
Service Placement for Real-Time Applications:
Rate-Adaptation and Load-Balancing at the Network Edge

Saadallah Kassir∗ and Gustavo de Veciana∗ Nannan Wang†, Xi Wang†, Paparao Palacharla†
∗ Electrical and Computer Engineering Department, The University of Texas at Austin, TX, USA.

† Fujitsu Laboratories of America, Richardson, TX, USA.
Email: {skassir, deveciana}@utexas.edu, {nannan.wang, xi.wang, paparao.palacharla}@fujitsu.com

Abstract—Mobile Edge Computing may become a prevalent
platform to support applications where mobile devices have
limited compute, storage, energy and/or data privacy concerns.
In this paper, we study the efficient provisioning and man-
agement of compute resources in the Edge-to-Cloud continuum
for different types of real-time applications with timeliness
requirements depending on application-level update rates and
communication/compute delays. We begin by introducing a
highly stylized network model allowing us to study the salient
features of this problem including its sensitivity to compute
vs. communication costs, application requirements, and traffic
load variability. We then propose an online decentralized service
placement algorithm, based on estimating network delays and
adapting application update rates, which achieves high service
availability. Our results exhibit how placement can be optimized
and how a load-balancing strategy can achieve near-optimal
service availability in large networks.

Index Terms—Edge Computing, Fog Network Dimensioning,
Rate Adaptation, Service Placement, Real-Time Applications

I. INTRODUCTION

Many of the emerging mobile applications require unprece-
dented compute power, e.g., autonomous vehicles, remotely
controlled robots, Augmented Reality (AR) technologies, un-
manned aerial vehicles, cloud gaming platforms, etc. Equip-
ping mobile devices with the compute resources needed can
be a considerable challenge for manufacturers due to cost,
complexity, battery longevity, weight, and size constraints. A
solution to overcome this challenge and bring to market such
computation-hungry services is to (partially) offload compute
to the cloud via wireless connectivity to remote servers.

A flexible approach to support mobile devices with remote
compute resources is through a server-side process running
on a Virtual Machine (VM). If kept up-to-date, the process
can keep track of a device’s state in real-time, perform
computations, and possibly send back control commands. Such
processes are expected to become prevalent to support the
management and control of mobile devices, e.g., robots, self-
driving cars, smart cities devices [1]. However, in real-time
settings, associating remote processes to devices poses several
technical challenges. In particular, in order to maintain safety
or offer an appropriate Quality of Service (QoS), the process
needs to closely track the state of its device. In other words,
updates among mobile device and server-side processes should
not have “aged” too much to remain relevant. Maintaining
such timeliness depends both on the update rate as well as
communication/compute delays.

To support possibly stringent timeliness requirements, edge
computing architectures have been proposed as means to
reduce network delays, by moving the servers closer to the
devices. By contrast, the alternative of hosting VMs in the
cloud, typically further away from the devices, provides an
attractive solution leveraging large pools of shared resources.
Deploying mobile services at scale will require careful study of
cost/performance tradeoffs of edge/cloud infrastructure based
solutions.

Contributions. In this paper, we first explore the funda-
mental characteristics of provisioning edge/cloud compute
resources for real-time mobile services. To that end we pro-
pose a stylized network model allowing us to capture the
salient features of the network dimensioning problem. Based
on the initial insights developed from studying the resource
provisioning problem, we propose an online, adaptive and
distributed joint service-placement and rate-adaptation policy
that is more generally applicable, and that describes how the
network is ought to be managed while operating.

The framework introduced in this paper allows us to reach
multiple conclusions. First, we identify key tradeoffs between
cloud and edge computing, and show how the optimal pro-
visioning and placement depend on the application’s charac-
teristics. Second, we show how the relative cost of compute
vs. communication impacts the optimal location of compute
resources. In particular the most cost effective placement may
not be in the cloud or at the edge, but rather at an intermediate
level. Third, we show that for any use-case, as the density
of mobile devices grows placing compute resources at the
edge becomes more cost effective. However, perhaps counter-
intuitively, stricter timeliness guarantees makes it beneficial to
shift compute resources further away in the cloud. Finally,
we introduce a device-side online distributed algorithm to
manage dynamic mobile device loads by determining both
the device’s update rate and a server to host its VM. Our
approach adapts its decisions to measured network congestion,
which may not be under service provider’s control. We show
that under the proposed joint placement and rate-adaptation
policy, near-optimal service availability can be achieved in
large networks, and show the benefit over load balancing
policies when applications choose fixed update rates.

Related Work. There has been substantial work in this
area. We identify two relevant classes of work. The first class
focuses on the need for mobile edge computing. The natural
way to introduce the concept is to compare the characteristics

1

of edge and cloud computing, as in [2]–[4]. In this paper,
we take this one step further by characterizing precisely the
tradeoffs for real-time applications. Additionally, we propose
an intuitive hierarchical network model materializing the idea
of “Cloud-to-Thing continuum”, or Fog-to-Cloud, suggested
in [3] and [5], where service providers can place compute
resources anywhere in the network. This softens the dichotomy
between edge and cloud, leading naturally to the optimal
placement problem.

