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Abstract—The automotive industry is undergoing disruptive
changes, e.g., ride sharing and self-driving cars which, in addition
to leveraging wireless connectivity, may lead to dramatic changes
in the volume of infotainment and work related data consumption
of vehicle bound passengers. This paper studies the potential
gains of leveraging clusters of V2V interconnected vehicles to
enable: (1) improved opportunistic access to the cellular infras-
tructure; and (2), balancing traffic loads across cells through
cluster multihoming. A stochastic geometric model and associated
analysis are used to obtain a preliminary understanding of
possible gains of cluster-based opportunistic relaying and its
sensitivity to the system parameters, e.g., base station density,
vehicular cluster size and density etc. An optimal network utility
maximization formulation is then developed to serve as a baseline
to evaluate a simple distributed cluster management algorithm
which for the scenarios considered proves to be near-optimal.
Overall the results suggest that 3-10x throughput gains are
possible along with significant improvements in user rate fairness
depending on the system parameters.

Index Terms—Vehicular Network, Vehicle-to-Vehicle Commu-
nication, Opportunism, Load Balancing

I. INTRODUCTION

Disruptive changes in automotive industry. The automotive
industry is undergoing disruptive changes that are likely to
have a significant impact on future wireless networks. These
include: (1) the emergence and increasing usage of ride sharing
fleets; (2) the expected development and adoption of driverless
car technologies which may require robust vehicle-to-vehicle
(V2V) and vehicle-to-infrastructure (V2I) connectivity; and
(3) resulting shifts in the wireless traffic loads generated
by commuters free to work/play while on the road. In this
paper we embrace these changes by focusing on leveraging
vehicular fleets to provide improved cellular connectivity to
both vehicle-based and traditional mobile customers.

5G wireless landscape. Concomitant with changes in the
automotive industry is the development of new technology
for next generation 5G/6G wireless networks. In order to
provide an effective platform to enable vehicles to enhance
safety through collaborative sensing and/or maneuvering, real-
time traffic data broadcasting, etc., the industry is envisaging
the use of robust V2V communications going beyond DSRC,
including high throughput (and ideally low latency) millimeter
wave (mmWave) or visible light communications (VLC) as
well as possibly integrated V2V+V2I connectivity. The ”ubiq-
uitous” availability of V2V connectivity offers the prospect of
enabling new vehicle-based services, e.g., caching, that could
also reduce the traffic loads on traditional cellular networks.

Vehicle cluster-based cooperative relaying. The focus of
this paper is on how V2V+V2I architectures might be devised
to address the key challenges cellular infrastructure will face,
i.e., delivering high volumes of data to an increasing number
of vehicular-based users. We consider a setting where clusters,
or so called platoons, of well connected vehicles share possibly
multi-homed connectivity to the cellular infrastructure. In
other words one or more base stations (BSs) can transmit
downlink data to a cluster of vehicles which can then relay
data to appropriate destinations. This provides two classes of
benefits which we discuss next.

Opportunistic throughput gains. The first type stems from
the significant throughput gains achievable from opportunistic
relaying to vehicle clusters. For example, as shown in Figure 1,
rather than send directly to a vehicle v4 at the cell edge, a BS
b1 can send data to a nearby vehicle v1 and the cluster can then
use high capacity V2V connectivity to relay data to v4. Given
the order of magnitude differences in the peak capacity of
nearby users compared to edge users in a typical cell, as long
as V2V capacity is plentiful the potential of such cluster-based
cooperative relaying is extremely high. When v4 and v1 lie in
the same cell we refer to this as intra-cell opportunism, and if
b1 uses relay v1 to forward data to a vehicle in another cell (say
v5) we call this inter-cell opportunism. This approach might be
particularly relevant in mmWave based infrastructures, whose
short range and susceptibility to obstructions make efficient
deployment challenging. By leveraging cluster-based relaying
one can exploit spatial diversity to find line of sight channels to
BSs, providing improved coverage, throughput and reliability.

Fig. 1. Example of an 8 vehicle platoon traversing two BS cells shared by
other mobile User Equipments (UEs).

Load balancing gains. The second type of benefit comes
from enabling more flexible load balancing across neighboring
cells. For example, as shown in Figure 1, the traffic destined
to a cluster of vehicles spanning multiple BS cells, e.g., b1



and b2, can be delivered through either one or both of the
BSs, depending on the current cell loads. For instance, b1 and
b2 currently have 5 and 15 users/vehicles in their respective
cells but by using inter-cell cooperative relaying the loads
could be shifted so that they each serve 9 and 11 respectively.
Such an approach would help reducing the ”peak-to-mean”
cell load, hence diminishing the variability in users’ perceived
throughput. This is especially important in the context of 5G
where small-cells cover limited regions and thus might see
higher relative load variability.

Summary of paper objective. Different strategies can be
devised to make the most of the aforementioned opportunistic
and load balancing gains when exploiting cluster-based re-
laying. In general there is a tradeoff between opportunism
and exploiting cluster multi-homing to balance loads, which
has not been explored in prior work. While the mechanism
underlying opportunism is naturally tied to the geometry
(proximity) of clusters to neighboring BSs, that associated with
load balancing is more subtle since ‘optimal’ decisions for
clusters overlapping different subsets of cells will be coupled
together across space. Below we discuss some of the related
work in the literature.

