound on segment compression
rates. Even at zero quality, there is usually overhead infor-
mation associated with a representation of a segment which
causes fmin to be positive. The constant qmax represents the
maximum quality that can achieved in the given network set-
ting. Let fmax:=max{i,∈N ,fi∈Fi} fi (qmax) denote an upper
bound on segment compression rates.

QoE model: Our QoE model is a function of the quality of
the segment representations, (qi)1:S , downloaded by a video
client i on the condition that a rebuffering related constraint
(discussed next) is met. While accurate QoE models are
typically very complex, we use a simple model motivated by
the discussion in Section I and the model proposed in [4].
Let mS

i (qi) and VarSi (qi) denote mean quality and temporal
variance in quality respectively associated with the first S
segments downloaded by the video client i, i.e.,

mS
i (qi) :=

∑S
s=1 qi,s
S

, VarSi (qi) :=
∑S
s=1

(
qi,s −mS

i (qi)
)2

S
.

Note that the arguments of mS
i and VarSi are actually S−length

sequences (qi)1:S (i.e., (qi,s)1≤s≤S) although we are using a
shorthand for simplicity. We model the QoE of video client i
for these S segments as

eSi (qi) = mS
i (qi)− ηiVarS (qi) , (3)

where ηi > 0 scales penalty for temporal variability in quality.
Also, see [18] for extensions to more general QoE models.

Our objective function capturing video clients’ QoE is

φS ((q)1:S) :=
∑
i∈N

eSi (qi) . (4)

Here, we have set UEi (.) appearing in (1) as UEi (e) = e. In
[18], we discuss extensions to concave UEi (.) which provides

more flexibility in imposing QoE fairness across users, and
consider more general variability penalties involving non-
linear functions of VarS (qi).

Rebuffering constraints: Let κ > 0 and let KS = dκSe.
We obtain a good estimate for the fraction of time spent
rebuffering by a video client under an additional assumption on
resource allocation that for each video client i, 1

KS

∑KS
k=1 ri,k

converges, and hence provides an asymptotically accurate
estimate for time-average resource allocation to video client i
as S goes to infinity. Note that this condition is satisfied by
alpha-fair resource allocation policies like proportionally fair
allocation, max-min fair allocation etc under mild assumptions
on allocation constraints, for e.g., under stationary ergodic evo-
lution of allocation constraints. Next, note that the cumulative
size of the first S segments is given by

∑S
s=1 lifi,s (qi,s).

Thus, a good estimate (for large S) for the time required by
video client i to download the first S segments is∑S

s=1 lifi,s (qi,s)
1

τslotKS

∑KS
k=1 ri,k

which is the ratio of the cumulative size of S segments to the
per slot resource allocation estimate. It can be shown (see [18])
that the following expression is an asymptotically (as S goes
to infinity) accurate estimate for the percentage of time that
video client i is rebuffering while watching the S segments:

βi,S
(
(qi)1:S , (ri)1:KS

)
:=

∑S
s=1 lifi,s(qi,s)
1

τslotKS

∑KS
k=1 ri,k∑S

s=1 li
− 1.

The first term in the right hand side is the ratio of the estimate
for time required for download of the first S segments to
the total duration

∑S
s=1 li associated with the S segments.

Note that βi,S
(
(qi)1:S , (ri)1:KS

)
can also take negative values

which happens when segments are being downloaded at rate
higher than the rate at which they are viewed. We express the
rebuffering constraint as

βi,S
(
(qi)1:S , (ri)1:KS

)
≤ βi, ∀ i ∈ N , (5)

where each video client i specifies an upper bound βi > −1 on
the fraction of time spent rebuffering. Though setting βi = 0
ensures that there is only an asymptotically negligible amount
of rebuffering, we can enforce more stringent constraints
on rebuffering by setting βi to negative values. We also
discuss simple ideas to reduce startup delay and frequency
of rebuffering events after presenting NOVA in Section IV.

Cost constraints: The average compression rate associ-
ated with the first S segments of video client i ∈ N is∑S

s=1 lifi,s(qi,s)∑S
s=1 li

. Let pdi denote the cost per unit of data
(measured in dollar per bit) that video client i ∈ N (or the
video content provider associated with the video client) has to
pay. Then, the average cost per unit video duration the video
client (/content provider) pays is

pi,S ((qi)1:S) :=p
d
i

∑S
s=1 lifi,s (qi,s)∑S

s=1 li
.

We express the cost constraint as

pi,S ((qi)1:S) ≤ pi, ∀ i ∈ N ,
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where each video client i (or the video content provider
associated with the video client) sets an upper bound pi > 0
on the amount of money per unit video duration.

III. OFFLINE OPTIMIZATION FORMULATION

We formulate the optimization problem in (1)-(2) formally
as an offline optimization problem OPT(S) for jointly op-
timizing quality adaptation (i.e., finding ((qi)1:S)i∈N ) and
resource allocation (i.e., finding (r)1:KS ). In the offline setting
we assume (ck)k and (fi,s)s for each video client i ∈ N are
known ahead of time.

Based on the discussion in Section II, we rewrite (1)-(2) as
the optimization problem OPT(S) given below:

max
(q)1:S ,(r)1:KS

φS ((q)1:S)

subject to 0 ≤ qi,s ≤ qmax ∀ s ∈ {1, ..., S} ,∀ i ∈ N ,
ri,k ≥ ri,min, ∀ k ∈ {1, ...,KS} ,∀ i ∈ N ,
ck (rk) ≤ 0, ∀ k ∈ {1, ...,KS} ,
βi,S

(
(qi)1:S , (ri)1:KS

)
≤ βi,∀ i ∈ N , (6)

pi,S ((qi)1:S) ≤ pi,∀ i ∈ N . (7)

We need the following assumption to ensure strict feasibility
which will be used in later sections.
Assumption-SF (Strict Feasibility): For each c ∈ C,

c
(
(ri,min)i∈N

)
< 0, and for each i ∈ N ,

max{fi∈Fi}
τslotfi(0)
ri,min

< 1, and pdi max{fi∈Fi} fi (0) < pi.

This assumption2 requires that the resource allocation
(ri,min)i∈N is strictly feasible for any c ∈ C, and that the
maximum size of segments at zero quality is not too large.

We assume that the optimization problem OPT(S) is fea-
sible (sufficient conditions are discussed in [18]). Let φoptS

denote the optimal value of objective function of OPT(S).
In practice, solving OPT(S) directly is impossible (except

for trivial cases) since we need to know (ck)k and (fi,s)s ahead
of time. Further, it is also computationally prohibitive as the
optimization would be over O(NS) variables. Thus, from a
practical point of view, the main challenge is to overcome
these two hurdles and obtain a simple and online algorithm
that performs as well as φoptS asymptotically.

IV. A SIMPLE ONLINE ALGORITHM FOR JOINTLY
OPTIMIZING ALLOCATION AND ADAPTATION

The algorithm NOVA comprises three components:
1) Allocate: Network resource allocation is done by the
network controller at the beginning of each slot k by solving an
optimization problem RNOVA(bk, ck) which depends on the
parameter bk (described below) and the allocation constraint
ck in the slot.
2) Adapt: When a video client i ∈ N completes down-
loading the sith segment, the video client selects the qual-
ity/representation for the next segment by solving an opti-
mization problem QNOVAi(θi,si , fi,si+1) which depends on

2The assumption requires a uniform upper bound on the size of the
segments at zero quality which is used in Lemma 1. We conjecture that this
per segment requirement can be replaced with a milder averaged version.

a parameter θi,si (described later in the section) and the QR
tradeoff fi,si+1 of the next segment.
3) Learn: involves learning parameters (mi,si , bi,k, di,si)i∈N
used in the optimization problems RNOVA(bk, ck) and
QNOVAi(θi,si , fi,si+1). Here si is the current segment index
of video client i and k is the current slot index. The parameter
mi,si tracks mean quality of video client i ∈ N . Parameters
bi,k and di,si serve as indicators of risk of violation of
rebuffering constraints (6) and cost constraints (7) respectively
of video client i ∈ N , and larger the parameter, larger the risk.
We later see that, for βi = 0, the value of bi,k reflects the
duration of video content in video client i’s playback buffer
(and is roughly a linear decreasing function of this duration).
The parameters (mi,si , bi,k, di,si) are learnt/updated by video
client i for each i ∈ N , and the network controller only uses
bk for carrying out resource allocation in slot k.