The second line of work focuses on service placement,
i.e., where to instantiate VMs once a provider has dimen-
sioned a graph of compute resources, e.g., [6]–[12]. These
works propose various policies to optimize placement based
on different performance metrics. For instance, [9] considers
power consumption and transmission delay, [10] examines
the number of services placed, [11] focuses on minimizing
the violation in QoS, i.e., latency, while [12] uses user-
specific reward functions. Other studies suggest approximation
or genetic algorithms to solve the service placement problem.
Furthermore, [13] suggests to solve a Mixed Integer Linear
Program to minimize capital and operating expenditures to
dimension the network, but the authors to not analyze the
communication vs. compute tradeoff explicitly, and do not
address heterogeneity in the device requirements (e.g., latency
constraints and compute job size). In this work, we follow
a different approach. We simplify the network model which
allows us to extract basic insights, that we leverage to propose
a more general service placement algorithm. Unlike the above-
mentioned work, we propose a service placement policy that
addresses the need to adapt to network congestion by adapting
the update rates associated with mobile devices supporting
real-time applications.

Paper Organization. This paper is organized as follows.
Section II describes four mobile applications serving as run-
ning examples throughout the paper. Section III proposes a
highly stylized system model and network architecture, as well
as an appropriate timeliness metric. Section IV includes our
problem formulation and result analysis. In Section V, we
study a more general setting, and analyze the performance
of our online device-side joint service placement and rate-
adaptation algorithm. We conclude the paper in Section VI.

II. MOBILE EDGE COMPUTING SERVICES: USE CASES

Our work is motivated by several emerging applications/use
cases including those developed in the context of 5G networks
[23], [24]; specifically we focus on four types of applications:
• XR Traffic: Augmented Reality, Virtual Reality and

Mixed Reality, generally referred to as extended reality
(XR), have been the subject of extensive study in industry

and academia as it is considered one of the innovative
services to be supported by next generation wireless
networks. XR devices have the particularity of requiring
both considerable bandwidth and low latency, making the
design of networks supporting such services challenging
[25]–[27].

• Vehicular Network Traffic: Supporting self-driving
and/or coordination amongst next generation vehicles
may be based on exchanging basic safety messages or
localization data. To be relevant, update messages will
typically require tight timeliness constraints, but may
require relatively little compute and communication re-
sources.

• Cloud Gaming Traffic: In the near term cloud gaming
may become the leading use-case. It has the potential to
reduce the compute requirements on the gaming devices
by performing computations in a remote server, enabling
complex multiplayer games to be more accessible on-
demand. Similarly to XR traffic, considerable data may
be streamed from the server to the devices to enable high-
quality graphics, but timeliness constraints may be looser.

• IoT Device Traffic: We shall also consider IoT devices
that do not have strict and tight latency budgets, but that
can potentially be massively deployed, e.g. smart home
devices, or agricultural sensor networks. Typical traffic
for such use cases consists of short and sporadic packets.

We summarize the requirements for these use-cases in
Table I.

III. SYSTEM MODEL

In this section, we introduce a network architecture and per-
formance metrics that we use to explore the characteristics and
tradeoffs associated with service placement and provisioning
decisions for real-time applications.

A. Network Model

We shall initially take the perspective of a (virtual) service
provider who pays for communication and compute resources
from one or more infrastructure providers. Initially we assume
that the service provider provides custom services to a homo-
geneous customer base of mobile devices, i.e., with the same
application requirements.

We consider a setting where the network resources lie on a
binary tree where compute resources could be made available
on any node, while the edges correspond to communication
links carrying traffic between compute nodes and mobile
devices, see Figure 1. The root of the tree is at height hc and
will be interpreted to correspond to a cloud compute service
provider, while the leaves at height 1 will be viewed as edge

TABLE I: Network Requirements and Parameters per Use-Case

Use Case Timeliness Constraint
(τ0, in ms)

Devices per BS
(η, in devices/BS)

UL/DL Update Size
(pu, pd, in kB/update)

Compute per update
(ψ−1, in Ops/update) References

XR 15 10 50 50 1e9 [14]–[16]
Vehicular Networks 10 40 0.4 0.4 1e7 [16]–[19]

Cloud Gaming 100 5 5 100 1e10 [16], [20], [21]
IoT 10,000 500 0.2 0 1e4 [16], [22]

2

compute nodes co-located with cellular Base Stations (BS).
Meanwhile intermediate levels are introduced to study the
potential benefits of placing compute resources between the
two extremes.

Fig. 1: Tree Topology Model

We model mobile device service requests as arriving at each
BS as a Poisson Point Process (PPP) with intensity λ. Each
request corresponds to a server-side process running on a VM
hosted in a compute node, and has a random duration of mean
µ−1 seconds. Hence, if sufficient resources were provisioned
the number of active mobile devices at each BS, illustrated
in blue in Figure 1, follows a Poisson distribution with mean
η = λ/µ devices, corresponding to the stationary distribu-
tion of an M/GI/∞ queue. However, if limited resources
are provisioned mobile devices may experience blocking. In
particular, suppose the service provider provisions sufficient
compute resources to k simultaneous sessions at each node
resources at level h of the tree. Assuming requests at all
leaf nodes are served by the parent node at level h, the
total offered mean load on such a node will be η2h−1 and
the blocking probability probability ε is given by the Erlang
function E(η2h−1, k) associated with an M/GI/k/k queue.
The service availability, i.e., 1 − ε, thus depends not only on
the resources provisioned k but also on the level h at which
they are located – more on this later.

When a session is active, we assume the device sends
updates of size pu bits at a fixed rate ρ updates/sec. to its
associated process, which in turn performs a fixed number of
operations ψ−1 and may send back an update of size pd bits
to the device – see Figure 2. As discussed below, we consider
applications where these tasks must be performed in a timely
manner.

Fig. 2: Interaction between a device and its server-side process.

We assume for now that the devices supported by the service
provider share the same application and their VMs are hosted
at the same level in the tree. Section V revisits this assumption
by examining a general service and network model.