Related work. Load balancing in cellular networks has been
extensively studied especially in the context of heterogeneous
networks. This includes a range of possible solutions, such
as channel borrowing [1], cell breathing [2], BS association
biasing [3], [4], or D2D based load balancing [5]–[7] and
combinations thereof. Classical approaches include formaliz-
ing an optimization framework, see e.g., [6], [7] which in
turn suggests appropriate scheduling algorithms, e.g., [5], [8],
[9]. Recent studies have suggested learning based solutions to
determine effective association policies, but perhaps lacks a
development of underlying insights useful towards the design
of vehicular networks, see e.g. [10]. Prior work has estab-
lished the critical role that load balancing plays in improving
mean user rate or some notion of fairness, see e.g., [11].
This work has certainly been extended to vehicular network
settings where vehicles use V2I and V2V links to offload
traffic from one cell to another [12]–[14]. While these works
exhibit the benefits of load balancing, they focus on defining
routing strategies, rather than analyzing the resource allocation
problem and the potential per-user shared rate gains that an
optimal load balancing scheme induces.

Another line of work has recently focused on studying mul-
tihomed load balancing schemes, e.g., [15] presents algorithms
and experimental results showing how load balancing can
improve the performance of multihop multihomed VANETs,
but no network modeling and analysis was performed, and
the study was mainly focused on the uplink access strategy,
without discussing possible benefits for downlink.

Other studies have explored gains associated with relay-
ing in cellular networks [16]–[18], commonly showing gains
in throughput and fairness. For instance, [19] proposes a
promising software framework that leverages opportunism to
improve the total throughput delivered by a WiFi based WLAN
network, improving it by a factor of two. Studies such as [20]

analyze the opportunistic gain in the context of VANETs, and
also show that opportunism improves the downlink throughput.
The focus is however on comparing the performance of three
routing strategies, and proposing an efficient relay protocol
rather than analyzing the gains associated with opportunism
and load balancing. Although [20] analyzes an RSU-based
network, it still provides some valuable insight regarding
exploiting opportunism.

Paper’s contributions and organization. The main contri-
bution of this paper lies in quantifying the potential benefits
of vehicle cluster based opportunistic relaying in terms of
per-user throughput gains as well as improved fairness, i.e.,
reduced throughput variability resulting from load balancing.
A study of the effects that variations in the network param-
eters have on the network performance gains is presented to
complement the results.

To that end in Section II we propose a stochastic geometric
model and in Section III the associated analysis geared at
understanding intra-cell opportunistic gain’s sensitivity to the
system parameters. In Section IV we introduce an optimal
network utility maximization formulation which captures both
intra- and inter-cell opportunistic and load balancing gains and
serves as a baseline to evaluate a simple distributed cluster
management algorithm proposed in Section V. Section VI
includes both numerical and simulation results for a variety
of scenarios suggesting 3-10x throughput gains along with
significant improvements in fairness depending on the system
parameters. Finally Section VII concludes the paper.

II. SYSTEM MODEL

In this section we propose a model enabling us to ana-
lytically evaluate possible intra-cell opportunistic gains for
cluster-based cooperative relaying.

A. Network Model

We consider a network wherein BSs are randomly placed
on the plane according to a Poisson Point Process (PPP)
ΦBS = {Bi : i ∈ N} with intensity λBS, see e.g., [21]. Another
independent PPP ΦUE = {Ui : i ∈ N} with intensity λUE
models the locations of other users User Equipment (UE),
also referred as mobile users. Vehicle clusters are modeled
as randomly located linear platoons having a random number
of vehicles. Specifically, the clusters’ centers are located
according to a third independent PPP ΦC = (Ci : i ∈ N)
with intensity λC. Each cluster Ci has an independent random
number of vehicles Mi ∼ Geom(µ) and which are placed with
equal spacing (distance dv) on a randomly oriented line. µ is
set to be equal to e−λvdr , corresponding to V2V cluster models
arising when vehicles are located as a PPP process of intensity
λv on the roads. Note that in reality cluster orientations would
be coupled along roads but for simplicity we will consider
the above setting. The above vehicle cluster model induces
a (non Poisson) point process ΦV = (Vi : i ∈ N) denoting
the locations of the vehicles in the network. Each vehicle is
assumed to also correspond to an active user.



In the sequel we let φBS = {bi : i ∈ N} denote a realization
of the PPP ΦBS and refer to BSs directly through and their
locations, e.g., bi. This convention is adopted for all point
processes. As shown in Figure 2, the BSs φBS induce a Voronoi
tessellation T (φBS) = {T b(φBS) | b ∈ φBS}, where each BS
b has an associated a cell

T b(φBS) = {x ∈ R2 | ‖x− b‖2 ≤ ‖x− b′‖2,∀b′ ∈ φBS}.
Based on this tessellation of BS’s cells we define the follow-

ing additional notation. The set of vehicles φV is partitioned
such that Vc denotes vehicles belonging to cluster c while
Vb denotes the set of vehicles in BS b’s cell. Finally, the
set of mobile UEs φUE in the network is partitioned such
that Ub denotes the set of UEs in BS b cell. Assuming UEs
and vehicles associate with their closest BS, we have that
nb,UE = |Ub|, nb,V = |Vb| and nb = nb,UE + nb,V denote
the number of UEs, vehicles and total users associated with b.

