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Abstract—In this paper, we develop a framework for user asso-
ciation in infrastructure-based wireless networks, specifically fo-
cused on flow-level cell load balancing under spatially inhomo-
geneous traffic distributions. Our work encompasses several dif-
ferent user association policies: rate-optimal, throughput-optimal,
delay-optimal, and load-equalizing, which we collectively denote
-optimal user association. We prove that the optimal load vector
that minimizes a generalized system performance function is

the fixed point of a certain mapping. Based on this mapping, we
propose and analyze an iterative distributed user association policy
that adapts to spatial traffic loads and converges to a globally op-
timal allocation.We then address admission control policies for the
case where the system is overloaded. For an appropriate system-
level cost function, the optimal admission control policy blocks all
flows at cells edges. However, providing a minimum level of con-
nectivity to all spatial locations might be desirable. To this end, a
location-dependent random blocking and user association policy
are proposed.

Index Terms—Delay-optimal, flow-level dynamics, load
balancing, throughput-optimal, user association, wireless network.

I. INTRODUCTION

F OURTH-GENERATION wireless cellular standards such
as IEEE 802.16m WiMAX2 and LTE-Advanced are

designed to support broadband data services (in addition to
voice) so as to meet growing demands for connectivity, e.g.,
file transfers and Web browsing, on mobile platforms [1], [2].
One of the important problems in multicell data networks
is properly associating mobile terminals (MTs) with serving
base stations (BSs); this is usually referred to as the user
association problem. In selecting the serving BS, two met-
rics—instantaneous achievable rate at the physical layer and
cell load—should be considered. Since the achievable rate is
computed from the received signal-to-interference-plus-noise
ratio (SINR), the simplest (and thus widely accepted) rule is to
choose the BS that gives the strongest downlink pilot signal.
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However, this rule is naive in the sense that it considers neither
intercell interference nor cell load balancing.
There have been many efforts in the literature toward

developing user association rules considering interference
avoidance and/or cell load balancing [3]–[13]. To avoid in-
terference when frequency is universally reused and intercell
interference is severe, centralized approaches have been con-
sidered [5], [8], [10], [11]. The basic idea is to schedule users
across cells so that they do not severely interfere with each
other. This is called intercell coordinated scheduling. Earlier
work on load balancing also mostly assumed a centralized
controller that governs the BSs and the MTs with access to all
the necessary information [3], [6], [7], [9]. However, central-
ized approaches, for either interference avoidance and/or load
balancing, may require excessive computational complexity
and message overhead, which increase exponentially in the
size of the network. Such centralized functionality is usually
implemented in a server deep in the core network, which only
allows slow adaptation at relatively long timescales. To avoid
relying on a centralized controller, current systems are usually
based on fractional frequency reuse or interference random-
ization [1], [2]. Distributed cell load balancing is also being
considered as a basic requirement in upcoming standards. For
example, IEEE 802.16m WiMAX2 recently included parame-
ters such as cell load and cell type in the system information
broadcast [1], [14].
In this paper, we investigate distributed user association poli-

cies. We will not consider interference avoidance that requires
intercell coordinated, i.e., centralized scheduling. Therefore,
our approach is reasonable when fractional frequency reuse
or interference randomization are being used so that intercell
interference can be roughly considered as static noise. We focus
on developing a theory and algorithms for user association
that adapt to spatially inhomogeneous traffic. We consider
stochastic traffic loads where new file transfers, or equivalently
flows, are initiated at random and leave the system after being
served; this is sometimes referred to as flow-level dynamics
[5], [15].
Interestingly, even though user association in a dynamic set-

ting can be viewed as a routing problem among queues, it is
still not well understood; most work to date, is ad hoc in nature
and does not address dynamic systems [3], [4], [7], [10], [13],
[16], [17]. The work in [5], [6], and [8] explores flow-level dy-
namics for load balancing, but assumes a centralized controller.
In particular, none of these efforts fully explores the role of load
balancing under spatially inhomogeneous traffic distributions in
a distributed way.
Recently, [18] includes an analysis of the stability/capacity

of systems with (and without) server interaction. In the case

1063-6692/$26.00 © 2011 IEEE



178 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 1, FEBRUARY 2012

of no server interaction (e.g., static intercell interference), they
characterize the system stability/capacity region based on static
server assignments. In particular given a priori measurements
for the spatial traffic loads, they propose an optimization that
would in principle result in a static assignment achieving the
largest proportional increase of the load (i.e., capacity). By con-
trast, the distributed -optimal user association policy devel-
oped in this paper is aimed to adapt to changing loads. It does
so without requiring direct knowledge of the spatial traffic loads
and has the aim of not only achieving stability, when possible,
but also of minimizing mean flow delay when flow scheduling
is temporally fair. Based on our approach, we also devise a
framework for admission control to be used when the system
is overloaded or cannot be stabilized. In the case of server in-
teraction, [18] explicitly characterizes the stability region for
a two-server system and provides a lower bound on the sta-
bility region for a multiple-server system. However, no prac-
tical user association rule was given. The characteristics of per-
formance-optimal user association polices in systems with dy-
namic interaction are studied in [11]. The insights developed
therein suggest an intriguing practical adaptive heuristic policy
that performs quite well [19].
One of the main challenges in developing a distributed user

association policy is achieving a global performance optimum
without relying on a centralized controller, and doing so to track
changes in traffic distributions; for example, day and night have
quite different spatial traffic distributions as may traffic on an
hourly (or faster timescale) basis. Our proposed mechanism, de-
noted -optimal user association, effectively overcomes these
challenges.
Contributions: We highlight the contributions of this paper as