B. Delay Models

To achieve timely service, three key metrics need to be
considered: (1) the device update rate ρ affecting the amount
of compute needed and the load on communication links, (2)
the transport delay dt experienced by updates depending on
the level the VM is placed; and (3) the compute delay dc that
depending on the amount of compute resources allocated to a
VM.

To get at the main characteristics of such systems we shall
consider a simple delay model. If compute resources are
placed at level h the round-trip transport delay dt(h) is given
by:

dt(h) =
pu + pd

l
+ 2φh sec., (1)

where l is the bottleneck link capacity, likely the wireless link,
and φ is a constant forwarding delay per hop to the compute
resources. The first term captures the overall transmission
delay of a file while the second term captures the forwarding
delay. This idealized model assumes that the service providers
have access to uncongested links with minimal queuing from
their infrastructure provider, i.e., by over-provisioning their
communication resources, see [28], or prioritizing such traffic.

Meanwhile, the delay to process an update depends on
application specific tasks such as database look-ups, GPS-
coordinates processing, video frames rendering, etc. Given
that an update requires ψ−1 operations and assuming perfect
parallelism, c CPU cores each able to deliver ν operations/sec
would complete the update task in

dc(c) =
1

cψν
sec. (2)

Note that we will allow c take fractional values.

C. Timeliness Metric

In this paper we adopt an end-to-end timeliness metric
based on the Age-of-Information (AoI), see e.g., [29]–[31]. The
key difference with traditional end-to-end or round-trip delay,
is capturing the difference between the current time (at the
mobile device) and the time at which the server has completed
processing the last update, i.e., acted upon and possibly
delivered back to the mobile device. Hence, the AoI requires
factoring both the update rate and compute/communication
delays, and captures the tension between these two variables.
For instance, if the device’s update rate is low, then the remote
process may often be out of sync even if the transport and
compute delays are low. Conversely, if the update rate is high,
but updates experience large delays, the server-side process
decisions would be outdated most of the time.

Several works have studied ways of characterizing the AoI
in multi-user settings, see e.g., [32]–[34]. For the most part,
they use variations of Theorem 3 in [32] which captures the
AoI for a specific device. For simplicity we shall use a natural
variant of this timeliness metric τ , given by:

τ =
1

2ρ
+ dt(h) + dc(c) (3)

3

As can be seen, low delays and high update rates improve
timeliness. Further support for this performance metric can be
found in Appendix A. We denote by τ0 the application specific
timeliness constraint, i.e., resources need to be provisioned so
as to ensure τ ≤ τ0 for the devices subscribed to the service.

Putting Equations 1 and 3 together, one can observe the
dependence of the timeliness τ on the device update rate ρ
and the level h at which the service provider rents/places its
compute resources. It is clear that both dt(h) and τ increase
with h. However, fixing a timeliness constraint τ0 forces ρ
to increase with h to compensate for the additional delay,
increasing the compute resources required at the compute
node side to process the additional updates. Therefore, one
can distinguish two clear tradeoffs, one between the VM level
and timeliness, the other between the VM level and compute
resources.

IV. PROBLEM FORMULATION AND RESULTS

The service provisioning problem reduces to determining
(1) the optimal level h∗ at which to place the VMs, (2) the
required number of cores c∗ per VM, (3) the minimum number
of VMs k∗ that can be hosted per compute node, as well as
(4) the minimum device update rate ρ∗, that will dictate the
amount of traffic, i.e., the communication cost, on the links
below level h∗.

A. Problem Formulation
Given the simple system model proposed in the previous

section, the service provider’s cost CP in the network resource
provisioning phase can be approximated as the sum of the
communication and compute cost:

CP (ρ, c, k, h) = θtη2hc−1h(pu + pd)ρ+ θc2hc−hkc (4)

where θt is the communication cost (in $/Mbps/hop/link)
and θc is the compute cost (in $/core). Note that η2hc−1 is
the mean number of devices in the network assuming high
availability (no blocking) and h(pu + pd)ρ is the mean load
× links per device if compute is placed at level h. Meanwhile
2hc−h is the number of nodes at level h where compute
resources are placed and kc is number of cores per node if
each VM requires c cores. Now given a timeliness constraint
τ0 and an availability requirement, i.e., blocking probability
ε, one can characterize the minimum cost level at which to
dimension the network in four steps.

First, given Equation 3 and the timeliness constraint τ0
one can determine the smallest feasible update rate, when
compute resources are placed at level h, i.e., that with the
smallest communication/compute cost. Specifically, to ensure
no queuing at the VM we need dc ≤ 1

ρ so setting this to
equality we get:

ρ(h) =
3/2

τ0 − dt(h)
. (5)

Second, given the compute delay constraint, the number of
CPU cores allocated per VM can be found from Equation 2:

c(h) =
ρ(h)

ψν
. (6)

Third, the number of VMs k(h) compute nodes at level
h would need to support to limit blocking to ε can be
obtained via the Erlang-B formula, see [35], i.e., solving
ε = E(η2h−1, k(h)), where η2h−1 is the mean load such
nodes would see. Note service providers benefit from statistical
multiplexing gains when compute resources are placed higher
in the tree, allowing increased aggregation of traffic on shared
resources. As h increases, the compute load variability per
node decreases, hence placing compute at the top of the tree,
i.e., in the cloud, reduces the need for slack compute resources
in order to ensure high availability, and thus reduces compute
costs.

Finally, the optimal service level can be trivially found by
evaluating h∗ = arg minh∈{1,··· ,hc} CP (ρ(h), c(h), k(h), h).
We can then obtain ρ∗ = ρ(h∗), c∗ = c(h∗) and k∗ = k(h∗).
This is tractable since hc is reasonably small.