Note since the inter-vehicular distance is fixed to dv , and
the random cluster size is M ∼ Geom(µ) vehicles the cluster
length L in meters is given by

pL(l · dv) = µ(1− µ)l, l = 0, 1, 2, . . . , (1)

where we have assumed the convention that a cluster with one
vehicle has length 0, with two vehicles length dv and so forth.
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Fig. 2. Network Model

B. Connectivity and Link Capacity Model
In our analysis we only consider downlink transmissions.

For the traditional cellular network the downlink transmission
capacity to mobile user u (or similarly vehicle v) associated
to BS b depends on the SINR given by

SINRbu =
Hb
up‖ b− u ‖

−α
2

Ibu + σ2
, (2)

where Hb
u ∼ Exp(1) models random fading from BS b and

user u, p is the BS transmission power, ‖ b − u ‖2 is
the distance from b to u, α is the path-loss coefficient, σ2

models noise in the system, and finally Ibu is the interference
a transmission from b to u sees from other BSs, i.e.,

Ibu =
∑

b′∈φBS\{b}

Hb′

u p ‖ b′ − u ‖−α2 (3)

We model the downlink transmission capacity based on the
Shannon rate, i.e.,

rbu = WE[log(1 + SINRbu)] (4)

where W represents the system bandwidth and the expectation
is taken over channel fadings for a given realization of the
BSs and user/vehicle locations. In this setting the transmission
capacity to vehicles is determined in a similar way. Finally
we shall assume each BS b allocates an equal fraction of
time/frequency resources to each user/vehicle in its cell, i.e.,
associated with it. Thus we define the shared Shannon rate
from BS b to an associated user (or vehicle) as

sbu =
1

nb
rbu =

1

nb
WE[log(1 + SINRbu)]. (5)

In our model for network leveraging cluster-based oppor-
tunistic relaying UEs see the same shared rate as our tradi-
tional cellular network model. By contrast the transmission
rate from BS b to an associated vehicle v belonging to cluster
c, i.e, a vehicle v ∈ Vc ∩ Vb, is modeled by

rb,∗v = max
v′∈Vc∩Vb

rbv′ (6)

i.e., the highest rate achievable from b to a (relay) vehicle
in the same cell and vehicle cluster as v–thus only intra-
cell opportunism is considered. We shall further make the
following assumption which is in line with a setting where
vehicles use high capacity V2V line of sight links, e.g.,
mmWave.

Assumption 1. We assume intra-cluster V2V links have suf-
ficiently high capacity as to ensure they do not bottleneck in
relaying downlink traffic to vehicles within clusters, and do
not interfere with infrastructure transmissions.

Thus, under this assumption in the cooperative setting the
achievable shared rate for a vehicle v ∈ Vc ∪ Vb is given by

sb,∗v =
1

nb
rb,∗v =

1

nb
max

v′∈Vc∩Vb
rbv′ . (7)

This initial model does not capture the impact of inter-cell
opportunistic relaying and load balancing to be considered in
more detail in the sequel.

III. PERFORMANCE ANALYSIS

In this section we develop analytical expressions for the
two network settings introduced in Section II. The aim is to
capture the key role that geometry plays and its impact on the
achievable intra-cell opportunism gains.

A. Traditional Cellular Network

We shall consider the performance as seen by a typical1

mobile or vehicular bound user in a traditional cellular net-
work setting. Let (R,N) be random variables whose joint
distribution corresponds to that of a typical user’s downlink
Shannon rate and the number of users sharing its BS, so the
mean typical user’s shared Shannon rate S is given by

E[S] = E
[
R

N

]
≈ E[R] · E

[
1

N

]
, (8)

1A typical user here refers to a randomly selected user.



where the approximation has been found to be quite accurate,
see e.g., [22], and expected to be a lower bound given R
and 1

N might be surmised to be positively correlated, i.e.,
a low value for R likely reflects a large cell, which would
tend to have a larger number of users, and thus also a low
value 1

N . The following theorem based on standard arguments,
see Appendix, provides a characterization of our traditional
cellular network serving a mix of mobile and vehicular cluster-
based users.

Theorem 1. For a typical user in the traditional cellular
network the distance D to its closest BS satisfies

fD(d) = 2πλBSde
−λBSπd

2

,∀d ≥ 0 (9)

and its mean downlink Shannon rate is given by

E[R] =

∫
R3

+

P (Id ≤
hpd−α

er − 1
− σ2)fD(d)fH(h) dddhdr

(10)
where H ∼ Exp(1) and Id is a random variable representing
the conditional distribution for the interference given D = d
with MGF MId(t) = exp(−2πλBS

∫∞
d

x
1−(tp)−1xα dx).