follows. First, we provide a theoretical framework for user as-
sociation, specifically focused on load balancing under spatially
inhomogeneous traffic distributions in an infrastructure-based
wireless network. We formulate the user association problem as
a convex optimization problem. Then, we show a fixed point op-
timality condition characterizing the spatial partitions (cell cov-
erage areas) associated with minimizing a general system-level
performance function. The optimal spatial partition is shown to
be unique up to a set of traffic measure zero—this will be ex-
plained in the sequel. The optimality condition reveals many
interesting facts: 1) Cell loads are not interchangeable, and bal-
ancing loads to minimize delay does not imply equalizing loads
at the BSs. 2) Voronoi cells need not be delay optimal even if the
traffic loads are spatially homogeneous. 3) Cell coverage areas
need not be contiguous, i.e., can be fragmented.
Second, we present a distributed algorithm and prove its con-

vergence to a global optimum irrespective of the initial con-
dition. Our algorithm could in principle track slowly varying
traffic loads. It is also very simple and easily implementable;
one need only implement a simple greedy behavior by MTs to
achieve a global optimum. The proposed algorithm supports a
family of load-balancing objectives as ranges from 0 to :
rate-optimal , throughput-optimal , delay-op-
timal , and equalizing BS loads . Our work
is general and applicable to various scenarios. For example, our
model for achievable rate at the physical layer can capture shad-
owing. We do not assume the Tx power of BSs are the same, so
our work is also applicable to heterogeneous BS deployments

Fig. 1. User association problem considering the capacity and the traffic loads.

such as macro, micro, pico and even femto cells. Finally, our
user association rule can be easily extended to cover handover
by applying proper triggers and target ranking that govern net-
work mobility management control [14].
Third, we further extend our -optimal user association to ad-

mission control policies, which have not been discussed so far in
the literature. Specifically, we consider possible admission con-
trol policies when the system cannot be stabilized or is subject
to excessively high loads. The work in [20] and [21] suggests
that admission control is indeed required for best effort traffic in
these circumstances. The optimal policy that minimizes our gen-
eralized system-level performance function plus blocking cost
results in blocking flows around the boundaries of BS coverage
areas. In practice, this may not be desirable, so we propose a
policy that admits flows at the cell edge with a fixed probability,
giving a minimum level of “connectivity” to all users.
Organization: The paper is organized as follows. In

Section II, we describe our system model and assumptions.
Section III is devoted to the distributed algorithm and the
fixed-point optimality condition of user association under
inhomogeneous traffic distribution. We prove the convergence
of our algorithm in Section IV. We consider admission control
in Section V and conclude the paper in Section VII.

II. SYSTEM MODEL

A. Assumptions
We consider an infrastructure-based wireless communication

system with multiple base stations; see Fig. 1. Target systems
could be, but are not limited to, WiMAX2 or 3GPP-LTE. For
simplicity, we focus on downlink user association, but our
method is also applicable to the uplink user association and
could perhaps be combined to address more complex scenarios,
as long as intercell interference can be reasonably assumed to
be static. We assume that other cell interference is static and
can be considered as noise [4], [10], [13]. We consider a region

that is served by a set of base stations . Let
denote a location and be a BS index. We assume that
file transfer requests follow an inhomogeneous Poisson point
process with arrival rate per unit area and file sizes that
are independently distributed with mean at location
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, so the traffic load density is defined by .
We assume for . This captures spatial traffic
variability. For example, a hot spot can be characterized by a
high arrival rate and/or possibly large file sizes. Similar analysis
on the spatial flow-level dynamics was done in [15] and [22],
but for the homogeneous Poisson point process with uniform
arrival rate, i.e., .
Definition 1 (Traffic Load Measure): We define the traffic

load measure of a Borel set as .
Assumption 2.1 (Capacity Function): We assume the phys-

ical capacity each BS can deliver to location , is a
Borel measurable function and for any and , the
set

(1)

has traffic load measure zero, i.e., . Also, to
avoid unnecessary technicalities, we assume for all

and .
As will be seen in the sequel, this implies that cell “bound-

aries” have zero traffic load measure. Note this model allows for
a fairly general but deterministic capacity function.
Remark 2.1: When is discrete-valued, may not

have traffic load measure zero, so nontrivial tie-breaking rules
are necessary.
For simplicity, we use Shannon capacity to model the trans-

mission rate to a user, i.e.,

(2)

where is the received signal-to-interference-plus-
noise ratio at location for the signal from BS . Since we
assumed that interference is randomized and/or fractional
frequency reuse is used to mitigate interference, the sum of
total interference power seen by the MT can be simply treated
as location-dependent, but static interference, i.e., another
Gaussian-like noise [1], [2]. This static intercell interference
model has also been adopted in previous load-balancing
work [4], [10], [13]. We discuss in detail about our assumption
on the static intercell interference at the end of this section. The

is thus given by

(3)

where denotes the transmission power of BS and
denotes the total channel gain from the BS to the MT at loca-
tion , including path loss, shadowing, and other factors if any.
Note, however, that fast fading is not considered here because
the timescale for measuring is assumed to be much larger.
In addition, denotes noise power and denotes the av-
erage interference seen by the MT at location . It should be
noted that is location-dependent, but not necessarily de-
termined by the distance from the BS . For example, can
be very small in a shadowed area where is very small.
Hence, can capture shadowing as well.
The system-load density is then defined by