For b ∈ RN and allocation constraint c ∈ C, the (convex)
optimization problem RNOVA(b, c) associated with network
resource allocation is:

max
r

{∑
i∈N

hBi (bi) ri : c (r) ≤ 0, ri ≥ ri,min ∀i ∈ N

}
(8)

where hBi (.) is a non-negative valued Lipschitz continuous
function such that limb→∞ hBi (b) = ∞, hBi (bi) = 0 for
all bi ≤ b for some constant b (typically set as zero or
small negative numbers), and is strictly increasing for bi ≥ b.
Simple examples of functions satisfying these conditions are
max(b, 0), max(b2, 0) etc. LetR∗ (b, c) denote the set of opti-
mal solutions to RNOVA(b, c). When using RNOVA(b, c), we
will set b as the current value of the rebuffering risk indicator
bk. Hence, the objective function (8) gives more weight to
video clients with a higher value of bi,k i.e., higher risk of
violation of rebuffering constraints.

Let mi ∈ [0, qmax], bi, di ∈ R and θi = (mi, bi, di). For
QR tradeoff fi, let

φQ (qi,θi, fi) = qi − ηi (qi −mi)
2 (9)

− hBi (bi)(
1 + βi

)fi (qi)− pdi h
D
i (di)

pi
fi (qi) ,

where hDi (.) satisfies conditions given for hBi (.) with b re-
placed by d (also set as zero or a small negative number). The
optimization problem QNOVAi(θi, fi) associated with quality
adaptation of video client i is given below:

max
qi

{
φQ (qi,θi, fi) : 0 ≤ qi ≤ qmax

}
.

When using QNOVAi(θi, fi) in NOVA, we will use θi =
(mi,s, bi,k+1, di,s) so that the objective function (9) includes
a term (qi −mi,s)

2 ensuring that an optimal solution to
QNOVAi(θi, fi) is not too far from mi,s (current estimate
of mean quality), and thus avoids high variance in quality.
Further, the terms hBi (bi,k+1)

(1+βi)
fi (qi) and pdi h

D
i (di,s)
pi

fi (qi) in (9)
penalize quality choices leading to large segment sizes when
bi,k+1 or di,s are high, and thus ensure that NOVA reacts to
indicators of increased risk of violation of rebuffering con-
straints and cost constraints. Also note that we can control the
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response of NOVA to these indicators by appropriately choos-
ing

(
hBi (.)

)
i∈N and

(
hDi (.)

)
i∈N . The optimization problem

QNOVAi(θi, fi) is convex with strictly concave objective
function, and thus has a unique solution denoted as q∗i (θi, fi).

Next, we present the algorithm NOVA. Let si be an indexing
variable keeping track of the segment video client i is currently
downloading. Let ε > 0,

H(i) =
{
(mi, bi, di) ∈ R3 : 0 ≤ mi ≤ qmax, bi ≥ b, di ≥ d

}
,

and let [x]y = max(x, y) for x, y ∈ R. Also, assume that all
video clients have already downloaded the 0th segment at the
beginning of slot k = 0. The algorithm NOVA is given below.

NOVA
Initialization: Let (mi,0, bi,0, di,0) ∈ H(i) for each i ∈ N .

In each slot k ≥ 0, carry out the following steps:
ALLOCATE: At the beginning of slot k, network con-
troller allocates resources r∗k choosing any solution to
RNOVA(bk, ck). Update bk as follows:

bi,k+1 = bi,k + ε

(
τslot(
1 + βi

)) . (10)

ADAPT: In slot k, if any video client i ∈ N finishes download
of si th segment, let θi,si = (mi,si , bi,k+1, di,si). For segment
si + 1 of video client i, the video client selects representa-
tion with quality q∗i (θi,si , fi,si+1) (i.e., optimal solution to
QNOVAi(θi,si , fi,si+1)), denoted as q∗i,si+1 for brevity, and
update parameters mi,si+1, bi,k+1, di,si+1 and si as follows:

mi,si+1 = mi,si + ε
(
q∗i,si+1 −mi,si

)
, (11)

bi,k+1 = [bi,k+1 − ε (li)]b , (12)

di,si+1 =

[
di,si + ε

(
pdi
lifi,si+1

(
q∗i,si+1

)
pi

− li

)]
d

, (13)

si = si + 1.

For each i ∈ N , parameters (mi,si , bi,k, di,si) are
learnt/updated by video client i. The network controller only
needs to know bk for carrying out resource allocation in
slot k and this can be achieved using minimal signaling
as described in subsection IV-B. Under NOVA, allocation
is done at the beginning of each slot whereas adaptation
is asynchronous, i.e., adaptation related decisions about a
segment are made by a video client only at the completion
of download of previous segment. The update equation (11)
associated with the parameter mi,si is similar to update rules
used for tracking EWMA (Exponentially Weighted Moving
Averages), and ensures that mi,si tracks the mean quality of
video client i. Consider the evolution of the parameter bi,k
which is updated in both (10) and (12) ignoring the operator
[.]b and setting initialization to zero. (10) ensures that bi,k is
increased by fixed amount ετslot

(1+βi)
at the beginning of each slot.

(12) ensures that when a video client completes the download
of a segment, bi,k is reduced by ε times the duration of the
next segment. Hence, at some time t seconds (or k = t/τslot
slots) after starting the video,

bi,k − bi,0
ε

≈ t(
1 + βi

) − LDi (t),

where LDi (t) is the duration of video downloaded up to time
t. This sheds light on the role of bi,k as an indicator of risk
of violation of rebuffering constraint in (6) for video client
i. In particular, we see that for βi = 0 and small enough b,
(bi,k−bi,0)/ε is equal to (t−LDi (t)) which is equal to negative
of the duration of video content in playback buffer (if there is
any). Similarly, we can argue that di,si serves as an indicator
of risk of violation of cost constraint (7) for video client i.

Note that a large value of bi,k results in the selection of a
representation of smaller size (see (9)). This combined with the
role of bi,k discussed above and the fact that NOVA satisfies
the rebuffering constraint (5) asymptotically (see Theorem
1 (a)) suggests that NOVA aims to meet the rebuffering
constraint (5) for finite S also. Further, start up delays can
be reduced by appropriately choosing the initial conditions,
e.g. pick large bi,0 and small mi,0 to encourage selection of
representations with smaller size in the beginning so that they
are downloaded quickly. Also, the frequency of rebuffering
events can be reduced by forcing the video client to delay the
resumption of playback after a rebuffering event until there
is sufficient amounts of video content in the playback buffer.
Also, note that although we have not explicitly incorporated
the possibility of packet losses (in wireless networks, routers
in wired networks etc) into our theoretical framework, the
simplicity of quality adaptation in NOVA allows it operate in
such settings as it does not rely on such ‘low-level’ network
information and only relies on a ‘high level’ view of the
network encapsulated in segment download completions.