Furthermore assuming A ∼ Gamma(3.5, 3.5λBS
) models the

area of a randomly selected cell (see [23]) we have that

E
[

1

N

]
≥ λBS[1−MA(−(λUE + λC))]

λUE + λCE[M ]
(11)

E
[

1

N

]
≤ λBS[1−MA(−(λUE + λCE[M ]))]

λUE + λCE[M ]
(12)

where MA(t) = E[eAt] = (1− 3.5
λBS
t)−3.5.

B. Vehicular Cluster-based Opportunistic Relaying

Next we characterize the shared rate of a typical user in
a setting with vehicle cluster-based intra-cell opportunistic
relaying. Paralleling the analysis for the traditional cellular
network, for a typical vehicular-based user we let R∗ denote
downlink Shannon rate to the best possible opportunistic
relaying (within its cluster and associated cell) and let N∗

denote the number of users sharing its BS’s cell. Note that
N∗ ∼ N and that the Shannon rate to a typical mobile user
remains the same as in Theorem 1.

Figure 3(a) exhibits the geometry of vehicular cluster-based
opportunistic relaying. The distance between a typical vehicle
and its closest BS D still has the distribution in Eq. (9).
This is denoted by a line segment between the origin (BS)
and a vehicle at a distance D = d away on the x-axis. The
typical vehicle also belongs to a cluster of length L∗ whose
distribution corresponds to the length biased distribution of
L given in Eq. (1), i.e., typical vehicles are more likely to
belong to longer clusters, so pL∗(l · dv) = l·dv·pL(ldv)

E[L] for
l = 0, 1, . . . In the figure the cluster is denoted by a line
segment of length L∗ = l∗ whose intersection with the x-axis
corresponds the typical vehicles location in its cluster. For our
typical vehicle, we model the orientation of its cluster (acute
angle) as Θ ∼ Unif[0, π2 ] which is independent of the typical
vehicle’s the cluster length L∗ and distance D. This is denoted
by Θ = θ in the figure.

(a) Typical vehicle’s cluster and
environment

(b) Illustration of d∗, θ0(d, d∗),
l∗,b and l0(d, d∗, θ)

Fig. 3. Geometry of vehicle cluster based opportunistic relaying

The location of a typical vehicle within its cluster is
uniformly distributed, and ”breaks” the cluster into two pieces.
We denote by L∗,b the length of the cluster pointing in the
direction of the BS, i.e., L∗,b = l∗,b i.e., where there may be
candidate opportunistic relays with better channels to the BS
at the origin. The distribution of L∗,b is shown in the Appendix
to be:

Lemma 1. L∗,b is such that L∗,b ∼ L given in Eq. (1).

To capture cluster-based opportunistic gains we need to
determine D∗ the minimum distance between a relay vehicle
on the cluster segment of length L∗,b and BS with the
additional requirement that the relay vehicle also belongs to
the typical vehicles cell. This requires the absence of any other
BSs within a disc of radius D around the typical vehicle and
any other BSs within a disc of radius D∗ around the relaying
vehicle. In the figure we show a possible realization of D∗ = d
Note that D∗ ≤ D almost surely, since a typical vehicle can
of course receive data directly from its associated BS. This is
where opportunistic relay gains come from.

Figure 3(b) exhibits the definition of two key functions of
the geometry: (1) θ0(d, d∗) the angle of the tangent to a disc
of radius d∗, and (2) l0(d, d∗, θ) which for θ ≤ θ0(d, d∗) is
the length of the segment starting from (d, 0) with angle θ to
the disc of radius d∗. With these definitions one can evaluate

P (D∗ > d∗) =

3∑
i=1

∫ ∞
d∗

P (D∗ > d∗, Ei|D = d)fD(d)dd.

(13)
if d > d∗, and P (D∗ > d) = 0 otherwise; by identifying a
partition E1, E2 and E3 corresponding to the three cases/events
exhibited in Figure 4 and given by

• Case 1: E1 = {Θ > θ0(d∗, D)}
• Case 2: E2 = {Θ ≤ θ0(d∗, D), L∗,b < l0(D, d∗,Θ)}
• Case 3: E3 = {Θ ≤ θ0(d∗, D), L∗,b ≥ l0(D, d∗,Θ)}

Theorem 2. For a typical UE in the network with intra-cell
opportunistic relaying, the same results as in Theorem 1 hold.
For a typical vehicle, the distance D∗ between the best vehicle
relay in its cluster and its associated BS satisfies is given by
Eq. (13) where the three terms in the summation are explicitly
worked out in Eqs. (32), (34) and (38). Further, the mean rate



(a) Case 1 Configuration (b) Case 2 Configuration (c) Case 3 Configuration (d) Case 3 Region of Interest

Fig. 4. Typical Vehicle’s Cluster Configuration Analysis

seen by a typical vehicle satisfies

E[R∗] ≥
∫
R3

+

P (Id ≤
hpd−α

er − 1
− σ2)fD∗(d)fH(h) dddhdr

(14)
where H and Id are as in Theorem 1. The number of users
N∗ sharing the BS with a typical user (mobile or vehicle) is
such that N∗ ∼ N satisfying the bounds in Eqs. (11) and (12).