TABLE I
NOTATION SUMMARY

which denotes the fraction of time required to deliver traffic
load from BS to location . We assume that is
finite, i.e., at least one BS has physical capacity to location
that is not arbitrarily close to zero. Our notation is summarized

in Table I.
This paper focuses on scenarios where users see (a roughly)

static interference from neighboring cells. In what follows, we
discuss when this is likely to be the case. Dynamic interference
is most problematic in systems with a frequency reuse of 1,
i.e., when all cells (or sectors) operate on the same frequency.
In such a scenario, the interference will vary significantly de-
pending on the activity in neighboring cells, possibly coverage
to QoS, e.g., voice/video users at the cell edge.
For this reason, upcoming practical wireless systems such

as WiMAX2 and LTE-Advanced include different strategies
to mitigate the impact of intercell interference by ensuring
adjacent cells (or sectors) operate in different frequencies. For
example, when frequency reuse 3 is used, each cell (or each
sector) can have either one of three different frequencies, say
F1, F2, or F3. However, in order to maximize the spectrum
efficiency, a frequency reuse 1 and 3 can be used together [23],
i.e., frequency reuse 1 for the cell center and frequency reuse 3
for the cell edge. This approach has been generalized in IEEE
802.16 m, where reuse-3 is achieved in the same carrier fre-
quency via partial bandwidth usage; this is usually referred to
as fractional frequency reuse (FFR). A TDM-based enhanced
Inter-Cell-Interference-Cancellation (eICIC) approach has also
been developed to ensure that mobile terminals see no inter-
ference from the closest interfering cells [24]. In addition to
FFR/eICIC, the cell radius is carefully chosen, taking into con-
sideration power budgets and path loss. This typically results
in interfering cells (or sectors) that are sufficiently separated so
that interference from the cells operating on the same frequency
becomes negligible.
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When the above mechanisms are in place, even if the intercell
interference depends on the activity of neighboring cells/sec-
tors, the variation (and the interference itself) can be reasonably
neglected and modeled perhaps as an (averaged) static value.
We note, however, that studying the one with frequency reuse 1
where dynamic intercell interference plays a role is still of in-
terest as it can lead to a larger stability region and better per-
formance, e.g., delay for best-effort flows. For this reason, there
has been quite a bit of work in this direction, see e.g., [5], [11],
[18], [19], and [25].

B. Problem Formulation

Our problem is to find an optimal user association policy con-
sidering the physical capacity and cell load so as to minimize
the system cost function that follows. In doing this, we intro-
duce a routing function , which specifies the probability
that a flow at location is associated with BS .
Definition 2 (Feasibility): The set of feasible BS loads

is given by

(4)

(5)
(6)

and (7)

where is an arbitrarily small positive constant. Hence, the fea-
sible BS loads has the associated routing probability vector

.
Lemma 1: The feasible set is convex.
Proof: Consider two load vectors and

. Then, there exist associated
and such

that and for
all . Now, we make as a convex combination of
and , i.e., for

for all . Let
be the routing probability associated with . Then,

, and it satisfies (4)–(7). Hence,
is feasible, and so is a convex set.
We formulate our problem as a convex optimization as

follows.
Problem 1:

(8)

where is a parameter specifying the desired degree of
load balancing. When , the objective function is defined
as . Our objective function has a similar formwith
the -fair utility function [26]. However, we have a notion of
cost instead of utility, so we need to minimize it. In addition, in-
stead of the functional similarity, the implication of is not ex-
actly matched. Problem 1 is said to be feasible if is nonempty.
Otherwise, we shall require admission control, which will be
discussed in Section V.

Fig. 2. Flow-level queueing model for user association problem.

C. Motivation for the Objective Function
Now, we describe the motivation for our objective func-

tion (8). Optimizing for the case corresponds to
minimizing the overall average flow delay in the system if MTs
that are associated with a BS are served by a temporally fair
scheduler. Consider a dynamic system where new flows (or file
transfer requests) arrive randomly (Poisson) into the system
and leave after being served. The dynamics of this system are
captured by a flow-level queuing model as shown in Fig. 2,
which tracks the arrival and departure processes of users (or
flows, file requests); see e.g., [27]–[29], [34].
Let denote a random process repre-

senting the number of ongoing file transfers served by BS
at time . Then, if the system is stationary, the stationary dis-
tribution of is identical to that of an multi-
class processor sharing system [30], and given by

. Multiclass reflects the fact that users see different
service rates and file sizes based on their locations. We con-
sider infinitely many classes because we address this problem
in a continuous space . The average number of flows at BS
is then simply given by , and total number of
flows in is . From Little’s
formula, minimizing the average number of flows is equivalent
to minimizing the average delay experienced by a typical flow.
Minimizing is equivalent to (8) when because

, which does not change the opti-
mization problem.

D. -Optimal User Association
Before discussing the optimal user association and how to

achieve it, we first discuss the implications of this framework.
The solution to Problem 1 gives a unified approach that allows
the mobile terminals to select the BS considering signal strength
(a user point of view) and the degree of load balancing (the
network point of view). Throughout this paper, we will see that
if Problem 1 is feasible, the optimal decisionmade by themobile
terminal located at is to join BS given by

(9)

where denotes an optimal load vector, i.e.,
solution to Problem 1.
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Remark 2.2 (Deterministic User Association is Optimal): It
should be noted that the optimal user association rule (9) is in-
deed deterministic under Assumption 2.1 even though we for-
mulate the problem with probabilistic user association by intro-
ducing . This will be made clear in the proof of Theorem 1.
Remark 2.3 (Tie-Breaking): A location is called a

cell boundary if there is a tie in the operation in (9) at
. Based on Assumption 2.1, cell boundaries have traffic load
measure zero. Nevertheless, for completeness, if a tie happens,
we shall hereafter assume that theMT at such a location chooses
the lower indexed BS.
From (9), the mobile terminal chooses a BS that provides the

highest physical capacity weighted by a power of a BS’s idle
time. By a BS’s idle time, we refer to the fraction of time it is
inactive, i.e., . Depending on the value of , we categorize
-optimal user association policies into four cases.
1) Rate-Optimal Policy: When , the decision is purely

based on a user’s perspective, i.e., based on the physical capacity
only (or SINR) and oblivious of network traffic condition. In this
case, one can show that -optimal user association maximizes
the arithmetic mean of the BSs’ idle times.
2) Throughput-Optimal Policy: As increases, the BS se-