It is interesting to note that the quality adaptation proposed
in NOVA does not directly use any information about the
allocation constraints. Neither does the resource allocation
directly use any information about QR tradeoffs of the video
clients. Yet, the joint resource allocation and quality adaptation
under NOVA has strong optimality properties (which are
presented later in this section). This is mainly due to the fact
that the variables (bi,k)i∈N carry almost all the information
about the video clients’ quality adaptation that is required by
the network controller to carry out optimal resource allocation,
and the variable bi,k carries almost all the information that
the quality adaptation at video client i needs to know about
the resource allocation (to the client). For e.g., consider a
video client i in the network that has very few unwatched
segments in the playback buffer, i.e., the video client is about
to experience rebuffering. We see that the update rules for
bi,k (and a large enough initialization) ensure that bi,k will
be large in this scenario, and this forces the video client
and the network controller to make the right moves, i.e., this
forces the video client to switch to low quality representations
(accounting for current QR tradeoffs), and forces the network
controller to give higher priority to this video client in the
resource allocation (accounting for allocation constraints).

A. Optimality of NOVA

The following theorem is the main optimality result for
NOVA, and we discuss key steps of our proof in Section V.

Theorem 1. Suppose (Ck)k≥0 and (Fi,s)s≥0 are stationary
ergodic processes for each i ∈ N . Then,
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(a) Feasibility: NOVA asymptotically satisfies the constraints
on rebuffering and cost, i.e., for each i ∈ N

limsupS→∞βi,S
(
(q∗i )1:S , (r

∗
i )1:KS

)
≤ βi, (14)

limsupS→∞pi,S ((q
∗
i )1:S) ≤ pi. (15)

(b) Optimality: Let Sε = S
ε . Then,

lim
S→∞

lim
ε→0

(
φSε

(
(q∗)1:Sε

)
− φoptSε

)
converges to zero in probability.

Here Ck and Fi,s are random variables corresponding to
ck and fi,s respectively. Recall that, under NOVA, q∗i,si is the
quality associated with segment si of video client i (and the
notation used in this result is described at the beginning of
Section II). This result tells us that the difference in perfor-
mance (according to definition (4)) of the online algorithm
NOVA (i.e., φSε

(
(q∗)1:Sε

)
) and that of the optimal offline

scheme goes to zero for long enough videos and small enough
ε. Recall that φoptSε

is the optimal value of OPT(Sε), i.e., the
performance of the optimal omniscient offline scheme which
knows all the allocation constraints (ck)k and QR tradeoffs
(fi,s)s ahead of time.

B. Key features and Implementation of NOVA

Next, we summarize the key features of NOVA.
Optimality: NOVA carries out ‘cross-layer’ joint optimization
of resource allocation and quality adaptation, with strong
optimality guarantees (given in Theorem 1).
Online: NOVA is an online algorithm as it only uses current
information, i.e., network controller only needs to know the
allocation constraint ck to carry out resource allocation for
slot k, and video client i only requires the QR tradeoff fi,s
for quality adaptation of segment s.
Simple: RNOVA(b, c) is an N−variable convex optimization
problem, which becomes an even simpler linear program under
linear allocation constraints (often this linear program has
enough structure to allow for very efficient solution tech-
niques). Also, note that QNOVAi(θi, fi) is just a scalar convex
optimization problem.
Asynchronous and well suited for DASH: The asynchronous
nature of NOVA ensures that the video clients can work at
their own pace and the adaptation prescribed in NOVA is
entirely client driven requiring no assistance from the network
controller, and is thus well suited for DASH framework.
Distributed implementation and information flow: NOVA
can be implemented in a distributed manner with minimal
signaling since quality adaptation is client driven and for the
resource allocation, the network controller need only know bk.
To ensure that the network controller knows the current value
of rebuffering risk indicator vector bk, each video client can
send a signal to the base station indicating the latest value of
bi,k (just a signal indicating segment download completion is
enough) at the end of each segment download which usually
occurs at a low frequency (typically once a second). On
receiving this signal from video client i ∈ N , the network
controller can then update bi,k. Now, until the next signal from

video client i, the network controller can update bi,k using
(10) that requires only constant increments. The network con-
troller could obtain information about allocation constraints
through Channel Quality Information (CQI) feedback from the
network, and video clients could obtain their respective QR
tradeoffs using application layer information exchange. The
flow of information across various layers of the network for
this implementation of NOVA is depicted in Fig. 1. Note that
we do not even need this signaling if the network controller
could identify segment download completions on its own (for
e.g., using deep packet inspection).

Current Peak
Rate

Wireless 
resource  
allocation

Quality Rate tradeoffs 
for segments being 

transported, fi,s

Stored
Quality Rate
tradeoff info

Video quality
adaptationApplication 

layer

MAC layer

PHY layer

Transport and 
Network layers

Rebufffering
risk indicators, 
bk

Mobile video 
client iBase Station

Video 
Server

Wireline PHY Wireless PHY

Current CQI, ck

Fig. 1. Cross Layer Information Flow

Optimal Adaptation: The adaptation proposed in NOVA is
independently optimal, and the optimality properties of the
adaptation component of NOVA is ‘insensitive’ to the resource
allocation component, i.e., does not depend on detailed char-
acteristics (for e.g., the specific resource allocation algorithm,
time scale of operation etc) of the latter. See [18] for a detailed
discussion of this property. As a corollary of this property,
we have that the adaptation proposed in NOVA (which is
well suited for DASH based video clients) is also optimal for
standalone video clients.
Well suited for legacy networks: Optimization algorithm
for resource allocation, RNOVA(b, c) requires only a sim-
ple modification of legacy schedulers like proportionally fair
schedulers (see [19]). This is clear on comparing (8) and (39)
(which is discussed later).

V. PROOF OF OPTIMALITY OF NOVA

This section is devoted to a discussion of the proof of the
previously stated Theorem 1 related to optimality of NOVA
focusing on the key intermediate results used in the proof.
Due to space constraints, we have omitted detailed proofs of
these intermediate results which can be found in [18]. We start
this section with a discussion about some useful properties of
NOVA. In Subsection V-A, we study an auxiliary optimization
problem OPTSTAT and obtain Theorem 2 which suggests that
we can prove the main optimality result Theorem 1 for NOVA
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if we establish an appropriate convergence result for NOVA’s
parameters. In Subsection V-B, we study an auxiliary differ-
ential inclusion (given in (31)-(36)) which evolves according
to average dynamics of NOVA, and obtain a convergence
result for the differential inclusion. In Subsection V-C, we
view NOVA’s update equations ((11)-(13) and (27)-(29)) as
an asynchronous stochastic approximation update (see, e.g.,
[20] for reference), and relate this stochastic approximation
update to the auxiliary differential inclusion (in (31)-(36)),
and use this relationship to establish desired convergence
of NOVA’s parameters using the convergence result for the
auxiliary differential inclusion established in Subsection V-B.

Next, we discuss some useful properties of NOVA. The
optimization problem RNOVA(b, c) is convex, and using
Assumption-SF, we can show that it satisfies Slater’s condition
(see [21] for reference). Thus, KKT conditions are neces-
sary and sufficient for optimality. The optimization problem
QNOVAi(θi, fi) is also convex and satisfies Slater’s condition
(since the constraints are all linear), and thus, KKT conditions
are necessary and sufficient for optimality.

The next result states that the parameters in NOVA stay in
a compact set and in particular, points out that the parameters
bi,k and di,s can be uniformly bounded.