Figure 5 exhibits the expected shared rate evaluation of
these expressions as a function of λC , and comparing them
to simulation results. The simulation parameters are presented
in Table I. We use a relatively high value of α set to be 5,
to model the path loss of mmWave signals for V2I links,that
has been validated experimentally [24]. The theoretical plots
show the derivations to be relatively tight lower bounds to the
actual expected shared rate seen by a typical vehicle. We note
that the lower-bound proposed in Eq. (11) has been used to
generate Figure 5, but both bounds are very tight for these
parameters, effectively resulting in the same plot.

TABLE I
NETWORK SIMULATION PARAMETERS

Parameter Value Units
λBS 3e-6 BSs/m2

λUE 3e-5 UEs/m2

λv 20e-3 vehicles/m
dv 50 m
dr 150 m
α 5 -
p/σ2 1e10 -

As can be seen in the figure, cooperative relaying leads to
considerable gains in per-user shared rate. An improvement by
a factor of 4× for this specific scenario in the expected shared
rate seen by a typical vehicle, only considering opportunism.
Our next step is to propose a distributed algorithm performing
load balancing, and compare its performance against those
results.

IV. JOINT OPTIMIZATION OF OPPORTUNISTIC RELAYING
AND BASE STATION LOAD BALANCING

In this section we consider the joint optimization of oppor-
tunistic relaying and load balancing so as to fairly allocate
BSs’ resources amongst a set of mobile and vehicle bound
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Fig. 5. Theoretical bounds and simulations for the per-user shared rate for a
traditional cellular network and one leveraging intra-cell opportunism

users. The proposed centralized optimization problem is used
to motivate and evaluate the performance of a simple algorithm
discussed in Section V.

We will formulate our optimization framework for users
in a finite region X ⊂ R2. To that end we adopt the same
notation as in Section II but restricted to BSs, users, clusters,
and vehicles in the region X which are denoted by B,U , C,V
respectively. Further for any BS b we let Cb denote the set of
clusters that include at least one vehicle in b’s cell, and Vc the
set of vehicles in cluster c. We let Bc denote the set of BSs
which contain at least one of cluster c’s vehicles in its cell.

As in Section II, we shall assume that BS b ∈ B serves the
set of mobiles Ub in its Voronoi cell, such that for u ∈ Ub
the downlink transmission capacity is rbu given in Eq. (4).
Similarly we denote as Vb the set of vehicles in the BS b cell.
However, in contrast, the set of vehicles which b can serve via
cluster relaying is denoted Vb,∗ where

Vb,∗ = ∪c∈CbVc (15)

which may include vehicles which are not in b’s cell. For each
v ∈ Vb,∗ ∩ Vc we define the effective downlink transmission
capacity from b to v as

rb,∗v = max
v′∈Vc∩Vb

rbv′ (16)

i.e., the highest rate b can deliver to vehicle v is by relaying
through a vehicles in v’s cluster that are also in b’s cell. This
additional flexibility for a BS b to possibly serve vehicles in



other cells is at the core of the ability of our cluster-based
cooperative relaying mechanism to improve load balancing.

For each mobile and vehicle bound user w in the network
we posit a concave utility function Uw(·) of its allocated rate
ρw. For example, if Uw(ρw) = log(ρw) such allocations are
referred to as proportionally fair [25]. The key decision vari-
ables are π = (πb : b ∈ B) where πb = (πbw : w ∈ Ub∪Vb,∗).
which represents the fraction of BS b’s allocated to the mobiles
and vehicles it can serves. thus

‖ πb ‖1=
∑

w∈Ub∪Vb,∗
πbw = 1. (17)

With this notation in place the network utility optimization
problem is given as follows

maxπ

∑
w∈U∪V Uw(ρw)

s.t. ρu = πbur
b
u ∀u ∈ Ub, ∀b ∈ B,

ρv =
∑
b∈BC π

b
vr
b,∗
v ∀v ∈ Vc, ∀c ∈ C,

‖ πb ‖1= 1,πb ≥ 0 ∀b ∈ B.

(18)

Note that while mobile users can only be served by one
BS, vehicular based users can be multihomed, i.e., served by
multiple BSs which opportunistically relay their data through
other vehicles in their cluster.

The above optimization problem is convex but may not
have a unique optimizer [26]. Intuitively if there were a
cycle of BSs linked by overlapping vehicle clusters it may
be possible to shift resource allocations around the cycle
while maintaining the same overall network utility. In practice
this also requires particular conditions in the BSs loads and
downlink transmission capacity to users. In the sequel we solve
the above optimization to evaluate the effectiveness of the
simpler resource allocation algorithm proposed next.