lection criteria gradually shifts from the user’s perspective to the
network perspective, and is a critical point. This is be-
cause goes to infinity with loads close to 1 only if
and ensures a stable behavior. When , it can be shown
that the geometric mean of the BSs’ idle time is maximized.
3) Delay-Optimal Policy: When , average file transfer

delay is minimized as we have seen. In addition, one can show
that the harmonic mean of the BSs’ idle time is maximized.
4) Equalizing-Load Policy: As further increases, the rule

is such that more emphasis is placed on the traffic loads rather
than the physical capacity. One can show that as -op-
timal user association minimizes the maximum utilization, i.e.,
min-max utilization, and furthermore it equalizes the utilization
of all the BSs.
Remark 2.4: Hence, it should be noted that load balancing

does not necessarily imply equalizing the loads of all BSs; dif-
ferent values of have different implications.
Remark 2.5: There are some (but not exact) analogies be-

tween -optimal user association and -fair utility. When
, load balancing is ignored, which is similar to the case when
fairness is ignored. When goes to infinity, the user association
becomes the min-max utilization policy, which is similar to the
case of max-min fairness. However, for other values of , the
exact similarity is not present.

III. DISTRIBUTED ITERATION ACHIEVING OPTIMALITY

In this section, we propose a distributed adaptive user associ-
ation algorithm that achieves the global optimum of Problem 1
in an iterative manner. The algorithm is simple: BSs periodi-
cally share their time average loads with MTs, and MTs use this
information to make decisions over these periods. Since this al-
gorithm is totally distributed, i.e., does not require any central-
ized computation, we do not have an algorithmic complexity
issue here. We will show that if spatial loads are temporally sta-
tionary, the load vector eventually converges to the unique so-
lution of Problem 1, which in turn determines spatial coverage

areas associated with each BS. However, to show convergence,
we shall assume the following simplifying assumption.
Assumption 3.1 (Separation of Timescales): We shall assume

the flow arrival and departure processes are fast relative to the
period on which BSs advertise their loads. In particular, once
the BSs advertise their load vector, prior to the next update, the
BSs are able to measure the new steady-state loads associated
with MT decisions under the advertised vector.

A. Distributed-Decision Algorithm

The algorithm involves two parts.
Mobile Terminal: At the start of the th period, MTs receive
, e.g., through broadcast control messages from BSs.1 Then,

a new flow request for an MT located at simply selects the
BS using the deterministic rule given by

(10)

This defines a new spatial partition ,
where denotes the coverage area of BS at th period.
Specifically, depends on the broadcast load as follows:

(11)

Base Station: During the th period, BSs measure their av-
erage utilizations. Due to Assumption 3.1, the measured utiliza-
tion of BS converges to some value, denoted by

(12)

Note that BS simply measures its utilization, yet this is mathe-
matically captured by (12). In addition, themeasured utilization,
of course, cannot exceed 1. Hence, to avoid unnecessary tech-
nicalities, we introduce an arbitrarily small positive constant .
It can be shown that is a contin-
uous mapping defined on to itself. Note that mapping

is the mathematical model capturing the user association
dynamics, i.e., when BSs broadcast , and the associated user
association policy is followed, the BSs will eventually see a new
load vector .
After is measured, BSs compute and advertise their

next broadcast message given by

(13)

where is an exponential-averaging parameter. It
should be noted that corresponds to the average loads
seen during the th period while is an exponential average
of across periods, i.e., with some initial
loads .
1IEEE 802.16m facilitates this type of message structure [1], [14].
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B. Fixed Point Achieves Optimality
Note that if converges, it must converge to a fixed point

of (13), i.e., a solution to

(14)

The proof that (13) converges to is provided in Section IV.
Below,wewill show that has a unique fixed point corre-
sponding to the optimal load vector associated with Problem 1.
Theorem 1: Suppose that Problem 1 is feasible. Then, has

a unique fixed point that is the optimal solution to Problem 1.
In addition, under Assumption 2.1, this fixed point determines a
unique optimal spatial partition up to a set of traffic measure
zero.

Proof: Since is a continuous mapping defined on com-
pact set to itself, by Brouwer’s fixed point theorem,
a solution of must exist. Since is a convex
function over a convex set , if satisfies the following
condition:

(15)

for all where , then is the optimal
solution of Problem 1.
Let and be the associated routing probabilities

for and , respectively. From (11), (12), and (14), the fixed
point generates the deterministic cell coverage, and thus the
association rule is also deterministic, i.e.,

(16)

and then the inner product can be computed such as

(17)

Note that

holds because in (16) is an indicator for the maximizer of
, for all . Hence, .

When , Problem 1 is strictly convex, and should
be unique, and so is the fixed point. When , the optimal
policy selects the BS that gives the highest without con-
sidering load. Hence, is independent of the load vector
and a constant function, which ensures that is unique.
In addition, one can show that has a corresponding spatial

partition , which is unique up to a set of traffic
measure zero. Suppose that there are two such partitions and

associated with , and there exists a set with
nonzero traffic measure where and differ, i.e., user as-
sociations are different. In particular, without loss of generality
on , under , users at those locations associate with BS 1,

Fig. 3. (a), (b) Voronoi cells versus delay-optimal cells and (c), (d) spatial dis-
tribution of conditional average delay (dB scale) in each case.

while under they associate with BS 2. It follows that on
there must be a tie, yet by Assumption 2.1 such sets have traffic
measure zero. This is then a contradiction. It follows that the in-
duced partition is unique except on sets that have zero traffic
measure.