Lemma 1. For any initialization (mi,0, bi,0, di,0)i∈N ∈∏
i∈N H(i), the parameters evolving according to NOVA sat-

isfy the following: for each i ∈ N , s ≥ 1 and k ≥ 1, we have
0 ≤ mi,s ≤ qmax, b ≤ bi,k ≤ b and d ≤ di,s ≤ d for some
finite constants b and d and for all k and s large enough.

For the next two results, let θi = (mi, bi, di) where 0 ≤
mi ≤ qmax and bi, di ∈ R. The next result provides smooth-
ness properties for the optimal solutions of RNOVA(b, c) and
QNOVAi(θi, fi).

Lemma 2. (a) For each i ∈ N and fi ∈ Fi, q∗i (θi, fi) is a
continuous function of θi.
(b) For each c ∈ C, R∗ (b, c) is a convex and compact set.
Further, R∗ (b, c) is an upper semi-continuous set valued map
of b.
(c) For each c ∈ C and r∗ (b, c) ∈ R∗ (b, c), φR (r∗ (b, c) ,b)
is a continuous function of b.

In the next result, we discuss concavity and differentiability
properties of the optimal value of QNOVAi(θi, fi).

Lemma 3. The following statements hold for each i ∈ N
and fi ∈ Fi.
(a) The optimal value of QNOVAi(θi, fi), i.e.,
φQ (q∗i (θi, fi) ,θi, fi), is a strictly concave function of
mi (with bi and di fixed).
(b) The partial derivative of φQ (q∗i (θi, fi) ,θi, fi) with
respect of mi is given by:

∂φQ (q∗i (θi, fi) ,θi, fi)

∂mi
= 2ηi (q

∗
i (θi, fi)−mi) . (16)

(c) Let θ
(m)
i = (m, bi, di), i.e., θi with the first component

set to m. If m 6= mi, the optimal value of QNOVAi(θ
(m)
i , fi)

satisfies

φQ
(
q∗i

(
θ
(m)
i , fi

)
,θ

(m)
i , fi

)
< φQ (q∗i (θi, fi) ,θi, fi)

+2ηi (m−mi) (q
∗
i (θi, fi)−mi) .

A. NOVA, under stationary ergodic regime, is optimal if its
parameters are picked from an optimal parameter set

In this section, we use the fact that the underlying allocation
constraints and QR tradeoffs are drawn from stationary er-
godic processes to show that the offline optimization problem
OPT(S) has an ‘asymptotically’ optimal solution which corre-
sponds to a stationary policy– a policy for which the allocation
and quality adaptation decisions depend solely on the current
state determined by the current allocation constraint and QR
tradeoffs. Additionally, we establish a useful relationship (in
Theorem 2) between such an ‘optimal’ stationary policy and
NOVA that the former can be obtained by using RNOVA(b, c)
for allocation and QNOVAi(θi, fi) for quality adaptation if the
parameters driving the allocation and adaptation (i.e., θi for
all i which also includes b) are selected from an ‘optimal’ set
of parameters.

The offline optimization formulation OPT(S) mainly in-
volves time and segment averages of various quantities. By
contrast, the formulation of OPTSTAT discussed in this sec-
tion is based on the expected value of the corresponding
quantities evaluated under the stationary distribution of (Ck)k
and (Fi,s)s≥0 for each i ∈ N . Recall (see Section II) that
(Ck)k is a stationary ergodic random process with marginal
distribution

(
πC(c)

)
c∈C . We let Cπ denote a random variable

with distribution
(
πC(c) : c ∈ C

)
. Also, recall that for each

i ∈ N , (Fi,s)s≥0 is a stationary ergodic process with marginal
distribution

(
πFi (fi)

)
fi∈Fi

. We let Fπi denote a random
variable with distribution

(
πFi (fi)

)
fi∈Fi

.
Consider a stationary policy with (r (c))c∈C being a vector

(of vectors) representing the allocation r (c) (∈ RN ) for each
c ∈ C. Though we are abusing earlier notation where r(t)
denoted the allocation to the video clients in slot t, one can
differentiate between the functions based on the context in
which they are being discussed. Also, for the stationary policy,
let qi (f) denote the quality associated with a segment of video
client i with f ∈ Fi. Mimicking the definition of φS ((q)1:S),
mS
i (qi) and VarSi (qi) in Section III, we let

φπ

((
(qi (fi))fi∈Fi

)
i∈N

)
=∑

i∈N
(Mean (qi (Fπi ))− ηiVar (qi (Fπi ))) , (17)

where

Mean (qi (Fπi )) = E [qi (F
π
i )] ,

Var (qi (Fπi )) = E
[
(qi (F

π
i )−Mean (qi (Fπi )))

2
]
.

Now, consider the optimization problem OPTSTAT given
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below:

max(
(qi(fi))fi∈Fi

)
i∈N

,(r(c))c∈C

φπ

((
(qi (fi))fi∈Fi

)
i∈N

)
(18)

subject to c (r (c))) ≤ 0, ∀ c ∈ C, (19)
0 ≤ qi (fi) ≤ qmax, ∀ fi ∈ Fi, ∀ i ∈ N ,

ri (c) ≥ ri,min, ∀ c ∈ C, ∀ i ∈ N ,

pdi
E [Fπi (qi (F

π
i ))]

pi
≤ 1, ∀ i ∈ N , (20)

E [Fπi (qi (F
π
i ))](

1 + βi
) ≤ E [ri (C

π)]

τslot
, ∀ i ∈ N . (21)

We obtained the above formulation by replacing the time and
segment averages of various quantities in OPT(S) with the
expected value of the corresponding quantities. Note that in
the constraint c (r (c))) ≤ 0 given in (19), c appearing as
argument of r(c) is an index (for the corresponding element
in C) whereas the other c is the associated function. Similarly,
in the term Fπi (qi (F

π
i )), the argument Fπi serves as an index

whereas Fπi (.) is the (random) function.
We can show that OPTSTAT is a convex optimization

problem satisfying Slater’s condition. Further, we can show
that the optimal quality choices obtained by solving OPTSTAT
are unique and we denote them by

(
(qπi (f))f∈Fi

)
i∈N

. Let((
(qπi (f))f∈Fi

)
i∈N

, (rπ (c))c∈C

)
be an optimal solution to

OPTSTAT, and let bπ and dπ denote the associated Lagrange
multipliers for the constraints (20) and (21) respectively. Since
OPTSTAT is a convex optimization problem satisfying Slater’s
condition, we can conclude that the KKT conditions are
necessary and sufficient for optimality. For each i ∈ N , let

mπ
i = E [qπi (F

π
i )] , (22)

vπi = Var (qπi (F
π
i )) , (23)

σπi = E [Fπi (qπi (F
π
i ))] . (24)

Thus mπ
i , vπi and σπi are the (statistical) mean quality, variance

in quality and mean segment size for video client i associated
with optimal solution to OPTSTAT. Also, let

X π = {(ρπ,bπ,dπ) : there is an optimal solution (25)((
(qπi (f))f∈Fi

)
i∈N

, (rπ (c))c∈C

)
to OPTSTAT with

ρπi = E [rπi (C
π)] for each i ∈ N , and with

bπ and dπ as the associated optimal Lagrange multipliers
for constraints (20) and (21) respectively} .