V. VEHICLE CLUSTER MULTI-HOMING FOR COOPERATIVE
RELAYING ALGORITHM

In this section we propose a simple decentralized algorithm
for vehicle cluster management. Given the expected dynamics
of vehicular clusters relative to the BSs, simplicity is highly
desirable. The idea is to have clusters initiate updates to their
relationships with the BS infrastructure at random times or
when substantial changes have arisen, e.g., a ”handoff.” Let
us first consider a static setting and for simplicity suppose
all mobile and vehicle-based users are to be treated equally.
Using the notation introduced in the previous section, each
cluster c will periodically update how many2 of its set Vc of
vehicle based users should be served by each of the BSs Bc
the cluster currently overlaps.

In particular let nc = (ncb : b ∈ Bc) where ncb denotes
the number of cluster c vehicles served by BS b, and where
‖ nc ‖1= |Vc|. Let mc = (mc

b : b ∈ Bc) where mc
b denotes

the number of other mobiles and vehicle based (i.e., excluding
cluster c) users BS b is currently serving. Finally with a slight

2Recall we have assume V2V capacity amongst vehicles in the cluster is
not a bottleneck, hence we will not focus on which vehicles, though a natural
approach would be one that minimizes the V2V load on the cluster.

abuse of notation we shall define rc = (rbc : c ∈ Bc) where
rbc denotes the highest transmission rate BS b can achieve
amongst cluster c vehicles in its cell, note for any v ∈ Vc
we have rbc = rb,∗v defined earlier.

When the cluster management update is engaged, it takes
the current mc and rc and determines nc,∗ such that

nc,∗ = arg max
nc

min
b∈Bc

rbc
nbc +mb

c

(19)

i.e., it greedily maximizes its vehicle users minimum rate
allocation, based on local information only. Note the above
assumes each BS allocates an equal fraction of time to each
of its UEs and vehicles.

As a final step, the vehicles in Vc aggregate their resources
in a common pool and redistribute them uniformly among
themselves, in such a way that all the vehicles in a cluster
perceive similar QoS.

Also note that determining nc,∗ is a straightforward task of
computational complexity O(|Bc||Vc|). Finally assuming BSs
track mc

b and rcb the information requirement to perform a
cluster update is O(|Bc|).

In summary, in our proposed algorithm, clusters manage-
ment updates are triggered by either a necessary handoff or
after a random time out. A handoff would arise if for example
there were a change in Vc or Bc, e.g., due to the clusters’
motion a BS is no longer able to serve c. Cluster updates
continue adapting to changes in base stations mobile user loads
and vehicle dynamics. However in our simulations presented
in the next section, we consider only randomly generated but
static network configurations.

VI. RESULTS AND PERFORMANCE EVALUATION

We evaluated network performance for random network
configurations based on the network parameters shown in
Table I. Four different settings were considered:
Traditional cellular: all users associate with their closest BS
which shares its resources equally amongst them.
Intra-cell opportunism: setting analyzed in Section II were
only cluster-based intra-cell opportunism was exploited.
Network optimal: corresponds to solving the centralized
network utility maximization Problem (18) introduced
in Section IV where all users have log utilities, i.e.,
proportionally fair resource allocation.
Distributed algorithm: refers to the algorithm described in
Section V where initial allocations were based on BSs only
serving vehicles in their cells and then cluster rebalancing
updates conducted. The number of such updates was three
times the number of vehicles in the simulated area, the
updated clusters were selected at random.

Note that only the last two exploit both intra and inter-cell
opportunism and load balancing. Two metrics where used to
compare the networks performance: (1) the mean per user-
shared rate, and (2) Jain’s fairness index for users’ shared rate
allocations.



Fig. 6. Simulated Network Mean-Rate Gain Performance of the Network
Optimal (kv = ku = 1), Intra-cell Opportunism and Distributed Algorithm,
with respect to the Traditional Cellular scenario performance

A. Mean Per-User Shared Rate

Figure 6 exhibits the gains in the per-user mean shared
rate achieved in each setting relative to the traditional cellular
network, as a function of increased vehicle cluster density
λC . This captures both increased network congestion and load
balancing flexibility. We observe that the distributed algorithm
performs better than the network optimal allocations reaching
gains up to 9× and 8× respectively. In retrospect this is
not surprising because, as shown in Figure 7, the network
optimal allocations are more fair. Another observation is the
performance benefits of inter-cell opportunism and load bal-
ancing, improving gains from 4× to 9×, i.e., roughly doubling
the gains realized when only intra-cell opportunism is used.
Finally we note that the gains are roughly increasing in λC ,
with higher increases in lightly loaded networks. This results
from increased BS activity each with more users nearby and
increased but saturating benefits of inter-cell load balancing.

B. Fairness in per user rate allocations

Rather than use the achieved network utility to evaluate
fairness, we used the Jain’s index [27] metric that offers the
advantages of being continuous, population size and metric
independent, but perhaps more importantly bounded between
0 and 1 respectively representing the least and most fair allo-
cations. As can be seen in Figure 7, the distributed algorithm
and network optimal allocations greatly improve fairness as
compared to traditional cellular setting. The network optimal
allocations are the most fair, benefiting from the global net-
work view, versus the distributed algorithm which uses only
local information. Once again we observe that a considerable
amount of improvement in fairness appears to be due to
exploitation of inter-cell opportunism and load balancing. In
fact the impact on fairness of such flexibility appears to be
higher that that on the mean per-user shared rate; it contributes
to more than half of the total ”fairness gain”. Finally we
note that fairness under network optimal and the distributed
algorithm increases in λC reflecting the increased inter-cell
load balancing flexibility that such clusters enable.