C. Examples
We provide some examples to exhibit the properties of
-optimal user association.
Example 1: Rather than computing the utilization from busy

fractional time, utilizations can be indirectly estimated by mea-
suring the average number of flows in the system. For example,
in an processor sharing queue, the average number
of flows is given by , which in turn yields

. Replacing into (9) when gives

(18)

This rule was proposed as a heuristic in [4], [10], and [13], which
turns out to be a special case of our -optimal user association.
Example 2 (Spatial Delay Smoothing): This example shows

the BS coverage areas and geographical distribution of av-
erage file transfer delays. Five BSs are randomly placed in
a 1000 1000 m region. As an example of inhomogeneous
traffic loads, a linearly increasing load along the diagonal
direction from the bottom left to the top right is considered.
The Tx power of all the BSs was normalized to 1. We assume
hereafter that the Tx power is 1, unless otherwise specified,
throughout the paper. In addition, is computed using a
path-loss exponent 3. Fig. 3(a) shows the partition when
(Voronoi cells), and Fig. 3(b) shows the partition when
(delay-optimal cells). Fig. 3(c) and (d) shows the conditional
average file transfer delays (dB scale) at , which is given by
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Fig. 4. Delay-optimal cells obtained for spatially homogeneous traffic loads.
Voronoi cells are not delay-optimal even if the traffic loads are spatially
homogeneous.

in the case of an multiclass processor sharing system
model. For simplicity, we set and show the average
1-b transmit time. The benefit of delay-optimal load balancing
is clearly exhibited in Fig. 3. A slight modification of the cell
coverages significantly improves the delay performance, specif-
ically, for the congested cell at the lower right corner.
Example 3 (Voronoi Cells Versus Delay-Optimal Cells):

One might think that Voronoi cells are delay-optimal for ho-
mogeneous traffic loads. However, this is not necessarily true.
Consider a case where the traffic loads are homogeneous, i.e.,

and . Then, from (16), the delay-op-
timal cell boundary for two adjacent cells and is
given by

(19)

Since at the Voronoi cell boundaries, (19) is
satisfied when . However, two adjacent Voronoi cells
do not necessarily have the same loads, i.e., . In fact,
Voronoi cells are delay-optimal only if in addition Voronoi cells
have the same loads, which can be achieved when all the BSs are
deployed symmetrically, e.g., hexagonal structure. Fig. 4 shows
an example of delay-optimal cells that are far fromVoronoi cells
even though the traffic loads are homogeneous.
Remark 3.1: In general, -optimal user association gives the

following cell boundary:

(20)

We note that [18] also characterizes the cell boundary associated
with the capacity achieving static association policy for a given
traffic load. In this scenario, they show the ratio of and

needs to be constant at the cell boundary. By contrast,
(20) explicitly characterizes the load-dependent ratio. These cell
boundaries need not be the same, as they correspond to different
objective functions.
Example 4 (Fragmented Cells): One might think that

coverage areas associated with BSs should be contiguous.
However, optimal BS coverage areas may be fragmented.

Fig. 5. Illustration of fragmented cell coverage areas.

Fig. 6. Average delay obtained for different values of . When , min-
imum average delay is achieved.

Fragmented cells can exist because and in
(19) play a role in determining the boundary. Fig. 5 illustrates

and in 1-D and shows how
noncontiguous coverage areas may arise depending on and
even if two BSs have the same Tx power.
Example 5 (Delay for Various ): Fig. 6 shows the average

delay performance for different . Four BSs are randomly
placed on 1000 1000 m . For illustrative purposes, the traffic
loads are chosen to grow linearly along the diagonal direction.
We exclude the results when because they result in
excessive delays. It can be clearly seen that minimizes
the average delay.

IV. CONVERGENCE OF DISTRIBUTED ITERATION
In this section, we prove that the distributed -optimal user

association algorithm converges to the global optimum load
vector . When is constant and (13) with
converges in one iteration, so hereafter we focus on the case
when .

A. Proof of Convergence
As seen earlier, the proposed algorithm can be interpreted as

iteratively applying the mapping in (13) to an initial load .
We shall prove the convergence of the loads by first considering
the characteristics of the mapping. If were a contraction
mapping, then iterating would guarantee convergence to the
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Fig. 7. Convergence property of mapping. The shaded region represents the
convex set , and the dashed line represents the set . In addition,

, and is the tangent line of the level set at .

unique fixed point associated with the global optimum. How-
ever, is not necessarily a contraction mapping, in particular
when the system is highly loaded. Therefore, the proposed algo-
rithm is a damped version of , i.e., .
We first show the following two lemmas associated with the
mapping, and then prove the convergence of the mapping.
Lemma 2: If , then is on the boundary of that

faces the origin; see, e.g., Fig. 7.
The proof is included in that of Lemma 3.
In the case of two BSs, the fixed point of can be visual-

ized as shown in Fig. 7. The dashed line denotes a set
, i.e., the boundary of facing the origin. Since

the level sets of are concave functions (solid lines), is
the point where the level set touches a convex set . Note that
the shape of , i.e., the shaded region in the figure, and de-
pend on the spatial traffic distribution.
Remark 4.1: From (11) and (12), is associated with de-

terministic BS coverage areas, and the routing probability that
specifies is binary, i.e., either 1 or 0. Hence, in describing
the routing probability associated with , we will use the no-
tation instead of .
Next, we show two key properties of mapping. The first

is that is a descent direction of . The second is
that is a vector that minimizes the inner product with

. This is formally stated in the following lemma.
Lemma 3 (Descent Direction): For and

gives a descent direction at , i.e.,

In addition, is the feasible load vector that minimizes the
inner product with the gradient at , i.e.,

(21)

Proof: Let and be the routing probability associ-
ated with and , respectively. From (12), is associated

with deterministic cell coverage area , and thus its routing
probability is given by binary, i.e.,

(22)

with ties broken in favor of lowest index BS. Let
. Then, can be computed as follows:

By definition, satisfies

(23)

Since , it must be that on a set that has
nonzero traffic load measure. Then, multiplying (23) by
and integrating over gives .
Furthermore, we have the following property:

(24)

because (23) holds for arbitrary . Then, multi-
plying (24) with and integrating (24) over proves (21).
Finally, (21) implies that is on the boundary of , and
Lemma 2 is proved.
Fig. 7 exhibits . Suppose that is the opposite direction

of and is the tangent line of the level set at . Then,
the feasible vector that maximizes the inner product with can
be found by drawing a line that is parallel to and tangent
to the boundary ; the tangent point is then . In Fig. 7,
we see the case of , which implies that
gives a descent direction, but it does not necessarily result in
a monotonic decreasing sequence . Indeed, mapping
can overshoot along the descent direction, in particular when the
loads are high. Introducing the weighting parameter in (13)
alleviates such overshooting. Fig. 7 shows
if is selected between and , where is the intersection
of and the level set at . Based on this, we prove the
convergence of iteration in Lemma 4 and Theorem 2.
Lemma 4: For and , there exists

such that .
Proof: Since

is also a descent direction. Since the
level sets of are strictly concave functions when
and gives a descent direction at , there exists a
that makes .
Theorem 2 (Convergence): Suppose that Problem 1 is fea-

sible. If and is chosen so that
, then converges to .

Proof: is a monotonically decreasing sequence in
and also lower-bounded by , so converges. Suppose
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Fig. 8. Level sets of when (two-BSs case).

that converges to something other than . Then,
produces a descent direction again, and by Lemma 4,

can further decrease in the next iteration. This contradicts the
convergence assumption, and should converge to .
Remark 4.2: A fixed close to 1 generally works well for the

convergence. However, the magnitude of guaranteeing con-
vergence depends on the network load. When the system is not
congested, even can guarantee convergence as may
be a contraction mapping. However, when the system is con-
gested, needs to be close to 1, e.g., 0.95–0.99. The conver-
gence speed also depends on . When the loads are low, can
be small and exhibits fast convergence. In practice, is a design
parameter that should be selected to balance speed of conver-
gence versus stable system behavior.
Remark 4.3: Note that MT decides its serving BS in a greedy

way so as to maximize its own decision metric (11). Neverthe-
less, this algorithm converges to the global optimum. This is an
interesting property because greedy behaviors of terminals de-
grade overall system performance in many cases.
Remark 4.4: As stated earlier without proof, the optimal so-

lution equalizes for all when . This can be easily
proven when the level sets of are plotted. Fig. 8 shows the
level sets when . In fact, the level sets become more and
more sharp as grows, and thus the optimal utilization where
the level set touches occurs when are all equal.

B. Convergence Independent of Initial Condition
So far, we assumed , and then remains in the

feasible set during the iteration. One can, however, show that
the iteration converges to the optimal point as long as

. This property is important in real implementation be-
cause it makes the algorithm robust to changes in the traffic spa-
tial distribution. As an example, suppose that at time , the
stationary file arrival process with changes to another sta-
tionary process with . However, the optimal solution for

Fig. 9. Example of convergence: (a) delay-optimal partition; (b) average delay;
(c) ; (d) .

may not be in the feasible set associated with . Nev-
ertheless, our algorithm would converge to new optimal point.
A proof of convergence for is given in the
Appendix.
Example 6: Fig. 9 shows the convergence of two different

utilizations: and when . The iteration can
start at any , so we simply pick up

, which gives Voronoi cells at the first itera-
tion. In this example, traffic loads are chosen so that Voronoi
cells cannot stabilize the system. Hence, the delays would be
infinite for the first few iterations; see Fig. 9(b) and (c). Never-
theless, our algorithm converges quickly to the optimal point.
Remark 4.5 (Throughput-Optimality): The proposed algo-

rithm is throughput-optimal when . This is because
goes to infinity when approaches 1. Then, if the system can
be stabilized, there exists a partition and corresponding
such that . Then, , i.e.,
is also finite. Since the algorithm converges to for any

, it stabilizes the system if the system can be stabilized.

V. ADMISSION CONTROL
So far, we have assumed that Problem 1 is feasible, i.e., the

system can be stabilized and Problem 1 has a solution. How-
ever, when the traffic loads are too high, the system may not be
stabilizable or may perform very poorly so admission control
is required. In this section, we consider admission policies for
such regimes. Our objective is to minimize a system cost func-
tion that includes a cost associated with blocking flows. We as-
sume that the blocking cost is proportional to the volume of the
blocked traffic. Since flow blocking determines users’ satisfac-
tion and unsatisfied users may switch operators, such admission
control policies would reflect operators’ business concerns.

A. Optimality Condition
We assume the flows that are blocked are routed to a sink, or

nullBS. Let denote a set of all BSs including the null BS, and
redefine as . It should be noted that is
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not a utilization; it is defined as , where
is the flow blocking probability at location . Hence,

can be greater than 1. The total blocking cost is given by ,
where is a parameter that captures blocking cost per bit. We
define a feasible set including as

and

It can be shown that is a convex set. Our objective
function is then given by Problem 2.
Problem 2:

(25)

Note that Problem 2 is a simple convex generalization of
Problem 1. If the system can be stabilized, Problem 2 is equiva-
lent to Problem 1 as goes to infinity. An optimality condition
for this problem based on which we can develop adaptive
admission control and user association policy is proposed next.
We propose an iterative algorithm for Problem 2 whose be-

havior is similar to those given for Problem 1, i.e., (10)–(13). At
the start of the th period, MTs choose their serving BSs using
(10), and BSs measure the utilization, which converges to (12)
under the Assumption 3.1. BSs update their broadcast load vec-
tors using (13). The difference is that the user association policy
now involves admission control, i.e., though MT uses the same
association rule, a BS may block an MT based on a threshold.
As a consequence, the coverage area (11) is revised as follows:

(26)

where

if

if
(27)