In the next result, we present three useful properties of any
optimal solution to OPTSTAT. The result in part (a) below
provides a video client level optimality result which essentially
suggests that we can decouple the quality adaptation of the
video clients. It states that the component (qπi (f))f∈Fi of
the optimal solution to OPTSTAT associated with video client
i ∈ N is itself an optimal solution to an optimization problem
which can be solved by the video client i. This result hints
at the possibility of distributing the task of quality adaptation
across the video clients so that each video client manages

its own adaptation. The result in part (b) points out that
we only need to know a few parameters (specifically, the
optimal Lagrange multipliers associated with the rebuffering
constraints) associated with the quality adaptation to carry
out optimal resource allocation. This suggests that we could
potentially decouple the task of optimal resource allocation
from quality adaptation. Part (c) states that that when NOVA
parameter θi,s of video client i is in the set H∗i defined below

H∗i :=
{(
mπ
i ,
(
hBi
)−1

(bπi ) ,
(
hDi
)−1

(dπi )
)

(26)

: (ρπ,bπ,dπ) ∈ X π} ,

NOVA can provide optimal quality choices for OPTSTAT.

Lemma 4. For parts (a) and (b) of this result, suppose
(ρπ,bπ,dπ) ∈ X π and let the associated optimal solution

be
((

(qπi (f))f∈Fi

)
i∈N

, (rπ (c))c∈C

)
.

(a) For each i ∈ N , (qπi (f))f∈Fi is the unique optimal
solution to the following optimization problem

max(
(qi(f))f∈Fi

)E [qi (F
π
i )]− ηiVar (qi (Fπi ))

−
∑
i∈N

dπi

(
pdi
pi

)
E [Fπi (qi (F

π
i ))]

−
∑
i∈N

bπi(
1 + βi

)E [Fπi (qi (F
π
i ))] ,

s.t. 0 ≤ qi(f) ≤ qmax, ∀ f ∈ Fi.

(b) (rπ (c))c∈C is an optimal solution to the following opti-
mization problem

E

[∑
i∈N

bπi ri (C
π)

]
,

s.t. c (r (c))) ≤ 0, ∀ c ∈ C,
ri (c) ≥ ri,min, ∀ c ∈ C, ∀ i ∈ N .

(c) The following holds for each i ∈ N : If θπi ∈ H∗i , then
q∗i (θ

π
i , f) = qπi (f) for each f ∈ Fi.

We use the observation in part (c) and properties of OPT-
STAT to prove the next result which is an important interme-
diate result used in the proof of optimality result for NOVA
given in Theorem 1. The result states that the performance of
NOVA (measured in terms of φS(.) defined in (4)) with its
parameters θi,s picked from the set H∗i for each i ∈ N is
asymptotically optimal. Further, this result suggests that we
can prove Theorem 1 if we can show that the updates (11)-
(13) of NOVA guide the parameters (θi,s)s≥1 of video client
i to H∗i for each video client i ∈ N . This motivates the study
of convergence behavior of NOVA which is the main focus of
the rest of this section.

Theorem 2. Suppose θπi ∈ H∗i for each i ∈ N . Then, for
almost all sample paths

lim
S→∞

(
φS

((
(q∗i (θ

π
i , fi,s))i∈N

)
1≤s≤S

)
− φoptS

)
= 0.
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B. NOVA parameters also converge to the optimal parameter
set, and proving Theorem 1

The next key step is to show that NOVA’s ‘learning com-
ponent’ (i.e., updates (10)-(13)) is able to guide its param-
eters to the optimal set (i.e.,

∏
i∈N H∗i ). Instead of directly

studying the (asynchronous) discrete time evolution of NOVA’s
parameters, we will first study a related set of ‘fluid’ NOVA
parameters and (in Theorem 3) show that these converge to
the optimal set. To this end, we study an auxiliary differential
inclusion which evolves according to average dynamics of
NOVA. The main goal of this subsection is to study the
convergence of the differential inclusion which in turn will
help us establish the desired convergence result for NOVA
parameters in the next subsection.

For the rest of this section, we also consider the evolution
of auxiliary parameters (vi,si)si≥1, (σi,si)si≥1 and (ρi,k)k≥1
associated with NOVA. We update vi,si and σi,si based on the
quality q∗i,si+1 (shorthand for q∗i (θi,si , fi,si+1) where θi,si =
(mi,si , bQ,i,si , di,si)) chosen by NOVA for (si+1)th segment
of video client i ∈ N as follows:

vi,si+1 = vi,si + ε
((
q∗i,si+1 −mi,si

)2 − vi,si) , (27)

σi,si+1 = σi,si + ε
(
fi,si

(
q∗i,si+1

)
− σi,si

)
. (28)

Thus, the auxiliary parameters vi,si and σi,si track the variance
(roughly) and the mean segment size respectively of the
segments downloaded by video client i ∈ N . We update
the parameter ρk based on the resource allocation r∗k ∈
R∗ (bk, ck) in slot k as described below

ρi,k+1 = ρi,k + ε
(
r∗i,k − ρi,k

)
∀ i ∈ N . (29)

Thus, the auxiliary parameter ρk tracks the mean resource
allocation to video clients. Note that the auxiliary parameters
do not affect the allocation or adaptation in NOVA.

Next, let

H =
{
(m,v,b,d,σ,ρ) ∈ R6N : for each i ∈ N , (30)

0 ≤ mi ≤ qmax, 0 ≤ vi ≤ q2max, b ≤ bi ≤ b, d ≤ di ≤ d,
lminfmin ≤ σi ≤ lmaxfmax, ri,min ≤ ρi ≤ rmax} .

Using Lemma 1 and assumptions discussed in Section II,
we can show that the parameters (ms,vs,bk,ds,σs,ρk)s,k
remain in H. For each video client i ∈ N , we use the variables
m̂i(t), v̂i(t), b̂i(t), d̂i(t), σ̂i(t) and ρ̂i(t) to track the average
dynamics of the parameters mi,si , vi,si , bi,k, di,si , σi,si and
ρi,k respectively associated with NOVA (explained in detail in
the sequel). Let Θ̂(t) =

(
m̂(t), v̂(t), b̂(t), d̂(t), σ̂(t), ρ̂(t)

)
∈

H and θ̂i(t) = (m̂i(t), b̂i(t), d̂i(t)) for each i ∈ N , i.e.,
θ̂i(t) includes the components in Θ̂(t) that affect the quality
adaptation of video client i ∈ N .

The main focus of this subsection is the following differen-
tial inclusion which describes the evolution of

(
Θ̂(t)

)
t≥0

:

Auxiliary differential inclusion related to NOVA

Θ̂(0) ∈ H and for almost all t ≥ 0 and each i ∈ N ,

.
m̂i(t) =

1

ui

(
Θ̂(t)

) (E [q∗i (θ̂i(t), Fπi )]− m̂i(t)
)
,(31)

.
v̂i(t) =

1

ui

(
Θ̂(t)

) (E [(q∗i (θ̂i(t), Fπi )− m̂i(t)
)2]

−v̂i(t)) , (32)
.
b̂i(t) =

1(
1 + βi

) − li

ui

(
Θ̂(t)

) + ẑbi

(
Θ̂(t)

)
, (33)

.
d̂i(t) =

1

ui

(
Θ̂(t)

)
pdiE

[
liF

π
i

(
q∗i

(
θ̂i(t), F

π
i

))]
pi

−li) + ẑdi

(
Θ̂(t)

)
, (34)

.
σ̂i(t) =

1

ui

(
Θ̂(t)

) (E [Fπi (q∗i (θ̂i(t), Fπi ))]−
σ̂i(t)) , (35)

.
ρ̂i(t) =

1

τslot

r∗i
(
b̂(t)

)
τslot

− ρ̂i(t)

 , (36)

where

ui

(
Θ̂(t)

)
= τslot

E
[
liF

π
i

(
q∗i

(
θ̂i(t), F

π
i

))]
E
[
r∗i

(
b̂(t), Cπ

)] , (37)

and r∗
(
b̂(t), c

)
∈ R∗

(
b̂(t), c

)
for each c ∈ C.