C. Parameter Sensitivity Analysis

To get a deeper understanding of the impact of the simu-
lation parameters on the gains, we explored their sensitivity
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to various changes. First, a change of path-loss coefficient α
from 5 to 4, for λc = 20 clusters/km2, reduced per user rate
gains from 8× down to 3× but these are are still considerable
gains. One can expect settings where path loss is high (e.g.,
mmWave) to benefit more from the proposed techniques.

Second we increased λv resulting in increased cluster sizes.
We observed that intra-cell opportunism saturates quickly,
since eventually longer clusters do not help. By contrast, the
gains from inter-cell opportunism and load balancing gain keep
increasing, even exceeding 10× for λv = 30 vehicles/km.

Lastly we consider the impact of λBS. As the BS density
increases we found that the gains from intra-cell opportunism
drop since users tend to be closer to their BS, and the
opportunistic gains of relay through other vehicles in the
same cluster may be marginal. However, the inter-cell and
load balancing gain still increases as BSs benefit from the
flexibility of balancing loads. This effect is somewhat weaker
that opportunistic gains leading to reduced overall gains.

VII. CONCLUSIONS

In this work, we studied the gains associated with inter-
vehicular communication, and focused on understanding the
role played by both opportunism and load balancing. We
presented an analytical framework based on our network
model to derive expressions for the mean shared-rate perceived
by a typical user in the network, and validated the deriva-
tions using simulations. We then established an optimization
framework to associate users to BSs and allocate the wireless
resources fairly, and used it as a benchmark to analyze the
performance of our proposed simple, efficient, and distributed
algorithm. Results show that associating V2V to V2I leads
indeed to mean user rate and fairness gains, coming from
both opportunism and load balancing with roughly equivalent
impact, and that satisfactory performance can be reached using
our proposed algorithm.
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APPENDIX

Proof. (Theorem 1) The expression for E[R] for the tradi-
tional cellular setting is standard, see e.g., [28], we neverthe-
less outline the argument as it will be needed to develop the
cooperative relaying result. The typical user’s SINR depends
on D,H and the interference I so by conditioning we get:

E[R] = E[ln(1 + SINR)] =

∫ ∞
0

P (ln(1 +
HpD−α

σ2 + I
) ≥ r)dr

=

∫
R3

+

P (ln(1 +
hpd−α

σ2 + Id
) ≥ r|D = d,H = h)

fD(d)fH(h) dddhdr

=

∫
R3

+

P (Id ≤
hpd−α

er − 1
− σ2) fD(d)fH(h) dddhdr

(20)
where H ∼ Exp(1) and where D and Id have well known
distributions [28], [29]:

fD(d) = 2πλBSde
−λBSπd

2

,∀d ≥ 0, (21)

MId(t) = exp(−2πλBS

∫ ∞
d

x

1− (tp)−1xα
dx) (22)

Let us now consider E[ 1
N ]. The distribution for the number

of users N sharing with a typical user can be related to that
of the number of users on a typical BS Nb by

pN (n) =
n · pNb(n)

E[Nb]
, (23)

capturing the sampling bias for a typical user being more likely
to be in a cell with more users. This in turn gives that

E
[

1

N

]
=

1

E[Nb]
· (1− pNb(0)). (24)

Further given the stationarity of the point process of mobile
and vehicle-based users the mean number of users in a typical
BS’s cell is spatial density of users times the mean area of a
cell, i.e., E[Nb] = (λUE + λcE[M ]) · 1

λBS
.

Let A ∼ Gamma(3.5, 3.5
λBS

) be a random variable whose
distribution is known to model the area of a typical cell, see
e.g., [23]. Recall that for a typical cell Nb = Nb,UE + Nb,V
and that given A = a we have that Nb,UE and Nb,V are
conditionally independent so

pNb(0) =

∫ ∞
0

P (Nb,UE = 0|A = a)P (Nb,V = 0|A = a)fA(a)da

(25)
Furthermore pNb,UE|A(·|a) ∼ Poisson(λUEa) so

P (Nb,UE = 0|A = a) = e−λUEa. (26)

By contrast the positive correlations in vehicle locations due
to the cluster model result in a weakly super-PPP for vehicle
locations [30] so

P (Nb,V = 0|A = a) ≥ e−λCE[M ]a. (27)

Also one can show a trivial upper bound

P (Nb,V = 0|A = a) ≤ e−λCa (28)



by considering the probability that no cluster center hits a
cell of area a. Using this the above upper bound we obtain

pN *(0) ≤
∫ ∞
0

e−(λUE+λC)afA(a)da = MA(−(λUE + λC)).

(29)
giving the result in the theorem, and the lower bound is
similarly obtained.