B. Analysis of Results

We now present and analyze our results for different appli-
cation parameters shown in Table I. We analyze successively
the effect of the relative costs of compute and communication,
density of devices, and service availability constraint.

1) Effect of Compute and Communication Costs: Figure 3a
shows the optimal VM level h∗ as a function of the relative
cost of compute to communication θr = θc/θt. Clearly, as
compute becomes more expensive with respect to communica-
tion, it is preferable for compute resources to be placed higher
up in the tree so as to benefit from statistical multiplexing. It
is also worth noticing that the optimal VM placement depends
on the use-case. While the optimal decision for all applications
would be to place compute resources as close to the mobile
devices as possible, i.e., at the edge, when compute is cheap,
each use case has a different behavior as θr grows. For large
θr, the cost effective placement for each use-case is as far
from the edge as possible. The highest level possible for large
θr is dictated by the application’s timeliness constraint. More
specifically, the looser τ0, the larger h∗ is for large θr. Any
value of h larger than this level would be infeasible, as the
transport delay dt(h) would exceed the timeliness requirement
τ0, for any ρ.

2) Effect of Device Density: As discussed earlier, having
multiple VMs share compute resources leads to statistical
multiplexing gains. Resource pooling can either be achieved
by placing compute resources higher up in the tree, or by
increasing the device load per BS. Therefore, as η grows,
we expect to need fewer compute resources per unit demand,
pulling the optimal service level down closer to the edge. This
is indeed what is exhibited in Figure 3b, where θr has been
estimated based on realistic compute and communication cost
values [36], [37].

3) Effect of Service Availability Requirement: The network
is dimensioned so as to guarantee an availability of 1 − ε.
This naturally leads to higher dimensioning cost versus mean
load provisioning, as slack resources will need to be allocated
to address load variations. In fact, the smaller ε is, the more
compute resources will need to be provisioned to ensure the

4

(a) Effect of the relative cost of compute to
communication θr; ε = 1× 10−5.

(b) Effect of the number of devices η attached
to each BS, θr = 1× 103; ε = 1× 10−5.

(c) Effect of the blocking probability ε, θr =
1× 103.

Fig. 3: Optimal service level h∗, for hc = 25, φ = 100µs/hop, ν = 30× 103 MIPS/core, l = 1 Gbps.

desired service availability level is met. Since more compute
resources need to be reserved, the most cost effective strategy
is to place compute resources higher in the tree. Figure 3c
illustrates this trend, showing that one can afford to place the
resources closer to the edge under relaxed constraints.

V. ONLINE SERVICE PLACEMENT OF HETEROGENEOUS
TRAFFIC IN THE FOG

So far, we have tackled the problem of service placement
and dimensioning for real-time applications on mobile devices.
The analysis presented in Section IV was based on a simple
network topology, delay models and timeliness constraints.
These assumptions were necessary to abstract what in practice
is quite a complex system. In this section, we explore the
design of an algorithm that jointly adapts devices’ update
rates and VM placement in a heterogeneous network, using
delay measurements instead of model-based predictions. We
assume a service provider has already provisioned resources
on a general network topology and consider the case where
mobile devices running different applications are co-hosted on
shared resources. We emphasize that the problem addressed
in the previous sections is a joint network dimensioning and
service placement problem faced by the service provider, while
the one presented in this section is a joint network management
(through device rate-adaptation) and service placement prob-
lem faced by the devices requesting the service. The former
problem is hence faced during the network deployment phase,
while the latter is faced when the network is operating.

A. Network Model and Algorithm Description

In our general network model we let S denote the set of
compute nodes, where each s ∈ S has capacity κs. These
nodes shared by mobile devices of different types where A
denotes the set of types. Requests of Type a ∈ A arrive as
a PPP of intensity λa, and are active for a random time with
mean µ−1

a seconds. The types also have potentially different
compute requirements per update ψ−1

a and application timeli-
ness requirement τa. Note that request types capture devices’
requests generated at different locations and associated with
different application requirements, whence Type a requests are
restricted to be served by a subset of compute nodes Sa ⊆ S.

In practice, delays experienced by updates might be roughly
quasistatic or constant over time, congestion dependent, i.e.,
depend on previous placement decisions made by the algo-
rithm, or vary due to exogenous traffic which is not under the
service provider’s control. Hence, in the sequel several metrics
including network delays are denoted as depending on time.

Our proposed Algorithm 1 extends traditional Least Ratio
Routing (LRR) based algorithms, see [38], to realize joint
service placement and rate-adaptation along with possibly
service migration. Thus it is executed when new mobile
devices arrive to the network, but also subsequently if a device
moves and/or observes changes in network congestion that
warrant the migration of its VM to another location. As devices
execute Algorithm 1 more frequently, they will be able to react
to more sudden changes in the delay profile, but at the cost of
more frequent compute node pings. For simplicity, we focus
on the algorithm’s behavior upon arrival of a new request.

Algorithm 1 Rate-Adaptive Least Ratio Routing

1: procedure LRR(a, t) . Device Type a, time t
2: Ping/measure dt

a,s(t), rs(t), κs, fs(·), ∀s ∈ Sa
3: ρa,s(t) = 1.5/(τa − dt

a,s(t)), ∀s ∈ Sa
4: ∆a,s(t) = ψ−1

a ρa,s(t), ∀s ∈ Sa
5: us(t) = rs(t)/κs, ∀s ∈ Sa
6: u′a,s(t) = (rs(t) + ∆a,s(t))/κs, ∀s ∈ Sa
7: S̃a = {s ∈ Sa|u′a,s(t) ≤ 1}
8: s∗ = arg mins∈S̃a

∫ u′a,s(t)

us(t) fs(u) du

9: return s∗, ρ∗a,s∗(t)

When a Type a device arrives at time t, it first pings the
compute nodes that can potentially host its VM to estimate
the current transport delays dt

a,s(t) to all s ∈ Sa. It also
gathers the amount of resource rs(t) currently allocated at s.
Given dt

a,s(t), the device can use Equation 5 to determine the
update rate ρa,s(t) it would currently require if its VM was
instantiated on node s while satisfying its timeliness constraint
τa. It then deduces its compute requirements ∆a,s(t) =
ρa,s(t)ψ

−1
a . The device can then determine the current uti-

lization us(t) = rs(t)
κs

∈ [0, 1) and projected utilisation
u′a,s(t) =

rs(t)+∆a,s(t)
κs

if the VM was placed on s ∈ Sa.