Here ẑbi
(
Θ̂(t)

)
and ẑdi

(
Θ̂(t)

)
are terms mimicking the role

of the operators [.]b and [.]d in (12) and (13), and ensure that(
Θ̂(t)

)
t≥0

stays in H (see [18] for a more detailed discussion

and see Section 4.3 of [20] for a discussion about projected
stochastic approximation). Note that ui (.) is a set valued map
(and hence (31)-(36) describes a differential inclusion) since
the denominator E

[
r∗i

(
b̂(t), Cπ

)]
in (37) is a set valued

map. Finally, note that the above definition only requires that(
Θ̂(t)

)
t≥0

is differentiable for almost all t ≥ 0, i.e., we

are considering the class of absolutely continuous functions(
Θ̂(t)

)
t≥0

that satisfy (31)-(36). We can show that the

differential inclusion (31)-(36) is well defined, i.e., there exists
an absolutely continuous function that solves (31)-(36) for any
Θ̂(0) ∈ H. Further, we can show that these solutions are
Lipschitz continuous and stay in H and hence are bounded.

Although we will rigorously establish the relationship be-
tween the evolution of parameters of NOVA and (31)-(36) in
the next subsection, we can see that the differential inclusion
(31)-(36) reflects the average dynamics of the evolution of
parameters in NOVA by comparing (31)-(36) against the
update rules (11)-(13) and (27)-(29) in NOVA. For instance,
this is apparent when we compare the update rule

mi,si+1 −mi,si = ε
(
q∗i,si+1 −mi,si

)
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for NOVA parameter mi,si+1 given in (11), against (31)
describing the evolution of the parameter m̂i(t). Note that
the rate of change of m̂i(t) given in (31) has a scaling term

1

ui(Θ̂(t))
which corresponds to the segment download rate

of video client i at time t (and ui

(
Θ̂(t)

)
defined in (37)

corresponds to expected segment download time of video
client i at time t). This scaling by segment download rate is
naturally expected for the rate of change of parameters m̂i(t),
v̂i(t), d̂i(t) and σ̂i(t) which correspond to NOVA parameters
that are updated when a segment download is completed,
and thus we can view 1

ui(Θ̂(t))
as the update rate associated

with these parameters. Similarly, we can view the constant
scaling term 1

τslot
in (36) describing the evolution of ρ̂i(t) as

the corresponding update rate by noting that the associated
(auxiliary) NOVA parameter ρi,k is updated at the beginning
of every slot, i.e., once every τslot seconds. Finally, note that
(33) describing the evolution of b̂i(t) can be rewritten as

.
b̂i(t) =

1

τslot

(
τslot(
1 + βi

))− 1

ui

(
Θ̂(t)

) (li) + ẑbi

(
Θ̂(t)

)
,

and presence of the two scaling terms 1
τslot

and 1

ui(Θ̂(t))
reflects the fact that the corresponding NOVA parameter bi,k
is updated at the beginning of every slot (using (10)) and
when a segment download of video client i is completed
(using (12)). Thus, we can expect that (31)-(36) captures
the average dynamics of NOVA, and the presence of the

video client dependent update rates
(

1

ui(Θ̂(t))

)
i∈N

reflects

the asynchronous nature of the evolution of NOVA parameters
where different video clients are updating their parameters at
their own (possibly time varying) rates.

Next we define certain classes of adaptation and allocation
policies.

Definition 1. Stationary resource allocation policy: Let
(r(c))c∈C be a |C| length vector (of vectors) where r(c) ∈ RN+ .
We refer to (r(c))c∈C as a stationary resource allocation policy
as we can associate (r(c))c∈C with a resource allocation policy
that allocates resource r(c) in a slot k when Ck = c, and thus
the policy carries out the resource allocation in a slot based
only on the allocation constraint in the slot.

Definition 2. Feasible stationary resource allocation policy:
We say that a stationary resource allocation policy

(
(r (c))c∈C

)
is feasible if

r (c) ≥ rmin and c (r (c)) ≤ 0, ∀ c ∈ C.

Definition 3. Stationary quality adaptation policy for video
client i:
Let (qi (fi))fi∈Fi ∈ RFi+ . We refer to (qi (fi))fi∈Fi as a
stationary quality adaptation policy for video client i ∈ N
as we can associate (qi (fi))fi∈Fi with a quality adaptation
policy for video client i that chooses quality qi (fi) for each
segment s with QR tradeoff fi, and thus the policy carries
out quality adaptation for a segment based only on the QR
tradeoff of that segment.

Definition 4. Feasible stationary quality adaptation policy
for video client i: We say that a stationary quality adap-
tation policy (qi (fi))fi∈Fi for video client i is feasible if
0 ≤ qi (fi) ≤ qmax for each fi ∈ Fi.

Next, we define the set H̃ ⊂ R6N as

H̃ =

{
(m,v,b,d,σ,ρ) ∈ H : ∃ a feasible stationary

resource allocation policy (r (c))c∈C s.t.
E [ri (C

π)]

τslot
= ρi

∀ i ∈ N ; for each i ∈ N , ∃ there is a feasible stationary

quality adaptation scheme
(
(qi (fi))fi∈Fi

)
such that

Var (qi (Fπi )) ≤ vi ≤ q2max, E [Fπi (qi (F
π
i ))] ≤ σi ≤ fmax

}
.

We can view H̃ as the set of ‘achievable’ parameters in
H, i.e., for any element (m,v,b,d,σ,ρ) ∈ H there is
some feasible stationary resource allocation policy with mean
resource allocation per unit time ρ, and there is some feasible
stationary quality adaptation policy for each i that has a
variance in quality which is at least vi and mean segment
size which is at least σi.

It can be verified that H̃ is a bounded, closed and convex set
(using an approach similar to Lemma 5 (b) in [17]). Hence, we
conclude that for any Θ ∈ H, there exists a unique projection
of Θ̃ ∈ H onto the set H̃. Let .̃ denote this projection operator.
Hence, for any Θ ∈ H, d6N

(
Θ, H̃

)
= d6N

(
Θ, Θ̃

)
. The

next result states that, irrespective of the initialization, the
differential inclusion converges to the bounded, closed and
convex set H̃ of achievable parameters.

Lemma 5. There exists a finite constant χ0 > 0 such that for
any initialization Θ̂(0) ∈ H,

d

dt
d6N

(
Θ̂(t), H̃

)
≤ −χ0d6N

(
Θ̂(t), H̃

)
.

Hence,
lim
t→∞

d6N

(
Θ̂(t), H̃

)
= 0.

In the next result, we provide the main convergence result
for the differential inclusion (31)-(36) which states that Θ̂(t)
converges to the following set

H∗ = {(m,v,b,d,σ,ρ) ∈ H :(
ρ,
(
hBi (bi)

)
i∈N ,

(
hDi (di)

)
i∈N

)
∈ X π,

and for each i ∈ N , mi = mπ
i , vi = vπi } (38)

Recall that Theorem 2 suggested that we can prove Theorem
1, if we can show that the updates (11)-(13) guide NOVA
parameters (θi,s)s≥1 of video client i to the set H∗i (defined
in (26)) for each video client i ∈ N . Note that for each i ∈ N ,
H∗i is a set obtained by projecting H∗ on a lower dimensional
space (by considering only video client i’s components and
‘dropping’ the components (v,σ,ρ)). Hence, the following
result along with Theorem 4 (which relates evolution of NOVA
parameters to the differential inclusion) help us to establish
the desired convergence property for NOVA parameters. The
proof of this result requires several intermediate results (using
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Lemma (c), optimality properties related to RNOVA(b, c),
QNOVAi(θi, fi), OPTSTAT etc.) and extensions of ideas in
[17], [22] etc.