Note that denotes the area where flows are blocked. In-
tuitively, (26) and (27) say a BS blocks flows that do not see
good performance as compared to threshold . The threshold
is the inverse of blocking cost per bit. Thus, if the blocking
cost is high, the BS is less likely to block flows, and vice versa.
The meaning of a threshold depends on : When

is simply the minimum achievable rate; when
corresponds to the expected throughput, and thus the expected
throughput of a MT at , i.e., needs to
exceed in order to be admitted; when corresponds
to a maximum marginal 1 bit transmit time. Note that if the ad-
mission control is enforced, flows around the cell edge are first

to be blocked if shadow fading is not considered. It is also re-
ported in [5] that admission control under a heavily congested
system blocks the flows around the cell edge. This, of course,
is because users at the cell edge consume most of the system
resources, i.e., time.
Following our previous approach, the optimal user associa-

tion and admission control policy are related with the fixed point
of a certain mapping. To derive it, in addition to (12), we define

(28)

and is redefined on to itself where .
It can be shown that converges to , i.e., a fixed point of
, using the same technique as for Theorem 1.
Theorem 3: has a unique fixed point that is the optimal

solution to Problem 2. In addition, under Assumption 2.1, this
fixed point determines a unique optimal spatial partition up to a
set of traffic measure zero.

Proof: Since is a continuous mapping defined on com-
pact set to itself, by Brouwer’s fixed point
theorem, a solution of must exist. Now, we prove
that is the optimal solution of Problem 2. Since is a
convex function over a convex set , if satisfies the fol-
lowing condition:

(29)

for all where , then is the optimal
solution of Problem 2.
Let and be the associated routing probabilities for
and , respectively. From (12), (14), (26), and (28), the fixed
point generates the deterministic cell coverage, and thus the
association rule is also deterministic, i.e.,

(30)

where is given by (27) with . Then, the inner product
is computed such as

(31)

(32)

where follows from that is the maximizer of
for (or the minimizer of their inverses). The unique-
ness of the spatial partition can be proven similarly as that of
Problem 1.
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Fig. 10. Cell coverage areas under admission control. (a) . (b) . Each cell has completely admitted area A and partially admitted area PA .
(c) Tradeoff between and performance.

B. Adding Flow Acceptance Probability Constraint
Fig. 10 shows an example of admission control policy when

the traffic load is heavy. For illustrative purposes, BS1–BS4
are placed at the four corners, and BS5 at the center. Fig. 10(a)
shows the coverage areas of five BSs, i.e., A1–A5. Traffic
load increases along the diagonal direction and is such that the
system is not stabilizable. As can be seen, the flows around the
cell edge are blocked (bright gray areas). Note that the complete
call blocking around the cell edge raises issues of fairness, and
thus the service provider might want to admit the flows at cell
edges even if they see poor performance. In addition, allowing
some level of minimal connectivity might be beneficial from a
higher-layer QoS perspective, i.e., the tradeoff between delay
and service outage probability. However, providing such min-
imum connectivity will compromise overall delay performance
and lead to additional blocking for customers closer to the
BSs. To capture the tradeoff between the fairness and delay
performance, we add the following constraint:

(33)

in , where specifies the minimum probability of flow
acceptance.
Theorem 4: An optimal user association policy of Problem 2

with additional constraint (33) is still (9), but with probability
, the flow is blocked if .
Proof: Since is still a convex set with additional con-

straint of (33), it is sufficent to show that (32) is satisfied when
and its associated are given as follows:
if

(34)

otherwise

(35)

(36)

The proof is essentially the same as the proof of Theorem 3,
and condition in (32) is satisfied when is chosen as

stated in (34)–(36) because gives most of its weight on at
most two under the constraint of (33).
Fig. 10(b) shows the areas where the flows are partially ad-

mitted with a fixed probability (denoted by PA )
and completely admitted (denoted by A ). In this example,

is used. Comparing Fig. 10(a) and (b) shows that areas
where flows are admittedwith probability 1 shrink as increases
from 0 to 0.5. In addition, increasing also degrades overall
system performance. Fig. 10(c) shows its tradeoff: As grows,

increases. Hence, should be carefully chosen consid-
ering the tradeoff between minimum probability of flow accep-
tance and performance degradation.
Remark 5.1: The addition of a minimum probability of flow

acceptance irrespective of location means once more that
the network may not be stabilizable. That is, even if flows are
blocked with probability everywhere, there may not exist
a user association policy that stabilizes the remaining load.
We envisage the service provider having sufficient knowledge
of the traffic loads on its network to balance the selection of
the two parameters and : balancing blocking (and stability)
versus flow-level performance.

VI. DISCUSSION

A. -Optimal Versus State-Dependent User Associations

Our proposed user association is based on estimating and
adapting to a base station’s long-term utilizations . One might
instead consider using a state-dependent policy, i.e., using the
current number of flows. For example, one can consider the fol-
lowing state-dependent policy:

(37)

where denotes the current number of flows served by the
BS at time . The denominator is augmented by one to in-
clude the MT that would be joining BS . Under this “greedy”
policy, an MT associates with the BS that currently affords it the
best instantaneous effective service assuming temporally fair
scheduling.
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Fig. 11. Event-driven simulation for -dependent and the state-dependent
policies.