5

The nodes that can support this request at time t are given
by S̃a = {s ∈ Sa|u′a,s(t) ≤ 1}. If none are available, the
request is blocked. Otherwise, each compute node has a strictly
increasing function fs : [0, 1] → R+ which we refer to as
Marginal Utilization Cost Function (MUCF) capturing the cost
of using an extra compute resource unit at a given utilization.
The algorithm greedily places the VM on the feasible node
having the smallest marginal cost at time t, defined as the
integral of the MUCF from us(t) to u′a,s(t).

The MUCF can be designed with different objectives in
mind. For instance, a natural objective would be to balance
the compute nodes’ loads. This strategy ensures that there
are as much available resources as possible in all the nodes,
which may help reducing the blocking rate. Different MUCFs
would attempt to greedily balance the loads on the compute
nodes. In fact, any convex function would achieve this goal,
and the function convexity would control the extent to which
the service provider wants to balance the load, at the cost
of risking to consume more compute resources. In light of
these observation, being proportionally fair with respect to
the available resources among them is a reasonable policy,
i.e., greedily maximizing the network-level utility function∑
s∈S log(1−us(t)) for an arrival at time t. Theorem 1, proved

in Appendix C, confirms this objective can be achieved by
properly selecting the MUCF.

Theorem 1: Proportional Fairness MUCF. Choosing
fs(u) = 1

1−u , u ∈ [0, 1) for a compute node s is equivalent to
greedily maximizing the proportional fairness utility function.

B. Algorithm Performance Analysis
In our framework, we aim at minimizing device blockage.

Since we are studying a heterogeneous system, where devices
running different applications can request service from the
same pool of resources, we assign a reward wa to Type
a devices per unit time spent in the network, which can
represent, e.g., revenue generated by serving a Type a device.

We observe that this problem reduces to the Multiple
Knapsack Problem (MKP) for fixed compute requirements ∆.
This problem has been thoroughly studied in the literature
and several strategies based on approximation algorithms and
heuristics have been proposed to solve it [39]. In Theorem 1,
we propose an MUCF that greedily balances the loads across
the compute nodes to solve a variant of the MKP where the
item sizes ∆a,s, depend on the knapsacks s ∈ S.

A natural definition for the cost function of the device-
centered problem CD in the network operation phase is the
expected rate of loss in revenues due to blockage, for a fixed
∆, defined as:

CD(w,λ,µ,∆,κ) =
∑
a∈A

waλaµ
−1
a P (Ba;λ,µ,∆,κ) (7)

where P (Ba;λ,µ,∆,κ) captures the probability that a typical
Type a device is blocked. CD can be lower-bounded by solving
a relaxed MKP as stated in Theorem 2, proved in Appendix D.

Theorem 2: Lower-Bound on the Rate of Loss in Revenue.
Let A be an assignment matrix representing the mean

number of Type a devices assigned to node s, such that
A ∈ B(λ,µ,∆,κ) = {A ∈ R|A|×|S||

∑
s∈S Aa,s ≤

λaµ
−1
a ,∀a ∈ A ,

∑
a∈A∆a,sAa,s ≤ κs,∀s ∈ S}.

Let A∗ be a feasible assignment, solution of the Linear
Program relaxed Multiple Knapsack Problem (LP-MKP):

LP-MKP(w,λ,µ,∆,κ) : max
A

∑
a∈A

∑
s∈S

waAa,s

s.t. A ∈ B(λ,µ,∆,κ)

Then, CD(w,λ,µ,∆,κ) =
∑
a∈A

wa(λaµ
−1
a −

∑
s∈S

A∗a,s)

≤ CD(w,λ,µ,∆,κ)

The authors in [38] discuss a special case of the sug-
gested framework, where wa = 1, µ−1

a = 1,∀a ∈ A,
and ∆a,s = 1,∀(a, s) ∈ A × S . In this specific setting,
CD was proven to converge to CD in the fluid limit, i.e.,
when both the arrival rate vector λ and capacity vector κ
are scaled by a large fluid-scale factor γ. In this paper we
study whether our proposed local and adaptive LRR policy
can asymptotically drive the value of the network-wide cost
function to its theoretical lower bound in large systems in more
general settings than in [38].

C. Algorithm Performance Evaluation

We now evaluate the performance of our joint service
placement and rate-adaptation algorithm via simulation in
the fluid-scaled network with factor γ. In these simulations,
we assumed a more general underlying network model than
Figure 1, depicted in Figure 4.

Fig. 4: General Topology Model

This network features a cloud compute node located 25 hops
away from the edge, the cloud compute node having a compute
capacity set to be 100 times the one of an edge node. Each
of the |A| device types is attached to a random BS colocated
with an edge compute node. A type is a collection of devices
of one of the use-cases described in Section II, and having
technical requirements given in Table I. Each device can place
its service in its closest compute node, or any adjacent node
including the cloud at the cost of higher transport delay, as
modeled in Equation 1. Moreover, Type a’s reward wa is set
to be proportional to ψ−1

a depicting a pricing model based on
the amount of compute a Type a update requires.