Theorem 3. (a) For Θ̂ =
(
m̂, v̂, b̂, d̂, σ̂, ρ̂

)
∈ H, and some

(ρπ,bπ,dπ) ∈ X π , let

L
(
Θ̂
)
:=−

∑
i∈N

(
1 + βi

)
li (m̂i − ηiv̂i)

+
∑
i∈N

(
1 + βi

)(
lid

π
i

(
pdi σ̂i
pi
− 1

)
+

∫ d̂i

d

(
hDi (e)− dπi

)
de

)

+
∑
i∈N

(lib
π
i σ̂i − τslotbπi ρ̂i) +

∑
i∈N

σπi

∫ b̂i

b

(
hBi (e)− bπi

)
de

+
∑
i∈N

(
1 + βi

)
li (m̂i −mπ

i )
2
+ χd

(
Θ̂, H̃

)
,

where χ0 is the positive constant from Lemma 5, and χ2 is an
appropriately chosen (large) positive constant. If Θ̂(0) ∈ H,
then for almost all t

dL
(
Θ̂(t)

)
dt

{
≤ 0, ∀ Θ̂(t) ∈ H,
< 0, ∀ Θ̂(t) /∈ H∗.

(b) If Θ̂(0) ∈ H, then

lim
t→∞

d6N

(
Θ̂(t),H∗

)
= 0.

C. NOVA parameters also converge to the optimal parameter
set, and proving Theorem 1

The main focus of this subsection is Theorem 4 which
relates NOVA to the auxiliary differential inclusion (31)-(36),
and obtains the desired convergence result for NOVA by using
the convergence result in Theorem 3 for the differential inclu-
sion. Our approach here relies on viewing the update equa-
tions ((11)-(13) and (27)-(29)) of NOVA as an asynchronous
stochastic approximation update equation (see Chapter 12
of [20] for a detailed discussion on asynchronous stochastic
approximation) to relate NOVA to the differential inclusion
using tools from the theory of stochastic approximation. After
obtaining the convergence result for NOVA in Theorem 4, we
conclude this section with the proof of Theorem 1.

Next, we define two auxiliary variables bR,i,k and bQ,i,si+1.
At the beginning of slot k, let bR,i,k = bi,k for each
i ∈ N and thus the variable stores the value of bi,k used
while deciding allocation for k-th slot. In slot k, if any
video client i ∈ N finishes download of si th segment, let
bQ,i,si+1 = bi,k+1, and thus the variable stores the value
of bi,k used while deciding the quality for video client i’s
(si + 1)-th segment. In this following, we use the superscript
ε on NOVA parameters (mε

i,s)i∈N , (vεi,s)i∈N , (bεQ,i,s)i∈N ,
(bεR,i,k)i∈N , (bεi,k)i∈N , (dεi,s)i∈N , (σεi,s)i∈N and (ρεi,k)i∈N to
emphasize their dependence on ε (see NOVA updates in (10)-
(13) to see the dependence). We refer to the update of NOVA
parameters (mi,si , bi,k, di,si) in (11)-(13) carried out after the
selection of segment quality for video client i (following a
segment download) as a Qi-update. Let δτ εQ,i,s denote the time

(in seconds) between the sth and (s + 1)th Qi-updates. Let
τ εQ,i,s = ε

∑s−1
j=0 δτ

ε
Q,i,j . denote ε times the cumulative time

for the first s Qi-updates.
Next, we define time interpolated processes(

m̂ε(t), v̂ε(t), b̂ε(t), d̂ε(t), σ̂ε(t), ρ̂ε(t)
)

associated
with NOVA’s parameters. For each i ∈ N and for
t ∈

[
τ εQ,i,s, τ

ε
Q,i,s+1

)
, let m̂ε

i(t) = mε
i,s, v̂

ε
i (t) = vεi,s,

b̂εQ,i(t) = bεQ,i,s, d̂
ε
i(t) = dεi,s and σ̂εi (t) = σεi,s. Also,

for t ∈ [kτslotε, (k + 1)τslotε), let b̂εR,i(t) = bεR,i,k and
ρ̂εi(t) = ρεi,k. For each t, let

Θ̂
ε

Q(t) =
(
m̂ε(t), v̂ε(t), b̂εQ(t), d̂

ε(t), σ̂ε(t), ρ̂ε(t)
)
,

Θ̂
ε

R(t) =
(
m̂ε(t), v̂ε(t), b̂εR(t), d̂

ε(t), σ̂ε(t), ρ̂ε(t)
)
,

Note that Θ̂
ε

Q(.) and Θ̂
ε

R(.) are different only for components
2N + 1 to 3N . The next result states that for small enough
ε, the time interpolated versions of NOVA parameters Θ̂

ε

Q(.)

and Θ̂
ε

R(.) stay close to the set H∗ (defined in (38)) most of
the time over long time windows. This result is an extension
of Theorem 3.4 in Chapter 12 of [20]. The proof relies on
relating Θ̂

ε

Q(.) and Θ̂
ε

R(.) associated with NOVA to the aux-
iliary differential inclusion (31)-(36) (by viewing the update
equations (11)-(13) of NOVA as an asynchronous stochastic
approximation update equation), and using Theorem 3 which
states that the differential inclusion converges to the set H∗.

Theorem 4. Let Θ̂
ε

Q(0) = Θ̂
ε
(0) ∈ H. Then, the fraction of

time in the time interval [0, T ] that Θ̂
ε

Q(.) and Θ̂
ε

R(.) spend in
a small neighborhood of H∗ converges to one in probability
as ε→ 0 and T →∞.

We have the following corollary of Theorem 4 which
says that for small enough ε and after running NOVA for
long enough, video client i’s NOVA parameter stays close to
H∗i (defined in (26)) most of the time with high probability.

Corollary 1. Let Θ̂
ε
(0) ∈ H and Sε = S

ε . Then for each
i ∈ N , the following holds: for any δ > 0, the fraction of
segment indices for which (θi,s)1≤s≤Sε is in a δ-neighborhood
of H∗i converges to one in probability as ε→ 0 and S →∞.

We have now obtained all the intermediate results required
to prove Theorem 1 which is given below.
Proof of Theorem 1: A detailed proof of part (a) of Theorem
1 can be found in [18] and it primarily relies on the fact that
bi,k and di,s are bounded (from Lemma 1).

Next, we prove part (b). Using Corollary 1 (which says that
(θi,s)1≤s≤Sε essentially converges to H∗i ) and Lemma 2 (a)
(which says that q∗i (θi, fi) is a continuous function of θi),
we can conclude that for θπi ∈ H∗i

lim
S→∞

lim
ε→0

(
φSε

((
(q∗i (θi,s, fi,s))i∈N

)
1≤s≤Sε

)
−

φSε

((
(q∗i (θ

π
i , fi,s))i∈N

)
1≤s≤Sε

))
goes to zero in probability. Now, part (b) of Theorem 1 follows
from the above observation and Theorem 2 which states that
for each i ∈ N and for almost all sample paths

lim
S→∞

(
φS

((
(q∗i (θ

π
i , fi,s))i∈N

)
1≤s≤S

)
− φoptS

)
= 0. �
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VI. EXTENSIONS

In [18], NOVA has been extended in several important
directions and they are discussed briefly next. [18] considers a
more general framework allowing more flexibility in imposing
QoE fairness (as pointed out in Section II), general QoE
models (i.e., generalizations of (3) that allow more flexibility
in variability penalty), and more general allocation constraints
(described in terms of finite number of convex functions
allowing the modeling of the network resources available in
the form of sub-resources like sub-bands).