The performance for such a state-dependent policy is analyt-
ically intractable, so we shall determine the average flow-level
delays via event-driven simulations. For illustrative purposes,
we consider a linear network where two BSs are placed on a
line segmented apart by 500 m, and is linearly increasing
in . In Fig. 11, the line with is for the optimal average delay
obtained from analysis, and the lines with and demonstrate
the delay-optimal user association and state-dependent user as-
sociation given by (37), respectively. Interestingly, for this sce-
nario, the state-dependent policy exhibits roughly the same per-
formance as our proposed policy.
To further investigate state-dependent policies, let us com-

pare (37) to

(38)

Recall that (38) is -optimal user association for . To
relate (37) to (38), consider estimating exponential aver-
aging, i.e., the estimated average number of flows up to time
is given by

where . Note that when is zero, (38) reduces
to (37). Thus, by varying from 0 to 1, we can see the im-
pact of the exponential averaging parameter (window) on delay
performance. Interestingly, service capacity is shared based on
processor-sharing service discipline, and the delay performance
is not significantly affected by the averaging parameter; see
Fig. 12. This “insensitivity” is beneficial in practice since, in
principle, the BSs need not broadcast the load estimation too
frequently. Note that implementing the state-dependent policy
requires the current state to be broadcast whenever the state
changes (i.e., the arrival or departure of flow happens); see the
time index of in (37) instead of in (38).
Note that although the state-dependent policy in (37) exhibits

good delay performance, it may not stabilize the system under
all traffic scenarios. Indeed, [31] proposed a state-dependent
user association called MinDrift server assignment, which is
throughput-optimal for a work-conserving discipline. However,

Fig. 12. Insensitivity of the averaging window size in estimating the load.

it requires knowledge of the mean file size generated
by flows at location , which in practice may not be avail-
able—e.g., flows generated at a coffee house might have larger
means than those on the road. By contrast, our -optimal user
association does not require the knowledge of , but
throughput-optimal when ; these quantities are implicitly
estimated by the measured long-term utilizations of the base
stations.

B. Applicability to OFDMA Systems

Since emerging broadband standards are based on OFDMA,
e.g., WiMAX2 and LTE-Advanced, we briefly discuss the appli-
cability of our work to such systems. The base stationmodel dis-
cussed in this paper captures a system with a single resource that
is time-shared (equally) among active users. OFDMA systems
differ in that users can be scheduled (opportunistically) across
various frequency bands in a manner that need not be tempo-
rally fair, e.g., to compensate for heterogenous user locations.
We envisage two ways in which our model can be applied: The
first is strict application, whereas the second is perhaps a more
realistic relaxation of the model. First, consider a system with
base stations, each of which has transport blocks, sets of

frequencies. Transport blocks correspond to the minimum unit
of spectrum that can be allocated to a user. Suppose a mobile
terminal is associated with a specific transport block at a given
base station, thus users see a server system.2 As long
as users associated with a block are scheduled in a temporally
fair way, our system model directly applies to this setting. Fur-
thermore, to minimize the intercell interference, the available
bands to users may depend on the location, e.g., cell center or
cell edge may have different frequency band. Indeed, this is the
combination of cell load balancing and interference avoidance
and is already proposed for 4G OFDMA systems; see [10] and
[13].
In our second scenario, all the frequency resources avail-

able at a base station are shared by all the users according
to a chosen scheduler, e.g., proportionally fair scheduling
2The case where multiple transport blocks can be associated with the mobile

terminal becomes a more complex problem because the number of blocks be-
comes another decision variable.
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(for WiMAX2, see [32, Appendix F]; for LTE-Advanced, see
[33, Section A.3]). The base station’s utilization is simply the
fraction of transport blocks utilized per frame. The overall cost
in Problem 1 is interpreted as a natural proxy for congestion to
be minimized. The base station’s capacity to serve a given user
is determined based on an averaged channel quality indication
across transport blocks or otherwise estimated. Under these
relaxed assumptions, the proposed user association policy is
a natural fit for use in most OFDMA settings where intercell
interference has been proactively mitigated.

VII. CONCLUSION
In this paper, we proposed a theoretical (and also practical)

framework for user association problem in wireless networks.
We specifically focused on distributed load balancing under
spatially inhomogeneous traffic distributions and showed the
optimality condition of cell coverage areas that minimizes
generalized system performance function. Interestingly, the
optimal user association policy, i.e., routing of flows to appro-
priate BSs, is deterministic even though probabilistic routing
is allowed. This deterministic property enables us to develop
a simple distributed-decision algorithm at the MTs, which is
easily implementable and compliant with upcoming standards,
e.g., WiMAX2 or LTE-Advanced. Our distributed algorithm
converges to the global optimum and also is robust to changes
of traffic distributions. Finally, our work was extended to the
case where the system cannot be stabilized due to excessive
traffic loads. Under such heavy traffic regimes, we proposed
optimal admission control policies considering tradeoffs be-
tween two QoS metrics: average delay versus maintaining a
minimum level of connectivity to users independent of their
location.

APPENDIX
We will prove the convergence of our iterative algorithm ir-

respective of the feasibility of the initial load vector using an
affine-invariant property of the mapping given as follows.
Definition 3 (Affine Set of ): For , we define

an affine set
where . Hence, is a set of points on the line
connecting and ; see Fig. 13.
Lemma 5 (Affine Invariance of ): For and
, we have , which implies that all the points

in the affine set yield the same partition by . In fact, is not a
one-to-one mapping, but many-to-one, and thus noninvertible.

Proof: From (11), we see that scaling of does not
change the decision rule because the decision metrics for all BSs
are scaled in the same way. Hence, .
Lemma 6: For , there exist

and such that , where
; see Fig. 13.

Proof: We consider a mirror image of , denoted by , such
that . Then, by Lemma 5. Note that
is not unique. Let denote a line connecting and . Sim-
ilarly, let denote a line connecting and . We pick up

with some on line and determine as an intersec-
tion of and . From Lemma 4, if is sufficiently close
to 1, which in turn implies is also sufficiently close to 1, we
have .

Fig. 13. Convergence property starting from arbitrary .

Theorem 5: If Problem 1 is feasible, converges to
for any .

Proof: If is sufficiently close to 1, there exists a mirror
sequence that converges to by Lemma 6 and Theorem 2.
Since also converge to . Since
is a continuous mapping, also converges to .
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