We compare the performance of our joint placement and
rate-adaptation policy to a similar placement algorithm, i.e.,
using the MUCF suggested in Theorem 1, but for devices
having static update rates, set such that compute nodes up

6

to five hops away can be reached without violating their
timeliness constraint.

In Figure 5, we show that the rate of loss in revenue CD
converges to the lower-bound CD as γ increases for the rate-
adaptive algorithm, but not for the static-rate one. In this
simulation, network delays are assumed to be static, and κ
has been set so as to ensure that the total capacity in the
network is larger than the expected network load.

Fig. 5: Performance comparison of the rate-adaptive and static
LRR algorithms in the fluid-limit and the theoretical lower-
bound on the mean rate of loss in revenue; |A| = 50, |S| = 20.

We note that the value of the lower-bound is 0, meaning that
in large-scale systems a zero-blocking regime can be achieved.

Figure 5 may, however, look different if the fixed update
rate is designed differently. Figure 6 shows the value of CD
in the fluid limit for the static LRR algorithm as a function
of the devices’ rates. Note that the figure only shows the
rate of XR devices, but all the devices’ rates increase along
with ρXR. We observe that CD first drops quickly once the
update rate is large enough to reach nodes two hops away, as
it gives the devices the ability to balance the load among edge
nodes. This effect is not as beneficial for larger rates as the
VM compute requirements also increase, leading to a higher
blocking rate. The cost function value then dramatically drops
once the update rate allows the devices to reach the cloud node
and benefit from its substantial capacity, yet without reaching
zero-blocking as the rate-adaptive LRR. Finally, larger update
rates are associated with larger values of CD as the devices’
VM requirements keep on increasing while not gaining any
load-balancing opportunity.

The key takeaway is that manufacturers can design devices
with slow fixed update rates, requiring little compute resources
at the server side and little power at the device side, but at the
cost of reducing the set of reachable nodes given the timeliness
constraint, hence reducing the placement algorithm’s balancing
ability. Conversely, for large rates, farther nodes such as
powerful cloud servers can be reached leading to better load-
balancing, but devices may occupy unnecessary resources if
their VMs are placed at the edge, leading to wasted compute
resources and reduced service availability. Manufacturers may
optimize for an optimal update rate balancing these two

Fig. 6: Plot of the mean rate of loss in revenue as a function of
the devices’ fixed update rate; |A| = 50, |S| = 20, γ = 300.

effects, but it is unlikely to perform well in arbitrary network
topologies.

Rate-adaptation allows for more flexibility in the service
placement, without occupying unnecessary compute resources,
explaining the better performance of the rate-adaptive LRR
algorithm in Figure 5 over static rate policies.

Another major strength of Algorithm 1 is the fact that it can
closely adapt to changes in network delays. Figure 7 shows
the performance over time of the joint placement and rate-
adaptation policy under stochastic delays and compares it to
the one of the static algorithm. The delay process experienced
by the devices is now assumed to depend on previous decisions
taken by the algorithm, whose mean is simulated as an
increasing and convex function in the congestion level. In
this simulation, the compute node capacities κ were slightly
under-provisioned to exhibit the policies’ performances in a
compute-limited settings.

Fig. 7: Performance comparison of the rate-adaptive and static
LRR algorithms, and the theoretical lower-bound on the mean
rate of loss in revenue under stochastic network delays; |A| =
20, |S| = 10, γ = 500.

One can clearly observe that the rate-adaptive LLR policy’s
performance eventually moves very close to the steady-state
lower-bound CD, while the static policy does not perform
as well. Here again, the rate-adaptive LRR algorithm has
the advantage of being able to reach further compute nodes

7

when needed than the static rate algorithm, explaining the
gap between the two curves. Moreover, when performing rate
adaptation, all the devices currently served in the network can
quickly react to changes in the network delay they experience,
making use of the available compute nodes’ resources more
efficiently, hence reducing blocking.

The presented results indicate that rate-adaptation is a
requirement and needs to be associated with load-balancing
policies to achieve low blocking rates, i.e., high service
availability, and serve real-time timeliness constrained devices.

VI. CONCLUSIONS

In this paper, we studied the service placement and dimen-
sioning problem in the fog network. We introduced a simple
framework allowing us to identify the most cost-effective
VM placement and network resource dimensioning strategies,
and understand the fundamental tradeoffs associated with this
problem. Unlike results presented in related work, we use
the notion of Age-of-Information as a timeliness metric, as
it demonstrated to be more relevant than network delay when
devices send real-time updates. We showcased that different
“forces” influence the optimal VM placement and resource di-
mensioning decisions in the Cloud-to-Thing continuum, which
may greatly vary from use-case to use-case. We then proposed
an online and decentralized joint service placement and rate
adaptation policy based on delay measurements. This algo-
rithm is aware of stochasticity in the network delays, ensuring
near-optimal availability in large-scale networks by balancing
the load on the different compute nodes that can host the
devices’ service. Our algorithm showed to outperform static
rates policies, revealing that rate-adaptation is a requirement
in the design of real-time applications.

REFERENCES

[1] N. Mohammadi and J. E. Taylor, “Smart city digital twins,” in 2017
IEEE SSCI, November 2017.

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, October 2016.

[3] M. Chiang and T. Zhang, “Fog and IoT: An Overview of Research
Opportunities,” IEEE Internet of Things Journal, December 2016.

[4] Y. Mao et al., “A survey on mobile edge computing: The communication
perspective,” IEEE COMST, Fourth quarter 2017.