Analysis of NOVA’s optimality for certain important special
settings is included in [18], and these settings include networks
with legacy resource allocation policies, with just a single
standalone video client and with other traffic (e.g., data traffic).

[18] also analyzes the performance of NOVA in networks
with discrete network resources (i.e., when the set of feasible
resource allocations in a slot is discrete), with user dynamics,
and with several practical video client implementation consid-
erations such as finiteness of the number of representations,
impact of choice of ε, (hBi (.))i∈N and (hDi (.))i∈N , reduction
of startup delay and frequency of rebuffering, playback buffer
limits, playback pauses, ads etc.

VII. SIMULATIONS

In this section, we evaluate NOVA using Matlab simulations
to compare the performance of a wireless network operating
under NOVA vs one using Proportionally Fair (PF) network
resource allocation (see [19]) and quality adaptation based
on Rate Matching (RM). We discuss PF and RM below. We
restrict the discussion to the key features of the setting used
for simulations, and finer details can be found in [18] and [23].

We consider a wireless network with τslot = 10 msecs, and
with allocation constraints of the form ck (rk) =

∑
i∈N

ri,k
pi,k
−

1 in each slot k, where pi,k denotes the peak resource
allocation for video client i in slot k, i.e., if we only allocate
resources to video client i in slot k, then ri,k = pi,k is
the maximum resource allocation to the video client. We
used traces for peak resource allocation based on data for
an HSDPA system3 and we used randomly scaled versions of
these traces to model heterogeneous channels for video clients.

Under PF (see [19]), an optimal solution to

max
r

{∑
i∈N

ri
ρi,k

: ck (r) ≤ 0, ri ≥ ri,min ∀ i ∈ N

}
, (39)

is the network resource allocation in slot k. Here the parame-
ters (ρi,k)i∈N track the mean allocation to the video clients.

In our simulations, we consider video clients downloading
different parts of three open source movies Oceania, Route 66
and Valkaama where the segments are of duration 1 second
each and have 5-6 different representations. We obtained4

proxy subjective VQA metric for the representations based
on the corresponding value of MSSSIM-Y metric ([24]). To
account for finiteness of available representations, we modify

3This data was provided by a service provider. See [18] for more details
on the generation of these sequences.

4See [18] for details including plots depicting diversity of the QR tradeoffs.

the optimization problem QNOVAi(θi, fi), used for quality
adaptation in NOVA by imposing an additional restriction that
the quality for segment s of video client i is picked from the
finite set of quality choices available for the segment.

In quality adaptation based on RM (Rate Matching), a video
client tries to ‘match’ the effective compression rate of the
selected representation to (current estimate of) mean resource
allocation in bits per second, and further modifies the selection
to respond to the state of the playback buffer by switching to
aggressive and cautious modes (see [18] for details). This is
basic feature in many compression rate adaptation algorithms,
for instance, see [25] where (following their terminology) we
see that ‘requested bitrate’ (i.e., size of the representation)
stays close to the ‘average throughput’ (i.e., ρi,k in our setting)
in Microsoft Smooth Streaming player and Netflix player.

For our simulations of NOVA, we let ε = 0.05, ri,min =
0.001 bits, ηi = 0.05, βi = 0 and pdi = 0.01 dollars per
bit for each i ∈ N . While evaluating the rebuffering time in
the simulation results, we allow for a startup delay of 3 secs.
For each i ∈ N , we chose hDi (di) = 10di and hBi (bi) =

0.005
(

bi
0.05 +max

(
bi−20
0.05 , 0

)2)
, mi,0 = 25, bi,0 = 40

0.05 and
di,0 = 1 (these choices are discussed in more detail in [18]).

Each point in the plots discussed below is obtained by
running the associated algorithm 50 times where each sim-
ulation is run until all the video clients have downloaded
a video of duration at least 10 minutes. Each point corre-
sponds to a fixed number of video clients N taking values in
{12, 15, 18, 21, 24, 27, 30, 33}. We refer to the combi-
nation of PF resource allocation and RM quality adaptation
as PF-RM. We also study the performance of PF-QNOVA
which uses PF resource allocation and quality adaptation in
NOVA. NOVA, PF-QNOVA and PF-RM correspond to setting
with no price constraints, and their modifications with price
constraint of 3 dollars per bit are referred to as NOVA(3),
PF-QNOVA(3) and PF-RM(3) respectively. NOVA(3) and PF-
QNOVA(3) implementations use a more stringent/conservative
price constraint of 0.95× 3.

In Fig. 2 (a), we compare the QoE of the video clients under
different algorithms, where we measure QoE using the metric
QoE1 which is the average across simulation runs of

1

N

∑
i∈N

(
m600
i (qi)−

√
Var600i (qi)

)
,

where m600
i (qi) −

√
Var600i (qi) is the metric proposed in

[4] with the scaling constant for
√

Var600i (qi) set to unity
(and m600

i (qi) and Var600i (qi) are defined in Section II). On
comparing QoE1 using Fig. 2 (a), we see that NOVA performs
much better than PF-RM and PF-QNOVA, and in fact provides
‘network capacity gains’ of about 60% over PF-RM, i.e., given
a requirement on average QoE1, we can support about 60%
more video clients by using NOVA than that under PF-RM.
For instance, if we consider the horizontal dashed line in
Fig. 2 (a) that corresponds to an average QoE1 requirement
of about 43, we see that PF-RM can only support 20 video
clients while meeting this requirement whereas NOVA can
support almost 33 video clients. Under price constraint (of
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3 dollars per second) also, we see that NOVA(3) provides
network capacity gains of about 60% over PF-RM(3). The
gain from the adaptation component of NOVA is also visible
in Fig. 2 (a), where we see that PF-QNOVA provides network
capacity gains of about 25% over PF-RM respectively.

10 15 20 25 30 35
36

38

40

42

44

46

48

50

52

Q
o

E
1

N

NOVA
PF−QNOVA
PF−RM
NOVA(3)
PF−QNOVA(3)
PF−RM(3)

10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

A
ve

ra
g

e
R

eb
u

ff
er

in
g

(s
ec

s)

N

NOVAooooooandoNOVA(3)
PF−QNOVA
PF−RM,

PF−QNOVA(3)
PF−RM(3)

,

Fig. 2. (a) Top figure: QoE1 gains from NOVA; (b) Bottom figure: Reduction
in rebuffering under NOVA

The results in Fig. 2 (b) depict the significant reduction
in the amount of time spent rebuffering under NOVA and
NOVA(3). Using Fig. 2, we see that NOVA outperforms PF-
RM in both the metric QoE1 and the amount of time spent
rebuffering which cover some of the most important factors
affecting video clients’ QoE (see the discussion in Section I).

Our simulations results also showed capacity gains
of about 50% with respect to another metric QoE2

obtained by replacing Var600i (qi) in QoE1 with
MSD600

i (qi) :=
1

600

∑600
s=1 (qi,s+1 − qi,s)2 which penalizes

short term variability. Further, the results also showed that
NOVA even has a slightly higher mean quality (in addition to
lower variability in quality) in all but lightly loaded networks.

More details (e.g., fairness gains under NOVA) of the results
for the above setting is given in [18] . We carried out extensive
simulations validating the performance of NOVA in other
setting too, and these results can also be found in [18].

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

We developed a simple online algorithm NOVA for optimiz-
ing video delivery, well suited for today’s networks supporting
DASH-based video clients. Interesting future directions in-
clude exploration of the potential of learning user preferences,

and developing ‘NOVA-like’ algorithms for networks with
contention based medium access by modulating the back-off
timers using information about parameters like bi,k.
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