Proof. (Lemma 1) We know that M ∼ Geom(µ). A typ-
ical vehicle will see a size biased cluster size M∗ whose
distribution is given by pM∗(m) = m·pM (m)

E[M ] . A typical
vehicle location within its cluster is be uniformly distributed,
thus M∗,b be the number of vehicles in the remaining part
of the typical vehicle’s cluster. Since the typical vehicle
is uniformly distributed among the M∗ possible positions,
pM∗,b|M∗(m

b|m) = 1
m ,∀m

b ≤ m. Hence,

pM∗,b(m
b) =

∞∑
j=mb

pM∗,b|M∗(m
b|j)pM∗(j) = µ(1− µ)m

b−1.

(30)
Thus M∗,b ∼M and it follows that L∗,b ∼ L given in Eq. (1).

Proof. (Theorem 2) We consider the three cases in (13).

Case 1. For a given d, d∗ the angle of the tangent is given by

θ0(d, d∗) := sin−1(d∗/d) (31)

and note from Figure 4(a) that if Θ ≥ θ0(d, d∗) then the cluster
does not hit the radius d∗ disc, whence D∗ ≥ d∗. Since Θ is
uniformly distributed between 0 and π/2, the first integral term
corresponding to E1 in Eq. (13) is given by∫ ∞

d∗

π/2− θ0(d∗, d)

π/2
fD(d)dd (32)

Case 2. For a given d, d∗ and θ < θ0(d, d∗) note from
Figure 4(b) that a cluster extending a length L∗,b such that

L∗,b ≤ l0(d, d∗, θ) := d cos(θ) +
√
d∗2 − (d sin(θ))2 (33)

will not hit the disc of radius d∗ ensuring that D∗ > d∗. Here
l0(d, d∗, θ) is determined by a triangle of side lengths l0, d
and d∗, knowing θ. The second integral term corresponding
to E2 in Eq. (13) is then given by∫ ∞

d∗

∫ θ0(d,d
∗)

0

P (L∗,b ≤ l0(d, d∗, θ))
2

π
fD(d) dθdd. (34)

Case 3. Our last case corresponds to Figure 4(c) and the
integral term corresponding to event E3 in Eq. (13) where
given d, d∗ and θ ≤ θ0(d, d∗) we have

L∗,b > l0(d, d∗, θ) (35)

i.e., the vehicle cluster extends into the circle C1 of radius d∗.
In order for D∗ > d∗ all vehicles within the circle must be
closer to another BS than that at the origin.

The situation is illustrated in Figure 4(d) where we draw two
other circles. The first is C2 is centered on the first (starting

from our typical vehicle at (d, 0)) cluster vehicle that lies
within C1 and has a radius given by its distance to the origin,
i.e., base station b. The second, C3 is centered at the typical
vehicle (d, 0) and has radius d, i.e. also crosses the origin.
Recalling that b is the closest base station to the vehicle at
(d, 0), and thus C3 contains no other base stations, a necessary
and sufficient condition to ensure that no cluster vehicle within
C1 is associated with base station b is that there is at least one
BS in the shaded region R(d, d∗, θ) representing all locations
that are closer to the first vehicle in C1 than to b. This follows
because
• if there is a BS in R(d, d∗, θ) then not only will the

first cluster vehicle in C1 not be associated with b, but so
will all the others, since the circle centered on each such
vehicle and traversing the origin, will contain R(d, d∗, θ).
We can then conclude that D∗ > d∗.

• if R(d, d∗, θ) is empty, then at least one vehicle in the
cluster is less than d∗ meters away from b, i.e. D∗ ≤ d∗.

Using basic algebra and the law of cosines one can show
that the distance between the typical vehicle and the first
cluster vehicle in C1 is given by

df (d, d∗, θ) := dv ·d l0(d, d∗, θ)

dv
e

and the distance from the first vehicle to the origin (i.e., radius
of C2) is given by

r2(d, d∗, θ) :=
√
d2 + d2f − 2d · df cos(θ). (36)

where we have suppressed the arguments of df (, , ).
Using the expression in [31] for the area of C2 ∩ C3, as a

function of d, df and r2, one can find an expression for the
area of R(d, d∗, θ):

a(d, d∗, θ) = πr22−[
r22 cos−1(

d2f + r22 − d2

2dfr2
) + d2 cos−1(

d2f + d2 − r22
2dfd

)−√
(−df + r2 + d)(df + r2 − d)(df − r2 + d)(df + r2 + d)

2

]
(37)

where we have suppressed the arguments of df (, , ) and r2(, , ).
Since BS form a PPP, the probability there is at least one

base station in R is given by

e(d, d∗, θ) := P (ΦB ∩R(d, d∗, θ) 6= ∅) = 1− e−λBSa(d,d
∗,θ).

The third integral term in Eq. (13) corresponding to E3 is then
given by∫ ∞
d∗

∫ θ0(d
∗,d)

0

P (L∗,b > l0(d, d∗, θ))e(d, d∗, θ)
2

π
fD(d) dθdd

(38)
The distribution of D∗ can now be determined, along with

an expression for the expected typical user peak rate E[R∗]
similarly as the non-cooperative scenario using Eq. (10). The
bound comes from the fact that the closest vehicle from the
BS sees less interference than the typical vehicle, as we know
that there are no BSs in C3.