[5] X. Masip-Bruin et al., “Foggy clouds and cloudy fogs: a real need
for coordinated management of fog-to-cloud computing systems,” IEEE
Wireless Communications, October 2016.

[6] A. Zhou et al., “Cloud service reliability enhancement via virtual
machine placement optimization,” IEEE TSC, November 2017.

[7] R. Yu, G. Xue, and X. Zhang, “Application provisioning in fog
computing-enabled internet-of-things: A network perspective,” in IEEE
INFOCOM 2018, April 2018.

[8] A. Karamoozian, A. Hafid, and E. M. Aboulhamid, “On the Fog-Cloud
Cooperation: How Fog Computing can address latency concerns of IoT
applications,” in FMEC 2019, June 2019.

[9] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal workload
allocation in fog-cloud computing toward balanced delay and power
consumption,” IEEE Internet of Things Journal, December 2016.

[10] O. Skarlat et al., “Optimized IoT service placement in the fog,” Service
Oriented Computing and Applications, 2017.

[11] A. M. Maia et al., “Optimized placement of scalable iot services in edge
computing,” in 2019 IFIP/IEEE Symposium on Integrated Network and
Service Management (IM), April 2019.

[12] S. Pasteris et al., “Service Placement with Provable Guarantees in
Heterogeneous Edge Computing Systems,” in IEEE INFOCOM 2019,
April 2019.

[13] A. Santoyo Gonzlez and C. Cervell Pastor, “Edge Computing Node
Placement in 5G Networks: A Latency and Reliability Constrained
Framework,” in 2019 6th IEEE International Conference on CSCloud/
2019 5th IEEE EdgeCom, 2019.

[14] S. M. LaValle, A. Yershova, M. Katsev, and M. Antonov, “Head tracking
for the oculus rift,” in 2014 IEEE ICRA, 2014.

[15] S. Mangiante et al., “VR is on the Edge: How to Deliver 360◦ Videos
in Mobile Networks,” in ACM SIGCOMM 2017.

[16] R. Ramaswamy, N. Weng, and T. Wolf, “Characterizing network pro-
cessing delay,” in GLOBECOM ’04., November 2004.

[17] K. Hong et al., “Evaluation of multi-channel schemes for vehicular
safety communications,” in IEEE 71st VTC, May 2010.

[18] 5GPP, “5G Automotive Vision,” 2015.
[19] NGMN Alliance, “V2X white paper,” 2018.
[20] M. Claypool and K. Claypool, “Latency and player actions in online

games,” Commun. ACM, November 2006.
[21] M. Jarschel et al., “An Evaluation of QoE in Cloud Gaming Based on

Subjective Tests,” in IMIS 2011, June 2011.
[22] R. Ratasuk et al., “NB-IoT system for M2M communication,” in IEEE

Wireless Communications and Networking Conference, April 2016.
[23] NGMN Alliance, “5G white paper,” 2015.
[24] 5GPP, “Cloud-native and verticals services,” August 2019.
[25] A. ElGamal, J. Mammen, B. Prabhakar, and D. Shah, “Throughput-delay

trade-off in wireless networks,” in IEEE INFOCOM 2004, March 2004.
[26] B. Soret et al., “Fundamental tradeoffs among reliability, latency and

throughput in cellular networks,” in Globecom ’14 Workshops, 2014.
[27] M. S. Elbamby, C. Perfecto, M. Bennis, and K. Doppler, “Toward low-

latency and ultra-reliable virtual reality,” IEEE Network, March 2018.
[28] C. Fraleigh, F. Tobagi, and C. Diot, “Provisioning ip backbone networks

to support latency sensitive traffic,” in IEEE INFOCOM 2003, March
2003.

[29] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in IEEE INFOCOM 2012, March 2012.

[30] M. Costa, M. Codreanu, and A. Ephremides, “Age of information with
packet management,” in IEEE ISIT 2014, June 2014.

[31] A. Kosta, N. Pappas, V. Angelakis et al., “Age of information: A new
concept, metric, and tool,” Foundations and Trends in Networking, 2017.

[32] R. D. Yates and S. K. Kaul, “The Age of Information: Real-Time Status
Updating by Multiple Sources,” IEEE TIT, March 2019.

[33] L. Huang and E. Modiano, “Optimizing age-of-information in a multi-
class queueing system,” in IEEE ISIT 2015, June 2015.

[34] H. B. Beytur and E. Uysal-Bykoglu, “Minimizing age of information
on multi-flow networks,” in SIU 2018, May 2018.

[35] S. Berezner, A. Krzesinski, and P. G. Taylor, “On the inverse of Erlang’s
function,” Journal of applied probability, 1998.

[36] “Amazon EC2 Pricing.” [Online]. Available: https://aws.amazon.com
/ec2/pricing/on-demand/, Accessed on 2019-10-05

[37] B. Boudreau, “Global Bandwidth & IP Pricing Trends.” [Online].
Available: https://www.telegeography.com/hubfs/2017/presentations/
telegeography-ptc17-pricing.pdf, Accessed on 2019-10-13

[38] M. Alanyali and B. Hajek, “Analysis of simple algorithms for dynamic
load balancing,” Mathematics of Operations Research, 1997.

[39] A. Fréville, “The multidimensional 0–1 knapsack problem: An
overview,” European Journal of Operational Research, 2004.

[40] C. Fortuin, P. Kasteleyn, and J. Ginibre, “Correlation inequalities on
some partially ordered sets,” Communications in Mathematical Physics,
1971.

ACKNOWLEDGEMENT

This work was made possible by the support of Fujitsu
Laboratories of America, and the NSF Grant ECC-1809327.
The statements made herein are solely the responsibility of the
authors.

APPENDIX

A. Timeliness metric motivation

We show that the timeliness metric 1
2ρ+dt+dc is reasonable

in the setting under study. In [32], the authors show in

8

Theorem 3 that the mean AoI τm of device m is:

τm =
E[ImDm] + E[I2

m]/2

E[Im]

where Im represents the inter-arrival time between updates
originating from m, and Dm is the system delay experienced
by its updates. Intuitively, Im and Dm are correlated, as a long
inter-arrival time would be associated with the compute node
having more time to process the tasks currently queued. More
formally, we have the following result proved in Appendix B:

Lemma 1. E[ImDm] ≤ E[Im] · E[Dm]

Therefore, for deterministic Im , E[Im] = 1
ρ , E[I2

m] = 1
ρ2

and E[Dm] = dt + dc, we get τm ≤ 1
2ρ + dt + dc. Now,

with increasing number of devices (our regime of interest),
the incremental impact of an individual device m on the delay
experienced by its own packets becomes negligible. Hence, by
separation of time scales, one can conclude that this bound
becomes tight in the limit, motivating our timeliness metric.

B. Proof of Lemma 1:
Proof. Let Nm be the number of arrivals to the queue during
the inter-arrival time Im, and let {Ri}i be the residual times
of the update packets in the compute node queue upon arrival
of the update from m. By the law of total covariance, we have:

Cov(Im, Dm) = E[Cov(Im, Dm|{Ri}i, Nm)]

+ Cov(E[Im|{Ri}i, N],E[Dm|{Ri}i, Nm])

By observing that Dm is a deterministic function of
{Ri}i and Nm, we conclude that the first term must
be 0 as the covariance of two random variables is 0
if one of them is deterministic. Moreover, we note that
E[Im|{Ri}i, Nm] = f({Ri}i, Nm) and E[Dm|{Ri}i, Nm] =
g({Ri}i, Nm), where f and g are deterministic functions.
Clearly, f and g are respectively nonincreasing and nonde-
creasing in {Ri}i and Nm. Hence, from the FKG inequal-
ity [40], Cov(E[Im|{Ri}i, Nm],E[Dm|{Ri}i, Nm]) ≤ 0, thus
Cov(Im, Dm) ≤ 0, hence E[ImDm] ≤ E[Im]E[Dm].

C. Proof of Theorem 1
Proof. We start from Algorithm 1’s decision policy. We have:

arg min
s∈S̃a

∫ u′a,s(t)

us(t)

f(u)du

= arg min
s∈S̃a

∫ u′a,s(t)

us(t)

1

1− u
du

= arg max
s∈S̃a

log(1− u′a,s(t))− log(1− us(t))

= arg max
s∈S̃a

log(1− u′a,s(t))− log(1− us(t))

+
∑
s′∈S̃a

log(1− us′(t))

= arg max
s∈S̃a

log(1− u′a,s(t)) +
∑

s′∈S̃a\s

log(1− us′(t))

where the third step consists in adding a constant w.r.t. s.

D. Proof of Theorem 2

This lower-bound proof is a generalization of the one
proposed in [38]. As in [38], we introduce a virtual overflow
compute node so of infinite capacity hosting the VMs of
devices that have been blocked. Define βa(t) to be the number
of Type a customers that have been blocked, i.e., that have
been hosted in so, in [0, t), Tm to be the random holding time
of device m, and Xa,s(t) to be the state of the network at
time t, i.e., the number of Type a customers served by s. We
have successively:

CD(w,λ,µ,∆,κ)

=
∑
a∈A

waµ
−1
a λaP (Ba;λ,µ,∆,κ)

=
∑
a∈A

waµ
−1
a λa lim

t→∞

E[βa(t)]

tλa

(a)
= lim
t→∞

∑
a∈A

waµ
−1
a

t
E[

βa(t)∑
m=1

Tm

µ−1
a

]

(b)
≥ lim

t→∞

∑
a∈A

wa
t
E[

∫ t

0

Xa,so(y) dy]

= lim
t→∞

∑
a∈A

wa
t

(E[

∫ t

0

∑
s∈S∪so

Xa,s(y) dy]

− E[

∫ t

0

∑
s∈S

waXa,s(y) dy])

(c)
= lim
t→∞

∑
a∈A

waλa
µat

∫ t

0

1− e−yµa dy

− lim
t→∞

1

t

∫ t

0

E[
∑
a∈A

∑
s∈S

waXa,s(y)] dy

(d)
≥

∑
a∈A

waλa
µa

lim
t→∞

t+ e−tµa − 1

t

− (
∑
a∈A

∑
s∈S

waA
∗
a,s) lim

t→∞

1

t

∫ t

0

1 dy)

=
∑
a∈A

wa(λaµ
−1
a −

∑
s∈S

A∗a,s)

= CD(w,λ,µ,∆,κ)

Step (a) follows from the algebraic limit theorem as the
number of types is finite and from the fact that Tm are
i.i.d. of mean µ−1

a , i.e., Tm

µ−1
a

have unit mean. Step (b) is
a bound because some customers that arrived to so before
time t may still be in the system at time t. Step (c) follows
from the idea that the augmented network can be viewed
as an M/M/∞ queue, using the expression of the mean
number of users in such a system at time t starting from
the empty state at t = 0, as well as the Fubini-Tonelli
theorem. In step (d), we use the fact that at every time
y, E[

∑
a∈A

∑
s∈S waXa,s(y)] ≤

∑
a∈A

∑
s∈S waA

∗
a,s by

definition of LP-MKP(w,λ,µ,∆,κ).

9

